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a b s t r a c t 

A novel algorithm for reconstruction of hyperspectral 3D complex domain images (phase/amplitude) from noisy 

complex domain observations has been developed and studied. This algorithm starts from the SVD (singular 

value decomposition) analysis of the observed complex-valued data and looks for the optimal low dimension 

eigenspace. These eigenspace images are processed based on special non-local block-matching complex domain 

filters. The accuracy and quantitative advantage of the new algorithm for phase and amplitude imaging are 

demonstrated in simulation tests and in processing of the experimental data. It is shown that the algorithm is 

effective and provides reliable results even for highly noisy data. 
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. Introduction 

Hyperspectral imaging (HSI) enables the collection and processing

f data from a large range of the electromagnetic spectrum. Its main

pplications are in high-quality and contrast imaging [1] , chemical ma-

erial identification [2] , or process detection [3] . HSI retrieves informa-

ion from images obtained across a wide spectral range and hundreds to

housands of spectral channels. Conventionally, these images are two-

imensional 2D and stacked together in 3D cubes, where the first two

oordinates are spatial ( x, y ) and the third one is for the spectral chan-

el, which is usually represented by the wavelength 𝜆. 

In recent years, coherent diffractive imaging (CDI) has enabled vast

rogress in high-resolution microscopy [4–6] . The central challenge in

DI is to acquire knowledge of the phase of the recorded field. Perform-

ng a direct measurement of the phase typically does come at the cost

f increased measurement complexity. The main examples of such ap-

roaches are spectrally resolved interferometry [7–9] and Fourier trans-

orm holography [10–12] or Hyperspectral Digital Holography (HSDH)

9,13,14] . In these methods, the interference between a reference wave

nd a diffraction pattern is recorded and the observations, as well as

he results, have a form of 3D hyperspectral cubes with complex-valued

ariables specified by both amplitude and phase. Similarly, 3D com-

lex domain variables are appeared in close but different optical setups
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here there are no reference beams. Spectrally resolved phase retrieval

lgorithms are used in these setups [15,16] . 

It seems, that HSDH is originated from the work of Itoh et al.

17] where the interferometric measurement of the three-dimensional

ourier-image of the diffusely illuminated and self-irradiated thermal

bjects was demonstrated for the first time for visible and near-infrared

pectral ranges, correspondingly. A typical HSDH setup in these fre-

uency ranges is based on a Fourier-transform spectrometer [18] , where

nstead of a single-pixel detector a multi-pixel sensor (camera) used

or the wavefront intensity registration. Later similar HSDH techniques

ave been developed for broadband terahertz pulses [19,20] and even

or dissipated radiation for unmodified wireless devices [21] . 

As an advantage, HSDH recovers not only spectrally resolved in-

ensity (amplitude) information, as in the conventional HSI, but also

pectrally resolved phase information. For HSI it opens a new dimen-

ion of investigations with the possibility to recover information about

eight/thickness/relief and refractive indexes of complex-valued objects

22–24] . In HSDH, 3D data cubes are complex-valued, i.e. each of the 2D

mages for each wavelength is complex-valued having 2D phase and am-

litude images. An important point here is that these cubes are obtained

rom indirect observations as solutions of ill-posed inverse problems.

he latter leads to a serious amplification of all sorts of disturbances,

n particular, measurement noises, in the resulting hyperspectral cubes.
 and Communication Sciences, Tampere, Finland. 
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esides, due to the high spectral resolution, the energy obtained by sen-

ors is separated between many narrow wavebands and limited in each

and. 

Narrowing the subject matter to the visible frequency range, it

hould be noted that radiation sources used in HSDH, as a rule, a less

irected and weak. Additional, during the propagation through the opti-

al setup the spectral content of the radiation could suffer from various

osses associated with inhomogeneous spectral absorption, chromatic

berrations due to the presence of optical elements with a dispersion of

he refractive index. 

Due to all these limitations, HSI can be very sensitive to noise as well

s to various nonidealities of optical systems. It is important especially

hen the hyperspectral sensor is not electronically stable, and the cor-

uption of the electronic charge can affect the spectral value collection

asily, especially in low-intensity illuminations that usually occur at the

dges of the spectral range used [25] . Thus, the problem of noise is one

f the significant obstacles to the development of these techniques. 

For noise suppression, the averaging by the sample mean along the

avelength dimension is used routinely [20–22,26,27] , but it may result

n oversmoothing of the true signal with averaging over a large range

f wavelengths. Development and application of more sophisticated al-

orithms for separate wavelength filtering of phase and amplitude ap-

eared as a more efficient tool [28] . 

In this paper, we present a novel advanced algorithm for denoising

f complex-domain hyperspectral (HS) data applicable for the multiple

ptical setups mentioned above providing final or intermediate results

n the form of the complex-valued HS cubes. 

The proposed algorithm preliminary estimates the complex-valued

ignal and noise correlation matrices and then selects a small-sized sub-

et of the singular value decomposition (SVD) eigenvectors that best

epresents the signal subspace in the least squared error sense. The 2D

omplex-domain filtering is applied for denoising of this small number

f eigenimages. The filtered eigenimages are used for reconstruction of

he wavefield for all wavelengths. We show that visually and numer-

cal accuracy, evaluated in terms of the relative root-mean-square er-

or (RRMSE), the algorithm enables significantly better performance in

omparison with the alternative modern techniques and the sliding win-

ow spectral averaging. The algorithm works successfully even with HS

ata characterized by the extremely small signal-to-noise ratio (SNR). 

The algorithm presented in this paper is an essential modification

f the algorithm presented in our conference paper [29] . The princi-

al difference of this novel algorithm concerns a sliding window es-

imation when the original observation cube is partitioned on sub-

ubes of smaller sizes. It is shown that this procedure results in valu-

ble accuracy improvement as compared with the use of all observa-

ion slices simultaneously in [29] . This paper involves substantially

ore analytical, simulation and experimental development. In the de-

eloped Complex-domain Cube Filter (    ), we apply the complex-

omain block-matching 3D filter with Winner filtering (ImRe-BM3D WI)

30] for eigenimage denoising, contrary to it, a more simple and less ef-

ective filter was used for similar denoising in [29] . 

Technically, the algorithm is designed as a denoiser. The sparsity

oncept which is at the roots of the algorithm assumes a search for sim-

lar patches of images, then combine them and process together. These

rocedures result in some kind of robustness of the algorithm with re-

pect to disturbances of nature different from standard additive noise,

he model used in the algorithm design. In particular, the algorithm al-

ows to produce good results for phase imaging for areas of slices of HS

ube with very low amplitude values provided that there are slices with

imilar phase patches and stronger amplitude values. Thus, the devel-

ped algorithm is not restricted to noise filtering and can be treated as a

ore general instrument targeted for image reconstruction from various

isturbances. 

The paper is organized as follows. Section 2 describes a problem

ormulation and assumptions needed for its solution. In Section 3 the

roposed denoising algorithm and its framework are presented. In
ection 4 we present simulation experiments for algorithm parameters

election ( Section 4.1 ), for validating filtering results and comparison

ith alternative filtering techniques on different objects ( Section 4.2 ).

he phase imaging results for HS data, that were obtained in HSDH ex-

eriments are discussed in Section 5 . Final conclusions are in Section 6 .

. Problem formulation 

Let 𝑈 ( 𝑥, 𝑦, 𝜆) ⊂ ℂ 

𝑁×𝑀 be a slice of the complex-valued HS cube of

he size N × M on ( x, y ) provided a fixed wavelength 𝜆, and 𝑄 Λ( 𝑥, 𝑦 ) =
 𝑈 ( 𝑥, 𝑦, 𝜆) , 𝜆⊂Λ}, 𝑄 Λ ⊂ ℂ 

𝑁 ×𝑀 ×𝐿 Λ , be a whole cube composed of a set

f the wavelengths Λ with the number of individual wavelengths L Λ.

hus, the total size of the cube is N × M × L Λ pixels. 

The lines of Q Λ( x, y ) contain L Λ spectral observations corresponding

o the scene with coordinates ( x, y ). Then, the observations of the hy-

erspectral denoising problem under the additive noise assumption may

e written as: 

 Λ( 𝑥, 𝑦 ) = 𝑄 Λ( 𝑥, 𝑦 ) + 𝜀 Λ( 𝑥, 𝑦 ) , (1)

here Z Λ, Q Λ, 𝜀 Λ ⊂ ℂ 

𝑁 ×𝑀 ×𝐿 Λ represent the recorded noisy HS data,

lean HS data and additive noise, respectively. Spatial coordinates ( x, y )
re integer numbers belonging to ranges [1: N ] and [1: M ], respectively.

ccordingly to the notation for the clean image, the noisy cube can be

epresented as 𝑍 Λ( 𝑥, 𝑦 ) = { 𝑍( 𝑥, 𝑦, 𝜆) , 𝜆 ∈ Λ}, 𝑍 Λ ⊂ ℂ 

𝑁 ×𝑀 ×𝐿 Λ with the

lices Z ( x, y, 𝜆). 

The denoising problem is formulated as reconstruction of unknown

 Λ( x, y ) from given Z Λ( x, y ). The properties of the clean HS Q Λ( x, y )
nd the noise 𝜀 Λ( x, y ) are essential for the algorithm development. 

The following three assumptions are basic hereafter [31] . 

1. Similarity of the HS slices U ( x, y, 𝜆) for nearby wavelengths 𝜆. This

similarity follows from the fact that on many occasions U ( x, y, 𝜆)

are slowly varying functions of 𝜆, as it for instance for the phase

delays due to propagation of hyperspectral light through an object

of varying thickness. It follows from this similarity that the spectral

lines of Q Λ( x, y ) of the length L Λ live in a k -dimensional subspace

with k ≪ L Λ. Therefore, there is a linear transform E reducing the

size of the cube Q Λ( x, y ) to the cube of the smaller size. Following

[31] , we herein term the images associated with this k -dimensional

subspace as eigenimages . A smaller size of this subspace automatically

means a potential to improve the HS denoising being produced in

this subspace. The sliding window algorithm developed in this paper

is applicable in the scenario of piece-wise slowly varying slices U ( x,
y, 𝜆), see Section 4.2.2 . 

2. Sparsity of HS images U ( x, y, 𝜆) as functions of ( x, y ). According to

the definition, the sparsity means that there exist bases such that

U ( x, y, 𝜆) can be represented with a small number of items of these

bases. This assumption is not restrictive in any practical situation

as it concerns the algorithms for data processing looking for (or de-

signing as it is in this paper) these bases and these bases are not

applied to whole size ( N × M ) image-slices but to their small patches

(often 8 × 8). The sparsity is one of the natural and fundamental

assumptions for the design of modern image processing algorithms.

The sparsity for complex-valued images is quite different from the

standard formulation of this concept introduced for real-valued sig-

nals. The complex-valued variables can be defined by any of the two

pairs: amplitude/phase and real/imaginary values and elements of

these pairs are usually correlated [27,30] . 

3. The noise 𝜀 Λ( x, y ) is zero mean circular complex-valued Gaussian

with diagonal correlation matrix L Λ × L Λ, i.e real and imaginary

parts are uncorrelated and have the same Gaussian distributions. 

Clean image subspace identification is a crucial first step in the devel-

ped algorithm. The signal and noise correlation matrices are estimated

nd then used to select the subset of eigenvectors that best represents

he signal subspace in the least mean squared error sense. 
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Fig. 1. Flow chart of complex domain CDBM3D filters. 
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. Proposed algorithm 

The following algorithmic techniques are the foundation of the pro-

osed algorithm: A) Separate denoising of each slice of HS cube, i.e.

lice-by-slice filtering; B) Joint simultaneous filtering of all slices in HS

ube; C) Sliding window filtering of HS cube with joint slice filtering in

ach window. 

The concept of the complex domain sparsity is exploited here in two

ifferent modes which we call ’local’ and ’global’. The local sparsity is

hat is applied to the level of image patches in slice-by-slice (filtering

). The global sparsity appears in a joint analysis of HS slices when we

se SVD applied to whole HS cube (filtering B) or to its fragments in

liding window filtering of HS cube (filtering C). 

.1. Separate slice denoising 

The algorithms of this group filter the images of the HS cube for the

ach wavelength separately with the result which can be shown as 

̂
 ( 𝑥, 𝑦, 𝜆) = 𝐶𝐷 𝐵𝑀3 𝐷 { 𝑍( 𝑥, 𝑦, 𝜆)} , 𝜆 ∈ Λ, (2)

here CDBM 3 D is the abbreviation for Complex Domain Block-

atching 3D filter and �̂� ( 𝑥, 𝑦, 𝜆) is an estimate of the clean unknown

avefront U ( x, y, 𝜆). 

The complex domain BM3D algorithm is originated in [32] . This con-

ept has been generalized and a wide class of the complex domain BM3D

lgorithms has been introduced in [30] as a MATLAB Toolbox. Note, that

he MATLAB codes for these algorithms are publicly available [30,32] . 

Here, we use CDBM3D as a generic name of these algorithms. Any

f these algorithms can be used in (2) . 

These algorithms are a generalization for the complex-domain of

he popular real-valued Block-Matching 3D filters [33] . Two points de-

ne the potential advantage of CDBM3D in comparison, in particular,

ith using BM3D separately for the phase and amplitude as in [28,34] .

irstly, CDBM3D processes the phase and amplitude jointly taking into

onsideration the correlation quite usual in most applications, while sep-

rate filtering of amplitude and phase ignores this correlation. Secondly,

he basis functions in BM3D are fixed, while in CDBM3D they are vary-

ng data-adaptive making estimation more precise. 

Both types of algorithms BM3D and CDBM3D are based on the non-

ocal similarity of small patches in slice-images always existing in real-

ife U Λ( x, y ). The algorithms look for similar patches in slices Z ( x, y, 𝜆),

dentify them and process together. This similarity concept allows to use

he powerful modern tools of sparse approximation allowing to design

ffective denoising algorithms. 

The CDBM3D algorithms have a generic structure shown in Fig. 1 and

omposed from two successive stages: ‘thresholding’ and ‘Wiener filter-

ng’. Each of these stages includes: grouping, 3D/4D High-Order Sin-

ular Value Decomposition (HOSVD) analysis, thresholding of HOSVD

ransforms and aggregation. In the ‘Wiener filtering’ stage, the thresh-

lding is replaced by Wiener filtering. 

Following the procedure in patch-based image processing, the noisy

mage 𝑍( 𝑥, 𝑦, 𝜆) ⊂ ℂ 

𝑁×𝑀 taken with a fixed 𝜆 is partitioned into small

verlapping rectangular/squares N 1 × M 1 produced for each pixel of

he image. For each patch, we search in Z ( x, y, 𝜆) for similar patches,

dentify them and stack them together in 3D groups (array, tensors).

his procedure is called grouping, it is the first step of the algorithm

hown in Fig. 1 . 

It follows by HOSVD of these groups defining data-adaptive or-

honormal transforms of the complex-valued groups and the core tensors

iving the spectral representation of the grouped data. 

The next step of the algorithm, as shown in Fig. 1 , is filtering imple-

ented as thresholding (zeroing for hard-thresholding) of small items

f the core tensors. Inverse HOSVD using the thresholded core tensors

eturns block-wise estimates of the denoised images. These estimates are

ggregated in order to obtain improved image estimates calculated as

eighted group-wise estimates. These grouping, HOSVD, thresholding,
nd aggregation define the so-called thresholding filtering, i.e. the first

tage of the algorithm in Fig. 1 . 

The image filtered by thresholding is an input signal of the second

tage of the CDBM3D algorithm - Wiener filtering. The structure of this

econd part of the algorithm is similar to the first thresholding part with

he only difference that the thresholding is replaced by the Wiener fil-

ering. 

The output of the Wiener filter is the final output of the CDBM3D

lgorithm. The details of the threshold and Wiener filtering can be seen

n [30,32,35] . It is demonstrated in [32,35] that the HOSVD analysis

an be produced using instead of complex-valued variables the pairs

mplitude/phase or real/imaginary values. Then, the groups become

D and 4D HOSVD is used for spectral analysis and filtering. The flow

hart in Fig. 1 presents a structure valid for both types of the algorithms

here we show 3D and 4D HOSVD transforms, respectively. 

.2. Joint slice denoising 

Let us introduce a novel algorithm developed especially for joint pro-

essing of slices in HS cubes. We use it with the following notations: 

̂
 Λ̄( 𝑥, 𝑦 ) =    { 𝑍 Λ̄( 𝑥, 𝑦 ) , Λ̄ ⊂ Λ} . (3)

ere, Λ̄ is a set of slices to be denoised. In particular, for sliding fil-

ering considered later in subsection C, Λ̄ can be defined as symmetric

avelength interval centered at 𝜆 = 𝜆0 of the width 𝛿𝜆0 ∶ 

Λ̄ = { 𝜆 ∶ 𝜆0 − 𝛿𝜆0 
∕2 ≤ 𝜆 ≤ 𝜆0 + 𝛿𝜆0 

∕2} . (4)

omplex domain Cube Filter (    ) processes the data of the cube

 Λ̄( 𝑥, 𝑦 ) jointly and provide the estimates �̂� Λ̄( 𝑥, 𝑦 ) for all 𝜆 ∈ Λ̄. 

The    algorithm is presented in Fig. 2 and composed from the

ollowing steps. 

• Preliminary reshape of 3D data cube 𝑍 Λ̄, 𝑁 ×𝑀 × 𝐿 Λ̄, into the 2D

matrix Z of size 𝐿 Λ̄ ×𝑁𝑀 ∶ 𝑁 ×𝑀 × 𝐿 Λ̄ → 𝐿 Λ̄ ×𝑁 𝑀 ; 

1. Calculate the orthonormal transform matrix 𝐸 ⊂ ℂ 

𝐿 Λ̄×𝑝 and the 2D

transform domain eigenimage Z 2, eigen as 

[ 𝐸, 𝑍 2 ,𝑒𝑖𝑔𝑒𝑛 , 𝑝 ] = 𝐻𝑦𝑆 𝑖𝑚𝑒 ( 𝑍 ) , (5)

where HySime stays for Hyperspectral signal Subspace Identification

by Minimum Error [31] , p is a length of the eigenspace. 
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Fig. 2.    algorithm. Blue blocks are main steps of the algorithm. Gray blocks 

are technical steps for data arrays 2D ⇆3D reshaping. 
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HySime is an important part of the    algorithm. It identifies an

optimal subspace for the HS image representation including both the

dimension of the eigenspace p and eigenvectors - columns of E . This

algorithm is based on the assumption that the slices U ( x, y, 𝜆) for

𝜆⊂Λ are realizations of a random field. 

When E is given, the eigenimage is calculated as 

𝑍 2 ,𝑒𝑖𝑔𝑒𝑛 = 𝐸 

𝐻 𝑍. (6)

• Reshape the 2D transform domain Z 2, eigen , p × MN into the 3D image

domain array Z 3, eigen of size N × M × p : p × NM → N × M × p ; 

2. Filter each of the N × M 2D images (slices) of Z 3, eigen by CDBM3D: 

�̂� 3 ,𝑒𝑖𝑔𝑒𝑛 ( 𝑥, 𝑦, 𝜆𝑠 ) = CDBM3D ( 𝑍 3 ,𝑒𝑖𝑔𝑒𝑛 ( 𝑥, 𝑦, 𝜆𝑠 )) . (7)

where p eigenvalues 𝜆s belong to the eigenspace. 

• Reshape the 3D array �̂� 3 ,𝑒𝑖𝑔𝑒𝑛 ( 𝑥, 𝑦, 𝜆𝑠 ) into the 2D transform domain

�̂� 2 ,𝑒𝑖𝑔𝑒𝑛 of size p × NM . 

3. Return from the eigenimages of the transform domain to the 2D orig-

inal image space as follows 

�̂� 2 = 𝐸 �̂� 2 ,𝑒𝑖𝑔𝑒𝑛 . (8)
It is the inverse of the transform of Eq. (6) . r
• Reshape the 2D image �̂� 2 to cube size 𝑁 ×𝑀 × 𝐿 Λ̄, it gives the re-

sulting filtered cube �̂� Λ̄( 𝑥, 𝑦 ) (3) . 

These forward and backward reshape passages 2D ⇆3D allow to de-

ne the eigenspace Z 2, eigen in the 2D transform domain and to produce

he CDBM3D filtering in the corresponding 3D domain Z 3, eigen slice-by-

lice. However, in order to return these filtered data �̂� 3 ,𝑒𝑖𝑔𝑒𝑛 into the

riginal image space we need to use 2D transform (8) and, thus again

o reshape 3D data into 2D transform space. 

HySime , SVD based algorithm, solves the following problems: esti-

ation of noise and noise covariance matrix and optimization of the

ignal subspace minimizing mean squared error between the clean HS

 Λ̄( 𝑥, 𝑦 ) and its estimate. Note, that the covariance 𝑟 𝜆,𝜆′ ( 𝑥, 𝑦 ) averaged

ver ( x, y ) and the preliminary estimate of HS images (not the final (8) )

re used in this algorithm. Optimization of the subspace results in min-

mization of its size and usually the found subspace dimension 𝑝 ≪ 𝐿 Λ̄.

t simplifies the processing of HS data and leads to a faster algorithm.

hus, the CDBM3D filtering is produced only for p eigenimages but the

ackward transform (8) gives the estimates for all 𝐿 Λ̄ spectral images. 

The HySime algorithm is a complex domain modification of the

ySime algorithm developed for real-valued observations in [36] . More

acts concerning the justification of this algorithm as well as motivation

nd details can be seen in [36] because they are nearly identical to those

or the complex domain version of the algorithm. 

Overall, the presented    algorithm follows the structure of the fast

yperspectral denoising (FastHyDe) algorithm presented for real-valued

ata in [31] . A generalization to the complex domain required modifi-

ation of the codes as well as revision of the theoretical background. 

In this paper as the CDBM3D algorithm for eigenimage filtering, we

se the ImRe-BM3D WI algorithm [30] . It means that imaginary and real

arts of the complex-valued images are used in 4D HOSVD analyses of

he 3D grouped data. The algorithm includes both stages: thresholding

nd Wiener filtering (WI in the algorithm abbreviation). This algorithm

nables more efficient performance as compared with the original ver-

ion of CDBM3D from Katkovnik and Egiazarian [32] , where 3D HOSVD

s applied to complex-valued images and only thresholding stage is used.

.3. Sliding window CCF 

Statistical modeling and tests of the algorithm show that the recon-

tructions �̂� ( 𝑥, 𝑦, 𝜆𝑠 ) have the accuracy varying with 𝜆s and the best re-

ults are achieved for 𝜆s close to the middle point of the interval Λ̄.

liding    is    applied in the sliding mode with the estimate at the

tep 3 calculated only for 𝜆𝑠 = 𝜆0 in (4) , where 𝜆0 takes values from Λ.

he width of the sliding window 𝐿 Λ̄ can be varying with 𝜆0 . 

We make publicly available the MATLAB demo-code of the devel-

ped    algorithm, see Code 1. 

. Simulations 

.1. Parameters selection 

Simulation experiments are produced for the complex-valued HS

ube of a transparent phase object. That means that the amplitude A(x,y)

f the object wavefront is equal to 1, and the phase is described by the

quation: 

 𝜆( 𝑥, 𝑦 ) = 2 𝜋 ℎ ( 𝑥, 𝑦 ) 
𝜆

( 𝑛 𝜆 − 1) , (9)

here 𝜆 is a wavelength of radiation going through the object, n 𝜆 is the

efractive index of object material and h ( x, y ) is the thickness of the

bject. 

We model the HS cube for this object by 𝐿 Λ = 200 slices uniformly

overing the wavelength interval Λ = 400 ÷ 798 nm. The refractive index

 𝜆 is calculated for each 𝜆 according to Cauchy’s equation with coeffi-

ients taken for the glass BK7 [37] . Therefore the noiseless HS cube is

epresented as 𝑄 ( 𝑥, 𝑦 ) = { 𝑈 ( 𝑥, 𝑦, 𝜆) , 𝜆⊂Λ}, where U ( x, y, 𝜆) = 
Λ
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Fig. 3. Phase RRMSE curves. (a) RRMSE dependence on window size 𝐿 Λ̄; (b) 

Whole HS cube mean RRMSE dependence on the sliding step; (c) Comparison of 

RRMSE distributions for filtering by whole HS cube and by sliding window; (d) 

RRMSE (blue crosses) and SNR (orange diamonds) curves dependence on noise 

standard deviation 𝜎. 
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= A ( x, y ) · exp ( j 𝜑 𝜆( x, y )). 
For noise modeling in the HS cube Z Λ( x, y ) (1) , we assume that the

dditive noise 𝜀 Λ is independent and identically distributed complex-

alued circular Gaussian with the standard deviation 𝜎. 

We use the    algorithm in the sliding window mode (Subsec-

ion C). In order to select the proper window size 𝛿𝜆0 , we produced

xperiments for the object with the two-peak phase as described in

ection 4.2.1 . The height of these peaks is selected as small in order

he phase variations do not exceed the wrapping range of [− 𝜋, 𝜋) for all

lices of the HS cube. 

The accuracy of phase reconstruction by    is defined as the rela-

ive root-mean-squared-error (RRMSE): 

𝑅𝑀𝑆𝐸 𝜑 = 

√ ||�̂� 𝑒𝑠𝑡 − 𝜑 𝑡𝑟𝑢𝑒 ||2 2 √ ||𝜑 𝑡𝑟𝑢𝑒 ||2 2 
, (10)

here �̂� 𝑒𝑠𝑡 is a reconstructed phase and 𝜑 true is a noiseless phase. 

The RRMSE curves shown in Fig. 3 illustrate our analysis. The

RMSE curve in Fig. 3 (a) is obtained for 𝜆0 = 598 nm and calculated

or different window size 𝐿 Λ̄. 

The best accuracy is achieved for 𝐿 Λ̄ somewhere in the interval from

0 to 120. For larger values of 𝐿 Λ̄, RRMSE is growing what says that

stimation is degrading. Such RRMSE behavior is due to that initially

ith growing windows the algorithm takes into account more slices of

S cube, which are similar to the slice of interest 𝜆0 , therefore it is

eneficial for noise suppression and RRMSE curve goes down. However,

f the window is too large the slices of the HS cube become too different

rom the slice of interest 𝜆0 and, therefore, are not able to improve the

stimation and may even corrupt the resulting filtering. 

Let we take 𝐿 Λ̄ = 70 as an optimal window size. According to the idea

f the sliding window estimation, the algorithm calculations should be

epeated for each slice with this fixed window size. However, the neigh-

oring slices have close values of the wavefronts and the    algorithm

ith the fixed window size and targeted on 𝜆0 can be used in order to

alculate the reconstructions also for neighboring slices. Remind, that

his algorithm can give reconstructions for all slices simultaneously. In

he sliding window mode of this algorithm, we just select a part from

his set of the whole estimates. 

In this way, we can obtain much a faster algorithm for wave field re-

onstruction using    with the sliding window in a step-wise manner,

ssuming the targeted wavelength 𝜆0 is changing step-wise with some

tep-size and the estimates for intermediate slices are filled by the    

econstruction as reminded above. 
Fig. 3 (b) shows RRMSE values calculated as the sample mean of

RMSEs for all slices of the HS cube provided the variable step-size

or 𝜆0 . It is an almost linear dependence, with a bit flatter behavior

or small values of the step-size. The smallest step-size equal to 1 corre-

ponds to the smallest mean RRMSE value, and as a drawback it requires

00 applications of    to cover all slices of the HS cube. As a reason-

ble trade-off, we took the step-size equal to 12 which corresponds to

ean RRMSE smaller than 0.06 but significantly decreases the applica-

ion number of    from 200 to 17. 

Fig. 3 (c) demonstrates a comparison of RRMSE curves for the sliding

indow step-wise    algorithm with the step-wise equal to 12 (red

otted line) versus a single run of    (green solid line). The advan-

age of the sliding window technique is obvious with drastically smaller

RMSE values nearly for the whole wavelength interval. Higher values

f RRMSE at the lower and upper bounds of the HS cube can be ex-

lained by a non-symmetrical neighborhood for the slice of interest. 

Fig. 3 (d) illustrates the robustness of the    algorithm regarding

he noise level. RRMSEs are mainly smaller than 0.1, corresponding to

n acceptable quality of filtering. These results are achieved for very

ow SNR values, down to -8 dB at 𝜎 = 2 . 5 . 

.2. Comparison with alternative filtering techniques 

To demonstrate the advantages of the proposed    algorithm we

ompare filtering results by different state-of-the-art noise suppression

ethods and    algorithm for different phase objects. These tech-

iques are: averaging [27] , BM3D [33] , and CDBM3D as in [30] . 

Averaging technique calculates the mean value of the thickness h ( x,
 ), which should be the same for each slide of the HS cube, after aver-

ging h ( x, y ) the phases are calculated back (9) for comparison. Since

his technique uses the equality of thickness for the whole cube, it can

ork only for nonwrapped phases, or otherwise, averaging is produced

or a small number of neighboring slices. Additionally to account for

avelength-dependent dispersion effect averaging technique needs the

nowledge of dispersion of object’s refractive index [22] , which is not

lways possible. 

The comparison tests are carried out for objects of the 3 types

f phase: “interferometric simple ”, “interferometric compound ”, and

wrapped ”. HS cube for each case is realized by varying the thickness h ( x,
 ) function of the object. The ”interferometric ” assumes that the phase

elongs to the interval [− 𝜋, 𝜋) . “Interferometric simple ” means that h ( x,
 ) is a smooth function of ( x, y ) taken such that for whole set of the

avelengths Λ objects’ phases do not exceed the range [− 𝜋, 𝜋) . 
“Interferometric compound ” is a much more complex model. It corre-

ponds to possible non-smooth rapid variations of the thickness h ( x, y ),
hich is composed of a few smooth sections with the “interferometric ”
hases as in the previous case. However, these sections can be com-

letely different. In our tests, we assume that there are three this kind

f sections. 

This simulation corresponds to objects with different spectral re-

ponses in Λ. It is an extreme case for spectral analysis since in real-life

uch sharp variations of the phase are rare. However, it is an interesting

est-image to validate the performance of the algorithms. 

“Wrapped ” means that the phase (absolute phase) corresponding to

 ( x, y ) may take values beyond the interval [− 𝜋, 𝜋) and the algorithm

econstructs the wrapped version of this phase. It is a difficult object for

ltering as phases can be very different from slice to slice. 

For each object, the noisy HS cube is modeled with the noise standard

eviation 𝜎= 1.3. 

.2.1. Interferometric phase simple object 
A first investigated object is modeled with a two-peaks Gaussian

hase and an invariant amplitude. The clean phase of the slice corre-

ponding to 𝜆 = 598 nm is shown in Fig. 4 (a). The corresponding noisy

hase of that slice is shown in Fig. 4 (b) and results obtained by aver-
ging , BM3D, CDBM3D, and    are in Figs. 4 (c–f), respectively. It is
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Fig. 4. Objects’ and filtered phases not exceeding the range [ − 𝜋, 𝜋) for slice 

𝜆 = 598 nm of the sample with corresponding RRMSE values. (a) Noiseless object 

phase and (b) with additive noise 𝜎 = 1 . 3 ; and phases filtered by: averaging (c), 

BM3D (d), CDBM3D (e), and    (f). Filtering results for the whole HS cube 

see in Visualization 1. 

Fig. 5. RRMSE distributions for compared filtering algorithms for the object 

with non-wrapped phase: red circles curve is for    , green diamonds curve is 

for averaging , blue stars is for CDBM3D, black squares curve is for BM3D. 
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Fig. 6. Compound object phases. Noiseless: (a) slice 𝜆 = 464 nm is USAF target, 

(b) slice 𝜆 = 598 nm is gaussian peak, (c) 𝜆 = 732 nm is inclined surface; images 

(d,e,f) are corresponding noisy phases with noise standard deviation 𝜎 = 1 . 3 ; 
and (g,h,i) are filtered phases by    of corresponding noisy phases. Filtering 

results for the whole HS cube see in Visualization 2. 

Fig. 7. RRMSE distributions for compared filtering algorithms for non-wrapped 

compound phase object: red circles curve is for    , green diamonds curve is 

for averaging , blue stars is for CDBM3D, black squares curve is for BM3D. 
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een from Fig. 4 (b) that the noise level is high, and it is just impossible

o trace phase variations behind this noise. A significant noise suppres-

ion is demonstrated by the averaging algorithm in Fig. 4 (c), where the

veraging is produced over all slices of the HS cube. The method works

n this test as the phase for all slices is interferometric and as a result, is

f a small range of variation in the cube. 

The BM3D algorithm, Fig. 4 (d), fails as it is not able to find similar

atches for block-matching in the noisy phase slice shown in Fig. 4 (b).

etter filtering is demonstrated by CDBM3D in Fig. 4 (e) due to the

oint processing of phase and amplitude. Nevertheless, the correspond-

ng RRMSE value is high, the quality of imaging and the accuracy are

ot acceptable. 

In Fig. 4 (f), the result for    algorithm is shown. It is seen that noise

s suppressed and details of the objects’ phase are revealed. The video of

hese filtering results for all cube’s slices is available in Visualization 1.

Fig. 5 presents RRMSEs for the whole HS cube for each of the com-

ared algorithms. The    algorithm demonstrates the best accuracy

ith the RRMSE values smallest for all slices (wavelengths). 
.2.2. Interferometric phase compound object 
The second considered phase object was composed from three parts

ith thicknesses h ( x, y, 𝜆s ) defined as follows: for { 𝜆𝑠 , 𝑠 = [1 ÷ 1 
3 𝐿 Λ)} ,

 ( x, y ) is a binary USAF test target; for { 𝜆𝑠 , 𝑠 = [ 1 3 𝐿 Λ ÷ 2 
3 𝐿 Λ)} it is a

aussian peak, and for { 𝜆𝑠 , 𝑠 = [ 2 3 𝐿 Λ ÷ 𝐿 Λ]} it is an inclined discontinu-

us surface. The corresponding three parts of the phase slices are shown

n Fig. 6 (a–c) as noiseless clean and with the high-level additive noise

n Fig. 6 (d–f). 

After filtering by the    algorithm working in the sliding window

ode, we obtain results shown in Fig. 6 (g–i) for each part of the com-

ound phase corresponding to the noisy images in Fig. 6 (d–f). 

Comparing the filtered phases with the clean images in Fig. 6 (a–c) we

ay conclude that the algorithm enables a high-quality reconstruction

orking with compound data successfully separating three completely

ifferent phase distributions. The demo-video showing results for all

avelength, i.e. for the whole HS cube, is available in Visualization 2. 

The RRMSE curves as functions of wavelength are shown in Fig. 7 for

he four compared algorithms. The averaging algorithm (green diamonds

urve) fails completely because the phase images are very different for

ifferent parts of the phase object. 

CDBM3D and BM3D show different accuracy for different parts of

he compound data. In particular, CDBM3D shows a better performance
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Fig. 8. Objects’ and filtered phases for slice 𝜆 = 598 nm of wrapped object 

with corresponding RRMSE values. Noiseless absolute (a) and noisy ( 𝜎 = 1 . 3 ) 
wrapped (b) object phases; and noisy wrapped phases filtered by: averaging (c), 

BM3D (d), CDBM3D (e), and    (f). Filtering results for the whole HS cube 

see in Visualization 3. 
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Fig. 9. RRMSE distributions for compared filtering algorithms for wrapped 

phase object: red circles curve is for    , green diamonds curve is for aver- 

aging, blue stars is for CDBM3D, black squares curve is for BM3D. 

Fig. 10. Transparent object slide 5 mm × 5 mm (a) and used LED spectrum (b). 
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or the parts with plain surfaces: Gaussian peak and inclined surface

haped phase. 

The    curve (red circles) demonstrates the best performance with

he smallest RRMSE value more or less invariant with respect to wave-

ength. Thus, it enables the uniform accuracy for all wavelength despite

 great difference between the phase images for different parts of the

avelength interval. 

.2.3. Wrapped phase object 
Consider the phase object provided the phase defined by the trun-

ated Gaussian peak with a maximum phase delay 𝜑 400 𝑛𝑚 = 28 . 9 rad

chieved for 𝜆 = 400 nm. Fig. 8 (a) shows the shape of the absolute phase

orresponding to the middle slice of the HS cube with 𝜆 = 598 nm. 

As the phase takes values out of the interval [− 𝜋, 𝜋) the observa-

ions are defined by not absolute but wrapped phases. We use the tested

lgorithms for the reconstruction of these wrapped phases, which are

ssentially varying on the wavelength range. 

The wrapped noisy phase with 𝜎 = 1 . 3 is presented in Fig. 8 (b). The

ltering results given by the averaging , BM3D, CDBM3D, and    algo-

ithms are shown in Figs. 8 (c–f), respectively. 

The averaging algorithm is implemented using a sliding window es-

imator averaging with the window size equal to 2, i.e. averaging is

roduced for the pairs of two neighboring slides. The noisy image in

ig. 8 (c) and high value of RRMSE indicates that the algorithm fails. 

The BM3D algorithm also demonstrates poor visual performance and

oor accuracy. CDBM3D produces a much better visual wrapped phase

econstruction but with quite high RRMSE value, thus the accuracy of

he wrapped phase reconstruction is not good, Fig. 8 (e).    algorithm

emonstrates the best performance visually and numerically, Fig. 8 (f). 

The RRMSE curves for the whole HS cube with comparison of the

lgorithms see Fig. 9 prove the great advantage of the    algorithm. 

Demo-video showing the results for all algorithms as well as varia-

ion of the object phase over the whole wavelength range can be seen

isualization 3. 
. Experimental results 

.1. Object and observed data 

The experimental HS data are obtained via spectrally resolved digital

olography, as described in [14] . The object is a transparent color slide

 Fig. 10 (a)) and the light source is a white LED the spectrum of which is

hown in Fig. 10 (b). In spectral regions of low light intensity, the SNR of

he holograms is low and the corresponding reconstructed wavefronts

ould be more noisy, and in regions where LED intensity is higher, the

NR is higher also and therefore reconstructed wavefronts could be less

oisy. 

Examples of amplitudes and phases slices of the observed HS data

re shown in the top rows of Figs. 11 and 12 for amplitudes and phases

orresponding to 503 nm (less noisy) and 743 nm (more noisy), respec-

ively. For the less noisy 503 nm slice (top row Fig. 11 ), the structure

f the object is clearly seen in both phase and amplitude, while for the

oisier slice 743 nm (top row Fig. 12 ) it is hard to distinguish details of

he object behind noise. 

.2. Results of data processing 

The noise level is sufficiently suppressed in the whole HS cube after

he    filtering. Object details are revealed for every slice regardless of

he noise level, see bottom rows in Figs. 11 and 12 . Video-demo with the

ltering results for the whole HS cube are presented in Visualization 4.

Furthermore, the    filter enables the recovery of information that

as nearly completely lost in the observed noisy slices. For a demon-

tration of the correctness of the    filtering, we compare three slices:

) the slice 446 nm from noisy non-filtered HS cube with 2) the same

oisy slice from the HS cube but filtered by    and 3) the non-filtered

46 nm slice obtained for the same test-object, in the same optical setup

ut in another experiment with much higher SNR. 

In this way, we compare the results of our denoising with experimen-

al data obtained for the identical optical scenario but with much higher

xposure time, i.e. lower noise level. This comparison is of importance

n order to test our reconstructions on correctness versus possible arti-
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Fig. 11. Images of objects’ amplitude and phase corresponding to 𝜆 = 503 nm 

slice of the HS cube. Top row: noisy amplitude (left) and phase (right); bottom 

row:    filtered amplitude and phase, correspondingly. Filtering results for 

the whole HS cube see in Visualization 4. 

Fig. 12. Images of objects’ amplitude and phase corresponding to 𝜆 = 742 nm 

slice of the HS cube. Top row: noisy amplitude (left) and phase (right); bottom 

row:    filtered amplitude and phase, correspondingly. Filtering results for 

the whole HS cube see in Visualization 4. 
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Fig. 13. Comparison of noisy amplitude (a) and phase (e) of slice corresponding 

to 𝜆 = 446 nm with filtered amplitude (b) and phase (f) by    algorithm and 

with amplitude (c) and phase (g) from HS cube with higher SNR. Longitudinal 

cross-sections for phases and amplitudes are in (d) and (h), respectively. Green 

curve is for noisy slice, red is for slice filtered by    algorithm, and black is 

for slice with higher SNR. 

Table 1 

Noise statistics for real and imaginary parts of the 

experimental HS cube. 

Moment Real part Imaginary part 

Expectation 1 . 2 ⋅ 10 −4 4 . 6 ⋅ 10 −6 

Standard deviation 0.0424 0.0424 
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acts which can appear in the tested slice from other slices of the HS

ube. 

In Fig. 13 , the top row is for amplitudes and the bottom row is for

hases; from left to right: the first column is for images of noisy slice,

he second column is for    filtered, the third one is for the noisy slice

f the higher SNR. In the fourth column, we show the cross-sections of

he images shown in the columns 1–3. 

We can see, that the information almost completely lost in the noisy

lice ( Fig. 13 (a,e)) is revealed by the    algorithm ( Fig. 13 (b,f)) and

hese found amplitude/phase features coincide with those clearly seen

n the slice of higher SNR ( Fig. 13 (c,g)). 

The amplitude cross-sections that are presented in Fig. 13 (d) are nor-

alized/scaled to the interval [0,1], since the HS cubes were obtained

ith different light intensities in the compared two experiments. Nev-

rtheless, the comparison qualitatively confirms that there are no visual

rtifacts generated by the algorithm and the obtained filtered ampli-

ude/phase changes correspond to more precise observations obtained

rom the higher SNR experiment. From the comparison of amplitude
ross-sections, it can be concluded that for the amplitude filtered by

   (red solid curve) all object features are revealed in the same loca-

ions as in the amplitude of the HS cube with higher SNR (black dotted

urve). Different values of the amplitudes in the cross-sections can be

eferred to different illuminations in the considered two experiments. 

The phase cross-sections in Fig. 13 (h) also confirm that there are no

isual artifacts produced by the algorithm    filtering (red solid curve)

nd the phase curves are quite close to those obtained in the experiment

ith a higher SNR. The noise level in the    curve is even lower than

hat in the experiment with higher SNR (black dotted curve). In both

mplitude and phase cross-sections, the green curves correspond to the

oisy observed slice and indicate very noisy data. 

.3. Noise in experimental data 

Let us test the validity of the noise model introduced in Eq. (1) . 

For the noise analysis, we introduce the complex-valued residuals as

ifferences between the noisy complex-valued observations Z Λ( x, y ) and

econstructed filtered complex-valued HS cube �̂� Λ( 𝑥, 𝑦 ) : 

 Λ( 𝑥, 𝑦 ) = 𝑍 Λ( 𝑥, 𝑦 ) − �̂� Λ( 𝑥, 𝑦 ) . (11)

ssuming that our estimation is good enough, we use these residuals as

S cube noise estimates. It is one of the standard approaches to noise es-

imation in statistics. From these residuals, we calculated expectations,

tandard deviation, and correlations as well as distributions of real and

maginary parts of the complex-valued noise. In what follows, we are

estricted to the global analysis only, when the averaging is produced

ver all pixels of the HS residual cube. 

In Table 1 , we can see the mean values, standard deviations for real

nd imaginary parts of the noise. The correlation coefficient between

eal and imaginary parts is equal to 0.002, which means that the real

nd imaginary parts of the noise are completely non-correlated. 

Fig. 14 shows the distribution of the real and imaginary parts also

alculated over the whole HS cube. The red contours show the Gaussian

pproximations for these distributions. We may conclude from these re-

ults, that indeed the noise is Gaussian complex-valued with indepen-

ent real and imaginary parts, having identical distributions, which per-

ectly corresponds to the noise model introduced in Section 2 . 
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Fig. 14. Histograms for real (left) and imaginary (right) parts of the HS cube of 

the noise residuals. The red contours show the Gaussian approximations for the 

distributions. 
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. Conclusion 

In this paper, we present the denoising algorithm for hyperspectral

omplex-valued data. Based on comprehensive investigations, we have

emonstrated the state-of-the-art performance of the algorithm owing

o the SVD analysis of noisy hyperspectral observations and complex

omain BM3D filtering in the reduced dimension SVD eigenspace. The

tudy includes multiple simulation tests and processing of those and HS

igital holography data. The algorithm is robust with respect to noisy

ata, and produces reliable results even for extra-low SNR, down to -

 dB. It demonstrates a stable effective performance for different types

f HS data with interferometric and wrapped phases, the latter without

nvolving unwrapping procedures. 

Traditional filtering techniques for complex-valued HS data perform

oise suppression based only on spatial information and do not use the

dvantage of the third dimension, therefore they fail on cube slices with

ow SNR, where object information masked by noise. Contrariwise, the

roposed    algorithm uses the joint processing of all slices of HS data,

uppresses noise, and retrieves data that was lost for the whole HS cube,

ncluding slices with low SNR. Moreover, traditional techniques fail on

hase filtering due to its proneness to wrapping. In    the wrapping

roblem is overcome by CDBM3D which provides noise suppression re-

ardless of phase wrapping. 

We believe that the extremely high performance of our technique

f processing interferometric data cubes demonstrated in this work will

liminate the key constraint preventing the widespread usage of phase

SDH imaging at practice. In particular, the following areas are attrac-

ive for this technique: (i) spatial-spectral analysis of biological products

n the visible ultraviolet spectral ranges (as an example, see the work

38] ); (ii) HS analysis of dispersion and absorption properties in near-

nfrared Fourier spectroscopy (see details e.g. in [39] ) extended with

he addition of spatial degrees of freedom; (iii) Development of new

pproaches for non-invasive taxonometry of marine plankton based on

roadband phase imaging. For such techniques background, see [40] ;

iv) Analysis of the broadband wavefront propagation dynamics through

he scattering and dispersive media [41] . 
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