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Abstract: Regression models are a form of supervised learning methods that are important for
machine learning, statistics, and general data science. Despite the fact that classical ordinary least
squares (OLS) regression models have been known for a long time, in recent years there are many
new developments that extend this model significantly. Above all, the least absolute shrinkage and
selection operator (LASSO) model gained considerable interest. In this paper, we review general
regression models with a focus on the LASSO and extensions thereof, including the adaptive LASSO,
elastic net, and group LASSO. We discuss the regularization terms responsible for inducing coefficient
shrinkage and variable selection leading to improved performance metrics of these regression
models. This makes these modern, computational regression models valuable tools for analyzing
high-dimensional problems.

Keywords: machine learning; statistics; regression models; LASSO; regularization; high-dimensional
data; data science; shrinkage; feature selection

1. Introduction

The increasing digitalization of our society and progress in the development of new
measurement devices has led to a flood of data. For instance, data from social media enable the
development of methods for their analysis to address relevant questions in the computational social
sciences [1,2]. In biology or the biomedical sciences, novel sequencing technologies enable the
generation of high-throughput data from all molecular levels, including mRNAs, proteins, and DNA
sequences [3,4]. Depending on the characteristics of the data, appropriate analysis methods need
to be selected for their interrogations. One of the most widely used analysis methods is regression
models [5,6]. Put simply, this type of method performs a mapping from a set of input variables to
output variables. In contrast to classification methods, the output variables for regression models
assume real values. Due to the fact that many application problems come in this form, regression
models find widespread applications across many fields, e.g., [7–11].

In recent years, several new regression models have been introduced that extend classical
regression models significantly. The purpose of this paper is to review such regression models, with a
special focus on the least absolute shrinkage and selection operator (LASSO) model [12] and extensions
thereof. Specifically, in addition to the LASSO, we will discuss the non-negative garrotte [13], Dantzig
selector [14], Bridge regression [15], adaptive LASSO [16], elastic net [17], and group LASSO [18].
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Interestingly, despite the popularity of the LASSO, there are only very few reviews available
about this model. In contrast to previous reviews about this topic [9,19–21], our focus is different with
respect to the following points. First, we focus on the LASSO and advanced models related to the
LASSO. Our aim is not to cover all regression models but regularized regression models centered
around the LASSO (the concept of regularization has been introduced by Tikhonov to approximate
ill-posed inverse problems [22,23]). Second, we present the necessary technical details of the methods
to the level where they are needed for a deeper understanding. However, we do not present all details
especially if they are related to the proof of properties. Third, our explanations aim at an intermediate
level of the reader by providing also background information frequently omitted in advanced texts.
This should ensure that our review is useful for a broad readership from many areas. Fourth, we use
a data set from economics to discuss properties of the methods and to cross-discuss differences
among them. Fifth, we will provide information about the practical application of the methods
by providing information about availability of implementations for the statistical programming
language R. In general, there are many software packages available in different implementations and
programming languages but we focus on R because the more statistics oriented literature favors this
programming language.

This paper is organized as follows. In the next section, we present general preprocessing steps
we use before a regression analysis and we discuss an example data set we use to demonstrate the
different models. Thereafter, we discuss ordinary least squares regression and ridge regression because
we assume that not all readers will be familiar with these models but an understanding of these is
necessary in order to understand more advanced regression models. Then we discuss the non-negative
garrotte, LASSO, Bridge regression, Dantzig selector, adaptive LASSO, elastic net, and group LASSO,
with a special focus on the regularization term. The paper finishes with a brief summary of the methods
and conclusions.

2. Preprocessing of Data and Example Data

We begin our paper by briefly providing some statistical preliminaries needed for the regression
models. First, we discuss some preprocessing steps used for standardizing the data for all regression
models. Second, we discuss data we are using to demonstrate the differences of the different
regression models.

2.1. Preprocessing

Let us assume we have data of the form (xi, yi) with i ∈ {1, . . . , n}, where n is the number of
samples. The vector xi corresponds to the predictor variables for sample i, whereas xi = (Xi1, . . . , Xip)

T

and p is the number of predictors, furthermore yi is the response variable. We denote by y ∈ Rn the
vector of response variables and by X ∈ Rn×p the predictor matrix. The vector β = (β1, . . . , βp)T gives
the regression coefficients.

The predictors and response variable shall be standardized, which means:

x̄j =
1
n

n

∑
i=1

Xij = 0 for all j (1)

s̄2
j =

1
n

n

∑
i=1

X2
ij = 1 for all j (2)

ȳ =
1
n

n

∑
i=1

yi = 0 (3)

Here x̄j and s̄2
j are the mean and variance of the predictor variables and ȳ is the mean of the

response variables.
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In order to study the regularization of regression models, we need to solve optimization problems
which are formulated in terms of norms. For this reason, we review in the following the norms needed
for the subsequent sections. For a real vector x ∈ Rn and q ≥ 1 the Lq-norm is defined by

‖x‖q =
( n

∑
i=1
|xi|q

) 1
q
. (4)

For the special case q = 2 one obtains the L2-norm (also known as Euclidean norm) and for
q = 1 the L1-norm. Interestingly, for q < 1 Equation (4) is defined but no longer a norm in the
mathematical sense.

We will revisit the L2-norm when discussion ridge regression and the L1-norm for the LASSO.
The infinity norm, also called maximum norm, is defined by

‖x‖∞ = max
i
|xi|. (5)

This norm is used by the Danzig selector.
For q = 0 one obtains the L0-norm which corresponds to the number of non-zero elements, i.e.,

‖x‖0 = #non-zero elements. (6)

2.2. Data

In order to provide some practical examples for the regression models, we use a data set from [24].
The whole data set consists of 156 samples for 93 economic variables about inflation indexes and
macroeconomic variables of the Brazilian econnomy. From these we select 7 variables to predict
the Brazilian inflation. We focus on 7 variables because these are sufficient to demonstrate the
regularization, shrinkage, and selection of the different regression models we discuss in the following
sections. Using more variables leads quickly to cumbersome models that require much more effort for
their understanding without providing more insights regarding the focus of our paper.

3. Ordinary Least Squares Regression

We begin our discussion by formulating a multiple regression problem,

yi =
p

∑
j=1

Xijβ j + εi. (7)

Here Xij are p predictor variables that are linearly mapped onto the response variable yi for
sample i. The mapping is defined by the p regression coefficients β j. Furthermore, the mapping is
effected by a noise term εi assuming values in ∼ N(0, σ2). The noise term summarizes all kinds of
uncertainties, e.g., measurement errors.

In order to see the similarity between a multiple linear regression, having p predictor variables,
and a simple linear regression, having one predictor variable, one can write Equation (7) in the form:

yi = xT
i β + εi (8)

Here xT
i β is the inner product (scalar product) between the two p-dimensional vectors xi =

(Xi1, . . . , Xip)
T and β = (β1, . . . , βp)T . One can further summarize Equation (8) for all samples

i ∈ {1, . . . , n } by

y = Xβ + ε. (9)

Here the noise terms assumes the form ε ∼ N(0, σ2 In) whereas In is the Rn×n identity matrix.
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The solution of Equation (9) can be formulated as an optimization problem given by

β̂
OLS

= arg min ‖y− Xβ‖2
2. (10)

The ordinary least squares (OLS) solution of Equation (10) can be analytically calculated assuming
X has full column rank, which implies that XTX is positive definite, and is given by

β̂
OLS

=
(
XTX

)−1XTy. (11)

If X has not full column rank the solution cannot be uniquely determined.

Limitations

Least squares regression can perform very badly when there are outliers in the data. For this
reason it can be very helpful in performing outlier detection in the data before the analysis is performed
and removing the outliers from the data before applying it to the regression model. A reason why least
squares regression is so sensitive to outliers is that this model does not perform any form of coefficient
shrinkage of regression coefficients as, e.g., the LASSO. For this reasons coefficients can become very
large as a result of such outliers without a limiting mechanism built into the model.

Another factor that can lead to a bad performance is the correlation between predictor variables.
The disadvantage of the regression model is that it does not perform any form of variable selection
to reduce the numbers of predictor variables as, e.g., ridge regression or LASSO. Instead, it uses the
variables specified as input to the model.

The third factor that can reduce the performance is called heteroskedasticity or heteroscedasticity.
It refers to varying (non-constant) variances of the error term in dependence on the sampling region.
One particular problem caused by heteroskedasticity is that it leads to inefficient and biased estimates
of the OLS standard errors and, hence, results in biased statistical tests of the regression coefficients [25].

In summary, ordinary least squares regression neither performs shrinkage nor variable selection,
which can lead to problems as discussed above. For this reason, advanced regression models have
been introduced to guard against such problems.

4. Ridge Regression

The motivation for improving OLS is the fact that the estimates from such models have often
a low bias but a large variance. This is related to the prediction accuracy of a model because it is
known that either by shrinking the values of regression coefficients or by setting coefficients to zero
the accuracy of a prediction can be improved [26]. The reason for this is that by introducing some
estimation bias the variance can be actually reduced.

Ridge regression has been introduced by [27]. The model can be formulated as follows.

β̂
RR

= arg min

{
1

2n

n

∑
i=1

(
yi −∑

j
xijβ j

)2
+ λ‖β‖2

2

}
(12)

= arg min

{
1

2n
RSS(β) + λ‖β‖2

2

}
(13)

= arg min

{
1

2n
‖y− Xβ‖2

2 + λ‖β‖2
2

}
(14)

Here RSS(β) is the residual sum of squares (RSS) called the loss of the model, λ‖β‖2
2 is the

regularization term or penaltyd, and λ is the tuning or regularization parameter. The parameter
λ controls the shrinkage of coefficients. The L2-penalty in Equation (12) is sometimes also called
Tikhonov regularization.
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Ridge regression has an analytical solution which is given by

β̂
RR

(λ) =
(

XTX + λIp

)−1
XTy. (15)

Here Ip is the p× p identity matrix. A problem of OLS is that if rank(X) < p, then XTX does not
have an inverse. However, a non-zero regularization parameter λ leads usually to a matrix XTX + λIp,
for which an inverse exists.

Figure 1. Coefficient paths for the Ridge regression model in dependence on log(λ) (A), the L1-norm (B),
and the fraction of deviance explained (C).
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In Figure 1, we show numerical examples for the economic data set. Specifically, in Figure 1A–C
we show the regression coefficients in dependence on λ because the solution in Equation (15) depends
on the tuning parameter. On the top of each figure the numbers of non-zero regression coefficients
are shown. One can see that for decreasing value of λ the values of the regression coefficients are
decreasing. This is the shrinkage effect of the tuning parameter. Furthermore, one can see that none of
the coefficients becomes zero. Instead, all regression coefficients assume small but non-zero values.
These observations are characteristics for general results from ridge regression [26].

Figure 2. Ridge regression model. (A) Akaike information criterion (AIC). (B) Bayesian information
criterion (BIC). (C) Mean-squared error. All results are shown in dependence on the regularization
parameter log(λ).

In Figure 2, we show results for the Akaike information criterion (AIC) (Figure 2A), the Bayesian
information criterion (BIC) (Figure 2B), and the mean-squared error (Figure 2C). Again, the numbers
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on top of the figures give the number of non-zero regression coefficients. Each criterion can be used to
identify an optimal λ value (see the vertical dashed lines). However, using AIC or BIC would lead to λ

values that do not perform a shrinkage of the coefficients (see Figure 1A). In contrast, the mean-squared
error suggests a smaller value of the tuning parameter that indeed shrinks the coefficients.

Overall, the advantages of a ridge regression is that it can reduce the variance by paying the
price of an increasing bias. This can improve the prediction accuracy of a model. This works best in
situations where the OLS estimates have a high variance and for the cases p < n.

A disadvantage is that ridge regression does not shrink coefficient to zero and, hence, does not
perform variable selection. Another motivating factor for improving upon OLS is that by reducing
the number of predictors the interpretation of a model becomes easier because one can focus on the
relevant variables of the problem.

R Package

Ridge regression can be performed using the glmnet R package [28]. This package is flexible allowing
to perform also other types of regularized regression models (see LASSO and adaptive LASSO).

5. Non-Negative Garotte Regression

The next model we discuss, the non-negative garotte, has been mentioned as a motivation for
the introduction of the LASSO [12]. For this reason we discuss it before the LASSO. The non-negative
garotte has been introduced by [13] and is given by

β̂ = arg min

{
1

2n
‖y− Zd‖2

2 + λ
p

∑
j=1

dj

}
, (16)

for d = (d1, . . . , dp)T with dj > 0 for all j. The regression is formulated for the scaled variables Z given
by Zj = Xj β̂

OLS
j . That means the model, first, estimates ordinary least squares parameter β̂OLS

j for the
unregularized regression (Equation (10)) and then performs in a second step a regularized regression
for the scaled predictors Z.

The non-negative garotte estimate can be expressed with the OLS regression coefficient and the
regularization coefficients by [29]

β̂NNG
j (λ) = dj(λ)β̂OLS

j . (17)

Breiman showed that the non-negative garotte has consistently lower prediction error than
subset selection and is competitive with ridge regression except when the true model has many small
non-zero coefficients. A disadvantage of the non-negative garotte is its explicit dependency on the
OLS estimates [12].

6. LASSO

The LASSO (least absolute shrinkage and selection operator) has been made popular by Robert
Tibshirani in 1996 [12], but it had previously appeared in the literature see, e.g., [30,31]. It is a regression
analysis method that performs both variable selection and regularization in order to enhance the
prediction accuracy and interpretability of the statistical regression model.

The LASSO estimate of β̂ is given by:

β̂ = arg min

{
1

2n

n

∑
i=1

(
yi −∑

j
β jxij

)2
}

(18)

subject to:‖β‖1 ≤ t (19)



Mach. Learn. Knowl. Extr. 2019, 1 366

Equation (18) is called the constrained form of the regression model. In Equation (19) t is a tuning
parameter (also called regularization parameter or penalty parameter) and ‖β‖1 the L1-norm (see
Equation (4)).

It can be shown that Equation (18) can be written in the Lagrange form given by:

β̂ = arg min

{
1

2n

n

∑
i=1

(
yi −∑

j
β jxij

)2
+ λ‖β‖1

}
(20)

= arg min

{
1

2n
‖y− Xβ‖2

2 + λ‖β‖1

}
(21)

The relation between both forms holds due to the duality and the KKT (Karush-Kuhn-Tucker)
conditions. Furthermore, for every t > 0 there exists a λ > 0 such that both equations lead to the same
solution [26].

In general, the LASSO lacks a closed form solution because the objective function is not
differentiable. However, it is possible to obtain closed form solutions for the special case of an
orthonormal design matrix.

In the LASSO regression model Equation (21), λ is a parameter that needs to be estimated. This is
accomplished by cross-validation. Specifically, for each fold Fk the mean-squared error is estimated by

e(λ)k =
1

#Fk
∑
j∈Fk

(yj − ŷj)
2. (22)

Here #Fk is the number of samples in set Fk. Then the average over all K folds is taken,

CV(λ) =
1
K

K

∑
k=1

e(λ)k. (23)

This is called the cross-validation mean-squared error. For obtaining an optimal λ from CV(λ),
two approaches are common. The first estimates the λ that minimizes the function CV(λ),

λ̂min = arg min CV(λ). (24)

The second approach, first, estimates λ̂min and then identifies the maximal λ that has a
cross-validation MSE (mean squared error) smaller than CV(λ̂min) + SE(λ̂min), given by

λ̂1se = max
CV(λ)≤CV(λ̂min)+SE(λ̂min)

λ. (25)

6.1. Example

In Figures 3 and 4 we show examples for the economy data. In Figure 3 we show coefficient paths
for the LASSO regression model in dependence on log(λ) (A), the L1-norm (B), and the fraction of
deviance explained (C).

In Figure 4 we show the Akaike information criterion, the Bayesian information criterion (see [32]),
and the Mean-squared error of λ.

6.2. Explanation of Variable Selection

From Figure 3 one can see that decreasing values of λ lead to the shrinkage of the regression
coefficients and some of these even become zero. To understand this behavior, we depict in Figure 5A,B
a two-dimensional LASSO (A) and ridge regression (B) model. The regularization term of each
regression model is depicted in blue, corresponding to the diamond shape for the L1-norm and the
circle for the L2-norm. The solution of the optimization problem is given by the intersection of the
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ellipsis and the boundary of the penalty shapes. These intersections are highlighted by a green point
for the LASSO and a blue point for the ridge regression. In order to shrink a coefficient to zero an
intersection needs to occur alongside the two coordinate axis. For the shown situation this is only
possible for the LASSO but not for ridge regression. In general, the probability for a LASSO to shrink a
coefficient to zero is much larger than for the ridge regression.

Figure 3. Coefficient paths for the least absolute shrinkage and selection operator (LASSO) regression
model in dependence on log(λ) (A), the L1-norm (B), and the fraction of deviance explained (C).
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Figure 4. LASSO regression model. (A) Akaike information criterion (AIC). (B) Bayesian information
criterion (BIC). (C) Mean-squared error. All results are shown in dependence on the regularization
parameter log(λ).

In order to understand this, it is helpful to look at the solution for the coefficients for the
orthonormal case, because for this situation, the solution for the LASSO can be found analytically.
The analytical solution is given by

β̂LASSO
i (λ; orth) = sign( ˆβOLS

i )S( ˆβOLS
i , λ). (26)
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Here S() is the soft-threshold operator defined as:

S( ˆβOLS
i , λ) =


ˆβOLS

i − λ if ˆβOLS
i > λ

0 if
∣∣∣ ˆβOLS

i

∣∣∣ ≤ λ

ˆβOLS
i + λ if ˆβOLS

i < −λ

(27)

For the ridge regression the orthonormal solution is

β̂RR
i (λ; orth) =

ˆβOLS
i

1 + λ
. (28)

In Figure 5C, we show Equation (26) (green) and Equation (28) (blue). As a reference, we added the
ordinary least square solution as a dashed diagonal line (black) because it is just the identity mapping,

β̂OLS
i (orth) = ˆβOLS

i . (29)

As one can see, ridge regression leads to a change in the slope of the line and, hence, leads to a
shrinkage of the coefficient. However, it does not lead to a zero coefficient except for the point in the
origin of the coordinate system. In contrast, LASSO shrinks the coefficient to zero for

∣∣∣ ˆβOLS
i

∣∣∣ ≤ λ.

A.

β1

β2

β̂

B.

β1

β2

β̂

C.

β̂OLS

β̂(orth)

λ fixed

Figure 5. Visualization of the difference between the L1-norm (A) and L2-norm (B). (C) Solution for
the orthonormal case.

6.3. Discussion

The key idea of the LASSO is to realize that the theoretically ideal penalty to achieve sparsity is
the L0-norm (i.e., ‖β‖0 = #non-zero elements, see Equation (6)), which is computationally intractable,
but can be mimicked with the L1-norm which makes the optimization problem convex [33].

There are three major differences between ridge regression and the LASSO:

1. The non-differentiable corners of the L1-ball produce sparse models for sufficiently large values
of λ.

2. The lack of rotational invariance limits the use of the singular value theory.
3. The LASSO has no analytic solution, making both computational and theoretical results

more difficult.

The first point implies that the LASSO is better than OLS for the purpose of interpretation.
With a large number of independent variables, we often would like to identify a smaller subset of
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these variables that exhibit the strongest effects. The sparsity of the LASSO is mainly counted as an
advantage because it leads to a simpler interpretation.

6.4. Limitations

There is a number of limitations of the LASSO estimator, which causes problems for variable
selection in certain situations.

1. In the p > n case, the LASSO selects at most n variables. This could be a limiting factor if the true
model consists of more than n variables.

2. The LASSO has no grouping property, that means it tends to select only one variable from a group
of highly correlated variables.

3. In the n > p case and high correlations between predictors, it has been observed that the prediction
performance of the LASSO is inferior to the ridge regression.

6.5. Applications in the Literature

The LASSO has found ample applications to many different problems. For instance,
in computational biology the LASSO has been used for analyzing gene expression data from mRNA
and microRNA data [34,35] to address basic molecular biological questions. For studying diseases
it has been used for investigating infection diseases [36], various cancer types [37,38], diabetes [39],
and cardiovascular diseases [40]. In the computational social sciences the LASSO has been used to
study data from social media [41], the stock market [42], economy [43], and political science [44].
Further application areas include robotics [45], climatology [46], and pharmacology [47].

In general, the widespread applications of the LASSO are due to the omnipresence of regression
problems in essentially all areas of science. Also, the increasing availability of data in recent years
outside the natural sciences, e.g., the social sciences or management, enabled this propagation.

6.6. R Package

An efficient implementation of the LASSO is available via the cyclical coordinate descent method
by [48]. This method is accessible via the glmnet R package [28]. In [48] it was shown that regression
models with thousands of repressors and samples can be estimated within seconds.

7. Bridge Regression

Bridge regression was suggested by Frank and Friedman [15]. It minimizes the RSS subject to a
constraint depending on parameter q:

β̂ = arg min

{
n

∑
i=1

(
yi −∑

j
β jxij

)2
+ λ

p

∑
j=1

∣∣β j
∣∣q} (30)

= arg min

{
‖y− Xβ‖2

2 + λ
p

∑
j=1

∣∣β j
∣∣q} (31)

The regularization term has the form of Lq-norm, although q can assume all positive values,
i.e., q > 0. For the special case q = 2, one obtains Ridge regression and for q = 1 the LASSO.
Although, Bridge regression was introduced in 1993 before the LASSO, the model has not been studied
at that time. This justifies the LASSO as a new method because [12] presented a full analysis.

8. Dantzig Selector

A regression model that was particularly introduced for the large p case (p� n) having many
more parameters than observations is the Dantzig selector [14].
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The regression model solves the following problem,

β̂ = arg min

{
‖XT(y− Xβ

)
‖∞ + λ‖β‖1

}
. (32)

Here the L∞ norm is the maximum absolute value of the components of the argument. It is worth
remarking that in contrast to the LASSO, here a XT is added to the Loss (residual sum) in Equation (32)
to make the solution rotation-invariant.

8.1. Discussion

One advantage of the Dantzig selector is that it is computationally simple because, technically,
it can be reduced to linear programming. This inspired the name of the method because George
Dantzig did seminal work of the simplex method for linear programming [6]. As a consequence,
this regression model can be used for even higher-dimensional data than the LASSO.

The disadvantages are similar to the LASSO except that it can result in more than n non-zero
coefficients in the case p > n [49]. Additionally, the Dantzig selector is sensitive to outliers because the
L∞ norm is very sensitive to outliers. For practical application, the latter is of crucial importance.

8.2. Applications in the Literature

The Dantzig selector has been applied to a much lesser extend than the LASSO. However,
some applications can be found for gene expression data [37,50].

8.3. R Package

A practical analysis for the Dantzig selector can be performed using the flare R package [51].

9. Adaptive LASSO

The adaptive LASSO has been introduced by [16] in order to have a LASSO model with oracle
properties. An oracle procedure is one that has the following oracle properties:

• Consistency in variable selection
• Asymptotic normality

In simple terms the oracle property means that a model performs as well as if the true
underlying model would be known [52]. Specifically, property one means that a model selects all
non-zero coefficients with probability one, i.e., an oracle identifies the correct subset of true variables.
Property two means that non-zero coefficients are estimated as if the true model would be known.
It has been shown that the adaptive LASSO is an oracle procedure but the LASSO is not [16].

The basic idea of the adaptive LASSO is to introduce weights for the penalty for each regression
coefficient. Specifically, the adaptive LASSO is a two-step procedure. In the first step a weight vector
ŵ is estimated from OLS estimates of ˆβinit and a connection between both is given by

ŵ =
1
ˆ|βinit|

γ
. (33)

Here γ is again a tuning parameter that has to be positive, i.e., γ > 0.
Second, for this weight vector w = (w1, . . . , wp)T the following weighted LASSO is formulated by:

β̂ = arg min

{
1

2n

n

∑
i=1

(
yi −∑

j
β jxij

)2
+ λ

p

∑
j=1

wj
∣∣β j
∣∣} (34)

= arg min

{
1

2n
‖y− Xβ‖2

2 + λ
p

∑
j=1

wj
∣∣β j
∣∣} (35)
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It can be shown that for certain data-dependent weight vectors, the adaptive LASSO has oracle
properties. Frequent choices for ˆβinit are ˆβinit =

ˆβOLS for the small p case (p� n) and ˆβinit =
ˆβRR for

the large p case (p� n).
The adaptive LASSO penalty can be seen as an approximation to the Lq penalties with q = 1− γ.

One advantage of the adaptive LASSO is that given appropriate initial estimates, the criterion
Equation (34) is convex in β. Furthermore, if the initial estimates are N consistent, Zou (2006) showed
that the method recovers the true model under more general conditions than the LASSO.

9.1. Example

In Figure 6 we show results for the economy data for γ = 1. In Figure 6A we show the coefficient
paths in dependence on log(λ) and in Figure 6B the results for the mean-squared error. One can see
the shrinking and selecting property of the adaptive LASSO because the regression coefficients become
smaller for decreasing values of λ and some even vanish.

For the above results we used γ = 1, however, γ is a tuning parameter that can be estimated from
the data. Specifically, in Figure 6C,D we repeated our analysis for different values of γ. From Figure 6C
one can see that the minimal mean-squared error is obtained for γ = 0.25 but γ = 1.0 also gives good
results. In Figure 6D we show the same results as in Figure 6C but for the mean-squared error in
dependence on λmin. There, one sees that the λmin for large values of γ are quite large.

Figure 6. Adaptive LASSO model. (A) Coefficient paths in dependence on log(λ) for γ = 1.
(B) Mean-squared error in dependence on log(λ). (C) Mean-squared error in dependence on γ.
(D) Mean-squared error in dependence on log(λmin).

9.2. Applications in the Literature

The adaptive LASSO has also been applied to many different problems. For instance, in genomics
the adaptive LASSO has been above all used to analyze quantitative trait loci (QTL) based on SNP
(Single Nucleotide Polymorphism) measurements [7,53–55]. It has also been applied to analyze clinical
data [10,56,57] of various diseases, including cardiovascular and liver disease, and to assess organ
transplantation [58].

9.3. R Package

A practical analysis for the adaptive LASSO can be performed using the glmnet R package [28].
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10. Elastic Net

The elastic net regression model has been introduced by [17] to extend the LASSO by improving
some of its limitations, especially with respect to the variable selection. Importantly, the elastic net
encourages a grouping effect, keeping strongly correlated predictors together in the model. In contrast,
the LASSO tends to split such groups keeping only the strongest variable. Furthermore, the elastic
net is particularly useful in cases when the number of predictors (p) in a data set is much larger than
the number of observations (n). In such a case, the LASSO is not capable of selecting more than n
predictors but the elastic net has this capability.

Assuming standardized regressors and response, the elastic net solves the following problem:

β̂ = arg min

{
1

2N

N

∑
i=1

(
yi −∑

j
β jxij

)2
+ λPα(β)

}
(36)

= arg min

{
1

2n
‖y− Xβ‖2

2 + λPα(β)

}
(37)

Pα(β) = α‖β‖2
2 + (1− α)‖β‖1 (38)

=
p

∑
j=1

αβ2
j + (1− α)

∣∣β j
∣∣ (39)

Here Pα(β) is the elastic net penalty (Zou and Hastie 2005). Pα(β) is a combination between the ridge
regression penalty, for α = 1, and the LASSO penalty, for α = 0. This form of penalty turned out
to be particularly useful in the case p > n, or in situations where we have many (highly) correlated
predictor variables.

In the correlated case, it is known that ridge regression shrinks the regression coefficients of the
correlated predictors towards each other. In the extreme case of k identical predictors, each of them
obtains the same estimates of the coefficients [48]. From theoretical considerations it is further known
that the ridge regression is optimal if there are many predictors, and all have non-zero coefficients.
LASSO, on the other hand, is somewhat indifferent to very correlated predictors, and will tend to pick
one and ignore the rest.

Interestingly, it is known that the elastic net with α = ε, for some very small ε > 0, performs very
similarly to the LASSO, but removes any degeneracies caused by the presence of correlations among
the predictors [48]. More generally, the penalty family given by Pα(β) creates a non-trivial mixture
between ridge regression and the LASSO. When for a given λ, one decreases α from 1 to 0, the number
of regression coefficients equal to zero increases monotonically from 0 (full (ridge regression) model)
to the sparsity of the LASSO solution. Here sparsity refers to the fraction of regression coefficients
equal to zero. For more detail, see Friedman et al. [48] providing also an efficient implementation of
the elastic net penalty for a variety of loss functions.

10.1. Example

In Figure 7 we show results for the economy data for α = 0.7. Figure 7A shows the coefficient
paths in dependence on log(λ) and Figure 7B the mean-squared error in dependence on log(λ).

Due to the fact that α is a parameter one needs to choose an optimal value. For this reason,
we repeat the analysis for different values of α. Figure 7C,D show the results for the mean-squared
error in dependence on α and the mean-squared error in dependence on log

(
λmin

)
. In these figures,

α = 1.0 corresponds to a ridge regression (blue point) and α = 0 corresponds to the LASSO (purple
point). As one can see, an α value of 0.7 leads to the minimal value of the mean-squared error and,
hence, the optimal value of α.
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Figure 7. Elastic net. (A) Coefficient paths in dependence on log(λ) for α = 0.7. (B) Mean-squared
error in dependence on log(λ). (C) Mean-squared error in dependence on α. (D) Mean-squared error
in dependence on log

(
λmin

)
.

10.2. Discussion

The elastic net has been introduced to counteract the drawbacks of the LASSO and ridge regression.
The ideas was to use a penalty for the elastic net which is based on a combined penalty of the LASSO
and ridge regression. The penalty parameter α determines how much weight should be given to either
the LASSO or ridge regression. An elastic net with α = 1.0 performs a ridge regression and an elastic
net with α = 0 performs the LASSO. Specifically, several studies [59,60] showed that:

1. In the case of correlated predictors, the elastic net can result in lower mean squared errors
compared to ridge regression and the LASSO.

2. In the case of correlated predictors, the elastic net selects all predictors whereas the LASSO
selects one variable from a correlated group of variables but tends to ignore the remaining
correlated variables.

3. In the case of uncorrelated predictors, the additional ridge penalty brings little improvement.
4. The elastic net identifies correctly a larger number of variables compared to the LASSO

(model selection).
5. The elastic net has often a lower false positive rate compared to ridge regression.
6. In the case p > n, the elastic net can select more than n predictor variables whereas the LASSO

selects at most n.

The last point means that the elastic net is capable of performing group selection of variables,
at least to a certain degree. For further improving this property the group LASSO has been introduced
(see below).

It can be shown that the elastic net penalty is a convex combination of the LASSO penalty and
the ridge penalty. Specifically, for all α ∈ (0, 1) the penalty function is strictly convex. In Figure 8,
we visualize the effect of the tuning parameter α on the regularization. As one can see, the elastic net
penalty (in red) is located between the LASSO penalty (in blue) and the ridge penalty (in green).
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β1

β2

Figure 8. Visualization of the elastic net regularization (red) combining the L2-norm (green) of ridge
regression and the L1-norm (blue) of LASSO.

The orthonormal solutions of the elastic net is similar to the LASSO in Equation (26). It is given
by [17]

β̂EN
i (λ; orth) = sign( ˆβOLS

i )
S( ˆβOLS

i , λ1)

1 + λ2
(40)

with S( ˆβOLS
i , λ1) defined as:

S( ˆβOLS
i , λ1) =


ˆβOLS

i − λ1 if ˆβOLS
i > λ1

0 if
∣∣∣ ˆβOLS

i

∣∣∣ ≤ λ1

ˆβOLS
i + λ1 if ˆβOLS

i < −λ1

(41)

Here the parameters λ1 and λ2 are connected to λ and α in Equation (36) by

α =
λ2

λ1 + λ2
(42)

λ = λ1 + λ2 (43)

resulting in the alternative form of the elastic net

β̂ = arg min

{
1

2n
‖y− Xβ‖2

2 + λ2‖β‖2
2 + λ1‖β‖1

}
. (44)

In contract to the LASSO in Equation (26), only the slope of the line for
∣∣∣ ˆβOLS

i

∣∣∣ > λ1 is different
due to the denominator 1 + λ2. That means the ridge penalty, controlled by λ2, performs a second
shrinkage effect on the coefficients. Hence, an elastic net performs a double shrinkage on the coefficients,
one from the LASSO penalty and one from the ridge penalty. Hence, from Equation (40) one can also
see the variable selection property of the elastic net, similar to the LASSO.

10.3. Applications in the Literature

Due to the improved characteristics of the elastic net over the LASSO, this method is frequently
preferred. For instance, in genomics it has been used for genome-wide association studies (GWAS)
studying SNPs [7,61–63]. Gene expression data have also been studied, e.g., to identify prognostic
biomarkers for breast cancer [64] or for drug repurposing [65]. Furthermore, electronic patient health
records have been analyzed for predicting patient mortality [66]. In imaging, resting state functional
magnetic resonance imaging (RSfMRI) was studied to identify patients with Alzheimer’s disease [67].
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In finance, elastic nets have been used to define portfolios of stocks [68] or to predict the credit ratings
of corporations [69].

10.4. R Package

A practical analysis of the elastic net can be performed using the glmnet R package [28].

11. Group LASSO

The last modern regression model we are discussing is the group LASSO, introduced by [18].
The group LASSO is different to the other regression models because it focuses on groups of variables
instead of individual variables. The reason for this is that there are many real-world application
problems related to, e.g., pathways of genes, portfolios of stocks, or substage disorders of patients,
which have substructures, whereas a set of predictors forms a group that either should have nonzero
or zero coefficients simultaneously.

The various forms of group lasso penalty are designed for such situations.
Let us suppose that the p predictors are divided into G groups, and pg is the number of predictors

in group g ∈ {1, . . . , G}. The matrix Xg ∈ Rn×pg represents the predictors corresponding to group g
and the corresponding regression coefficient vector is given by βg ∈ Rpg .

The group LASSO solves the following convex optimization problem:

β̂ = arg min

{
1

2n
‖y−

G

∑
g=1

Xgβg‖
2
2 + λ

G

∑
g=1

√
pg‖βg‖2

}
(45)

Here the term pg accounts for the varying group sizes. If pg = 1 for all groups g, then the group
LASSO becomes the ordinary LASSO. If pg > 1, the group LASSO works like the LASSO but on the
group level, instead of the individual predictors.

11.1. Example

In Figure 9 we show results for the economy data for the group labels {1, 1, 1, 2, 2, 3, 3} for the
seven predictors. Figure 9A shows the coefficient paths in dependence on log(λ) and Figure 9B the
mean-squared error in dependence on log(λ). From the number of variables above each figure, one can
see that 1 and 3 never appear. The former is for principle reasons not possible because the smallest
group (labeled by ’2’ or ’3’) consists of two predictors and the latter does just not occur in this example
because the group labeled by ’1’ (consisting of three predictors) is added later to the model for larger λ

values. Hence, there are jumps in the number of predictors.
Due to the fact that for this data set no obvious grouping of the predictors is available, we repeat

the above analysis for 640 different group definitions for two to three different groups. In Figure 9C
we show the results for this analysis. The y-axis shows the minimum mean-squared errors of the
corresponding models corresponding to λmin. The x-axis enumerates these models from 1 to 640 and
the legend gives the color code for the optimal number of variables that minimize the MSE.

The last analysis demonstrates also a problem of the group LASSO because if the group definitions
of the predictors are not known or cannot be obtained in a natural way, e.g., by interpretation of the
problem under investigation, searching for the optimal grouping of the predictors becomes, even
for a relatively small number of variables, computationally demanding due to the large number of
possible combinations.

11.2. Discussion

1. The group LASSO has either zero coefficients of all members of a group or non-zero coefficients.
2. The group LASSO cannot achieve sparsity within a group.
3. The groups need to be predefined, i.e., the regression model does not provide a direct mechanism

to obtain the grouping.
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4. The groups are mutually exclusive (non-overlapping).

Figure 9. Group LASSO. (A) Coefficient paths in dependence on log(λ). (B) Mean-squared error
in dependence on log(λ). (C) Minimum Mean-squared error for 640 different group definitions.
The legend gives the color code for the optimal number of variables that minimize the MSE.

Finally, we just want to briefly mention that to overcome the limitation of the group LASSO to
obtain sparsity within a group (point (2)), the sparse group LASSO has been introduced by [70]. The
model is defined by:

β̂ = arg min

{
1

2n
‖y−

G

∑
g=1

Xgβg‖
2
2 + (1− α)λ

G

∑
g=1

√
pg‖βg‖2 + αλ‖β‖1

}
(46)
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For α ∈ [0, 1] this is a convex optimization problem combining the group LASSO penalty
(for α = 0) with the LASSO penalty (for α = 1). Here β ∈ Rp is the complete coefficient vector.

11.3. Applications in the Literature

Examples for applications of the group LASSO can be found above all in genomics where groups
can be naturally defined via biological processes to which genes are belonging. For instance, the group
LASSO has been applied to GWAS data [71,72] and gene expression data [70,73].

11.4. R Package

A practical analysis of the group LASSO can be performed using the oem R package [74,75].
Also, the gglasso R package performs a group LASSO [76].

12. Summary

In this paper, we surveyed modern regression models that extend OLS regression. In contrast to
the OLS regression and ridge regression, all of these models are computational in nature because the
solution to the various regularizations can only be found by means of numerical approaches.

In Table 1, we summarize some key features of these regression models. A common feature of
all extensions of OLS regression and ridge regression is that these models perform variable selection
(coefficient shrinkage to zero). This allows to obtain interpretable models because the smaller the
number of variables in a model, the easier it is to find plausible explanations. Considering this, the
adaptive LASSO has the most satisfying properties because it possesses the oracle property, making it
capable to identify only the coefficients that are non-zero in the true model.

Table 1. Summary of key features of the regression models.

Method Analytical Solution Variable Selection Can Select > n Grouping Oracle

ridge regression yes no yes yes no
non-negative garotte no yes no no no

LASSO no yes no no no
Dantzig selector no yes yes no no
adaptive LASSO no yes no no yes

elestic net no yes yes yes no
group LASSO no yes yes yes no

In general, one considers data as high-dimensional if either (I) p is large or (II) p > n [59,77,78].
The case (I) can be handled by all regression models, including the OLS regression. However, case (II)
is more difficult because it may require to select more variables than samples are available. Only ridge
regression, Dantzig selector, elastic net, and the group LASSO are capable of this, and the elastic net is
particularly suited for this situation.

Finally, the grouping of variables is useful, e.g., in cases when variables are highly correlated with
each other. Again ridge regression, the elastic net, and the group LASSO have this property, and the
group LASSO has been specifically introduced to deal with this problem.

In Table 2, we summarize the regularization terms of the different models. From this one can
understand why the number of new regularized regression models exploded in recent years because
these models explore different forms of the Lq-norm or combine different norms with each other.
This proved a very rich source of inspiration and new models are still under development.

We did not include the non-negative garotte and the Dantzig selector in this table because these
models have a different form of the RSS term.

Regarding practical applications of these regularization regression models, the following is
important to note:
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There is not one model that is always and under all conditions better than all other
models. Instead, the performance of all of these models are highly data-dependent.

Specifically, the characteristics of a data set have a strong influence on the performance of a
regression model. For this reason, for practical applications it is strongly advisable to perform a
comparative analysis of different models for a particular data set under investigation by means of
cross validation (CV), potentially in combination with simulation studies that mimic the characteristics
within this data set. Furthermore, it would be beneficial to analyze more than one data set (validation
data) of the same data type to obtain reliable estimates of the variabilities among the covariates. Only in
this way is it possible to guard against false assumptions leading to the selection of a suboptimal
model for the data set under investigation.

Table 2. Overview of regularization or penalty terms and methods utilizing them.

Regularization Term Method

L2 norm: ‖β‖2 ridge regression

L1 norm: ‖β‖1 LASSO

Lq norm: ‖β‖q bridge regression

weighted L1 norm: ∑
p
j=1 wj

∣∣∣β j

∣∣∣ adaptive LASSO

c1‖β‖1 + c2‖β‖2
2 elastic net

∑G
g=1
√pg‖βg‖2 group LASSO

13. Conclusions

Regression models find widespread applications in science and our digital society. Over the
years, many different regularization models have been introduced, where each addresses a particular
problem, making no one method dominant over the others, since they all have specific strengths and
weaknesses. The LASSO and related models are very popular tools in this context that form core
methods of modern data science [79]. Despite this, there is a remarkable lack in the literature regarding
accessible reviews on the intermediate level. Our review aims to fill this gap, with a particular focus
on the regularization terms.
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