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The characterization of quantum pro-
cesses, e.g. communication channels, is an
essential ingredient for establishing quan-
tum information systems. For quantum
key distribution protocols, the amount of
overall noise in the channel determines the
rate at which secret bits are distributed
between authorized partners. In par-
ticular, tomographic protocols allow for
the full reconstruction, and thus char-
acterization, of the channel. Here, we
perform quantum process tomography of
high-dimensional quantum communication
channels with dimensions ranging from 2
to 5. We can thus explicitly demonstrate
the effect of an eavesdropper performing
an optimal cloning attack or an intercept-
resend attack during a quantum crypto-
graphic protocol. Moreover, our study
shows that quantum process tomography
enables a more detailed understanding
of the channel conditions compared to a
coarse-grained measure, such as quantum
bit error rates. This full characterization
technique allows us to optimize the per-
formance of quantum key distribution un-
der asymmetric experimental conditions,
which is particularly useful when consider-
ing high-dimensional encoding schemes.

Frédéric Bouchard: fbouc052@uottawa.ca

1 Introduction

Quantum information science has witnessed the
emergence of a wide range of new technologies
and applications [1]. Quantum cryptography [2],
quantum computation [3] and quantum sens-
ing [4] are examples of promising venues for a
possible next technological revolution. In order
to construct complex quantum machines or quan-
tum networks, a full characterization of its build-
ing blocks is critical. A method for reconstructing
the action of a component in a quantum system is
known as quantum process tomography (QPT) [5,
6]. Previously, QPT has been performed to char-
acterize several quantum physical systems, such
as liquid-state NMR [7, 8], photonic qubits [9],
atoms in optical lattices [10], trapped ions [11],
solid-state qubits [12], continuous-variable quan-
tum states [13], semiconductor quantum dot
qubits [14] and, recently, nonlinear optical sys-
tems [15]. Another class of important quantum
systems that can benefit from full characteriza-
tion are quantum channels and components for
quantum key distribution (QKD) and quantum
communications [16, 17], where, so far, quan-
tum channels may be categorized as optical fi-
bre [18], line-of-sight free-space [19] and ground-
to-satellite (satellite-to-ground) [20] links.

The benefits of fully characterizing quantum
communication channels lie at a better under-
standing of possible error sources and, more im-
portantly, on the detection of the potential pres-
ence of an eavesdropper, namely Eve, tapping
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into the quantum channel. Her presence is re-
vealed in the form of noise introduced in the chan-
nel. The authorized partners, typically referred
to as Alice and Bob, may estimate noise levels in
the channel to assess the amount of leaked infor-
mation to Eve. After this error assessment, Alice
and Bob may perform classical post-processing
protocols, such as privacy amplification [21], in
order to remove Eve’s leaked information. Con-
ventional methods for secure key rate analysis
rely on symmetry assumptions to associate an
average (coarse-grained over all preparation and
measurement settings) bit error rate parameter to
a reduction in secure key rates. However, exper-
imental errors often tend to break these symme-
try assumptions, motivating the use of numerical
techniques in QKD [22].

While usual QKD schemes rely on encoding
quantum information in two-level systems, i.e.
qubits, there exists a particular class of QKD
schemes known as high-dimensional QKD pro-
tocols [23, 24]. High-dimensional schemes have
the potential advantage of tolerating larger noise
levels in the channel and carrying more than one
bit of information per carrier. So far, a full char-
acterization of high-dimensional processes based
on QPT has not been achieved experimentally.
With the emergence of high-dimensional quan-
tum information, QPT will become an essential
tool for the characterization of complex exper-
iments dealing with high-dimensional quantum
states. As a physical implementation, the or-
bital angular momentum (OAM) of photons rep-
resents a promising route for high-dimensional
encoding due to the maturity of its generation
and detection schemes [25, 26]. OAM states,
corresponding to helical wavefronts of the form
exp(i`ϕ), where the OAM value ` is an integer
and ϕ is the azimuthal coordinate, may be re-
alized using single phase elements. Computer-
generated holograms displayed on a spatial light
modulator (SLM) provide a simple and versatile
method for generating and manipulating these
modes [27]. High-dimensional QKD has been
demonstrated experimentally using OAM in the
laboratory [28, 29, 30], in intra-city free-space
links [31, 32, 33] and, recently, in other types of
quantum links [34].

Here, we demonstrate the benefits of a full
characterization of a quantum channel through
quantum process tomography. This full charac-

terization will allow us to complement the numer-
ical approach in [22] to optimize secure key rates
under specific experimental conditions and to de-
velop new protocols lacking symmetry that may
outperform existing approaches.
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Figure 1: Simplified experimental setup. a Alice’s
preparation stage consists of a single photon source (not
shown) that feeds the heralded photons to a generation
apparatus consisting of a spatial light modulator (SLM-
A). Alice’s photon is subsequently sent into the quantum
channel which is considered as a black box with quan-
tum process E . The output of the black box is fed to
Bob’s detection stage consisting of a spatial light mod-
ulator (SLM-B) and a single-mode optical fibre (SMF),
via performing phase-flattening. We experimentally con-
sider three different types of processes for our quantum
channel: an ideal channel with no attack, the case of an
optimal cloning attack (b), and the case of an intercept-
resend attack (c). In particular, the configuration of the
optimal cloning scheme consists of an SLM (SLM-E1)
which generates a completely mixed state that is fed to
the Hong-Ou-Mandel type interferometer at a balanced
beam splitter (BS1). The cloned photons are then sent
into a second beam splitter (BS2) in order to spatially
separate them. Eve can use a second SLM (SLM-E2)
to measure the state of her cloned photon while sending
the other cloned photon to Bob. The experimental con-
figuration of the intercept resend consists of two SLMs
(SLM-E1 and SLM-E2) sandwiching a SMF.

2 Theory of quantum process tomog-
raphy

Let us set the stage by introducing the basic con-
cepts of QPT. The goal of QPT is to determine
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Figure 2: Detailed experimental setup for (a) the optimal cloning attack and (b) the intercept-resend attack.
Single photons are generated, via spontaneous parametric downconversion (SPDC), by pumping a BBO crystal with
a 355 nm quasi-continuous laser. The polarization of the laser is chosen in such a way to satisfy the phase-matching
condition of the crystal. Subsequent to SPDC, the 355 nm laser is filtered out using an interference filter (IF). By
using a lens (L), the photon pairs are split at the knife-edge (KE) mirror. The photons are then made to couple to
single mode fibres (SMF) to filter their spatial modes to the fundamental Gaussian mode. Alice encodes the photon
by using the spatial light modulator (SLM-A), and sends it to the quantum channel. Eve may perform an attack
by using a delay line, beam splitters (BS1 and BS2), spatial light modulators (SLM-E1 and SLM-E2), and SMF.
Bob measures the photon coming from the quantum channel by using his spatial light modulator (SLM-B). Photons
counts are recorded at the avalanche photodiodes (APD) detects and coincidence measurements are recorded using
a coincidence box.

the completely positive map E representing the
action of the system on any d-dimensional in-
put state ρin. The output state is then given
by ρout = E (ρin). The process is typically rep-
resented as,

E(ρ) =
∑
m,n

χmn Âm ρ Â
†
n, (1)

where the Âm operators form a complete basis
typically given by the Pauli operators or the Gell-
Mann operators in higher dimensions. The trace-
preserving positive Hermitian d2×d2 matrix χmn,
defined as the process matrix, completely and

uniquely characterizes the action of the process E .
We may note that QPT may also be performed
for non-trace-preserving maps [35].

A convenient alternative description of pro-
cesses is given by the Choi-Jamiolokowski isomor-
phism (CJI), which states that every completely
positive map can be represented as an operator
living in a d2-dimensional Hilbert space. Such an
operator, known as the Choi matrix ρE , can be
defined as the result of the channel acting upon
one part of a maximally entangled state, |Φ〉,

ρE =
(
Î ⊗ E

)
|Φ〉〈Φ|. (2)
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The output state is thus given accordingly by,

ρout = Trin
[ (
ρTin ⊗ Î

)
ρE
]
, (3)

where T denotes the transposition, Î is the d-
dimensional-identity operator and Trin [·] repre-
sents the partial trace over the input state’s
Hilbert space. In order to perform QPT, a set of
tomographically complete states are sent into the
channel and state tomography is performed on
the output states. In our case, we consider states
belonging to mutually unbiased bases (MUBs) in
dimension d, which are known for dimensions that
are powers of prime numbers [36]. A MUB pro-
jector is given by Π(α)

m , where α ∈ {1, ..., d + 1}
labels one of the MUBs and m ∈ {1, ..., d} labels
one of the states in this MUB. The completeness
and orthogonality relations are respectively given
by,

∑
α,m Π(α)

m /(d + 1) = Î and Tr(Π(α)
m Π(β)

n ) =
δαβδmn + (1− δαβ)/d, where δij is the Kronecker
delta. With the help of the CJI, one can derive
Born rule–like expressions for probabilities,

p(α, β)
m,n = Tr

[
Π(β)
n E

(
Π(α)
m

)]
= Tr

[((
Π(α)
m

)T
⊗Π(β)

n

)
ρE

]
. (4)

This equation underlies the relation between
quantum process tomography and quantum
state tomography. The Choi matrix, ρE ,
is experimentally reconstructed using the
maximum–likelihood estimation. Better algo-
rithms have also been recently proposed for
QPT [37]. Finally, the process matrix is directly
obtained from the Choi matrix.

In order to recover the Choi matrix, ρE , de-
fined in Eq. 2, for various attack scenarios, we
follow maximum likelihood algorithms. The pos-
itive operator-valued measure (POVM) used to
describe the process matrix consists of MUB mea-
surements, i.e. Πj = (Π(α)

m )T ⊗ Π(β)
n , where the

index j runs over all the MUBs measurements
performed by Alice and Bob. Theoretical prob-
abilities given by the Born rule, pj = Tr[ΠjρE ],
observed with relative frequencies fj , can be in-
verted by maximizing the log–likelihood func-
tional

logL =
∑
j

fj log{pj(ρ̂E)}, (5)

yielding the Choi matrices. Any density operator
maximizing the likelihood functional satisfies the

extremal equation R̂ ρ̂E = ρ̂E , which leads to the
well known iterative solutions [38] that takes a
symmetric form,

ρ̂
(k+1)
E = µ R̂ ρ̂

(k)
E R̂, (6)

where µ = Tr[R̂ ρ̂(k)
E R̂]−1 is a proper normaliza-

tion constant and the operator R̂ is defined as
follows,

R̂ =
∑
j

fj
pj(ρ̂E)

Π̂j . (7)

Typically, a few thousands of iterations are
needed to observe the stationary point of the map
in Eq. 6 with the maximally mixed state as a suit-
able choice of a starting point.

3 Experimental results
Our experiment consists of three components:
the generation stage, the quantum channel and
the detection stage, which are owned by Al-
ice, Eve and Bob, respectively. We implement
the prepare-and-measure QKD scheme with her-
alded single-photons using the OAM degree of
freedom, see Fig. 1-a. The single photon pairs,
consisting of the signal and idler, are gener-
ated by spontaneous parametric downconversion
(SPDC) at a type I β-barium borate (BBO) crys-
tal. The nonlinear crystal is pumped by a quasi-
continuous wave laser operating at a wavelength
of 355 nm. The generated photon pairs are cou-
pled to single-mode optical fibres (SMF) in order
to filter their spatial modes to the fundamental
Gaussian mode. A coincidence rate of 30 kHz is
measured, directly at the source, within a coinci-
dence time window of 2 ns. We use the detection
of the idler photon as the heralding trigger for
the signal photon, thereby realizing a heralded
single photon source with a measured second-
order coherence of g(2)(0) = 0.015 ± 0.004. The
heralded signal photon is sent to SLM-A corre-
sponding to Alice’s generation stage. The OAM
states are produced using a phase-only hologra-
phy technique [27]. Alice’s heralded photon is
subsequently sent over the quantum channel, con-
sidered here as a black box between Alice and
Bob. At Bob’s receiver, we perform a state-
projection over the required states, which we re-
alize by a mode filter implemented through a
phase-flattening hologram and coupling into a
SMF [39, 40]. In order to minimize Poissonian
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Figure 3: Process matrix of high-dimensional quantum channels. The real part of the experimentally recon-
structed process matrices are presented for dimensions ranging from 2 to 5 in the case of (a-d) an ideal quantum
channel, (e-h) a universal symmetric optimal quantum cloning attack, and (i-l) a universal intercept-resend attack.
The theoretical results are represented by the wire-grid bars.

noise, the counts are accumulated over an inte-
gration time of 60 seconds per measurement set-
ting. A detailed experimental setup is shown in
Fig. 2. In particular, Alice and Bob perform QPT
using MUBs [41], which are experimentally real-
ized using OAM states. The computational bases
(α = 1) are given by {|`〉; ` = −d/2, ..., d/2; ` 6=
0} and {|`〉; ` = −(d − 1)/2, ..., (d − 1)/2} for
even and odd dimensions, respectively, for sym-
metry considerations. The second basis is given
by the discrete Fourier transform, i.e. {|φk〉 =

1√
d

∑d−1
j=0 ω

kj
d |j〉; k = 0, ..., d − 1}, where ωd =

exp(i2π/d). The explicit form of the other MUB
elements can be found elsewhere [42].

3.1 Ideal quantum communication channel

In the case of an ideal quantum channel, i.e. no
eavesdropper, the real parts of the experimen-
tally reconstructed process matrices are shown in
Fig. 3-(a-d) for dimensions ranging from d = 2 to
5. Ideal processes, where Ẽ(ρ) = ρ, are described
by process matrices given by χ̃ij = δ0iδ0j . Devia-
tions of our reconstructed ideal process matrices

from the theory are attributed to imperfections in
generation and detection of the distributed quan-
tum states, i.e. the OAM modes. As higher di-
mensions are considered, larger crosstalk among
the OAM modes is observed, which further dete-
riorates the experimentally reconstructed process
matrix. Recently, we have introduced a new tech-
nique to measure spatial modes, which should im-
prove detection fidelities [43]. In order to describe
the quality or performance of the quantum chan-
nel, several figures of merit are available to de-
scribe our process [44]. One such figure is the pro-
cess fidelity which is defined as FP = Tr(χexp χ̃).
For the ideal quantum channel, FP can be di-
rectly obtained from the process matrix χexp, i.e.
FP = χi=0,j=0. Moreover, the average fidelity,
F̄ , of the process can be defined as the state fi-
delity between the output and the input averaged
over all possible states with the convenient rela-
tion F̄ = (dFP + 1)/(d + 1). Similarly, the av-
erage purity is defined as the purity of the out-
going states averaged over all possible states and
describes the level of mixture introduced by the
process. It can be related to the average fidelity
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Attack Dimension - d Process fidelity - Fp Average state fidelity - F̄ Process purity - P̄
No attack 2 0.990± 0.001 0.993± 0.001 0.987± 0.001

3 0.907± 0.003 0.930± 0.002 0.868± 0.004
4 0.888± 0.003 0.911± 0.002 0.832± 0.004
5 0.821± 0.002 0.851± 0.002 0.729± 0.003

Optimal cloning 2 0.71± 0.01 0.806± 0.006 0.687± 0.007
3 0.604± 0.005 0.703± 0.003 0.538± 0.004
4 0.524± 0.007 0.619± 0.006 0.432± 0.006
5 0.419± 0.003 0.511± 0.003 0.321± 0.002

Intercept-resend 2 0.488± 0.006 0.659± 0.004 0.550± 0.003
3 0.334± 0.002 0.500± 0.001 0.375± 0.001
4 0.226± 0.002 0.381± 0.002 0.273± 0.001
5 0.171± 0.001 0.309± 0.001 0.215± 0.001

Table 1: Quality of the quantum channel processes. Process fidelity, average fidelity and average purity of the
quantum channel under different eavesdropping strategies, i.e. optimal cloning attack and intercept-resend attack,
for dimensions ranging from 2 to 5.

according to P̄ = (1 − 2F̄ + dF̄ 2)/(d − 1), re-
spectively. The experimentally obtained process
fidelities, average fidelities and average purities
for the ideal channel are shown in Table 1 for
dimensions ranging from d = 2 to 5.

3.2 Optimal quantum cloning attack

A special case of such a process is the so-called
universal optimal cloning attack. In this scenario,
Eve sends the incoming photon to an optimal
cloning machine which produces two imperfect
copies of the incoming photon, out of which
she keeps one and sends the other to Bob, see
Fig. 1-b. Later on, Eve may decide to perform
a measurement on her copy in order to obtain
information from Alice and Bob’s shared photon.
For the case of universal optimal cloning, Eve’s
copying machine has the effect of symmetrically
introducing errors on the outgoing state. The
cloning fidelity is defined as Fcl = 1/2+1/(1+d).
Universal optimal cloning machines have been
realized experimentally using the symmetrization
method [45, 46, 47, 48, 49], where both cloned
photons possess the same cloning fidelity. At the
heart of the symmetrization technique for opti-
mal cloning is the Hong-Ou-Mandel interference
effect [52]. For indistinguishable photons incident
at the input port of a balanced beam splitter,
a two-photon interference effect occurs which
forbids the photons to exit the beam splitter
from different output ports. Surprisingly, a slight

modification of the Hong-Ou-Mandel experiment
leads to a universal optimal symmetric cloning
machine. In this case, the second photon needs
to be in a d-dimensional completely mixed state
and is fed into the second input port of the
beam splitter at exactly the same time. As the
representation of the mixed state is the same in
any basis, this scheme is universal, i.e. works for
any state of the Hilbert space. When the two
photons exit the beam splitter from the same
output port, optimal cloning has been successful.
A second beam splitter is then used to separate
the two photons, e.g. one photon goes to Bob
and the other one stays at Eve. We then exper-
imentally perform the universal optimal cloning
machine in the quantum channel for dimensions
up to 5 and perform, again, a full character-
ization of the attack on the channel through
QPT, see Fig. 3-(e-h) and Table 1. Leaving
attacks on QKD systems aside, a full character-
ization of optimal quantum cloning machines is
interesting in itself for applications to quantum
state estimation [50, 51]. Indeed, there is an
equivalence between a universal optimal cloning
machine taking N input replicas and outputting
an infinite number of clones and a quantum
state estimation setup. A full characteriza-
tion of the cloning machine would then enable
a higher mode purity in the state estimation task.
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Figure 4: Secret key rates. Experimentally obtained secret key rates for the cases of no attack, optimal cloning
and intercept-resend. The dark blue bars correspond to the BB84 protocol where the secret key rate is obtained by
estimating a coarse-grained error rate. The green bars correspond to the (d + 1)-MUBs protocol where the secret
key rate is obtained also by estimating a coarse-grained error rate. The yellow bars correspond to a secret key rate
calculated from the full characterization of the quantum channel. In all cases, a filter type measurement is considered
yielding an overall efficiency of 1/d.

3.3 Intercept-resend attack

Another eavesdropping scheme that achieves pro-
cesses with lower average fidelities is the so-called
intercept-resend attack, see Fig 3-(i-l). In con-
trast to the above described optimal cloning at-
tack, Eve directly measures the received photon
information, where she randomly performs her
measurement in bases uniformly chosen at ran-
dom (intercept). She then prepares a photon
in the observed state and transmits it to Bob
(resend). When considering the intercept-resend
over all MUBs, the fidelity of the states at the
output of the channel is given by Fir = 2/(1 +d).
We experimentally perform the intercept-resend
attack in our quantum channel by means of two
SLMs, i.e. SLM-E1 and SLM-E2, with a SMF in
between, see Fig. 1-c. The first SLM (SLM-E1)
along with the SMF acts as the intercept section,
while the second SLM (SLM-E2) acts as the re-
send. In the universal case, Eve randomly chooses
α = 1, ..., d + 1 and m = 1, ..., d and simultane-
ously displays phase elements equivalent to 〈ψ(α)

m |
and |ψ(α)

m 〉 on the SLM-E1 and SLM-E2, respec-
tively.

4 Secret key rates

So far, we have shown the feasibility of perform-
ing high-dimensional QPT on several quantum
communication channels with our experimental
implementation and provided a qualitative illus-
tration of the effect of different eavesdropping
strategies. In this section, we use the experimen-

tal outcomes obtained when performing QPT as
our raw key from which we carry a formal se-
curity analysis. In particular, we show that the
full characterization enables an enhanced estima-
tion of the information leakage to an adversary
eavesdropper. This results in a more accurate
and favourable estimation of the achievable se-
cret key rate, K, of the channel for a given QKD
protocol. Furthermore, we demonstrate that the
full characterization of the channel becomes even
more advantageous when considering larger di-
mensions.

Traditionally, the secret key rate of a channel
is calculated by evaluating the error rate, Q, from
the raw key shared by Alice and Bob. Analytical
formulae are derived to obtain the secret key rate
as a function of the error rate. For instance, the
BB84 protocol [2] in dimension d has the follow-
ing simple analytical formula,

K(d)(Q) = log2(d)− 2h(d)(Q), (8)

where h(d)(x) := −x log2(x/(d − 1)) − (1 −
x) log2(1 − x) is the d-dimensional Shannon en-
tropy. This protocol does not require a full char-
acterization of the quantum channel and has a
sifting efficiency of 1/2. An extension of the
d-dimensional BB84 protocol to tomographically
complete measurements, yielding a full character-
ization of the channel, is known as the six-state
protocol for the specific case of d = 2. For di-
mensions that are powers of prime numbers, all
d + 1 MUBs are adopted. The sifting efficiency
of this protocol is given by 1/(d + 1). Neverthe-
less, in the infinite key limit, the sifting efficiency
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of the BB84 and the six-state protocol can ap-
proach 1, by making the basis choice extremely
asymmetric [53]. This argument also holds for
higher dimensions. The secret key rate of this
(d + 1)-MUB protocol as a function of the error
rate is given by,

K(d)(Q) = log2(d)− h(d)
(
d+ 1
d

Q

)
−d+ 1

d
Q log2(d+ 1). (9)

Nonetheless, using such analytical formulae has
a number of drawbacks. First, it only consid-
ers sifted data and assumes perfect unbiasedness
among different MUBs. This assumption may in-
crease the resulting secret key rate, but does not
consist of an adequate representation of the chan-
nel and may lead to an underestimation of Eve’s
leaked information. Moreover, the secret key rate
is obtained from a coarse-graining of the individ-
ual error rates per measurement settings. Thus,
given this single parameter, a pessimistic estima-
tion of the secret key rate is obtained due to the
limited knowledge of the channel. Instead, we
propose a protocol based on QPT where all the
measurement outcomes, both from matching and
non-matching bases, are considered in the secret
key rate analysis. This protocol based on full
characterization of the channel outperforms the
counterpart coarse-grained protocols particularly
for the case of asymmetric errors, which is often
the case in experiments.

In our analysis, the secret key rate of a chan-
nel is estimated by considering the Devetak-
Winter formula [54]. To do so, we recast
our prepare-and-measure QKD protocol into an
entanglement-based scheme using the source-
replacement scheme [55], where Alice and Bob
share pairs of entangled photons represented by
the density matrix ρAB. In general, the secret-key
rate is obtained according to,

K = min
ρAB ∈C

[H (ZA|E)−H (ZA|ZB)] , (10)

where C is the set of physical density matri-
ces that is consistent with the experimental con-
straints, e.g. error rates or measurement out-
comes; H (X|Y ) := H (ρXY )−H (ρY ) is the con-
ditional von Neumann entropy, with H (ρ) :=
−Tr [ρ log2 ρ]; ZA and ZB are the sets of pos-
itive operator valued measures (POVM) associ-
ated with Alice’s and Bob’s measurement set-
tings, respectively. Finally, ρZAZB

and ρZAE are
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Figure 5: Asymmetric intercept-resend. a Theoreti-
cal and c experimental probability of detection matrices,
as given in Eq. 4, corresponding to the asymmetric pro-
cess of an intercept-resend eavesdropping strategy over
MUB II and III in dimension 2. b Theoretical and d
experimental real and imaginary part of the process ma-
trix.

given by,

ρZAZB
=
∑
j,k

Tr
[(
ZjA ⊗ Z

k
B

)
ρAB

]
|j〉〈j| ⊗ |k〉〈k|,

(11)
ρZAE =

∑
j

|j〉〈j| ⊗ TrA
[(
ZjA ⊗ Î

)
ρAE

]
, (12)

where ρABE is the tripartite density matrix
shared by Alice, Bob and Eve, respectively.
Hence, every additional experimental measure-
ment is included in the minimization, which re-
sults in a greater, or equal, secret key rate. In
the limiting case where we have a full character-
ization of the channel, ρAB is fully reconstructed
and is given by the Choi matrix, ρE , mentioned
earlier. Thus the secret key rate may be directly
calculated from ρAB,

K = H (ZA|E)−H (ZA|ZB) , (13)

where all experimental measurements are taken
into consideration, even for the case of mismatch-
ing MUBs.

In the prepare-and-measure scheme, we can
now determine the set of POVMs correspond-
ing to Alice and Bob’s generation and measure-
ment apparatuses. At Alice’s preparation stage,
we have ZA = {|0〉〈0|, ..., |d − 1〉〈d − 1|}, since
Alice has the freedom to generate any state at
random. However, at Bob’s measuring stage, we
consider two different sets of POVMs, i.e. Zsort

B =

Accepted in Quantum 2019-04-21, click title to verify 8
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Figure 6: Security analysis for noise models with varying levels of symmetry. a-d The secret key rate is calculated
for different scenarios in dimensions ranging from 2 to 5. The secret key rate for the BB84 and the (d + 1)-MUBs
protocols are directly calculated from Eq. 8 and Eq. 9, respectively, where the level of noise is characterized using
the error rate. Using the process matrix representation, we then consider noisy channels corresponding to diagonal
trace-preserving process matrices of different ranks. The secret key rate is directly calculated using Eq. 13, and an
error rate is determined for comparison with the coarse-grained protocols. For the case of a process matrix of rank
r = d2 with constant diagonal elements, i.e. Eq. 14, we retrieve the case of completely symmetric noise, i.e. Eq. 9.
Asymmetric noise is then simulated by considering process matrices of lower ranks.

{|0〉〈0|, ..., |d − 1〉〈d − 1|} and Zfilter
B = {|i〉〈i|},

where the former corresponds to a sorting-type
measurement and the latter corresponds to a
filter-type measurement, and Alice and Bob post-
select on the event where Bob successfully ob-
tains a measurement of the state |i〉〈i| with i ∈
{0, ..., d − 1}. When carrying out the security
analysis, one can see that the secret key rate, K,
for the cases of Zsort

B and Zfilt
B only differs from an

overall efficiency of 1/d. Thus, we carry out the
high-dimensional QKD protocols based on QPT
with a filter-type measurement scheme at Bob’s
stage using an SLM. There exists efficient sorters
for the OAM computational and discrete Fourier
transform basis [56]; however, the establishment
of arbitrary multi-outcome measurement devices
remains an open challenge for quantum applica-
tions [57].

For the full characterization of our high-

dimensional quantum channel via QPT with no
explicit eavesdropping strategy applied, we calcu-
late the corresponding secret key rate and com-
pare it to a coarse-grained estimation of the chan-
nel, see Fig. 4 a. In the case of explicit eaves-
dropping strategies, such as optimal cloning and
intercept-resend, the secret key rate will obvi-
ously be negative, see Fig. 4 b-c, and no secret
key can be exchanged between Alice and Bob. We
observe that for larger dimensions, the full char-
acterization secret key rate performs better com-
pared to the achievable secret key rate obtained
from a coarse-graining of the channel. This may
be due to the fact that, as one considers higher-
dimensional states, the symmetry assumption in-
volved in coarse-graining is increasingly not ful-
filled. Therefore, full characterization of quantum
channels may offer a means by which the full po-
tential of high-dimensional protocols is exploited.
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In highly asymmetric scenarios, which is often the
case due to systematic errors such as misalign-
ments, full characterization may even surpass the
performance of coarse-grained protocols, such as
the BB84 protocol, when considering the lower
sifting efficiency of the full characterization pro-
tocol in the finite-key scenario.

Finally, in order to better understand the ad-
vantage of full characterization protocols com-
pared to their coarse-grained counterparts, we
carry out a security analysis for different noise
models. In particular, we take advantage of the
process matrix representation of the quantum
channel to simulate different levels of symmetry
in noise. In the limit, where the noise is com-
pletely symmetric over all states of all bases, the
process matrix of the channel can be described as
following,

χr=d
2

ij = F (d+ 1)− 1
d

δ0iδ0j

+ (1− F )
2(d− 1) (δij − δ0iδ0j) , (14)

where χr=d2
ij is a d2 × d2 diagonal matrix with

a rank of r = d2, and F determines the level
of noise in the channel. For instance, the re-
sult of such a process on an input state, say
ρin = |0〉〈0|, is given by the output state ρout =
F |0〉〈0| + (1 − F )/(d − 1)

∑d−1
i=1 |i〉〈i|. The pro-

cesses of universal optimal cloning and universal
intercept-resend fall under this category of pro-
cess matrices, as can be seen in Fig. 3, with fi-
delities Fcl = 1/2+1/(1+d) and Fir = 2/(1+d),
respectively. Here, we consider another type of
eavesdropping strategy that is not considered uni-
versal. We experimentally perform QPT of an
intercept-resend attack where the eavesdropper
only consider 2 out of the 3 MUBs available to Al-
ice and Bob in dimension 2, see Fig. 5. This would
be an appropriate attack in the case of BB84,
where only two MUBs are utilized by Alice and
Bob. However, in this case the noise added by
the process to the output state is no longer sym-
metric. We observe state- and basis-dependent
state fidelities which can be understood as asym-
metric noise. Interestingly, the process matrix of
the 2-MUB intercept-resend attack, see Fig. 5,
has only 3 non-zero diagonal elements compared
to 4 non-zero diagonal elements for the case of
universal attacks, see Fig. 3, in dimension 2. In-
spired, by the shape of the process matrix in this

simple case, we investigate different asymmetric
noise models by varying the rank of the process
matrix

For a process matrix of rank r = d2, we
retrieve the secret key rate formula for the
coarse-grained (d+ 1)-MUBs protocol, i.e. Eq. 9,
as can be seen in Fig. 6. In dimension 2, we may
then consider channels with process matrices of
other ranks, corresponding to different degrees
of noise symmetry. In particular, we consider
trace-preserving process matrices of rank 3, i.e.
χd=2,r=3
ij = Fδ0iδ0j + (1− F )/2(δ1iδ1j + δ2iδ2j),

and rank 2, i.e.
χd=2,r=2
ij = Fδ0iδ0j + (1− F )(δ1iδ1j). As can be

seen in Fig. 6-a, noise corresponding to a process
matrix of rank 2 or 3, leads to a significant
improvement in secret key rate compared to a
coarse-grained characterization of the channel
using the error rate. Interestingly, for the
case of the rank 2 process matrix of the form
given above, i.e. χr=2

ij , although the resulting
error rate is well above the traditional error
threshold, the secret key rate remains positive
all the way up to Q = 0.33. We consider
trace-preserving process matrices of rank 7, 4,
and 3, in dimension 3, rank 13, 7, and 3, in di-
mension 4, and rank 11 and 5, in dimension 5, i.e.

χd=3,r=7
ij = Fδ0iδ0j + 1

4(1− F )
6∑

k=1
δkiδkj

χd=3,r=4
ij = Fδ0iδ0j + 1

2(1− F )
3∑

k=1
δkiδkj

χd=3,r=3
ij = Fδ0iδ0j + 3

4(1− F ) (δ1iδ1j + δ8iδ8j)

χd=4,r=13
ij = Fδ0iδ0j + 1

16(1− F )
12∑
k=1

δkiδkj

χd=4,r=7
ij = Fδ0iδ0j + 1

3(1− F )
6∑

k=1
δkiδkj

χd=4,r=3
ij = Fδ0iδ0j + (1− F )(δ1iδ1j + δ12iδ12j)

χd=5,r=11
ij = Fδ0iδ0j + 1

4(1− F )
10∑
k=1

δkiδkj

χd=5,r=5
ij = Fδ0iδ0j + 1

4(1− F )
24∑

k=21
δkiδkj , (15)

respectively. In all cases, we can observe a
clear advantage of using a full characterization
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scheme compared to the error rate channel as-
sessment. Interestingly, for all dimensions we find
cases where after the transmission, the coarse-
grained errors would label the channel as inse-
cure, while our more detailed analysis still en-
ables a secure communication. This advantage
is possible because our analysis allows to distin-
guish between cases where an eavesdropper has
not gained enough information about the state
although they have transformed it such that Al-
ice and Bob will have large error rates.

5 Conclusion

In summary, full characterization of quantum
processes via QPT is an invaluable tool for high-
dimensional quantum information processing. In
particular, the complexity resulting from the gen-
eration and detection of the high-dimensional
states involved may be fully characterized. In the
study of quantum channels for quantum commu-
nications, full characterization via QPT turns out
to be a beneficial resource that allows one to take
full advantage of the potential high-dimensional
nature of the protocols at play to increase the
overall secret key rate.
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