
Sensors & Transducers, Vol. 233, Issue 5, May 2019, pp. 33-39 

 33

 
Sensors & Transducers

Published by IFSA Publishing, S. L., 2019 
http://www.sensorsportal.com

 
 
 
 
 

Complex-domain Joint Broadband Hyperspectral  
Image Denoising 

 
1 Vladimir KATKOVNIK, 1, * Igor SHEVKUNOV, 2 Daniel CLAUS, 

3 Giancarlo PEDRINI, 1 Karen EGIAZARIAN 
1 Tampere University, Faculty of Information Technology and Communication Sciences, 

Korkeakoulunkatu 10, 33101 Tampere, Finland 
2 Institut für Lasertechnologien in der Medizin und Messtechnik,  

Helmholtzstraße 12, 89081 Ulm, Germany 
3 Institut für Technische Optik (ITO), Universität Stuttgart,  

Pfaffenwaldring 9, 70569 Stuttgart, Germany 
* Tel.: +358 3 311 511 

* E-mail: igor.shevkunov@tuni.fi 
 
 

Received: 30 March 2019  /Accepted: 30 April 2019  /Published: 31 May 2019 
 
 
Abstract: In this paper, we propose a novel complex domain denoising algorithm for hyperspectral data. The 
algorithm is based on the Complex Domain Block-Matching 3D (CDBM3D) filter and on similarity of 
hyperspectral data, which are usually slow varying for close values of wavelengths. Singular Value 
Decomposition (SVD) of the hyperspectral data is used in order to define an optimal small dimension data 
subspace. The CDBM3D is applied for 2D images of this subspace. The efficiency of the algorithm is 
demonstrated in simulation tests and for experimental data obtained by spectrally resolved digital holography of 
a transparent color object. It is proved that the proposed filtering algorithm retrieves amplitude and phase 
distributions even from very noisy data. 
 
Keywords: Hyperspectral imaging, Noise in imaging systems, Complex domain imaging, Complex  
domain sparsity. 
 
 
 

1. Introduction 
 
Hyperspectral imaging (HSI) is originated from 

the earth remote sensing [1] and widely explored for 
numerous applications, including control of water and 
vegetation resources, control of food quality, 
biomedicine [2], etc. Acquiring two-dimensional (2D) 
images across a wide range of electromagnetic spectra 
with hundreds or thousands of spectral channels, HSI 
provides valuable information on material, size, shape 
and other characteristics of objects of interest. 

Conventionally, 2D measured hyperspectral (HS) 
images are stacked together and represented as 3D 

cubes with the spatial coordinates (x,y) and the third 
coordinate for wavelength λ or for frequency ω. In 
practice, the potential of HSI is compromised by low 
quality of the registered 2D images due to various 
degradation mechanisms.  

Recently, HSI has received great attention in the 
field of digital holography (DH), which enables 
reconstruction both HS intensity and HS phase (e.g. 
[6-8]). In this case, the hyperspectral cubes are 
complex valued, i.e. each of 2D wavelength slices of 
the 3D cube is characterized by phase and amplitude. 
The phase reconstruction provides a possibility to get 
additional information on refractive index and/or 
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thickness of an investigated object in a single 
wavelength [9] and multispectral [10-11] scenarios.  

In digital holography, reconstructed complex-
valued images are obtained from indirect intensity 
observations as solutions of ill-posed inverse 
problems. The later leads to serious amplification of 
noisy components in HS data, in particular, as speckle 
effects in phase images. 

An averaging of 2D slices of HS cubes by the 
windowed sliding sample mean over the wavelength 
axis is used routinely for denoising [6-7]. This 
approach is able to filter out the noise but may result 
in serious oversmoothing of the clean signal, in 
particular if the wavelength window size is too large. 
An application of the more sophisticated BM3D 
(Block-Matching 3D) algorithm with separate filtering 
of phase and amplitude is appeared to be more efficient 
than the sliding sample means [12]. 

This paper reports development of instruments for 
joint broadband processing of correlated phase and 
amplitude of complex valued HS images. This joint 
processing allows achieving essentially better results 
that those based on data processing separate for each 
wavelength. Singular Value Decomposition (SVD) of 
the complex valued hyperspectral images are used in 
order to identify a small number of 2D eigenimages. 
The original Complex Domain Block-Matching 3D 
(CDBM3D) filters are used for filtering of these 
complex valued eigenimages. This paper is a further 
development of the results shown in our conference 
paper [13]. 

 
 

2. Problem Formulation and Algorithm 
 
Let ܷ(ݔ, ,ݕ (ߣ ∈ ∁ே×ெ be a 2D slice of the HS 

noisy cube having size ܰ  in (x,y) coordinates ܯ×
with a fixed wavelength ߣ. ܳஃ(ݔ, ,ݕ (଴ߣ =൛ܷ(ݔ, ,ݕ ,(ߣ ଴ߣ − ఒబ/2ߜ ≤ ߣ ≤ ଴ߣ + ,ൟ	/2	஛బߜ 	ܳஃ ∈∁ே×ெ×௅౻, is a group of the slices (HS cube) belonging, 
for instance, to the wavelength interval of width ߜ஛బ 
centered on	ߣ଴. The rows of ܳஃ(ݔ, ,ݕ  ஃܮ ଴) containߣ
spectral observations corresponding to the scene with 
coordinate (ݔ,  .(ݕ

Observations of the HS denoising problem under 
the additive noise assumption may be written as 

,ݔ)ܼ௸  (ݕ 	= ,ݔ)௸ܳ	 (ݕ ,ݔ)௸ߝ	+	  (1) ,(ݕ
 

where ௸ܼ, ܳ௸, ௸ߝ 	⊂ ℂே×ெ×௅౻	represent the observed 
noisy HS data, clean HS data and additive  
noise, respectively.  

The denoising is formulated as reconstruction of 
the unknown ܳ௸(ݔ, ,ݔ)ܼ௸ from given	(ݕ  The .(ݕ
properties of the clean HS ܳ௸(ݔ, ,ݔ)௸ߝ and the noise	(ݕ  .are essential for algorithm development 	(ݕ

The following three assumptions are  
basic hereafter.  

1. Similarity of the HS slices ܷ(ݔ, ,ݕ  for close (ߣ
values of ߣ follows from the fact that ܷ(ݔ, ,ݕ  (ߣ
usually are slowly varying functions of ߣ. Then, for the 

set of spectral images ܳ௸(ݔ,  there	ஃ,ܮ of the length	(ݕ
exists a k-dimensional subspace with ݇ ≪  .ஃܮ
Therefore, there is a linear transform E reducing the 
size of the cube ܳ௸(ݔ,  .to the cube of smaller size	(ݕ
Following [14], we herein term the images associated 
with this k-dimensional subspace as eigenimages. A 
smaller size of this subspace automatically means a 
potential to improve the HS denoising being produced 
in this subspace. 

2. A sparsity of HS images ܷ(ݔ, ,ݕ  as functions (ߣ
of (ݔ, ,ݔ)ܷ means that there is a basis such that (ݕ ,ݕ  can be represented with a small number of	(ߣ
atoms of this basis. It is one of the conventional and 
fundamental assumptions for design of modern image 
processing algorithms. The sparsity concept for 
complex valued images is quite different from the 
standard formulation of this concept for real-valued 
signals. In particular, it is because the complex valued 
variables can be defined also by any of the two pairs: 
amplitude/phase or real/imaginary values of complex 
variables and elements of these pairs can be  
correlated [15-16]. 

3. The noise ݔ)௸ߝ,   is circular zero mean (ݕ
i.i.d. Gaussian. 

 
 

3. Proposed Algorithms 
 
We present and demonstrate two types of the 

algorithms: separate and joint denoising of HS  
cube slices. 

 
3.1. Separate Denoising of HS Cube Slices 

 

The algorithms of this group filter the images of the 
HS cube for each wavelength slice separately with 
results, which can be shown as: 

 ෡ܷ(ݔ, ,ݕ (ߣ = ,ݔ)൫ܼܦ3ܯܤܦܥ ,ݕ ,൯(ߣ ߣ ∈ Λ, (2) 
 

where CDBM3D is the abbreviation for Complex 
Domain Block-Matching 3D filter [15] and ෡ܷ(ݔ, ,ݕ  (ߣ
is the estimate of the true unknown wavefront ܷ(ݔ, ,ݕ  The MATLAB codes of this algorithm are .(ߣ
publicly available: http://www.cs.tut.fi/sgn/imaging/s
parse/. A further development of these algorithms for 
complex domain filtering can be seen in [16-18].  
Each of these new algorithms can be applied for 
filtering in (2). 

The CDBM3D algorithm is a generalization for the 
complex-domain of the popular real-valued Block-
Matching 3D (BM3D) filters [19]. Two points define 
the potential advantage of CDBM3D in comparison, 
in particular, with using BM3D separately for phase 
and amplitude as is in [12, 20]. First, CDBM3D 
processes phase and amplitude jointly taking into 
consideration a correlation of these variables usual in 
most applications, while separate filtering of 
amplitude and phase ignores this correlation. Second, 
the basic functions used in BM3D are fixed, while in 
CDBM3D they are varying data adaptive making 
estimation more precise. 
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The BM3D and CDBM3D algorithms are based on 
nonlocal similarity of small patches of images always 
existing in real-live data. The algorithms look for 
similar patches, identify them, stack together and 
process as 3D arrays. This similarity concept allows to 
use the powerful modern tools of sparse 
approximations allowing to design effective denoising 
and not only denoising algorithms. 

The CDBM3D algorithm as well as its 
generalizations in [15-17] have a generic structure 
shown in Fig. 1. These algorithms are composed from 
two successive stages: thresholding and Wiener 
filtering. Each of these stages includes grouping, 
3D/4D High-Order SVD (HOSVD) transform-domain 
spectra analysis of these groups, thresholding in the 
thresholding stage and Wiener filtering in the Wiener 
stage of these spectra and aggregations of the multiple 
estimates in order to get the final estimates for each 
stage. Full details of these algorithms and Wiener 
filtering can be seen in [15-17]. 

 
 

 
 

Fig. 1. A flow chart of CDBM3D algorithm. 
 
 

3.2. Joint Denoising of HS Cube Slices 
 
The second type of the algorithms considered in 

this paper is novel developed specifically for joint 
processing of all images of the HS cube or its 
fragments as defined by the estimate: 

 ෠ܳஃഥ(ݔ, (ݕ = ,ݔ)ሼܼஃഥܨܥܥ ,(ݕ Λഥ ⊂ Λ	ሽ (3) 
 
For instance, for windowed sliding filtering, Λഥ is 

an interval centered on ߣ =  ଴. As it is introducedߣ
above, it can be a wavelength symmetric interval of 
the width ߜఒబ 

 Λഥ = ሼλ ∶ λ଴ − ఒబ/2ߜ ≤ λ ≤ λ଴ +  .ఒబ/2ሽߜ
 
The symbol ܨܥܥ	is an abbreviation for the Cube 

Complex domain Filter that processes all data of the 

cube	ܼஃഥ(ݔ, ,ݔ)jointly and returns the cube estimate ෠ܳஃഥ (ݕ  .for the all slices of the wavelength interval Λഥ (ݕ
The algorithm presented in this paper is an adaptation 
for the complex domain of the Fast Hyperspectral 
Denoising algorithm (FastHyDe) proposed for real-
valued HS observations in [14]. 

The CCF algorithm is composed from the 
following steps. 

1. Reshape 3D data cube ܼஃഥ, ܰ ܯ× × ஃഥܮ , to the 
2D matrix Z of the size ܮஃഥ × ܰ ∙  Note, that the 	.ܯ
each row of this matrix corresponds to ܰ  image ܯ×
in the cube ܼஃഥ . 

2. Applying SVD to the matrix ܼஃഥ  we calculate the 
orthonormal square transform matrix ܧ ⊂ ℂ୐౻ഥ×୐౻ഥ  and 
the 2D transform domain eigenimage Zଶ,ୣ୧୥ୣ୬ as  

 ሾZଶ,ୣ୧୥ୣ୬, ,ܧ ݇ሿ =  (4) ,(Z)݁݉݅ܵݕܪ
 

where HySime stays for Hyperspectral signal 
Subspace Identification by Minimum Error [21], and ݇ is an optimal length of the eigenspace. HySime is an 
important part of the CCF algorithm. It identifies an 
optimal subspace for the sparse representation of HS 
image including both the dimension of the eigenspace ݇ and eigenvectors - columns of ܧ. The matrix ܧ௞ ⊂ℂ୐౻ഥ×୩ in HySime is composed from the ݇ main 
columns of ܧ . When ܧ௞  is given, the k eigenimages 
are calculated in HySime as 

 ܼଶ,௘௜௚௘௡ =  ௞ுܼ (5)ܧ
 

The HySime algorithm is based on the assumption 
that the slices ܷ(x, y, λ) for λ ∈ Λഥ	are realizations of a 
random field. 

3. Reshape the transform domain 2D image Z2, eigen, ݇ × ܰ ∙ ܰ to the 3D cube of the size ,ܯ ܯ× × ݇ with 
notation Z3,eigen. 

4. Filter by CDBM3D each of the ݇ eigenimages, (ܰ  :slices, of Z3,eigen (ܯ×
 Z෠ଷ,௘௜௚௘௡ =  ൫ܼଷ,௘௜௚௘௡൯ (6)ܦ3ܯܤܦܥ
 

5. Reshape the 3D cube Z෠ଷ,௘௜௚௘௡ to the 2D image Z෠ଶ,௘௜௚௘௡ of size ݇ × ܰ ∙  and go from the ܯ
eigenimages in the transform domain to images in the 
original image space by:  

 Z෠ଶ = ௞ܧ Z෠ଶ,௘௜௚௘௡ (7) 
 

It is an inverse of the transform used in (5).  
6. Reshape the 2D image Z෠ଶ to cube ܰ ܯ× ×  .ஃഥܮ

It gives the result: the filtered HS cube ෠ܳஃഥ(ݔ,  .(3) (ݕ
The main point of this algorithm is that the 

transforms to eigenimage space (5) and backward 
return from the eigenspace to the image space (7) are 
produced as 2D matrix operation with the transform 
matrix ܧ௞ . The 2D filtering by CDBM3D (6) is 
produced for the ݇ eigenspace images only.  

Due to similarity of the HSI slices, the dimension ݇ of the eigenspace is much smaller than the length ܮஃഥ  
of the HS data-cube. 



Sensors & Transducers, Vol. 233, Issue 5, May 2019, pp. 33-39 

 36

4. Simulation Tests 
 
For modeling, we assume a transparent phase 

object with the amplitude equal to 1 and the phase 
calculated according to equation: 

 ∆߮ఒ(ݔ, (ݕ = ߣߨ2 (݊ఒ − 1) ∙ ,ݔ)݄  (8) ,(ݕ

 
where ݊ఒ is the wavelength dependent refractive 
index, ߣ is the wavelength, and ݄ ,ݔ)  is the thickness (ݕ
of the object. 

The refractive index ݊ఒ is calculated for each 
wavelength according to the empirical Cauchy 
relationship, which is in a good agreement with 
measured data in a visible region of spectra. The 
coefficients of the relationship are taken assuming that 
the object material is the borosilicate BK7 glass.  

For the thickness function ݄(ݔ,  we took a ,(ݕ
truncated Gaussian peak (Fig. 2(a)) of the maximum 
equal to 4 µm which corresponds to the maximum 
phase delay of about 34 rad provided ߣ = 400 nm, and ݊ఒ=1.531. The HS cube is modeled in accordance with 
(8) for 200 uniformly distributed wavelengths in the 
range of Λ ∈ ሾ400 − 798ሿ	nm.  

 
 

 
 

Fig. 2. Object phases of the slice ߣ = 600 nm: clean 
absolute phase (a) and clean wrapped phase (b); noisy 
wrapped phase as it is observations (c); and phase 
reconstructions by BM3D (d), CDBM3D (e), and CCF (f). 

 
 

For this thick object the absolute phase values 
exceed the interval of [-π, π) and the observations 
depend on wrapped phase. For wrapped phase 
observations, HS phase imaging becomes a hard 
problem since the phases even in neighboring slices of 
the HS cube can be very different. Therefore, the 
widespread filtering by averaging nearest HS cube 
slices is not applicable. For filtering of wrapped 
phases, unwrapping procedures are used often. These 
procedures are computationally demanding and 

sometimes not applicable, especially in high noise 
scenarios. However, the used CDBM3D filter is 
specially developed to work in complex-domain and 
able to produce reliable results for wrapped phase 
filtering without involving unwrapping procedures.  

For quantitative estimation of the phase filtering 
accuracy, we use Relative Root Mean Square Error 
(RRMSE) criterion: 

 

ܧܵܯܴܴ = ට∑ | ො߮(ݔ, (ݕ − ,ݔ)߮ ∑ଶ௫,௬ට|(ݕ ,ݔ)߮| ଶ௫,௬|(ݕ , (9) 

 
where ߮(ݔ, ,ݔ)is the clean wrapped phase, ො߮ (ݕ  is (ݕ
the reconstructed wrapped phase, (ݔ,  are the spatial (ݕ
coordinates, the summation is produced over all pixel 
of the images. RRMSE values close to 1 correspond to 
a bad noise suppression, RRMSE values smaller than 
0.1 can be treated as a good quality imaging. 

For comparison, we provide results obtained by the 
following state-of-the-art filtering techniques: BM3D, 
CDBM3D, and proposed CCF. BM3D is a wide 
spread technique based on non-local sparse 
representations, which produces good noise 
suppression in a real-domain space. Here, it is used for 
separate filtering of phase and amplitude of HS slices. 
CDBM3D is a descendant of BM3D developed for 
complex-domain space for joint processing of phase 
and amplitude in the complex valued field. Here, it is 
used for joint filtering of phase and amplitude  
of HS slices. 

Visual results for the same slice, ߣ଴ = 600 nm, and 
SNR= –2 dB are presented in Fig. 2. Figs. 2(a) and (b) 
show clear (true) absolute and wrapped phases of the 
object, Fig. 2(c) shows noisy wrapped phase as they 
define the observations, and Figs. 2(d,e,f) show the 
wrapped phases as they are reconstructed by the 
BM3D, CDBM3D, and CCF algorithms, respectively. 
The phase images in Fig. 2 demonstrate the obvious 
advantage of the proposed CCF technique. For 
BM3D, it is hard to find similar patches in the slice for 
such noisy case, consequently it fails. CDBM3D using 
complex valued data adaptive atoms for non-local 
sparse approximation of the estimated object is able to 
suppress noise better, but nevertheless the phase 
estimate is severely corrupted since some valuable 
information on the phase lost due to the noise. Due to 
the total HS cube processing, the CCF algorithm is 
able to suppress the noise effectively and retrieve 
object’s details almost identically to the original ones, 
as can be seen in Fig. 2(f). A nearly perfect visually 
CCF filtering is supported by the low RRMSE value, 
which is equal to 0.039. 

Fig. 3 demonstrates RRMSE curves for each of the 
compared algorithms depending on the signal-to-
noise-ratio (SNR) for the wavelength ߣ଴ = 600 nm. 
Higher SNR values correspond to less noisy data, 
SNR=30 dB is nearly a noiseless case. As it is 
expected, all RRMSE curves in Fig. 3 behave similar: 
lower values of SNR correspond to higher noise level, 
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and therefore RRMSE are higher. However, BM3D 
(yellow stars curve) reaches values smaller than 0.1 
only for SNR larger than 15, while CDBM3D (red 
circles) reaches 0.1 already for SNR about 4. The best 
performance is demonstrated by RRMSE 
corresponding to the CCF algorithm (blue crosses) 
with values under 0.1 even for extremely noisy case 
with SNR= –10 dB.  

 
 

 
 

Fig. 3. RRMSE as functions of SNR. Comparison  
of the algorithm’s performance: CCF – curve with blue 

crosses, CDBM3D - red circles, and BM3D - yellow stars. 
 
 

It is interesting to evaluate a number of slices 
sufficient for noise suppression. For this purpose, we 
present in Fig. 4 a dependence of RRMSE from the 
number of slices in the HS cube and from SNR. It is 
done for the object shown in Fig. 2(a). The dark blue 
regions of this 3D surface with low RRMSE values 
correspond to the good filtering. It demonstrates, that 
for low noise level (high SNR) the RRMSE values do 
not depend strongly on the number of slices, therefore 
it is not necessary to use CCF for low noise cases. 
However, to get sufficient noise suppression for HS 
cubes with SNR lower than 10 dB, it is necessary to 
use the joint CCF processing and the number of slices 
in the HS cube should be larger than 100.  

 
 

 
 

Fig. 4. RRMSE surface dependence from the number 
of slices in the HS data and SNR. 

 
 

It is necessary to mention also that RRMSE 
depends on similarity of the slices and therefore on the 
spectral object properties. Nevertheless, RRMSEs will 

have similar behavior for any type of objects. The only 
difference is in gradients of RRMSE surfaces: for 
simple objects (high similarity of the slices), the 
gradients will be smaller, for complex-structure 
objects (low similarity), the gradients will be higher 
since a high level of similarity provides better  
noise suppression. 

 
 

5. Experimental Results 
 
We use the experimental HS data obtained by the 

spectrally resolved digital holography (SRDH). The 
object is a transparent color slide shown in Fig. 5(a), 
and the light source is a white LED [7]. Fig. 5(b) 
shows the intensity spectrum of this LED in the range Λ = ሾ400 − 800ሿ	nm.  

 
 

 

a) b) 
 

Fig. 5. a) Investigated object; b) LED spectra. 
 
 

In systems, where digital cameras make intensity 
registration, the additive noise is inherent, and it is 
obvious, that SNR of the recorded intensities is lower 
in spectral ranges with smaller intensity of LED. For 
the used LED, low SNR regions are in the areas of 
400 nm and 800 nm.  

We demonstrate CCF filtering results in two 
spectral regions with high SNR (556 nm) and low SNR 
(780 nm). In Fig. 6 for the slice of the HS cube ܼ(ݔ, ,ݕ  and ߣ corresponding to 556 nm wavelength (ߣ
in Fig. 7 to 780 nm: the noisy phase and amplitude are 
in the top row and the ones filtered by CCF ෡ܷ(ݔ, ,ݕ  are in the bottom row. In the region of high	(ߣ
SNR, see Fig. 6, the noisy slice is only slightly 
corrupted. After CCF filtering, the amplitude and 
phase look much more clear, especially the  
phase image in low-intensity regions of amplitude 
(dark areas). 

In contrast with the high SNR slice, the low SNR 
noisy slice in Fig. 7 is destroyed, and it is hard to 
distinguish observed object details in both amplitude 
and phase. However, after application of the CCF 
filter, we can clearly see the details of phase and 
amplitude images for ෡ܷ(ݔ, ,ݕ  retrieved from the	(ߣ
very noisy ܼ(ݔ, ,ݕ  .(ߣ

This result is a strong demonstration of the good 
performance of the proposed CCF algorithm. Such 
results are unattainable for traditional averaging of few 
neighboring slices or for the state-of-the-art 
techniques operating over single slices. 
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Fig. 6. Noisy and filtered object slices corresponding 
to 556 nm. Top row: images of noisy amplitude (left) 
and phase (right); bottom row: CCF filtered amplitude 

and phase in rad. 
 
 

 
 

Fig. 7. Noisy and filtered object slices corresponding 
to 780 nm. Top row: images of noisy amplitude (left) 
and phase (right); bottom row: CCF filtered amplitude 

and phase in rad. 
 
 

6. Conclusion 
 

A new denoising algorithm for joint processing of 
broadband complex domain hyperspectral data is 
developed. The algorithm is robust and able to  
produce reliable noise suppression and reveal object 
details even in extremely noisy scenarios. The 
algorithm demonstrates a very good performance to 
filter wrapped phase HS date without involving 
unwrapping processing. 
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