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a b s t r a c t

The heart sound signals (Phonocardiogram – PCG) enable the earliest monitoring to detect a potential
cardiovascular pathology and have recently become a crucial tool as a diagnostic test in outpatient mon-
itoring to assess heart hemodynamic status. The need for an automated and accurate anomaly detection
method for PCG has thus become imminent. To determine the state-of-the-art PCG classification algo-
rithm, 48 international teams competed in the PhysioNet (CinC) Challenge in 2016 over the largest
benchmark dataset with 3126 records with the classification outputs, normal (N), abnormal (A) and
unsure – too noisy (U). In this study, our aim is to push this frontier further; however, we focus deliber-
ately on the anomaly detection problemwhile assuming a reasonably high Signal-to-Noise Ratio (SNR) on
the records. By using 1D Convolutional Neural Networks trained with a novel data purification approach,
we aim to achieve the highest detection performance and real-time processing ability with significantly
lower delay and computational complexity. The experimental results over the high-quality subset of the
same benchmark dataset show that the proposed approach achieves both objectives. Furthermore, our
findings reveal the fact that further improvements indeed require a personalized (patient-specific)
approach to avoid major drawbacks of a global PCG classification approach.
� 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

According to the World Health Organization (WHO) report in
2015, an estimated 17.7 million people died from cardiovascular
diseases only in 2015, representing 37% of all premature deaths
worldwide. The most common, and possibly the cheapest and the
earliest clinical examination is heart auscultation, which can reveal
several cardiac anomalies, such as certain arrhythmias, failures,
murmurs, as well as diseases such as ventricular septal defects,
and stenosis in the aorta [28] and many more. However, there
are several limitations and practical problems in the human audi-
tory system when it comes to phonocardiogram (PCG) signal anal-
ysis, despite the cognitive skills and expertise of the medical
examiner. This is worsened by surrounding environmental noise
and possibly large signal variations in the local recording areas.
This brought the need for an automated, cost-effective and robust
anomaly detectionmethod for PCG signals. During the last 20 years,
several approaches [9,5,29,41,15]) have been proposed in the liter-
ature. However, most of them were tested on limited PCG datasets
usually containing only a small number of records, e.g., a few doz-
ens. Most of them used a particular machine learning approach,
and it is a well-known fact that they can be easily tuned to maxi-
mize the classification performance on a limited test set. Moreover,
it is not feasible to perform any comparative evaluation between
them due to the variations of the train and test datasets used.
The need for a benchmark dataset which contains a sufficiently
large collection of PCG records was imminent, and finally, the Phy-
sioNet community [30] composed the largest PCG dataset that was
used as the benchmark dataset in PhysioNet (CinC) Challenge 2016,
where 48 proposals have recently competed. The benchmark data-
set contains 3126 records; however, some records were too diffi-
cult to analyze due to the significant noise; therefore, the
classification outputs as, normal (N), abnormal (A) and noisy (U)
were recommended by the Challenge. As a result, the objective of
the competition is not only to detect records with anomalies (A)
but also to detect those records which are ‘‘too noisy” (U). This
was, therefore, a blended objective rather than a sole anomaly
detection.
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Our earlier work, Zabihi et al. [40], was the 2nd ranked method
in the PhysioNet (CinC) Challenge, with respect to this combined
objective, was indeed the best-performing method for PCG anom-
aly detection. So taking contribution Zabihi et al. [40] of the chal-
lenge as the reference, the three main objectives of this study are
to: 1) further improve the state-of-the-art anomaly detection per-
formance 2) reduce the false alarms (misclassification of normal
records as abnormal), and 3) achieve a real-time processing ability
with significantly lower delay and computational complexity. The
detection of low-quality (too noisy) records is beyond the scope of
this study and therefore, we shall assume that each PCG records
has a sufficiently high Signal-to-Noise Ratio (SNR) and can be seg-
mented with a reasonably high accuracy. SNR is defined as the
ratio of the signal power to noise power. Specifically,

SNR ¼ 10log r2
signal=r2

noise

� �
. The latter assumption has already been

fulfilled by several recent methods (i.e., >95% accuracy is achieved
in [29,31]. The current state-of-the-art method in Zabihi et al. [40]
is also immune to PCG segmentation errors since it classifies the
entire PCG record as a whole. However, the method also presents
a high computational complexity due to the various hand-crafted
feature extraction techniques employed. Hence the real-time pro-
cessing may not be feasible, not only because of the such high com-
putational complexity but also due to the fact that the entire PCG
record should be acquired first.

Deep Convolutional Neural Networks (CNNs) are feed-forward
artificial neural networks which were initially developed as the
crude models of the mammalian visual cortex. Deep CNNs have
recently become the de-facto standard for many visual recognition
applications (e.g., object recognition, segmentation, tracking, etc.)
as they achieved the state-of-the-art performance [6,32,22] with
a significant performance gap. Other deep networks such as Deep
Recurrent Neural Nets and Deep Belief Networks and deep CNNs
have been used in recent applications in healthcare [37,38,10].
Recently, 1D CNNs have been proposed for pattern recognition
for 1D signals such as patient-specific ECG classification [18,19]
structural health monitoring [1,2,4] and mechanical and motor
fault detection systems, [8,3,13,16]. Because there are numerous
advantages of using a compact 1D CNN instead of a conventional
(2D) deep counterpart. First of all, compact 1D CNNs can be
efficiently trained with a limited dataset in 1D (e.g.,
[18,19,1,2,4,8,3,13] while the 2D deep CNNs, besides the 1D to
2D data transformation, require datasets with massive size, e.g.,
in the ‘‘Big Data” scale in order to prevent the well-known ‘‘Over-
fitting” problem. In fact, this requirement alone makes deep 2D
CNNs inapplicable to many practical problems that have limited
datasets, including the problem addressed in this study. The crucial
advantage of the CNNs is that both feature extraction and classifi-
cation operations are fused into a single machine learning body to
be jointly optimized to maximize the classification performance.
This eliminates the need for hand-crafted features or any other
post processing.

In order to address the aforementioned drawbacks, in this arti-
cle we propose a novel PCG anomaly detection scheme that
employs a compact 1D CNN and a data purification process that
is embedded into the Back-Propagation (BP) training algorithm.
Due to the simple structure of the 1D CNNs that requires only 1D
convolutions (scalar multiplications and additions), a real-time
and low-cost hardware implementation of the proposed approach
is quite feasible. Finally, it is a well-known fact that the abnormal
PCG records may and usually do have a certain amount of normal
sound beats and hence they will inevitably cause a certain level of
learning confusion which eventually leads to a degradation on the
classification performance. The data purification that is embedded
into the BP training is designed to reduce this during the training
phase (offline) without causing any further time delay on the
detection. Overall, the proposed system has the following innova-
tive and novel contributions:

1) It improves the state-of-the-art anomaly detection perfor-
mance by Zabihi et al. [40] achieved in PhysioNet (CinC)
Challenge.

2) It reduces false alarms (misclassification of normal records
as abnormal).

3) It achieves a real-time processing ability with significantly
lower delay and computational complexity.

4) Finally, it discusses the major limitation of the PCG classifi-
cation problem in general and suggests a solution to further
improve the detection performance.

The rest of the paper is organized as follows: Section II first pre-
sents the previous work in PCG classification with the main chal-
lenges tackled. Then PhysioNet/CinC Challenge will be presented
and the focus is particularly drawn on the best method [40] of
the challenge that achieves the highest score in PCG anomaly
detection. The proposed anomaly detection approach using a com-
pact 1D CNN is presented in Section III. In Section IV, extensive
comparative evaluations against Zabihi et al. [40] will be per-
formed using the standard performance metrics over the two data-
sets each of which is created from the PhysioNet/CinC benchmark
database. Finally, Section VI concludes the paper and suggests
topics for future research.
2. Prior work

2.1. Overview

Heart auscultation is performed on the anterior chest wall and
used as the primary diagnostic method to evaluate heart function.
A PCG signal shows the auscultation of turbulent blood flow and
the timing of the heart valves’ movements. The main components
of a PCG signal in each heartbeat are S1 (first) and S2 (second)
sounds, which are related to the closure of mitral and tricuspid
valves, and the closure of aortic and pulmonic valves, respectively.

Hearing abnormal heart sounds, such as transients and mur-
murs, in a PCG signal is usually considered pathological. These
abnormal sounds can provide information about the blockage of
the valve when it is open (stenosis), the leakage of the valve when
it is closed (insufficiency), the increase of blood flow, etc. However,
the correct interpretation of such signals depends on the acuity of
hearing and the experience of the observer.

Several studies have been presented to automatically identify
PCG anomalies using signal processing and machine learning tech-
niques. There are two types of PCG signal analysis and anomaly
detection methods. The first type analyzes the entire PCG record
without segmentation [39,7] whereas the second type uses tempo-
ral beat segmentation, i.e. identifying the cardiac cycles and local-
izing the position of the first (S1; beginning of the systole) and
second (S2; end of the systole) primary heart sounds. Certain vari-
ations over S1 and S2 properties, such as their duration or intensi-
ties, can be considered as the primal signs of cardiac anomalies. For
PCG segmentation (or beat detection) there exist various prior
works using different envelope extraction methods such as Shan-
non energy [9], Shannon entropy [29], Hilbert-Huang transform
[41], and autocorrelation [15]. Some methods use envelope extrac-
tion based on wavelet transform to gain the frequency characteris-
tics of S1 and S2 sound [11].

PCG classification is especially challenging due to high varia-
tions among the N and A type PCG patterns and the noise levels.
Fig. 1 shows some typical PCG beats where different records in
the benchmark Physionet/CinC dataset [24] have entirely different



Fig. 1. N (left) vs. A (right) beats from different subject records in Physionet/CinC dataset [30].
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N beats, which may, however, show a high level of structural sim-
ilarities to other A beats (e.g. see the pairs with arrows in the fig-
ure). Obviously, past approaches that relied on only one or few
hand-crafted features may not characterize all such inter- and
intra-class variations and thus they have usually exhibited a com-
mon drawback of having an inconsistent performance when, for
instance, classifying a new patient’s PCG signal. This makes them
unreliable for wide clinical use.

2.2. PhysioNet/CinC challenge

For this challenge, 3126 PCG labelled records (including training
and validation sets) were provided by Physionet/Computing in Car-
diology Challenge 2016 [30]. The provided database was sourced
by several international contributors. The database was collected
from both healthy and pathological subjects in clinical and non-
clinical environments. In the database, each PCG record is labeled
as N or A. In addition, the quality of each recording was also iden-
tified either as good or bad. The task was to design a model that can
automatically classify the PCG recordings as N, A, or too noisy to
evaluate. More detailed information can also be found in Liu
et al. [24].

2.3. The best anomaly detection method: Zabihi et al. [40]

As illustrated in Fig. 2, a set of 18 features was selected from a
comprehensive set of hand-crafted features using a greedy
wrapper-based feature selection algorithm. The selected features
consisted of the linear predictive coefficients, natural and Tsallis
entropies, mel frequency cepstral coefficients, wavelet transform
coefficients, and power spectral density functions [40]. Then, the
features were classified through a two-step algorithm. In the first
step, the quality of PCG recordings was detected, and in the second
step, the PCG records with good quality were further classified into
N or A classes.

The classification algorithm in Zabihi et al. [40] consists of an
ensemble of 20 feedforward sigmoidal Neural Networks (NNs)
with two hidden layers, and 25 hidden neurons in each layer.
The output layer has 4 neurons to detect the signal quality (good
vs. bad) and anomaly (N vs. A), simultaneously. This ensemble of
NNs was trained via a 20-fold cross-validation committee with
Bayesian regularization back-propagation training algorithm [26],
and a bootstrap resampling method to make the size of the N
and A classes balanced. The final classification rule which was
learned via a 10-fold cross-validation method, combines the deci-
sion of all 20 NNs such that if at least 17 NNs classified a signal
as bad quality, the algorithm recognized it as bad quality, other-
wise it is detected as good quality. Good quality signals were fur-
ther classified as A if at least 7 NNs recognized it as A, otherwise,
it was detected as N.

Since the objective function (i.e., the evaluation mechanism)
and the dataset of the PhysioNet (CinC) Challenge were different
from the current study, we adapted the method in Zabihi et al.
[40], i.e., in the output layer of ANNs we now used two neurons
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rather than four since we do not need to detect the quality of PCG
signals anymore.
3. The proposed approach

Here we propose a novel approach for real-time monitoring
heart sound signals for robust and accurate anomaly detection.
To accomplish the aforementioned objectives, we used a 1D CNN
at the core of the system that is trained by labeled and segmented
PCG records by the PhysioNet (CinC) Challenge organizers. Data
purification is periodically performed during the BP training in
order to reduce the confusion due to the potential occurrence of
normal (N) beats in abnormal (A) records. Once the 1D CNN is
properly trained, it can classify each monitored PCG beat in real-
time, or alternatively classify a PCG record of a patient as N or A.

As illustrated in Fig. 3, the PCG signal can be acquired either
from a PCG monitoring device in real-time or retrieved from a
PCG file. The data processing block first segments the PCG stream
into PCG beats. Each PCG beat,p; is linearly normalized in the range
of [�1, 1] as follows:

pi  2
pi �min pð Þ

max pð Þ �min pð Þ � 1 ð1Þ

where pi is the ith sample in the PCG beat, p. Eq. (1) linearly maps
the minimum and maximum samples to �1 and 1, respectively, and
hence negates the effect of the sample amplitudes in the learning
process. Each normalized beat is then fed into the 1D CNN classifier
that has already been trained as shown in Fig. 4. For a real-time
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operation the output of the 1D CNN can be used directly or alterna-
tively can be processed by a majority rule to obtain the final class
decision of the entire stream, e.g., the stream is classified as A if
more than 25% of the beats are abnormal. This threshold should
be determined in a practical way so that it should be sufficiently
high to prevent false-alarms due to classification noise while not
too high to detect those abnormal records with few abnormal PCG
beats. Therefore, the ‘‘Final Decision” block determines the final
class type of a PCG file while its utilization is optional for real-
time PCG anomaly detection.

In the rest of this section, an overview of 1D CNNs will first be
presented and the BP training with data purification will be
detailed next.

3.1. 1D CNN overview

CNNs are a type of feed-forward artificial neural networks and
they are mainly used for 2D signals such as images and video
[6,32,22]. In this study, we use compact 1D CNNs in order to
accomplish the objectives presented in Section I. There are two
types of layers in 1D CNNs: 1) CNN-layers where both 1D convolu-
tions and sub-sampling occur, and 2) Fully-connected layers that
are identical to the hidden and output layers of a typical Multi-
Layer Perceptron (MLP). Fig. 5 illustrates the three consecutive
CNN layers with the kernel size 3 and sub-sampling factor,
SS = 2. These network parameters are chosen for the illustrative
purposes. The left-most layer (l � 1), the output feature map (ar-
ray) size is 22 and next layer (l) input array size becomes
22 � (3–1) = 20 when 1D convolution is performed. The output
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feature array size will then be 10 with a subsampling of factor 2.
After another convolution with a kernel of size 3, the input feature
array at layer l + 1 will finally have a size of 10 � (3–1) = 8. In order
to exhibit the adaptive nature of the proposed 1D CNN, assume
that the layer l + 1 is the output (last) CNN layer. In this case the
sub-sampling factor in this layer will adaptively set to 8 to create
the output array size of 1 (scalar) that can then be connected to
the dense (MLP) layers directly. This will, therefore, ensure that
the output size will always be 1 (scalar) regardless of the number
of CNN layers and the input signal (PCG segment) duration. With
this approach, it is aimed that the network parameters, i.e., the
number of CNN layers, sub-sampling factors and kernel sizes can
be set freely without any restrictions.

In the proposed approach 1D CNNs have a simple and shallow
configuration with only a few hidden layers and neurons. Typically,
number of parameters in the network is only few hundreds and the
network can adapt itself to the duration (resolution) of each PCG
segment. In the CNN-layers, the 1D forward propagation (FP)
between the two CNN layer can be expressed as,
xlk ¼ bl
k þ

XNl�1
i¼1 conv1Dðwl�1

ik ; sl�1i Þ ð2Þ
where xlk is the input, bl
k is the bias of the kth neuron at layer l, and

sl�1i is the output of the ith neuron at layer l � 1. wl�1
ik is the kernel

from the ith neuron at layer l � 1 to the kth neuron at layer l.
3.2. Back-propagation with data purification

We shall now briefly formulate the back-propagation (BP) steps
while skipping the detailed derivations as further details can be
found in Kiranyaz et al. [18].The BP of the error starts from the
MLP output layer. Let l = 1 and l = L be the input and output layers,
respectively. The (empirical) error in the output layer can be writ-
ten as,

E ¼ EðyL1; yL2Þ ¼
X2

i¼1 yLi � ti
� �2 ð3Þ

For an input vector p, and its corresponding output and target
vectors, ½yL1; yL2� and tL1; t

L
2

� �
, respectively, we aim at finding out the

derivative of this error with respect to an individual weight (con-

nected to that neuron, k) wl�1
ik , and bias of the neuron k, bl

k, so that
we can perform gradient descent method to minimize the error
accordingly. Once all the delta errors in each MLP layer are deter-
mined by the BP, then weights and bias of each neuron can be
updated by the gradient descent method. Specifically, the delta

error of the kth neuron at layer l, Dl
k, will be used to update the bias

of that neuron and all weights of the neurons in the previous layer
connected to that neuron, as:

@E
@wl�1

ik

¼ Dl
ky

l�1
i and

@E

@bl
k

¼ Dl
k ð4Þ

So from the input MLP layer to the output CNN layer, the regular
(scalar) BP is simply performed as,

@E
@slk
¼ Dslk ¼

XNlþ1
i¼1

@E
@xlþ1i

@xlþ1i

@slk
¼

XNlþ1
i¼1 D

lþ1
i wl

ki ð5Þ

Once the first BP is performed from the next layer, l + 1, to the
current layer, l, then we can further back-propagate it to the input

delta, Dl
k. Let zero order up-sampled map be: uslk ¼ upðslkÞ, then one

can write:

Dl
k ¼

@E
@ylk

@ylk
@xlk
¼ @E

@uslk

@uslk
@ylk

f
0 ðxlkÞ ¼ upðDslkÞbf

0 ðxlkÞ ð6Þ

where b ¼ ssð Þ�1 since each element of slk was obtained by averaging
ss number of elements of the intermediate output, ylk. The inter-BP

(among CNN layers) of the delta error (Dslk  
R

Dlþ1
A €� ) can be

expressed as,

Dslk ¼
XNlþ1

i¼1 conv1Dz Dlþ1
i ; revðwl

kiÞ
� �

ð7Þ
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where rev(.) reverses the array and conv1Dz(.,.) performs full convo-
lution in 1D with K-1 zero padding. Finally, the weight and bias sen-
sitivities can be expressed as,

@E
@wl

ki

¼ conv1Dðslk;Dlþ1
i Þ

@E

@bl
k

¼
X

n
Dl

kðnÞ ð8Þ
3.2.1 Back-propagation flowchart
As a result, the iterative flow of the BP for the N beats in normal

PCG records in the training set can be stated as follows:

1) Initialize weights and biases (usually randomly, U(�a, a)) of
the network.

2) For each BP iteration DO:
a. For each PCG beat in the dataset, DO:

i. FP: Forward propagate from the input layer to the out-
put layer to find outputs of each neuron at each layer,
yli;8i 2 1;Nl½ �and8l 2 1; L½ �.

ii. BP: Compute delta error at the output layer and back-
propagate it to first hidden layer to compute the delta

errors, Dl
k;8k 2 1;Nl½ �and8l 2 2; L� 1½ �.

iii. PP: Post-process to compute the weight and bias sen-
sitivities using Eq. (8)

iv. Update: Update the weights and biases with the (cu-
mulation of) sensitivities found in (c) scaled with the
learning factor, e:

wl�1
ik ðt þ 1Þ ¼ wl�1

ik ðtÞ � e @E
@wl�1

ik

bl
kðt þ 1Þ ¼ bl

kðtÞ � e @E
@blk

ð9Þ
3.2.2. Data purification
The proposed method works over the PCG beats (frames) while

the labeling information is for the PCG records (files) of the bench-
mark dataset created by the CinC competition. So when a PCG
record is labeled as N, it is clear that all the PCG beats in this record
are normal. However, if a PCG record is labeled as A, this does not
necessarily mean that all the PCG beats are abnormal. In this case,
there are certain amount of normal beats in this abnormal record
and it is quite possible that these normal beats can be even the
majority of this record. Therefore, while training the 1D CNN, these
normal beats should not be included in the training with a label
‘‘A” because 1D CNN will obviously ‘‘confuse” while processing a
normal beat having the label ‘‘A”. To avoid this confusion we
altered the conventional BP process for back-propagating the error
from each abnormal PCG beat from an abnormal file. As illustrated
in Fig. 4, during each BP iteration, the error from a PCG beat in an
abnormal record will be back-propagated if the current CNN does
not classify it as a N beat with a high confidence level. In other
words, if the current CNN classifies it as a N beat with a sufficiently
high confidence level, i.e., CL(N) > R(t) where t is the current BP
iteration, then it will be dropped out of the training process until
the next periodic check-up. The dynamic threshold, R(t), for the
confidence level is gradually reduced since the CNN can distinguish
the N beats with a higher accuracy as the BP training advances and
thus during the advanced stages of the BP those beats that are clas-
sified as N with a reasonable confidence level can now be conve-
niently skipped from the training. Note that the aim of this data
purification is to reduce a potential confusion (e.g., N beats in an
abnormal PCG record). An alternative action would be to reverse
their truth labels (A) to N and still include them in the BP training.
However, this is only an ‘‘expected” outcome indicated by a par-
tially trained CNN, not a proven one. Hence such an approach
may cause a possible error accumulation. Even if some of those
beats are still abnormal despite the CNN classification, skipping
them from the training may only reduce the generalization capa-
bility of the classifier due to reduced training data.

Accordingly, the FP and BP operations in the 2nd BP step can be
modified as follows:

2) For each BP iteration, t, DO:
a) For each PCG beat in an abnormal record, DO:

i. FP: Forward propagate from the input layer to the output
layer to find outputs of each neuron at each layer,
yli;8i 2 1;Nl½ �and8l 2 1; L½ �.

ii. Periodic Check (Pc): At every Pc iteration DO:

Compute: CL(N) = 50ðyL1 � yL2Þ. If CL(N) > R(t), mark this beat as
‘‘skip”.

iii. Skip: If the beat is marked as ‘‘skip”, drop this beat out of BP
training and proceed with the next beat.

iv. BP: Compute delta error at the output layer and back-
propagate it to first hidden layer to compute the delta errors,

Dl
k;8k 2 1;Nl½ �and8l 2 2; L� 1½ �.

4. Experimental results

In this section, the experimental setup for the test and evalua-
tion of the proposed systematic approach for PCG anomaly detec-
tion will be first presented. Then an evaluation of the data
purification process will be visually performed over two PCG sam-
ple records and the results will be discussed. Next using the con-
ventional performance metrics, the overall abnormal beat
detection performance and the robustness of the proposed system
against variations of the system and network parameters will be
evaluated. Finally, the computational complexity of the proposed
method for both offline and real-time operations will be reported
in detail.

4.1. Experimental setup

In the PCG dataset created in the Challenge, the sampling rate is
2 kHz. In a normal rhythm, one can expect around 1 beat per sec-
ond. In a paced activity, this can go up to maximum 4 beats/second.
So, the number of samples in a beat will vary between 500 and
2000 samples. In order to feed the raw PCG signal as the input
frame to 1D CNN, the frame size should be fixed to a constant
value. Therefore, in this study each segmented PCG beat has
down-sampled to 1000 samples, which is a practically high value
to capture each beat with a sufficiently high resolution and allows
the network to analyze the beat characteristics independent from
its duration. We used a compact 1D CNN in all experiments with
only 3 hidden CNN layers and 2 hidden MLP layers, in order to
achieve the utmost computational efficiency for both training
and particularly for real-time anomaly detection. The 1D CNN used
in all experiments has 24, neurons in all (hidden) CNN and MLP
layers. The output (MLP) layer size is 2 as this is a binary classifica-
tion problem and the input (CNN) layer size is 1. The kernel size of
the CNN is 41 and the sub-sampling factor is 4. Accordingly, the
sub-sampling factor for the last CNN-layer is automatically set to
10. Fig. 6 illustrates the compact network configuration used in
the experiments.

In order to form the PCG dataset with a sufficiently high SNR,
we estimated the noise variance of each record over the low signal
activity (diastole) section of each PCG beat (e.g. the first 20% of
each segment). Because when the signal activity is minimal, the
variance computation will belong to noise and it will hence be



Fig. 6. 1D CNN configuration with 3 CNN and 2 MLP layers.
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inversely proportional to the SNR. To compute the noise average of
a PCG record we will then take the average of the beat variances.
According to their average noise variances, we then sorted the
PCG records in the database and then took the top 1200 PCG
records (900 N and 300 A) to constitute the high-SNR PCG dataset.
The estimated average SNR of the worst (bottom-ranked) PCG
record in this list is around �6 dB, which means that the noise
power (variance) is nearly 4 times higher than the signal power.
In order to evaluate the noise effect over the proposed approach,
we also form the 2nd dataset with the lowest possible SNR. For this
purpose, we selected 1008 (756 N and 252 A) PCG records from the
bottom of the sorted list. The estimated average SNR of the best
(top-ranked) PCG record in this list is around �9 dB, which means
that the noise power (variance) is about 8 times higher than the
signal power. Over both high- and low-SNR datasets, we performed
4-fold cross validation and for each fold, one partition (25%) is kept
for testing while the other three (75%) are used for training. This
allows us to test the proposed system over all the records. Since
the BP training algorithm is a gradient descent algorithm, which
has a stochastic nature and thus can present varying performance
levels, for each fold we performed 10 randomly initialized BP runs
and computed their 2 � 2 confusion matrices that are then accu-
mulated to compute the overall confusion matrix (CM). Each CM
per fold is then accumulated to obtain the final CM that can be
used to calculate the average performance metrics for an overall
anomaly detection performance, i.e., classification accuracy (Acc),
Sensitivity (Sen), Specificity (Spe), and Positive predictivity (Ppr).
The definitions of these standard performance metrics using the
hit/miss counters obtained from the CM elements such as true pos-
itive (TP), true negative (TN), false positive (FP), and false negative
(FN), are as follows: Accuracy is the ratio of the number of correctly
classified beats to the total number of beats, Acc = (TP + TN)/
(TP + TN + FP + FN); Sensitivity (Recall) is the rate of correctly clas-
sified A beats among all A beats, Sen = TP/(TP + FN); Specificity is the
rate of correctly classified N beats among all N beats, Spe = TN/
(TN + FP); and Positive predictivity (Precision) is the rate of correctly
classified A beats in all beats classified as A, Ppr = TP/(TP + FP).

For all experiments we employ an early stopping training pro-
cedure with both setting the maximum number of BP iterations
to 50 and the minimum training error to 8% to prevent over-
fitting. We use Pc = 5 iterations and initially set the learning factor,
e, as 10�3. We applied a global adaptation during each BP iteration,
i.e., if the train MSE decreases in the current iteration we slightly
increase e by 5%; otherwise, we reduce it by 30%, for the next
iteration.

4.2. Results and comparative evaluations

The experimental results with the data purification block have
shown an average accuracy improvement around 1.8% on the test
set and therefore, we can conclude that the proposed method
can reduce the confusion caused by the potential N beats in abnor-
mal records.

The comparative evaluations are performed over the PCG
records in the test partitions of the 4-folds. It is worth mentioning
that we used the competing method with minimum adaptation. To
be more specific the competing method was designed for PCG
quality and anomaly detection while in this work the focus is only
on the anomaly detection. The threshold for the majority rule, Ta, is
varied between [0.1, 0.4]. As discussed earlier, this threshold deter-
mines the minimum rate of A beats in a record to classify it as A. As
Ta gets lower, it is more likely to detect higher number of actual
abnormal records and hence the sensitivity (recall) rate would
increase; however, as a trade-off, the false alarms, too, would also
increase due to variations and noise effects in normal records. This,
in turn, reduces both Specificity and Positive Predictivity (Precision).
Depending on the target application, this threshold can therefore
be set in order to maximize or favor either Sensitivity or Specificity-
Positive Predictivity.

Over the HSNR dataset, Fig. 7 show the average Spe vs. Sen (top)
and Ppr vs. Sen (bottom) plots with varying Ta values, respectively.
The red circle in both plots indicates the corresponding perfor-
mance values achieved by the competing method, i.e.,
Sen = 0.8967, Spe = 0.8689 and Ppr = 0.6970.

We can now evaluate the effect of such (high) noise presence
over the proposed approach. For this purpose Fig. 9 shows the
average Spe vs. Sen (top) and Ppr vs. Sen (bottom) plots with vary-
ing Ta values over the low-SNR dataset. Once again the red circle in
both plots indicates the corresponding performance values
achieved by the competing method, i.e., Sen = 0.8135, Spe = 0.922
and Ppr = 0.7795. Comparing with the results over high-SNR data-
set, the high noise level degraded the Sensitivity levels of both
methods. As an expected outcome, the degradation is worse for
the proposed approach since it can only learn from the pattern of



Fig. 7. Average Specificity (top) and Positive Predictivity (bottom) vs. Sensitivity
(Recall) plots with varying Ta in the range [0.1, 0.4] for the test partitions of 4-fold
cross validation over the high-SNR dataset. The red circle represents the perfor-
mance of Zabihi et al. [40].
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a single beat whereas the competing method can use several global
features that are based on the joint characteristics and statistical
measures of the entire record.

Finally, in order to evaluate the effects of hyper-parameter vari-
ations such as number of neurons per (hidden) layer and kernel
size, we used two alternative 1D CNNs. In each network we change
one hyper-parameter (either neuron number or kernel-size) while
other hyper-parameters are kept intact. In the 1st configuration
(C1), we increased the number of neurons 50%, i.e., 36 neurons
per hidden (both CNN and MLP) layer. In the 2nd configuration,
we reduced the kernel size by half (21). In this configuration, the
sub-sampling factor for the last CNN-layer is automatically set to
36. We applied the same training approach (4-fold cross validation
and 10 BP runs per fold) whilst using the identical train parame-
ters. The 1st and 2nd network configurations yield 0.4% improve-
ment and 0.16% reduction on the test accuracy level of the
baseline configuration, respectively. Such insignificant perfor-
mance variations show the robustness of the 1D CNNs and one
can argue to increasing the number of neurons 50% will cause
around 3-times increase in the computational complexity and
hence it may not be desired to achieve such an insignificant accu-
racy gain.
4.3. Computational complexity

In order to analyze the computational complexity for both FP
and BP process, we shall first compute the total number of opera-
tions at each 1D CNN layer (ignoring the sub-sampling) and then
cumulate them to find the overall computational complexity. Dur-
ing the FP, at a CNN layer, l, the number of connections to the pre-

vious layer is,Nl�1Nl. the number of connections to the previous

layer is, Nl�1Nl, there is an individual linear convolution is per-

formed, which is a linear weighted sum. Let sll�1 and wll�1and be
the vector sizes of the previous layer output, sl�1k , and kernel
(weight), wl�1

ki , respectively. Ignoring the boundary conditions, a

linear convolution consists of sll�1 wll�1
� �2

multiplications and

sll�1 additions from a single connection. Ignoring the bias addition,
the total number of multiplications and additions in the layer lwill
therefore be:

N mulð Þl ¼ Nl�1Nlsll�1 wll�1
� �2

NðaddÞl ¼ Nl�1Nlsll�1
; ð10Þ

So during FP the total number of multiplications and additions,
T mulð Þ, and T addð Þ, on a L CNN layers will be,

TFP mulð Þ ¼PL
l¼1N

l�1Nlsll�1 wll�1
� �2

;

TFPðaddÞ ¼
PL

l¼1N
l�1Nlsll�1

ð11Þ

Obviously, T addð Þ is insignificant compared to T mulð Þ.
During the BP, there are two convolutions performed as

expressed in Eqs. (7) and (8). In Eq. (7), a linear convolution

between the delta error in the next layer, Dlþ1
i , and the reversed

kernel, rev wl
ik

� �
, in the current layer, l. Let xll be the size of both

the input, xli, and also its delta error, Dl
i, vectors of the ith neuron.

The number of connections between the two layers is, Nlþ1Nland
at each connection, the linear convolution in Eq. (7) consists of

xllþ1 wll
� �2

multiplications and xllþ1 additions. So, again ignoring

the boundary conditions, during a BP iteration, the total number
of multiplications and additions due to the first convolution will,
therefore, be:

T1
BP mulð Þ ¼PL�1

l¼0N
l�1Nlsll�1 wll�1

� �2

T1
BPðaddÞ ¼

PL�1
l¼0N

l�1Nlsll�1
; ð12Þ

The second convolution in Eq. (8) is between the current layer

output, slk, and next layer delta error, Dlþ1
i where wll ¼ xllþ1 � sll.

For each connection, the number of additions and multiplications

will be, wlland wll xllþ1
� �2

, respectively. During a BP iteration, the

total number of multiplications and additions due to the second
convolution will, therefore, be:

T2
BP mulð Þ ¼PL�1

l¼0N
lþ1Nlwll xllþ1

� �2

T2
BPðaddÞ ¼

PL�1
l¼0N

lþ1Nlwll
; ð13Þ

So at each BP iteration, the total number of multiplications and

additions will be, TFP mulð Þ þ T1
BP mulð ÞþT2

BP mulð Þ
� �

and

TFP addð Þ þ T1
BP addð Þ þ T2

BPðaddÞ
� �

, respectively. Obviously, the lat-

ter is insignificant compared to former especially when the kernel
size is high. Moreover, both operation complexities are propor-
tional to the total number of connections between two consecutive
layers, which are the multiplication of the number of neurons at
each layer. Finally, the computational complexity analysis of MLPs
is well known (e.g., see [33]) and it is quite negligible in the current
implementation since only a scalar (weight) multiplication and an
addition are performed for each connection.
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The implementation of the 1D CNN is performed using C++ over
MS Visual Studio 2013 in 64bit. This is a non-GPU implementation;
however, Intel � OpenMP API is used to obtain multiprocessing
with a shared memory. We used a 48-core Workstation with
128 Gb memory for the training of the 1D CNN. One expects 48�
speed improvement compared to a single-CPU implementation;
however, the speed improvement was observed to be around
36� to 39� in practise.

The average time for 1 BP iteration (1 consecutive FP and BP)
per PCG beat was about 0.57 msec. A BP run typically takes 5 to
30 iterations over the training partition of the high-SNR dataset,
which contains around 30,000 PCG beats overall. Therefore, the
average time for training the 1D CNN classifier was around,
30000 * 30 * 0.57msec = 513 s (<9 min) which is a negligible time
since this is a one-time (offline) operation.
Fig. 8. 4 consecutive N beats from a sample PCG record in low-SNR dataset.

Fig. 9. Average Specificity (top) and Positive Predictivity (bottom) vs. Sensitivity
(Recall) plots with varying Ta in the range [0.1, 0.4] for the test partitions of 4-fold
cross validation over the low-SNR dataset. The red circle represents the perfor-
mance of Zabihi et al. [40].
5. Discussion

A wide range of experimental results show that the proposed
approach achieves superior performance levels with respect to all
three metrics for a certain range of Ta values (i.e., 0.2 < Ta < 0.3).
Alternatively, setting Ta < 0.15 yields only around <0.04 less Speci-
ficity and Positive predictivity than the competing method; whilst
the proposed approach can now achieve close to 0.96 Sensitivity
level which basically indicates that except only few, almost all
abnormal records are successfully detected.

Under the condition that a reasonable signal quality (SNR) is
present, the experimental results show that all the objectives have
been achieved and furthermore the proposed approach can conve-
niently be used in portable, low-power PCG monitors or acquisi-
tion devices for automatic and real-time anomaly detection. This
is a unique advantage of the proposed approach over the best
method [40] of the Physionet challenge, which can only classify
an entire PCG record as a whole. On the other hand, for PCG file
classification, the unique parameter, Ta, for majority rule decision
can be set in order to favor either Sensitivity or Specificity – Positive
predictivity (or both) depending on the application requirements.
For instance, such a control mechanism can be desirable for those
applications where the computerized results will be verified by a
human expert and thus Ta can be set to a sufficiently low value,
i.e., Ta = 0.1, so that the Sensitivity is maximized (e.g., Sen > 0.96)
in order to accurately detect almost all abnormal records in the
dataset. This is another crucial advantage over the competing
method as it basically lacks such a control mechanism.

One performance metric, which has not also been considered in
the Physionet/CinC competition is the Positive Predictivity (Preci-
sion). The range, 0.63 < Ppr < 0.75, indicates a high level of false
alarms (mis-classification of normal records). This is in fact an
expected outcome for this problem considering the inter-class sim-
ilarities and intra-class variations as displayed in some of the
examples in Fig. 1. The low-SNR dataset is formed from the PCG
records with the highest noise variance as the PCG beats of two
sample records are shown in Fig. 8. It is clear that the entire mor-
phology of a regular PCG beat is severely degraded.

Besides this insignificant time complexity for training, another
crucial advantage of the proposed approach over the competing
method is its elegant computational efficiency for the (online) beat
classification, which is the main process of PCG monitoring. The
average time for a single PCG beat classification is only 0.29 msec.
Since the human heart beats 1–4 times in a second, the classifica-
tion of the PCG beat(s) acquired in a real-time system will take an
insignificant time which is a mere fraction of a second. For
instance, for 1 beat/second, this indicates more than 3000� higher
speed than a real-time requirement with the aforementioned
workstation. A single-CPU execution time will then be <39 � 0.2
9 ms = 11.3 ms. Therefore, the real-time processing capability
(the ability to process a beat before the next beat is acquired) for
PCG monitoring can be feasible even with low-power portable
computers.
6. Conclusions

Recently the PhysioNet (CinC) Challenge set the state-of-the-art
for anomaly detection in PCG records. The best anomaly detection
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method can classify each PCG record as a whole using a wide range
of features over an ensemble of classifiers. In this study our aim is
to set a new frontier solution which can achieve a superior detec-
tion performance. As additional but equally important objectives
that have not been tackled in the challenge, the proposed system-
atic approach is designed to provide a real-time solution whilst
reducing the false alarms.

In this study we also investigated the fundamental drawback of
such global and automated solutions including the one proposed in
this paper. This is a well-known fact for ECG classification that has
been reported by several recent studies [14,12,17,25,23,27]. Simi-
lar to ECG signal, PCG, too, shows a wide range of variations among
patients as some examples are shown in Fig. 1. In other words, PCG
also exhibits patient-specific patterns many of which can conflict
with other patient’s data during classification. This drawback is
also the main reason why further significant performance
improvement may no longer be viable with such global
approaches.

As a future work, similar to the state-of-the-art ECG studies, we
shall address this drawback with a patient-specific or personalized
PCG anomaly detection approach that can further improve this
frontier in a significant way. Moreover, the focus will particularly
be drawn on novel machine learning paradigms based on heteroge-
nous network architectures with non-linear neurons such as
Operational Perceptrons [20,21,34–36] and Operational Neural
Networks [21]. In this way, we can expect that the classification
performance will significantly be improved whilst the network
depth and complexity can further be reduced.
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