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Abstract—In this paper, we derive exact closed-form ex-
pressions for the level crossing rate (LCR) and average fade
duration (AFD) of the signal envelope in F composite fading
channels. Using the novel expressions, we then investigate the
behavior of the LCR and AFD for different multipath fading
and shadowing conditions. It is shown that multipath fading has
a more significant effect on the LCR at lower fade levels while
shadowing tends to have a discernible impact on higher threshold
levels. In contrast, shadowing has a more noticeable effect on
the AFD compared to multipath fading at both lower and higher
levels. Approximate expressions for the LCR and AFD are also
provided, and shown to be in good agreement with the exact
LCR and AFD as they approach lower and higher threshold
levels. The offered results are expected to be useful in the design
of emerging systems such as device-to-device communications.

Index Terms—Average fade duration, composite fading, Fisher-
Snedecor F distribution and level crossing rate.

I. INTRODUCTION

COMPOSITE fading models have seen a resurgence in
popularity over the last few years, driven in part by the

complex nature of many emergent wireless applications which
can undergo simultaneous multipath fading and shadowing [1],
[2]. These models are highly beneficial in the characterization
of fading channels as they circumvent the requirement to
determine an appropriate smoothing window size for the
computation of the local mean signal. It is widely known that
this procedure can affect the parameter estimation process and
subsequently any inferences made from experimental data.

Recently, the Fisher-Snedecor F distribution has been pro-
posed to model a Nakagami-m fading envelope in which
the root-mean-square (RMS) power is subject to variations
induced by an inverse Nakagami-m random variable [3]. In the
same contribution, it was shown that the F composite fading
model offers a number of potential advantages over many of
the existing composite fading models commonly used in the
literature. Two noted prominent features were the enhanced
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fit to physical measurement data relating to device-to-device
scenarios and the mathematical simplicity of its fundamental
statistical metrics and performance measures. Following from
this, the authors of [4] introduced a slight modification to the
underlying inverse Nakagami-m PDF from that used in [3] to
ensure stability in the ensuing performance analysis.

While first-order statistics, such as the probability density
function (PDF) and cumulative distribution function (CDF),
are useful for interpreting the overall distribution of fades
in fading channels, unfortunately they provide no indication
of how these fades are distributed with respect to time. On
the contrary, second-order statistics, such as the level crossing
rate (LCR) and the average fade duration (AFD), do convey
this information. Since the LCR and AFD provide a direct
indication of the rate of change of the signal with respect to
time, they are useful in the design of communication systems
and analysis of their performance [5]. Additionally, in ultra-
reliable low latency communication (uRLLC), which is one
of three main use cases for 5G networks and beyond [6], it is
important to accurately characterize the frequency of outage
and average outage duration of wireless links, which reflect a
delay in the end-to-end communication process.

Driven by the need to develop a fuller understanding of
composite fading channels, a number of studies have inves-
tigated their first-order statistics characteristics [2], [7]. For
example, in [2], the key statistics of the κ-µ / inverse gamma
and η-µ / inverse gamma composite fading models were de-
veloped and then utilized to characterize the composite fading
channels observed in wearable, device-to-device and vehicular-
to-vehicular (V2V) channels. In contrast, comparatively few
results on the second-order statistics of composite fading
channels are available in the literature [8–10]. Moreover, for
the majority of cases, closed-form expressions for the LCR and
AFD are not available and thus the solutions which do exist
are often not convenient to work with. Additionally, many of
these second-order statistics deal with so-called line-of-sight
(LOS) composite fading channels. However, these models are
not able to account for conventional large-scale effects, i.e.,
shadowing of the RMS power.

Motivated by these factors, in this paper, exact closed-form
expressions for the LCR and AFD of the signal envelope in
F composite fading channels are derived. As a byproduct
of our analysis, we also obtain an expression for the joint
PDF of an inverse Nakagami-m random process and its time
derivative. To the best of our knowledge, all of these expres-
sions are new, and have not been previously reported in open
technical literature. Using the newly obtained expressions, we
analyze the behavior of the LCR and AFD over F composite
fading channels for different multipath fading and shadowing
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conditions as well as demonstrating their generality through
reduction to a number of special cases.

II. THE F COMPOSITE FADING MODEL

The received signal envelope in an F composite fading
channel can be interpreted as the product of two independent
random processes, i.e., R = XY , where X is a Nakagami-m
random variable with the shape parameter m and spread pa-
rameter Ω = E[X2], with E[·] denoting statistical expectation,
whose PDF is given by

fX(x) =
2mmx2m−1

Γ (m) Ωm
exp

(
−mx

2

Ω

)
(1)

where Γ[·] represents the gamma function [11, eq. (8.310.1)].
Then, Y is a normalized inverse Nakagami-m random variable
where ms is the shape parameter and E[Y 2] = 1, such that

fY (y) =
2(ms − 1)

ms

Γ (ms) y2ms+1
exp

(
− (ms − 1)

y2

)
. (2)

Consequently, the resultant PDF of the received signal en-
velope in an F composite fading channel can be obtained
through the relation [12], fR(r) =

∫∞
−∞

1
|y|fXY

(
r
y , y
)

dy,
where fXY (x, y) represents the joint PDF of the processes
fX(x) and fY (y). Since the Nakagami-m random variable, X ,
and the normalized inverse Nakagami-m random variable, Y ,
are statistically independent, i.e., fXY (x, y) = fX(x)fY (y),
it follows that fR(r) =

∫∞
−∞

1
|y|fX

(
r
y

)
fY (y) dy. By sub-

stituting (1) and (2) into this equation, performing a simple
transformation of variables and using [11, eq. (3.326.2)] along
with some algebraic manipulations, we arrive at the same
expression as that given in [4, eq. (5)], namely

fR(r) =
2mm(ms−1)

msΩmsr2m−1

B (m,ms) (mr2 + (ms−1)Ω)
m+ms

, ms > 1 (3)

where B(·, ·) denotes the beta function [11, eq. (8.384.1)]. In
this model, m and Ω =E[R2] represent the multipath fading
severity and mean signal power, respectively. Additionally, ms

denotes the shadowing severity parameter which controls the
amount of the shadowing of the RMS signal power.

Although the corresponding moment generating function
(MGF) presented in [3, eq. (10)] and [4, eq. (10)] was obtained
using the standard statistical procedure, we make the point
that it cannot be referred to as a true MGF as it cannot be
guaranteed that the moments are finite over the entire space of
ms parameter. Nonetheless, the expression appears stable and
useful as a substitution for evaluating many of the performance
measures associated with F composite fading channels.

III. SECOND - ORDER STATISTICS

A. Level Crossing Rate
1) Exact Results: The LCR, NR(r), is defined as the rate

at which the signal envelope crosses a given threshold level r
in a positive (or in a negative) direction per unit time. This is
obtained as

NR(r) =

∫ ∞
0

ṙ fR, Ṙ(r, ṙ) dṙ (4)

where ṙ denotes the time derivative of r. In (4), the joint PDF
of R and Ṙ can be obtained in a double integral form as [13]

fR,Ṙ(r, ṙ)=

∫ ∞
0

∫ ∞
−∞

1

y2
fX,Ẋ

(
r

y
,
ṙ

y
− rẏ
y2

)
fY,Ẏ (y, ẏ)dẏ dy (5)

where Ẋ and Ẏ denote the time derivative of X and Y ,
respectively. It has been shown in [14] that a Nakagami-m
random process, X , and its time derivative, Ẋ , are mutually in-
dependent, i.e., fX,Ẋ

(
r
y ,

ṙ
y −

rẏ
y2

)
= fX

(
r
y

)
fẊ

(
ṙ
y −

rẏ
y2

)
.

Moreover, the time derivative, Ẋ , follows a zero-mean Gaus-
sian PDF with variance σ̇2

X = π2f2mΩ/m where fm is the
maximum Doppler frequency, such that

fẊ

(
ṙ

y
− rẏ

y2

)
=

1√
2πσ̇X

exp

[
−
(
(ṙy − rẏ)/y2

)2
2σ̇2

X

]
. (6)

Hence, with the aid of (1) and (6), the joint PDF of X and Ẋ
in (5) can be obtained as

fX,Ẋ

(
r

y
,
ṙ

y
− rẏ

y2

)
=

2mm

Γ (m) Ωm
√

2πσ̇X

(
r

y

)2m−1
× exp

(
−mr

2

Ωy2

)
exp

[
−
(
(ṙy − rẏ)/y2

)2
2σ̇2

X

]
.

(7)

Using the simple relationship which exists between a
Nakagami-m process and an inverse Nakagami-m process, we
can write Y = 1/Z where Z is a normalized Nakagami-m
process with shape parameter ms and spread parameter E[Z2]
= 1 such that its PDF is given by

fZ(z) =
2(ms − 1)

msz2ms−1

Γ (ms)
exp

(
−(ms − 1)z2

)
. (8)

Similarly, it is worth remarking that a normalized Nakagami-m
random process, Z, and its time derivative, Ż, are independent
and the time derivative, Ż, follows zero-mean Gaussian PDF
with variance σ̇2

Z = (πfm)
2
/(ms − 1).

To obtain the joint PDF of Y and Ẏ , we need to find
the time derivative of both sides of Y = 1/Z, i.e., Ẏ =
−Ż/Z2 = −Y 2Ż. For fixed Y = y, it can be shown that the
time derivative, Ẏ , also follows a zero-mean Gaussian PDF
with the conditional variance σ2

Ẏ |Y = y4σ̇2
Z . Consequently,

the conditional PDF, fY |Ẏ (y|ẏ), can be readily expressed as

fY |Ẏ (y|ẏ) =
1√

2πσ̇Zy2
exp

[
− ẏ2

2σ̇2
Zy

4

]
. (9)

Using fY,Ẏ (y, ẏ) = fY |Ẏ (y|ẏ) fY (y) with the aid of (2) and
(9), we can then obtain the joint PDF of Y and Ẏ as follows

fY,Ẏ (y, ẏ) =
2(ms − 1)

ms exp
(
− ẏ2

2σ̇2
Zy

4 − (ms−1)
y2

)
√

2πσ̇ZΓ (ms) y2ms+3
. (10)

From (10) it becomes apparent that an inverse Nakagami-m
random process and its time derivative are not independent.

Substituting (7) and (10) into (5), the joint PDF of R and Ṙ
can be obtained in (11) at the top of the next page. By carrying
out some algebraic manipulations using [11, eq. (3.323.2)] and
[11, eq. (3.381.4)], (11) can be expressed in closed-form as
given in (12) at the top of the next page. Now, substituting
(12) into (4) and using [11, eq. (3.241.4)] along with some
algebraic manipulations, the LCR of the signal envelope in F



3

fR,Ṙ(r, ṙ)=

∫ ∞
0

∫ ∞
−∞

4mm(ms − 1)
msr2m−1

2πΓ(m)Γ(ms) Ωmσ̇X σ̇Zy2m+2ms+4
exp

[
−mr

2

Ωy2
− (ms−1)

y2
−
(
(ṙy − rẏ)/y2

)2
2σ̇2

X

− ẏ2

2σ̇2
Zy

4

]
dẏ dy (11)

fR,Ṙ(r, ṙ) =
2mm(ms − 1)

msr2m−1Γ
(
m+ms + 1

2

)
√

2πΩmΓ (m) Γ (ms)
√
r2σ̇2

Z + σ̇2
X

(
mr2

Ω
+ (ms − 1) +

ṙ2

2 (r2σ̇2
Z + σ̇2

X)

)−m−ms− 1
2

(12)

Fig. 1. Normalized (a) LCRs and (b) AFDs over F composite fading channels considering different conditions of the multipath fading and shadowing. The
approximate LCRs and AFDs for lower ρ (black continuous lines) and higher ρ (black dash lines) levels are also present for the case of m = 1 and ms=2.

composite fading channels can be expressed as

NR(r)

fm
=

√
2πΓ

(
m+ms− 1

2

)
mm− 1

2 [(ms−1)Ω]
ms− 1

2 r2m−1

Γ (m) Γ (ms) [mr2 + (ms−1) Ω]
m+ms−1 .

(13)
By also considering the normalized signal envelope (P =
R/
√

Ω), (13) can be re-written as follows

NP (ρ)

fm
=

√
2πΓ

(
m+ms− 1

2

)
(ms−1)

ms− 1
2mm− 1

2ρ2m−1

Γ (m) Γ (ms) [(ms−1) +mρ2]
m+ms−1 . (14)

2) Special Cases: While the closed-form expressions given
in (13) and (14) are convenient to handle both analytically and
numerically, even greater insights into the role of the involved
parameters can obtained by observing what happens when
threshold levels begin to approach extreme values. To this end,
when mρ2>>ms−1, then ms−1+mρ2'mρ2, yielding

NP (ρ)

fm
'
√

2π Γ
(
m+ms − 1

2

)
(ms − 1)ms− 1

2

Γ(m)Γ(ms)mms− 1
2 ρ2ms−1

. (15)

Likewise, for the case that mρ2 << ms − 1, it follows that
ms−1+mρ2 ' ms−1, which after some manipulations yields

NP (ρ)

fm
'
√

2π Γ
(
m+ms − 1

2

)
mmρ2m−1

Γ(m)Γ(ms)(ms − 1)m
. (16)

B. Average Fade Duration

1) Exact Results: The AFD, TR(r), is defined as the
average length of time during which the signal envelope
remains below a given threshold level. This is represented
mathematically as TR(r) , FR (r)/NR(r), where FR(r)
represents the CDF of the F composite fading signal envelope
as given in [4, eq. (12)]. Thus, by substituting [4, eq. (12)] and
(13) into the above expression, it readily follows that

TR(r)fm =
Γ (m+ms)

[
mr2+(ms−1) Ω

]m+ms−1

Γ
(
m+ms− 1

2

)
(ms−1)

m+ms− 1
2 Ωm+ms

× r
√

Ω√
2mπ

2F1

(
m+ms,m; 1+m;− mr2

(ms − 1)Ω

) (17)

where 2F1 (·, ·; ·; ·) denotes the Gauss hypergeometric function
[11, eq. (9.111)]. Similarly, for the normalized signal envelope
(P = R/

√
Ω), (17) can be re-written as follows:

TP (ρ)fm =
Γ (m+ms) ρ

[
(ms−1)+mρ2

]m+ms−1

Γ
(
m+ms− 1

2

)√
2mπ (ms−1)

m+ms− 1
2

× 2F1

(
m+ms,m; 1 +m;− mρ2

ms − 1

)
.

(18)

2) Special Cases: As in Sec. III.A, (18) can be used to de-
rive simple and accurate approximate expressions that provide
useful insights on the impact of the involved parameters on the
overall system performance. To this end, when mρ2>>ms−1,
it follows that ms − 1 +mρ2 ' mρ2, which yields

TP (ρ)fm '
Γ(m+ms)m

m+ms−1ρ2m+2ms−1

Γ
(
m+ms − 1

2

)√
2mπ(ms − 1)m+ms− 1

2

× 2F1

(
m+ms,m; 1 +m;− mρ2

ms − 1

)
.

(19)

On the contrary, when mρ2<<ms − 1, it follows that

TP (ρ)fm '
Γ(m+ms)ρ 2F1 (m+ms,m; 1 +m; 0)

Γ
(
m+ms − 1

2

)√
2mπ
√
ms − 1

(20)

which based on the identity 2F1 (a, b, c, 0) , 1, reduces to

TP (ρ)fm '
Γ(m+ms)ρ

Γ
(
m+ms − 1

2

)√
2mπ(ms − 1)

. (21)

Finally, when m >> ms, it follows that m+ms ≈ m+ 1;
now recalling the identity 2F1 (a, b, a, cx) , (1 − cx)−b and
after some manipulations, (18) reduces to:

TP (ρ)fm '
ρ(ms − 1 +mρ2)ms−1
√

2πm(ms − 1)ms− 1
2

(22)

which is a simple, insightful and accurate approximation.

IV. NUMERICAL RESULTS

To investigate the impact of differing levels of multipath
fading (m) and shadowing (ms) upon the LCR and AFD,
Fig. 1(a) and Fig. 1(b) illustrate the shape of the normalized
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Fig. 2. Normalized (a) LCRs and (b) AFDs over F composite fading channels (continuous lines) for the special cases with the normalized LCRs and AFDs
of the Nakagami-m (circles) and Rayleigh (x-marks) fading channels.

LCR and AFD for differing combinations of m and ms, i.e.,
m = {1, 3, 30} and ms = {2, 30}. It is clear from Fig. 1(a)
that as the multipath fading severity increases (i.e., lower
values of m) and the amount of shadowing increases (i.e.,
lower values of ms), the signal envelope crosses both lower
and higher threshold levels more frequently. In contrast, as the
severity of the multipath fading and shadowing decreases, the
range of threshold levels that the signal envelope crosses is
decreased. When comparing the effect of the variation of the
m and ms on the LCR, multipath fading has a more noticeable
effect on the LCR compared to shadowing at lower levels. On
the contrary, shadowing has a more significant effect on the
LCR than multipath fading at higher levels. Furthermore, it
can easily be seen from Fig. 1(b) that the signal envelope
spends less time at lower fade levels and resides longer at
higher threshold levels as the severity of multipath fading and
shadowing conditions decreases (i.e., higher m and ms).

When comparing the effect of the variation of the m and ms

on the AFD, shadowing has a more noticeable effect on the
AFD compared to multipath fading both at lower and higher
threshold levels. Interestingly, the margin between the LCR
and AFD curves for light and heavy shadowing conditions
increases as the multipath fading severity decreases. This
suggests that the shadowing effects become more pronounced
when the channel is subject to less severe multipath fading.
Furthermore, the approximate LCR and AFD begin to provide
good agreement with the exact LCR and AFD well before
reaching the high and low threshold extremities (see Fig. 1).

It is recalled here that the F composite fading model
becomes equivalent to the Nakagami-m fading model when
there exists no shadowing (i.e., ms →∞, although in reality
a large value of ms). Likewise, the Rayleigh fading model is
deduced by setting m = 1 and again letting ms →∞. Using
these special cases, Fig. 2(a) and Fig. 2(b) show the normalized
LCR and AFD of the F composite fading model coincide
with those for the Nakagami-m [14, eqs. (17) and (21)] and
Rayleigh [15, eqs. (4.227) and (4.228)] fading models.

V. CONCLUSION

Exact and approximate closed-form expressions for the
LCR and AFD of the signal envelope in F composite fading
channels have been derived. During the course of our analysis,
we also obtained an expression for the joint PDF of an inverse
Nakagami-m random process and its time derivative. From this

expression, it has been demonstrated that the two processes are
independent. Our numerical results have shown that the signal
envelope crosses lower threshold levels at a lower rate, conse-
quently spending less time at lower levels. It is also observed
that as the severity of the multipath fading and shadowing
decreases, the range of threshold levels that the signal envelope
crosses is decreased. Finally, due to the relative simplicity of
the derived expressions, they can be readily used to quantify
the LCR and AFD in emergent wireless applications, such
as device-to-device communications, which can be subject to
simultaneous multipath and shadowing effects.
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