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A B S T R A C T

Standard lung function tests are not feasible in young children, but recent studies show that the variability of
expiratory tidal breathing flow-volume (TBFV) curves during sleep is a potential indirect marker of lower airway
obstruction. However, the neurophysiological sources of the TBFV variability in normal subjects has not been
established.

We investigated sleep stages and body position changes as potential sources for the TBFV curve variability.
Simultaneous impedance pneumography (IP), polysomnography (PSG) and video recordings were done in 20
children aged 1.4–6.9 years without significant respiratory disorders during sleep.

The early part of expiratory TBFV curves are less variable between cycles of REM than NREM sleep. However,
within individual sleep cycles, TBFV curves during N3 are the least variable. The differences in TBFV curve
shapes between sleep stages are the main source of overnight variability in TBFV curves and the changes in body
position have a lesser impact.

1. Introduction

Objective evidence of airway obstruction is essential for the diag-
nosis and monitoring of asthma (Global Initiative for Asthma, 2018).
Usually lung function is tested by spirometry, but for subjects with
limited cognitive or physical capabilities, such as patients with devel-
opmental disabilities, elderly or young children, the spirometric re-
spiratory maneuvers are too demanding. However, tidal breathing flow
profiles also contain information regarding the presence of airway ob-
struction.

Because tidal breathing variability analysis is still in its early phases
as a field, studies so far have taken varied approaches leading to dif-
ferent measurement duration and technique, differing study popula-
tions (age and cognitive state, i.e. sleep or awake) and various extracted
parameters from the tidal breathing flow-volume (TBFV) curves.
Despite the differences in study methods, the overall finding has been
that reduced tidal breathing variability is associated with airway

obstruction in asthmatic adults (Veiga et al., 2011) and asthmatic
children (Seppä et al., 2016), in adults with COPD (Dames et al., 2014;
Motamedi-Fakhr et al., 2016; Niérat et al., 2017) and infants with
bronchopulmonary dysplasia (Usemann et al., 2019).

Recently, we showed that such lack of variability distinguishes
children with recurrent wheeze (asthma) from healthy children also
during sleep at night when measured using impedance pneumography
(IP) (Seppä et al., 2019). We also discovered that the obstruction-re-
lated reduction in tidal breathing variability is mostly associated with a
specific part of the expiration, namely, 15–45% of expired volume.
Moreover, obstruction-related changes in the TBFV curves were re-
cently shown to be sleep stage-associated (Gracia-Tabuenca et al.,
2019).

Based on the aforementioned findings, this IP measurement method
may have a significant impact on the clinical practice of assessing lower
airway obstructions (wheeze, asthma) in young children who cannot be
easily assessed with any other method at the moment. Thus, it is
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important to explore the underlying neurophysiological mechanisms of
a new method like this. The aim of this study is to investigate the
sources of variability in expiratory TBFV curves during sleep to better
understand the neurophysiological origins of the normal (healthy)
TBFV curve variability. In this study, we investigated sleep stages and
body position changes as sources for the normal TBFV curve variability.
Firstly, we explored if there is temporal synchrony in how the different
parts (volume ranges) of the expiratory TBFV curves change throughout
the night. Secondly, we assessed how similar the TBFV curves are
within and between different sleep stages, and lastly, we analyzed the
potential effect of body position changes on the TBFV curve variability.

2. Materials and methods

2.1. Subjects

The study recruited children who were clinically referred to a
polysomnography (PSG) study and healthy children without any re-
levant symptoms. The inclusion criteria for the referred group was age
1–7 years, both sexes, referral to PSG and a signed informed consent.
The inclusion criteria for the healthy children were: age 2–7 years, both
sexes, healthy at the time of inclusion based on history and clinical
examination according to the investigator's judgment and the signed
informed consent. All the children that met the inclusion criteria were
in the range of normal regarding the apnea-hypopnea index, since
subjects who had signs of obstruction or sleep apnea during the PSG
were excluded.

The main exclusion criteria were history or risk of asthma, chronic
conditions that may alter breathing pattern, continuous upper airway
airflow limitation, or other significant clinical findings in the PSG (full
list available at https://clinicaltrials.gov/ct2/show/NCT03408990).

One overnight measurement was done for each subject in a sleep
laboratory at the Children's Hospital Srebrnjak, Zagreb, Croatia be-
tween January 2018 and December 2018. The study was approved by
the local ethics committee, guardians of all subjects gave a written in-
formed consent, and the Declaration of Helsinki and Good Clinical
Practice were followed.

2.2. Measurement setup

The overnight measurement included a full PSG recording with
video and a simultaneous TBFV curve shape measurement using IP
equipment. IP is a method for indirect measurement of lung tissue
aeration (volume) changes through skin electrodes. With correct elec-
trode placement strategy (Seppä et al., 2013a) and signal processing
(Seppä et al., 2011), the method can record TBFV curve shapes accu-
rately in young children (Seppä et al., 2013b; Malmberg et al., 2017).

The PSG study was done by using the EEG-1200 (Nihon Kohden, CA,
USA), the signals (6 channel electroencephalogram, electrooculogram,
peripheral oxygen saturation, nasal pressure, abdominal and thoracic
plethysmography) were analyzed using the Polysmith (Nihon Kohden,
CA, USA) and Polaris (Nihon Kohden, CA, USA) softwares by an ex-
perienced sleep technician. The PSG-signals were analyzed in 30-second
epochs. The IP measurement was done using a Ventica Recorder
(Revenio Research Ltd., Finland), providing the following signals: IP,
electrocardiogram (ECG) and accelerometer. Sleep staging was done
according to the current AASM guideline (Berry et al., 2018). Apneic
and hypopneic events were identified from the PSG signals. The
changes in body position during the night were annotated from a video
recording by a human operator.

2.3. Signal processing & calculating TBFV curves

IP signal processing to derive TBFV curves was done with a com-
mercially available software (Ventica Analytics 2.0.1, Revenio Research
Ltd., Finland) and the subsequent analysis of the curves was done using

MATLAB (R2017b, MathWorks Inc., USA).
The Ventica Analytics software provides averaged TBFV curves,

calculated by averaging raw TBFV curves in a moving 5-minute
window, with 2.5-minute steps. Before generating the TBFV curves,
distorted parts of the IP, ECG and accelerometer signals were discarded
at the beginning of the signal processing. The resulting TBFV curves
represent normal breathing, where sighs, coughs, crying etc. have been
excluded.

We were only interested in the exhale part of the TBFV curves,
based on the findings from previous studies, where it was shown that it
is possible to differentiate between healthy subjects and asthmatics
with the help of the exhale part (Gracia-Tabuenca et al., 2019; Seppä
et al., 2019). Here we analyzed two ranges of interest, namely, 15–45%
and 55–85% of expired volume. The earlier (15–45%) part is used in the
expiratory variability index (EVI) parameter derived by the Ventica
Analytics software and it has been shown to be the best at differ-
entiating between wheezy and healthy children (Seppä et al., 2019).
The latter (55–85%) part was included because it presumably re-
presents mostly passive expiration (post-inspiratory muscle activity has
ceased) and Gracia-Tabuenca et al. (2019) showed that parameters
derived from that part show significant differences between asthma risk
categories in young children.

To make sure that the analysis was accurate it had to be ensured
that the Ventica-signals and the PSG-signals were synchronized so that
the parameters derived and calculated from these signals are compar-
able. Both the PSG and Ventica measurements were started as si-
multaneously as possible, leading to at most a difference of some sec-
onds in the start times. The temporal synchronization was done by
manually comparing the breathing signals from both sources, finding
multiple reference points seen in both signals (for ex. distortion caused
by movement) and iteratively searching for the correct time shift for the
PSG-signal so that the signals are aligned.

2.4. TBFV curve analysis

2.4.1. Averaged TBFV curves and their mutual correlation
To ensure that averaged TBFV curves only belong to one sleep stage,

we rejected these averaged TBFV curves resulting from 5-minute win-
dows situated partially in two different sleep stages. For each recording,
then the Pearson correlation was calculated between all of the accepted
averaged TBFV curves for the 15–45% and 55–85% ranges of the ex-
haled volume. This process results in two separate correlation matrices,
which show how similar or different the TBFV curves are between
different points in time during the night (Fig. 2). These matrices from
all recordings were the base for the different analyses presented in
Fig. 1.

2.4.2. Time-synchrony of change in different parts of TBFV curves
In order to assess whether the changes in the TBFV curve shape

occur at the same time in different parts of the exhaled TBFV curve, we
calculated the Pearson correlations between all the averaged TBFV
curves of a measurement night within ranges of 30% of exhaled volume
(0–30%, 5–35%, 10–40% all the way to 70–100%). This resulted in a
correlation matrix for each range, where the axes are the sleep time and
the correlation coefficients indicate how similar or different the aver-
aged TBFV curves were at different points of the night. After estab-
lishing the correlations between the TBFV curves within each volume
range, the cross-correlation between the correlation matrices of dif-
ferent ranges was calculated to find out if the changes occur synchro-
nously in time in different parts of the TBFV curve. If the correlation
between two ranges (i.e. 0–30% and 5–35%) is high, it means that the
changes in the TBFV curve happens at similar points in time during the
night. If the correlation is close to 0, it means that the TBFV curve
changes occur at different time points in the two compared ranges of
the curve.
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2.4.3. TBFV curve variability within and between sleep stage cycles
To better understand if there are certain types of breathing patterns

in the sleep stages and whether they differ from one sleep stage to
another, the averaged TBFV curves of the whole night were divided
according to sleep stages (wake, N1, N2, N3 and REM) and the cross-
correlations were calculated between the curves. These results show us
if the TBFV curve variability differs in different sleep stages. We also
extracted the averaged TBFV curve correlations within single sleep
stage cycles to understand if the curve patterns behave differently
within cycles in comparison to all sleep stages combined.

2.4.4. Effect of body position change on averaged TBFV curves
In addition to purely analyzing the averaged TBFV curves in regards

of sleep stages, we also analyzed the effect of changes in body position

on the averaged TBFV curves throughout the night. This analysis was
broken down into sleep stages, to better see if body position change has
different outcomes on breathing in different sleep stages. The analysis
was done by taking the last averaged TBFV curve before a change in
position (averaging window ends before change in position) and the
first curve after (averaging window begins after change in position),
and calculating the correlation between the two curves. If the averaged
TBFV curve before the position change is in a different sleep stage than
the first curve after the change, they were discarded from the analysis.
The reason for this is to enable assessing solely body position change
effect without simultaneous sleep stage change effect.

2.5. Statistical analysis

Pearson correlation was used in all correlation calculations between
the averaged TBFV curves. This method was the same as used by Seppä
et al. (2019) and was able to differentiate between healthy subjects and
asthmatics. All tests of difference between multiple data groups were
done using the Kruskal–Wallis test.

3. Results

Fig. 2 illustrates the correlation matrices from a representative re-
cording. This example shows several typical features: 1) Latter part of
the TBFV curve (panel B) is generally more stable (higher absolute

Fig. 1. The sleep stage analyses of this study explained visually, based on the
correlation matrix resulting from calculating the Pearson correlation between
the accepted averaged TBFV curves of the night. The x- and y-axes represent the
sleep time. The non-white cells in the matrices indicate that the data within the
cell (correlation values) are part of the analysis. The non-grey colored areas
represent the data behind the same colored boxes in Figs. 4 and 5, where N2 is
shown in blue, N3 in green, and REM in red. Panel A shows the data behind
Fig. 4, B and C show respectively the within sleep stage cycle and between cycle
correlations of Fig. 5.

Fig. 2. Example of night-time correlation between TBFV curves in one in-
dividual. Both axes represent linear time from sleep onset (bottom left) to
awakening (top right). The black lines represent a change in sleep stages. The
sleep stages of the night are specified on both axes. Panels A and B represent
TBFV curve parts of 15–45% and 55–85% of exhaled volume, respectively.
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correlations) than the earlier part (panel A), 2) effect of sleep stage
changes (especially stage 3 non-REM sleep; N3) on the curve shape is
more prominent in the early part, and 3) the early part of the TBFV
curve during N3 is very similar within one cycle (next to the matrix
diagonal), but can be quite different between two cycles of N3 (away
from the diagonal).

3.1. Patient characteristics and polysomnographic findings

20 subjects (8 female) aged 4.0 (1.4–6.9) (median and range) years
were included in the study. 7 of the children had been referred to a
polysomnography (PSG) study on clinical grounds and other were
healthy volunteers.

N1, N2, N3, REM and wake stages constituted 2.2 (1.7)% (mean,
SD), 43.6 (5.4)%, 28.1 (4.5)%, 21.0 (5.1)%, 5.1 (5.5)% of sleep dura-
tion, respectively. These agree with previously reported values for
proportions of sleep stages during sleep (Traeger et al., 2005). Because
N1 constituted such a small part of the sleep time, it was not analyzed
any further. Also the impact of apneic/hypopneic events were not
analyzed because they were so rare and short in duration.

3.2. Time-synchrony of change in different parts of TBFV curves

As expected, the changes in the expiratory TBFV curve occurred
more synchronously between overlapping, adjacent parts (above the
black diagonal line in Fig. 3) and the synchronicity gradually reduced
as the overlap reduced (towards the black line). More interesting is the
synchronicity between non-overlapping curve parts. Unexpectedly, the
highest degree of asynchrony was not found between the parts that are
farthest away from each other (bottom right in Fig. 3), but between the
range 15–45% and all the other parts. This means that 15–45% is the
most independent range in terms of timing of changes in the curve. In
fact, a change in the last parts of the curve (after 55% of exhaled vo-
lume) is more likely to be accompanied by a simultaneous change in the
earliest parts (before 40%) than in the middle parts of the curve.

3.3. Variability of TBFV curve shapes in sleep stages

For both TBFV curve ranges, REM and wake stage showed higher
correlations and lower variability (curves more similar to each other)
than N2 or N3 (Fig. 4) when comparing TBFV curves from all the cycles
of the same sleep stage. Curves from REM and wake stage were also
mutually similar to each other. Slightly paradoxically, in the latter

curve range, curves during N2 and N3 were better correlated with
curves from REM than within N2 or N3 (Fig. 4, panel B). The variability
in TBFV curves was significantly different between sleep stages in both
curve ranges (p < 0.0001).

Interesting properties were discovered when the curve comparisons
were done either only within individual sleep stage cycles or between
different cycles of the same sleep stage (Fig. 5); The range 15–45% N3
showed even slightly higher correlations than REM within cycles, but, on
the contrary, very low correlation between separate cycles. In practice
this means that the 15–45% part of the TBFV curve is remarkably stable
during each continuous cycle of N3 sleep, but can have significantly
different shape between different cycles of N3 sleep. For the latter range
55-85 % such behaviour was not clearly present. Moreover, the REM
and wake stages showed highest median correlations irrespective of
analysis type (within/between cycles) for the latter range. Significant
differences were found in both curve ranges, when comparing the
correlation distributions shown in Fig. 5 (p < 0.0001).

3.4. Effect of body position change on TBFV curves

There were expected differences in the rate of movement in dif-
ferent sleep stages with N2, N3, REM and awake having 1.5, 0.4, 2.2,
0.5 movements per hour (mean), respectively.

The correlations in the 15–45% part of curves compared right be-
fore and after a movement event (Fig. 6) were lower than the correla-
tions within each cycle of a certain sleep stage (Fig 5) which indicates
that body position changes do have an effect on the TBFV curve shape.
The effect was, however, smaller than what was caused by a change in
sleep stage, especially for N3. Only the latter curve range showed sta-
tistical significance when comparing the effect of body position in dif-
ferent sleep stages (p < 0.0001), while in the early part of the curve
there was no significance.

For the latter part of the curve the body position change seemed to
have less effect on the curve shape (again comparing Figs. 6 and 5). If
changes in body position would not have had any effect on the TBFV
curve shape, the distributions in Fig. 6 should have been the same as the
within sleep cycle distributions in Fig. 5. This analysis only included
body position changes that occurred without a simultaneous sleep stage
change.

4. Discussion

Our findings display that the different parts of the TBFV curves
show a degree of independence since they change shape asynchro-
nously in time. An interesting result was that the degree of synchroni-
city is not the smallest between the earliest and latest parts of the curve.
Instead, the last parts of the curve show a higher degree of synchroni-
city with the earliest parts than with the middle parts. This finding
corroborates the special properties of the 15–45% part since it was also
found to be the most susceptible for a reduction in its variability in the
presence of lower airway obstruction (Seppä et al., 2019). This finding
may be associated with the fact that the middle parts of the curve have
been found to exhibit a higher absolute level of variability than the
other parts (Seppä et al., 2019).

We found the curve shape variability to be considerably higher in
the early part than in the late part of the curve which is in line with our
previous findings (Seppä et al., 2019). This may be to some extent at-
tributed to the approach we have taken in quantifying the variability
(linear correlation between curves) and to the general shape of the
expiratory TBFV curves. Namely, the flow peak of the curve occurs
during the early section whereas the latter section is characterized by a
monotonic decay of flow rate. This renders the earlier part of the curve
more susceptible to variation (low correlation values between curves)
because even if the curve shape remained the same around the peak
flow region, small movements in the peak flow location (within the
fixed window of 15–45%) cause a marked drop in the curve correlation

Fig. 3. Mean time synchrony of changes between different parts in the averaged
TBFV curves. High correlation means that the curve parts are likely to change
shape at the same time during sleep. Low correlation means that they may
change independently of each other. The area below the diagonal black line has
only non-overlapping curve parts. The correlation coefficient values have been
transformed logarithmically, to emphasize the differences.
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value. Such an effect is naturally less prominent in the late part of the
curve due to the monotonic shape of the curve. This should, however,
only affect the general level of the correlation values between the early
and late parts and the interpretation of the effect of sleep stages or body
position changes is still valid and comparable for both curve parts.

The expiratory limb of the TBFV curves is shaped by a multitude of
factors: passive, such as the combined recoil of lungs and thoracic cage

and the caliber of lower and upper airways (Otis et al., 1950); and
active, such as post-inspiratory inspiratory activity (PIIA), glottal
breaking, and expiration interruption (Richter and Smith, 2014). These
factors have a different contribution to the early and late part of the
curves. The early part is most likely dominated by PIIA and glottal
breaking, whereas the late part is mostly passive unless expiration is
interrupted before reaching resting volume (typical in newborns) (van

Fig. 4. Correlation between averaged TBFV curves, divided in sleep stages. Correlation values from all the subjects pooled together. Panels A and B represent TBFV
curve parts of 15–45% and 55–85% of exhaled volume, respectively.

Fig. 5. Correlation between averaged TBFV
curves, divided in sleep stages, showing the
correlation within individual sleep stage cycles
and between different cycles of the same sleep
stage. Correlation values from all the subjects
pooled together. Panels A and B represent TBFV
curve parts of 15–45% and 55–85% of exhaled
volume, respectively.

A. Hult, et al. Respiratory Physiology & Neurobiology 274 (2020) 103352

5



der Ent et al., 1998; Hutten et al., 2008). Shee et al. (1985) showed that
in awake healthy adults at 23% of the total expiratory time, 50% of the
muscle activity is still present and that only at 79% of the expiratory
time the activity ceases completely. Similar values were found by
Mortola et al. (1984) for sleeping newborns. The decay time of PIIA
means that the early section in our analysis is likely to be affected more
by PIIA and the latter less if at all, suggesting that the latter curve shape
would be more determined by the passive airway and chest wall me-
chanics. However, also the adductor and abductor muscles in the
pharynx and larynx affect the upper airway patency and thus may also
affect TBFV curves. They show both phasic (in concert with the re-
spiratory cycles) (England et al., 1985) and tonic (continuous) activity
and the activity level depends on sleep stage (Carroll and Donnelly,
2014).

When comparing TBFV curves from all cycles of the same sleep
stage throughout the night, we found both early and late parts to be
generally less variable during REM than NREM sleep. An interesting
feature is that, for the early part (15–45%), the lowest variability occurs
within the same N3 sleep cycles, but at the same time, the highest
variability appears between different N3 cycles of the night. NREM and
in particular N3 is characterized by remarkably regular respiration and
decreased muscle tone. Regular respiration in N3 is seen as a low
variability in breath-to-breath amplitude and in frequency (Rostig et al.,
2005), as well as in a low complexity in the short-term (3 minutes) flow
signal (Burioka et al., 2003). Our results show that also the expiratory
TBFV is regular during the same NREM cycle. This suggests that the
above-mentioned factors shaping expiration remain stable within a
NREM cycle. However, our results also show that expiration shape
changes between NREM cycles. This suggest that there is more than one
configuration of factors that produce a regular within cycle respiration.
At different NREM cycles across the night, respiratory control may be
attracted into different configurations of factors providing regular re-
spiration (Donaldson, 1992), and for this reason, TBFV profiles between

NREM cycles appear dissimilar.
The lower variability of the curve shape during REM in comparison

to NREM might be unexpected considering that REM sleep is char-
acterized by significantly higher variability in respiration rhythm
(Willemen et al., 2014). The source of this variability is caused by REM-
dependent alterations in the motoneurons relaying the respiratory drive
(Horner, 2010). Despite the pronounced breath-to-breath variations in
duration and amplitude of the respiratory stimulus, our results show
that the expiratory limb remains relatively similar within and between
REM cycles. This may be explained by the decrease in tone in upper and
lower respiratory musculature during REM, which leads to an increase
in upper airways resistance (increased collapsibility), a decrease in the
contribution of the rib-cage to respiration, and a lower functional re-
sidual capacity (Gaultier, 1995). These neurophysiological limitations
during REM translate into a reduction in the dynamic range for the
factors shaping the expiratory profile. Constricted factors increase the
chances of profiles being similar within and between REM cycles across
the night.

Because of the small sample size, it is difficult to analyze the results
in the awake state. Putatively, in healthy individuals, muscle tone is
high, most of the expiration is controlled (PIIA or glottal breaking) and
the last part is passive (Morris et al., 1998). Moreover, the respiratory
drive is modulated breath-to-breath to adapt to changing metabolic
demand. Therefore, large variations in the early part within and be-
tween cycles may be due to a longer and variable active control of
expiration. Whereas, low variation in the late part reflect a similar
shorter passive exhale.

The interpretation of TBFV as a product of a given configuration of
factors also serves to explain why a change in posture leads to higher
differences during NREM than REM. During NREM, a postural change
may perturb the stable factor configuration and displace respiratory
control into another stable factor configuration. If the new configura-
tion is different from the one before the perturbation, curve shapes will

Fig. 6. Correlation between averaged TBFV curves right before and after a body position change. Results here should be compared to the correlation level presented
in Fig. 5 within sleep stage cycle. Panels A and B represent TBFV curve parts of 15–45% and 55–85% of exhaled volume, respectively.
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present low correlation. During REM, the reduced dynamic range of the
factors increases the chances that after a movement perturbation the
curve shape will be similar to the preceding ones.

Since the averaged TBFV curves seemed to behave differently in
different sleep stages, as demonstrated by the correlation distributions
in Fig. 4, the TBFV curve variability of the whole night is affected by the
relative amount of each sleep stage. As discovered in previous studies,
the overall variability in tidal breathing patterns (from shorter re-
cordings) was lowered during obstruction (Veiga et al., 2011; Dames
et al., 2014; Frey and Bielicki, 2017; Fouzas et al., 2017; Hmeidi et al.,
2018; Usemann et al., 2019). A similar lowering of the overall TBFV
curve variability of the whole night could be achieved if the proportions
of N2 or REM would grow in regards to the other sleep stages, since the
averaged TBFV curves are least variable during these sleep stages.
However, it is yet unclear whether the obstruction-related reduction in
TBFV curve variability is more prominent in certain sleep stages or if it
affects all stages equally. Hypothetically, following the above-men-
tioned interpretation, lower airway obstruction also reduces the dy-
namic range of some of the factors shaping TBFV. For instance, to en-
sure airways patency lungs are hyper-inflated by means of PIIA and
glottal breaking (Pellegrino and Brusasco, 1997). Constricted factors
would reduce the number of possible stable configurations between
different NREM cycles, as well as lowering the chances of TBFV profiles
being different within a cycle of any sleep stage or after motion per-
turbations.

It is also worth noting that the proportion of REM sleep decreases
with age, taking approximately 30% of the sleep time in toddlers, while
in adolescence and adulthood the time spent in REM sleep is around
20–25%. The proportion of REM sleep in the night decreases once more
when reaching the age of 70 and onward. From birth to the age of 20,
the percentage of time spent in N3 decreases rapidly from approxi-
mately 25% to around 15%. N3 sleep practically disappears after
reaching the age of 60. (Carroll and Donnelly, 2014; Cardinali, 2018)

In addition to natural change due to aging, there are also sleep
disorders and other conditions which hinder normal sleep (Anders and
Eiben, 1997; Moore et al., 2006; Parish, 2009). All of these things which
can affect the amount of time spent in different sleep stages also in-
directly affect the breathing patterns, which may result in increased or
decreased variability of breathing for the night. This has to be taken
into consideration when assessing the cause of decreased tidal
breathing variability, since in addition to lower airway obstructions,
there could be other factors in play as well.

This study has some limitations. The types of body position changes
are not stratified in any way although it is apparent that, for instance, a
movement of the leg is likely to have less impact on breathing than
complete change in sleeping position from side to back. Additionally,
our sample size is relatively small but there was no patient group with
lower airway obstruction included, thus providing group homogeneity.
To better understand the mechanisms that drive the known reduction in
tidal breathing variability in presence of lower airway obstruction fu-
ture sleep studies should include patients with uncontrolled asthma and
monitor their respiratory muscle activity in addition to PSG.

5. Conclusions

The late part (55–85% of exhaled volume) of the TBFV curves is
significantly more stable than the early part (15–45%). Changes in the
curve shape show higher temporal synchronicity between the beginning
and end of the curve than with the 15-45 % part. For the early part of
the TBFV curves, cycles of REM sleep are less variable than those of
NREM, when comparing all cycles of the same sleep stage throughout
the night. However, when analyzing the variability only within in-
dividual cycles of the same sleep stage, N3 is the least variable. Similar
behaviour is not observed for the late part of the curve where REM is
less variable than the NREM stages both between and within sleep stage
cycles. Body position changes affect predominantly the early part of the

curve, but not as strongly as the sleep stage changes, which based on
our findings are the main source of variability in the TBFV curves of the
night in healthy subjects.
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