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A B S T R A C T

Estimating the statistics of single-cell RNA numbers has become a key source of information on gene expression
dynamics. One of the most informative methods of in vivo single-RNA detection is MS2d-GFP tagging. So far, it
requires microscopy and laborious semi-manual image analysis, which hampers the amount of collectable data.
To overcome this limitation, we present a new methodology for quantifying the mean, standard deviation, and
skewness of single-cell distributions of RNA numbers, from flow cytometry data on cells expressing RNA tagged
with MS2d-GFP. The quantification method, based on scaling flow-cytometry data from microscopy single-cell
data on integer-valued RNA numbers, is shown to readily produce precise, big data on in vivo single-cell dis-
tributions of RNA numbers and, thus, can assist in studies of transcription dynamics.

1. Introduction

Single-cell imaging and fluorescent proteins have become a key
source of information on multiple processes in live cells, particularly
gene expression (Kærn et al., 2005). Originally, they have been used
for, e.g., quantifying cell-to-cell diversity in protein levels (Elowitz
et al., 2002; Ozbudak et al., 2002; Pedraza and Van, 2005; Engl, 2018).
Subsequent progresses in microscopy and in the engineering of syn-
thetic fluorescent proteins have allowed observing in vivo individual
proteins (Yu et al., 2006) and RNA molecules (Fusco et al., 2003;
Golding et al., 2005; Trcek et al., 2012; Femino et al., 1998; Raj et al.,
2008). This made possible, among other, the quantification of the ef-
fects and the identification of sources of transcriptional bursting
(Golding et al., 2005; Yu et al., 2006; Chong et al., 2014).

While there are several methods to quantify RNA, such as RT-qPCR
(Saiki et al., 1985)(Higuchi et al., 1993), microarrays (Bumgarner,
2013), RNA seq (Tang et al., 2009), and UMI-based single-cell RNA-seq
(Kivioja et al., 2012; Islam et al., 2014), among other, only a few can
visualize individual RNAs, such as RNA Fluorescence In Situ Hy-
bridization (Singer and Ward, 1982), RNA aptamers (Bunka and
Stockley, 2006), and MS2-GFP RNA tagging (Golding et al., 2005). The
latter allows observing individual RNAs using a synthetic protein,
MS2d-GFP, and a synthetic target RNA, coding for multiple binding

sites for the MS2d capsid protein (Peabody, 1993). Due to the rapid and
stable binding of multiple MS2d-GFP proteins to the several binding
sites in a single RNA, time-lapse imaging detects individual RNAs as
these are produced. This facilitates the identification of sources of in-
trinsic noise in RNA production (Golding et al., 2005), the dissection of
rate-limiting steps in active transcription (Lloyd-Price et al., 2016;
Kandavalli et al., 2016), and the quantification of propensities for
threshold crossing in RNA numbers (Startceva et al., 2019), among
other.

The quantification of RNA by MS2d-GFP tagging is not free from
measurement noise. For example, in time-lapse confocal microscopy, it
is not uncommon that tagged RNAs (Supplementary Fig. S1) inter-
mittently disappear. In addition, the precision of the estimation of the
number of tagged RNAs within a given ‘RNA spot’ decreases rapidly
with the number of RNAs in the spot (Golding et al., 2005; Häkkinen
et al., 2014). Further, it is laborious to collect data, since even when
using tailored, state-of-the-art software for segmenting the microscopy
images (e.g. (Martins et al., 2018)), it usually still requires manual
corrections and, in the worst cases, the necessary information can be
absent from the images (e.g. an existing spot might not be captured in
the image, e.g. if not within a given z-plane).

One solution to these problems would be to complement the mi-
croscopy data on single-cell numbers of MS2d-GFP tagged RNAs with
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flow cytometry data. This would allow to rapidly collect much larger
amounts of data, and also reduce significantly the uncertainty in the
data (e.g. cells that are not entirely imaged can be automatically re-
moved from the dataset, by using combined information from various
channels of the flow cytometer, and RNA spots would always be en-
tirely present in each imaged cell). However, flow cytometry lacks
spatial information, which so far has been used in the quantification of
MS2d-GFP tagged RNAs (Golding et al., 2005; Häkkinen et al., 2014).

Recent approaches have successfully combined Fluorescence in situ
hybridization (FISH) for RNA counting with flow cytometry (see e.g.
(Arrigucci et al., 2017; Bushkin et al., 2015; Tiberi et al., 2018) for
similar aims. However, achieving the same using the MS2d-GFP tagging
technique is expected to be more complex because, unlike when using
FISH, not only the MS2d-GFP tagged RNAs are fluorescent but also the
cells' cytoplasm, due to the need for large numbers of free floating
MS2d-GFP to readily detect newly formed RNAs.

To address this, and since MS2d-GFP tagged RNA have been shown
to have constant fluorescence for a few hours following their formation
(Tran et al., 2015; Lloyd-Price et al., 2016; Oliveira et al., 2016), we
hypothesized that cells with tagged RNAs have, on average, higher
fluorescence than otherwise (since the MS2d-GFP proteins attached to
the RNA are ‘immortalized’). As such, the total fluorescence of a cell
should increase with the number of tagged RNAs that it accumulates. If
so, it should be possible, from flow cytometry data on cells expressing
MS2d-GFP tagged RNAs, to estimate the statistics of single-cell dis-
tributions of RNA numbers. Here we validate these hypotheses and
show that flow cytometry data can be used to extract the mean, stan-
dard deviation, and skewness of single-cell distributions of RNA num-
bers that match those observed using microscopy.

2. Materials and methods

2.1. Chemicals

Measurements were performed in Luria-Bertani (LB) medium. The
chemicals were: Tryptone and sodium chloride from Sigma Aldrich.
Yeast extract was from Lab M (Topley House, Bury, Lancashire, UK).
Antibiotics used are kanamycin and chloramphenicol, from Sigma-
Aldrich. Inducers isopropyl β-D-1-thiogalactopyranoside (IPTG), anhy-
drotetracycline (aTc) and L-Arabinose (ara) were purchased from
Sigma-Aldrich. For preparing microscopic gel pads we used agarose
from Sigma-Aldrich.

2.2. Strains and plasmids

The E. coli strain used was DH5α-PRO, identical to DH5αZ1. Its
genotype is deoR, endA1, gyrA96, hsdR17 (rK- mK+), recA1, relA1,
supE44, thi-1, Δ(lacZYA-argF)U169, Φ80δlacZΔM15, F-, λ-, PN25/tetR,
PlacIq/lacI and SpR. This strain produces the regulatory proteins re-
quired for tightly regulating the genetic constructs used (LacI, TetR and
AraC).

The two genetic constructs used in this strain are: i) a multi-copy
reporter plasmid responsible for producing MS2d-GFP proteins, con-
trolled by the promoter PLtetO-1, inducible by aTc; ii) A single-copy
target F-plasmid is responsible for producing an RNA coding for mRFP1
up-stream of a 96 MS2 binding site array, controlled by the promoter
PLac/ara-1, inducible by IPTG and L-Arabinose, (PLac/ara-1-mRFP1-96BS,
Supplementary Fig. S2). We also used the E. coli DH5α-PRO strain
carrying only the reporter plasmid. The plasmids were transferred into
the host strain by standard molecular cloning techniques (Alberts et al.,
2002).

The high number of binding sites for MS2d and the high affinity of
each site with MS2d proteins cause each target RNA, when tagged, to
appear as a bright ‘spot’ (Fig. 1B and Supplementary section 1.2), soon
after being transcribed (in< 1min) and to exhibit constant fluores-
cence intensity for a long period of time (mean half-lives of ~140min

(Tran et al., 2015)). Finally, it has been shown that, in these cells, the
protein expression level of the target gene is not affected by MS2d-GFP
tagging and follows the RNA numbers (Startceva et al., 2019).

2.3. Growth media and induction of the reporter and target genes

From a glycerol stock (−80 °C), cells were streaked on a LB agar
plate and incubated at 37 °C overnight. From this plate, a single colony
was picked and inoculated into a fresh LB medium supplemented with
appropriate antibiotics (35 μg/ml kanamycin and 34 μg/ml chlor-
amphenicol) and grown overnight at 30 °C with aeration. From the
overnight cultures, cells were diluted into fresh LB medium to an op-
tical density (OD600) of 0.03, and grown at 37 °C, 250 rpm. Once the
cells reach the OD600 0.3, aTc (100 ng/ml) was added to induce PLtetO-1
for MS2d-GFP production. L-Arabinose (0.1%) was also added, at the
same time, for pre-activation of the target promoter PLac/ara-1. After
50min, IPTG was added (0, 6.25, 50, 100, 200, 300, 500, or 1000 μM)
to activate the production of the RNA target for MS2d-GFP. Following
1 h, cells were observed to quantify RNA and proteins (microscopy or
flow cytometry).

2.4. Spectrophotometry

Fluorescence intensities were measured by using a BioTek Synergy
HTX Multi-Mode Microplate Reader with Gen5 software. From the
overnight culture, cells were diluted to 1:1000 times in fresh LB
medium and incubated at 37 °C with shaking, until an OD600 of 0.3.
Afterward, cells were aliquoted into 96 well microplates, and allow
them to grow while maintaining the same temperature and shaking.
Following induction of the reporter and target genes (see Section 2.3),
mean fluorescence intensities were recorded for 10 h at an interval of
10min, using the excitation (485/20 nm) and emission (525/20 nm)
filters. We performed 6 technical replicates for each condition. We
found weak variability between replicates. Results are the averages and
standard error of the means.

2.5. Microscopy and image analysis

A few μl of cells were sandwiched between the coverslip and an
agarose gel pad (2%), and visualized by a 488 nm argon ion laser
(Melles–Griot) and an emission filter (HQ514/30, Nikon), using a Nikon
Eclipse (Ti-E, Nikon) inverted microscope with a 100× Apo TIRF (1.49
NA, oil) objective. Fluorescence images were acquired by C2+ (Nikon),
a point scanning confocal microscope system. The laser shutter was
open only during exposure time to minimize photo bleaching.
Simultaneously with the confocal images, phase contrast images were
also captured by a CCD camera (DS-Fi2, Nikon). All images were ac-
quired with NIS-Elements software (Nikon). Microscopy images were
analysed using the software ‘CellAging’ (Häkkinen et al., 2013). For
details, see Supplementary Materials and Methods, Sections 1.1 and
1.2.

2.6. Flow cytometry and gating

Cells carrying the target and reporter genes were grown and in-
duced as described in Section 2.3. For this, from 5ml of the bacterial
culture, cells were diluted 1:10000 into 1ml PBS and vortexed for 10 s.
In each measurement, 50,000 events were recorded using an ACEA
NovoCyte Flow Cytometer (ACEA Biosciences Inc., San Diego, USA),
equipped with a blue (488 nm) and a yellow laser (561 nm) for ex-
citation. For detection of MS2d-GFP and RNA-MS2d-GFP, we used the
fluorescein isothiocyanate (FITC) detection channel (530/30 nm filter)
for emission, with a PMT voltage setting of 417. For detection of red
fluorescence proteins (mRFP1), we used the PE-Texas Red fluorescence
detection channel (615/20 nm) for emission, with a PMT voltage set-
ting of 584. We set a flow rate of 14 μl/min and a core diameter of
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7.7 μM. To avoid background signal from particles smaller than bac-
teria, the detection threshold was set to 5000 in FSC-H analysis. Data
were extracted using the ACEA NovoExpress software.

We applied unsupervised gating (Razo-Mejia et al., 2018) to the
flow cytometry data. We set the fraction of single-cell events whose
data is used in the analysis (α) to 0.99, as it was sufficient to remove
noncell events produced by debris, cell doublets, cell fragments, clump
of cells, and other undesired events. Reducing α further did not change
the results qualitatively. In addition, we removed events that did not
exhibit fluorescence from free-floating MS2d-GFP by applying (manu-
ally) a minimum threshold (Supplementary Fig. S3, Right). Also, we
removed<0.01% of the events with highest FITC-H normalized by
pulse width (F/W) values. Similarly, we removed< 0.01% of the events
with highest R/W values. In all measurements by flow cytometry fol-
lowed by data filtering,> 40,000 single-cells events were analysed per
condition.

Finally, the total cell fluorescence differs with cell size
(Supplementary Fig. S4, Right), while the concentration of MS2d-GFP
does not (Supplementary Fig. S4, Left). To account for this, we nor-
malized the FITC-H signal by the pulse Width (which differs with cell
size (Cunningham, 1990; Traganos, 1984) denoted by F/W. Likewise,
we also normalized the PETexasRedH signal by the pulse Width, de-
noted by R/W. For this reason, throughout the results section, we only
refer to F/W and R/W when referring to flow cytometry data.

2.7. Mean, standard deviation, and skewness of single-cell distributions of
RNA and protein numbers

We calculated the mean (M), Variance (Var), standard deviation
(Sd), 3rd moment and skewness (S), of the distribution of single-cell
RNA numbers (obtained from microscopy), and of the single-cell dis-
tributions of F/W, and R/W (obtained from flow cytometry), as shown
in Table 1:

The standard error of M is calculated from Sd X
N
( ) , where N is the

sample size of X. Meanwhile, the standard error (SE) of Var, Sd, 3rd
moment and S is estimated using a non-parametric bootstrap method
(Carpenter and Bithell, 2000; DiCiccio and Efron, 1996), by performing
103 random resamples with replacement, to obtain the bootstrapped
distributions of Var, Sd, 3rd moment and S.

3. Results and conclusions

3.1. Time-course cell fluorescence in the presence and absence of RNA
target for MS2d-GFP

We performed time-lapse microscopy measurements of E. coli cells
carrying a gene coding for RNA target for MS2d-GFP, under the control
of the Lac/Ara-1 promoter (PLac/ara-1). The cells also produce MS2d-GFP
proteins from a multi-copy plasmid controlled by the PLtetO-1 promoter
(Materials and Methods, Section 2.2).

For RNAs target for MS2d-GFP to be readily detected, the cells need
to contain multiple MS2d-GFP proteins (Golding et al., 2005). Due to
this, their background is green fluorescent (Fig. 1A) and each target
RNA appears as a bright spot in< 1min after being produced (Tran
et al., 2015) (Fig. 1B). In general, using these constructs and conditions,
the cells produce from one to a few target RNAs during their lifetime
(Häkkinen and Ribeiro, 2016).

In the absence of MS2d-GFP tagged RNAs, the total cell background
fluorescence (i.e. the sum of the intensity of all pixels covering the cell

Fig. 1. A) Example microscopy image of cells carrying the reporter gene coding for MS2d-GFP, prior to the production of target RNAs. The cells are visible due to
carrying a large amount of MS2d-GFP proteins; B) Example microscopy image of cells carrying the reporter gene coding for MS2d-GFP, after the production of target
RNAs. The RNAs tagged with MS2d-GFP are visible as bright spots; (C) Mean total cell background fluorescence intensity and mean total fluorescence intensity of all
RNA spots in individual cells (in arbitrary units), as measured by confocal microscopy (Methods, Section 2.5). Data from>300 cells. The error bars are the standard
error of mean. (D) Example image of a cell, along with the results of the segmentation of the cell border (blue line) and of the RNA spots within (red circles) using the
tailored software ‘SCIP’ (Martins et al., 2018) (Methods, Section 2.5). (E) Left: example image of a cell along with a yellow line, manually introduced to obtain a
fluorescence intensity profile using imageJ (Abramoff et al., 2004). Right: pixel intensity (in arbitrary units) along the yellow line shown on the left image. The peaks
correspond to the regions where the two spots (tagged MS2d-GFP RNAs) are located. (F) Mean fluorescence intensity of individual tagged RNA molecules over time
since first appearing. 10 tagged RNAs were tracked, all from cells with only one RNA. Also shown is the standard error of the mean (vertical bars). (G) Total
fluorescence intensity (in arbitrary units) of cell populations over time, as measured by spectrophotometry, obtained from cells with target and reporter plasmids
induced (brown line) and from cells with only the reporter plasmid induced (blue line). (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

Table 1
Mean (M), Variance (Var), standard deviation (Sd), 3rd moment and skewness
(S), of a distribution of observed values of the sample items, X, where 〈.〉 stands
for average.

Feature M Var Sd 3rd moment S

Definition 〈X〉 〈(X ‐ 〈X〉)2〉 〈 〈 〉 〉X(X‐ )2 〈(X ‐ 〈X〉)3〉 〈 〈 〉 〉X
Sd

(X ‐ )3
3
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area) is nearly only due to free floating MS2d-GFPs (Supplementary Fig.
S5). In addition, this total background fluorescence is higher than the
fluorescence of single MS2d-GFP tagged RNA spots (Fig. 1C). Never-
theless, MS2d-GFP tagged RNAs are clearly visible to the Human eye
(Fig. 1D) and detectable by image analysis (Martins et al., 2018), as the
fluorescence intensity of pixels with a spot is much higher than in near-
neighbour pixels (Fig. 1E). Thus, using spatial information, RNA spots
can be segmented, e.g., by kernel density estimation with a Gaussian
kernel (Häkkinen and Ribeiro, 2015). In addition, the variability in
fluorescence intensity of pixels where spots are absence is much smaller
than the difference in fluorescence intensity between pixels with and
without a spot (Fig. 1E). Due to this, one can subtract the mean back-
ground fluorescence from a spot's total fluorescence to obtain a ‘cor-
rected’ spot intensity, without risk of wrongly adding a ‘false’ RNA spot
or removing a ‘true’ RNA spot. Unfortunately, these methods cannot be
applied to flow cytometry data, as it only informs on total cell fluor-
escence.

Even though the spots' fluorescence is weaker than the total cell
fluorescence, we hypothesized that the production of an RNA target for
MS2d-GFP increases the total cell fluorescence, since the binding of
MS2d-GFP to the target RNA will protect bound MS2d-GFP proteins
from degradation or loss of fluorescence intensity (Tran et al., 2015).
This is due to the weak disassociation rate constant of MS2d from the
specific target RNA sequence (Dolgosheina et al., 2014), and the high
stability and long lifetime of the fluorescence intensity of MS2d-GFP
tagged RNAs. In particular, Fig. 1F shows that the RNA-MS2d-GFP
complexes have a weak mean fluorescence decay rate of
~8×10−5 s−1, which correspond to long mean half-lives of ~140min,
in agreement with past reports (Tran et al., 2015; Golding and Cox,
2004; Golding et al., 2005). Consequently, following the production of
an MS2d-GFP tagged RNA, as a cell produces more MS2d-GFP, a new
equilibrium in the number of MS2d-GFP in the cytoplasm is expected to
be reached, causing the total cell fluorescence to become higher.

To validate this hypothesis, we measured by spectrophotometry the
cells' fluorescence over time, when and when not inducing the target
gene with L-Arabinose and IPTG. Also, we measured cell grow rates.
From Supplementary Fig. S6, the cell growth rate does not differ be-
tween the conditions. Meanwhile, from Fig. 1G, the activation of the
target gene, as time progresses and tagged RNAs accumulate, causes a
continuous increase in the mean cell fluorescence.

Next, we subjected cells with the target gene controlled by PLac/ara-1
(responsible for producing the RNA target for MS2d-GFP) to various
IPTG concentrations (Methods). As a control, we performed the same
measurements on the strain without the target gene (Methods). We
measured by flow cytometry the single-cell fluorescence intensity re-
lative to cell size, so as to account for differences in cell size
(Cunningham, 1990; Traganos et al., 1984). In particular, we calculated
the ‘FITC-H' signal relative to the ‘pulse Width', here onwards referred
to as F/W (Methods, Section 2.6).

As a control, we further verified by microscopy that cells do not
differ significantly in morphology, for different IPTG concentrations, by
comparing their mean length along the major axis. We found no sig-
nificant differences between conditions (Supplementary Fig. S7).

From Fig. 2, while both strains are subject to the inducers, only cells
carrying the gene coding for the RNA target for MS2d-GFP show in-
creased F/W for increasing IPTG, which is consistent with the increase
in RNA numbers as measured by microscopy (Fig. 3A and D). It is also
consistent with the results by spectrophotometry (note that, at 1 mM
IPTG, the total cell fluorescence of cells of the strain carrying the target
is also approximately 30% higher, as in Fig. 1G). Given this and all of
the above, we conclude that the increase in F/W with increasing IPTG is
solely due to the appearance of RNAs tagged with MS2d-GFP.

3.2. Relationship between the statistics of single-cell RNA numbers obtained
by confocal microscopy and single-cell F/W obtained by flow cytometry

We next measured by microscopy and image analysis (Methods,
section 2.5) the RNA numbers produced by our gene of interest, under
the control of PLac/ara-1, for different concentrations of IPTG. Fig. 3A-3C
show the mean, standard deviation, and skewness of the single-cell
distribution of these numbers (Methods, Section 2.7) as a function of
IPTG, respectively.

Next, we extracted the same three statistics of the single-cell dis-
tribution of F/W values obtained in the same conditions by flow cyto-
metry. Results are shown in Fig. 3D-3F. Supplementary Fig. S8 (Left)
shows the probability density functions of the single-cell F/W values,
for each condition.

Given this, we investigated the relationship between the statistics
for F/W and the statistics for RNA numbers per cell. Results in
Supplementary section 1.5, show that there is a linear fit between the
two Means, the two Variances and, the two third moments, respec-
tively.

Given these linear relationships, to evaluate whether the moments
of single cell RNA numbers from microscopy and single cell F/W values
of flow cytometry are correlated, we plotted the results of Mean (M),
Variance (Var) and the third moment obtained by microscopy against
the results of M, Var and the third moment obtained by flow cytometry
in scatter plots (Fig. 4A-C). Next, we did a linear fit to the data, which
was performed using the linear regression fitting method explained in
Supplementary Methods, section 1.4. The adjusted R2 values and cor-
responding p-values of the linear fit are shown in Supplementary Table
S1. We find that Mean, Var and the third moment are well fitted by a
line (in Fig. 4).

Hence, we conclude that there is a good linear fit between the Mean,
Var and the 3rd moment of the single-cell distributions of RNA numbers
obtained by microscopy, and the Mean, Var, and the 3rd moment of the
single-cell distributions of F/W values obtained by flow cytometry,
respectively.

Fig. 2. (Light grey bars) Mean F/W values of the strain carrying only the multi-
copy plasmid carrying the reporter gene, at various IPTG concentrations (x-
axis), relative to its mean F/W value at the 0 μM IPTG condition. Its black error
bars are the standard error of mean, estimated from the cells in each condition
(Methods, section 2.7), relative to its mean F/W value at the 0 μM IPTG con-
dition. (Dark grey bars) Mean F/W values of the strain with both the single-copy
F-plasmid with the target gene and the multi-copy plasmid with the reporter
gene at various IPTG concentrations (x-axis), relative to its mean F/W value at
the 0 μM IPTG condition. The red error bars are the standard error of mean,
estimated from the cells in each condition (Methods, section 2.7), relative to its
mean F/W value at the 0 μM IPTG condition. The blue error bars result from the
standard error of mean, relative to its mean F/W value at 0 μM IPTG condition,
after adding the empirical variability between all measurements using cells
with only the reporter gene. This estimation is explained in Supplementary
Methods, section 1.6. In all conditions, cells were given 0.1% of L-Arabinose
(Methods, Section 2.3).
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These results are, as expected, dependent on degree of background
noise, produced by MS2d-GFP (random motion and measurement error
generate spatial heterogeneity). This noise could differ, e.g., in different
environments or if different plasmids were used to produce MS2d-GFP.
We thus tested the effects of increased background noise on our esti-
mation of M, Var, and 3rd moment in cells observed by Flow
Cytometry. For this, we modelled increasing background noise by
adding increasingly higher Gaussian noise to the total cell fluorescence
(F/W) obtained by Flow Cytometry. These added noises are shown in
Supplementary Fig. 10A.

The consequences of adding the increasingly higher noise on the
mean, variance, and the 3rd moment of the single-cell fluorescence
distributions, as measured by Flow Cytometry, are shown, respectively,
in Supplementary Fig. 10B, 10C, 10D.

Visibly, from Supplementary Fig. 10B, the addition of Gaussian
noise to the single-cell F/W distribution at different IPTG concentra-
tions (Noise corrupted F/W distribution), does not perturb the mean. In
particular, even though the Gaussian noise was gradually increased

from σ=0 to 400, the best fitting lines between the mean of the noise
corrupted F/W distribution and mean RNA numbers per cell obtained
from microscopy are all identical to the best fitting line when using the
original F/W distribution (Supplementary Fig. S10B).

Meanwhile, we expect increasing variance in the noise-corrupted F/
W distributions. However, the best fitting line between variance of the
noise corrupted F/W distributions and variance of the single-cell RNA
numbers distribution shows that only the intercept changes, not the
slope (Supplementary Fig. S10C). As such, one can reliably quantify the
variance of RNA numbers from the variance of noise corrupted F/W
distributions.

Finally, the third moment of noise is not expected to change with
increasing Gaussian noise. This can be seen at low noise levels (0 to
200), as the best fitting line between the third moment of noise cor-
rupted F/W distributions and the third moment of the distribution of
RNA numbers per cell is almost the same. However, at higher noise
levels (300 and 400), the best fitting line shifted slightly
(Supplementary Fig. S10D). This may be because the standard

Fig. 3. (A) Mean, M, (B) Standard deviation, Sd, and (C) Skewness, S, of single-cell distributions of integer-valued RNA numbers obtained by microscopy, as a
function of IPTG concentration (x-axis). The standard error of M, Sd and S of RNA numbers was estimated as described in Methods, section 2.7. (D) Mean, (E)
Standard deviation, and (F) Skewness of the single-cell distribution of F/W values obtained by flow cytometry. The red error bars are standard errors of the statistics
(Methods, Section 2.7). The blue error bars are the standard error of the statistics after adding variability estimated from eight technical replicates of cells carrying
only the reporter gene (Supplementary Methods, Section 1.6). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 4. Scatter plots between (A) Mean (M), (B) Variance (Var), (C) 3rd Moment of the single-cell distributions of F/W values obtained by flow cytometry against M,
Var and 3rd Moment of the single-cell distributions of RNA numbers in individual cells obtained by Microscopy for various induction strengths (0, 6.25, 50, 100, 200,
300, 500, and 1000 μM IPTG). The error bars of the points on x and y directions are standard errors estimated as in Methods, section 2.7. In each plot, we obtained the
best linear fit (black straight line) as described in Supplementary Methods, section 1.4. The dotted lines are the standard error of the fitted line.
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deviation, at the lower induction levels, is smaller than the added noise.
In that regime, the parameters of the best fitted line start being sensitive
to Gaussian noise, which increases the error of the estimation of the
third moment.

3.3. Validation of the quantification of MS2d-GFP tagged RNAs from flow
cytometry data

If the signal detected by Flow cytometry is produced by MS2d-GFP
tagged RNAs, one should be able to detect the corresponding proteins
produced from these RNAs (in particular, mRFP1 red fluorescent pro-
teins, see Methods). To test this, from the same flow cytometry mea-
surements as above, we also extracted the single-cell distribution of
PETexasRed-H and normalized these signals by the Pulse Width (de-
noted as R/W). From the single-cell R/W distribution, we obtained its
mean, standard deviation and skewness for each induction strength
(Fig. 5A-C). Supplementary Fig. S8 (right) shows the probability density
function of R/W for each induction strength.

To assess if the protein statistics (Fig. 5A-C) follows the RNA sta-
tistics (Fig. 3D-F), we plotted the values of each statistic in scatter plots
(Fig. 6A-C) and fitted with a linear fit. The adjusted R2 values and
corresponding p-values of the linear fit are shown in Supplementary
Table S2. From the Figures and Table, all three statistics are well fitted
by a line. Given the adjusted R2 values and p-values, we conclude that
there is a strong linear fit between those statistics of the single-cell
distribution of FITC-H normalized by Pulse width and PETexasRed-H
normalized by Pulse width obtained by flow cytometry, respectively.
These results confirm that the statistics of distribution of F/W values in
Fig. 3D-F should be the result of single-cell distribution of MS2d-GFP
tagged RNAs.

3.4. Estimation of mean, standard deviation and skewness of the single-cell
distribution of RNA numbers from single-cell F/W values

From the above, it should be possible to estimate the statistics of the
distribution of single-cell RNA numbers from the single-cell distribution
of F/W values. In particular, it should be possible to ‘map’ the flow
cytometry data to the microscopy data. E.g. one could calibrate two, or
more, data points (conditions) of the flow-cytometry data to the cor-
responding points (conditions) of the microscopy data. Then, we could
estimate the RNA numbers statistics of the remaining F/W data points
by linear interpolation and/or extrapolation. From this, we can obtain
an absolute RNA count scale for estimating the mean, standard devia-
tion, and skewness of the single-cell distribution of RNA numbers from
flow-cytometry data.

We start by calibrating the difference between a pair of conditions
from flow-cytometry data (e.g. 0 and 1000 μM IPTG) to the difference
between the corresponding pair of conditions from microscopy data.
This process has to be done independently for the mean, variance, and
third moment, but one can use any pair of conditions for each of the
moments.

Here we use the data in Fig. 4A-C to obtain the necessary pairs of
data points. For this, we started by testing all possible combinations of
pairs of data points (Fig. 4A-C contain 8 data points each, and thus,
there are 28 possible pairs of data points). Out of these, there are sev-
eral pairs that provide calibration lines that are consistent between
them, and thus can be used to obtain reliable results.

In order to find the largest group of calibration lines that are con-
sistent between, we plotted the y-intercepts against the slopes of the 28
calibration lines. Then we calculated the location of a ‘Median point’ in
that graph whose x-coordinate is the median of the slopes and the y-
coordinate is the median of the y-intercepts of the calibration lines (Fig.
S9A-S9C).

Fig. 5. (A) Mean, M, (B) Standard deviation, Sd, and (C) Skewness, S, of single-cell distributions of R/W values, when subject to various IPTG concentrations. The red
error bars are standard errors (Methods, section 2.7). The blue error bars are the standard error of the statistics after adding empirical variability estimated from cells
carrying only reporter gene (Supplementary section 1.6 and Supplementary Fig. S12). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 6. Scatter plots between (A) Mean (M), (B) Standard deviation (Sd), (C) Skewness (S) of the single-cell distributions of F/W values against M, Sd and S of the
single-cell distributions of R/W values for various induction strengths, differing in IPTG concentration (0, 6.25, 50, 100, 200, 300, 500, and 1000 μM IPTG). The error
bars of the points are the standard errors (red error bars as in Fig. 3D-F and Fig. 5A-C). In each plot, we obtained the best linear fit (black straight line) as described in
Supplementary Methods, section 1.4. The dotted lines are the standard error of the fitted line. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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Next, we found that using the 33% points with smaller Euclidean
distance to the Median point, one obtains consistent calibration lines for
the mean, variance, and third moment. These lines are shown, respec-
tively, in Supplementary Fig. S9D-S9F. As expected, these set of con-
sistent lines correspond to using pairs of data point that differ sig-
nificantly between them in the Fig. 4A-4C (e.g. the pair of conditions 0
and 1000 μM IPTG).

Next, using these calibration lines (see Supplementary Section 1.7),
we estimated the mean, standard deviation and skewness (along with
their standard errors) of the single-cell distribution of RNA numbers
from the distribution of F/W values. Fig. 7A shows the estimated mean
of the single-cell distribution of RNA numbers from flow cytometry
data, for each condition, using the calibration line obtained by using the
pair of conditions 0 μM IPTG and 1000 μM IPTG. Fig. 7B shows the
estimated standard deviation of the single-cell distribution of RNA
numbers from flow cytometry data, for each induction level, using the
calibration line obtained using the pair of conditions 6.25 μM IPTG and
1000 μM IPTG. Fig. 7C shows the estimated skewness of the single-cell
distribution of RNA numbers from flow cytometry data, for each in-
duction level, using the calibration line obtained using the pair of

conditions 50 μM IPTG and 1000 μM IPTG.
To evaluate the accuracy of the estimated mean, standard deviation,

and skewness from flow cytometry data, we plotted them against the
corresponding actual values, obtained by microscopy (Fig. 7D-F). If the
estimations are accurate, one expects the best-fitting line to these points
(black lines in Fig. 7D-F) to exhibit a 45-degree inclination and to in-
tercept the y-axis at zero. To test this, we plotted also the ‘ideal line’
(black lines in Figs. 7D-F). Next, we compared by analysis of covariance
(McDonald, 2009) whether the best fitting line and the ideal line could
be distinguished in slope and intercept, in a statistical sense. Results of
these tests for the mean, standard deviation, and skewness (Supple-
mentary Table S3) show that the best fitting line cannot be dis-
tinguished from the ideal line, from which we conclude that the esti-
mations are accurate.

Given the above, we conclude that collecting data using microscopy
from two conditions differing in RNA numbers, allows accurate esti-
mations of the mean, standard deviation, and skewness of single cell
distributions of RNA numbers from the distribution of total cell fluor-
escence measured byflow cytometry in multiple conditions differing in
induction strength, using MS2d-GFP tagging of RNA.

Fig. 7. (A) Mean single-cell RNA numbers estimated from Flow cytometry data, using microscopy data (Mean RNA numbers per cell) in the minimum (0 μM IPTG)
and maximum induction (1000 μM IPTG) conditions for the calibration. (B) Standard deviation of single-cell RNA numbers estimated from Flow cytometry data,
using the microscopy data (Variance of RNA numbers per cell) in 6.25 μM IPTG and maximum induction conditions (1000 μM IPTG) for the calibration. (C) Skewness
of single-cell RNA numbers estimated from Flow cytometry, using the microscopy data (3rd moment of RNA numbers per cell) in 50 and 1000 μM IPTG for the
calibration. Light grey bars are the actual values obtained from microscopy data and dark grey bars are the estimated values from flow cytometry data (F/W). (D)
Scatter plot between estimated and actual mean values of single-cell RNA numbers. The blue points along with their standard error bars are the estimated mean of
single-cell RNA numbers (Mest), plotted against the corresponding actual values (Mact). Also shown is the best linear fit to the blue points (blue line) along with the
uncertainty of the fit (blue area). Finally, it is shown the ‘ideal’ linear fit (black line). The black line crosses 0 at the y-axis and has an inclination of 1, which would
correspond to the estimated values being identical to the actual values. (E) Scatter plot between estimated and actual standard deviations of single-cell RNA numbers.
The blue points along with their standard error bars are the estimated standard deviations of singe-cell RNA numbers (Sdest), plotted against the corresponding actual
values (Sdact). Also shown is the best linear fit to the blue points (blue line) along with the uncertainty of the fit (blue area). Finally, it is shown the ‘ideal’ linear fit
(black line). The black line crosses 0 at the y-axis and has an inclination of 1, which would correspond to the estimated values being identical to the actual values. (F)
Scatter plot between estimated and actual skewness of single-cell RNA numbers. The blue points along with their standard error bars are the estimated skewness of
single-cell RNA numbers (Sest), plotted against the corresponding actual values (Sact). Also shown is the best linear fit to the blue points (blue line) along with the
uncertainty of the fit (blue area). Finally, it is shown the ‘ideal’ linear fit (black line). The black line crosses 0 at the y-axis and has an inclination of 1, which would
correspond to the estimated values being identical to the actual values. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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Next, as in Section 3.2, we tested for the robustness of these esti-
mations by adding increasingly higher Gaussian noise to the empirical
F/W values. Results of these estimations using the noise corrupted F/W
values are shown in Supplementary Fig. S11. Visibly, the estimations of
the mean and standard deviation are not significantly affected. Mean-
while, the estimations of skewness are only affected for the 3 lowest
induction conditions, similar to the results in Section 3.2, for similar
reasons.

It is noted that the added Gaussian noise is much above what we
expect to observe in real data collected from cells with the MS2d-GFP
technology. I.e., the highest artificially added noise is much higher than
the observed noise at the lowest induction conditions. Specifically, e.g.,
in the case at 6.25 μM IPTG induction, the observed standard deviation
is ~155, while we added up to σ=400 artificial Gaussian noise.

4. Discussion

Presently, FISH and MS2d-GFP RNA tagging are two of the preferred
technologies for visualizing and quantifying RNA numbers in individual
cells (Raj and van Oudenaarden, 2009). While the latter is likely more
intrusive, it has some advantages, such as allowing to track the dy-
namics of RNA production in live cells, which has been used to dissect
the underlying kinetic steps of transcription initiation, not possible
otherwise (Lloyd-Price et al., 2016). So far, the use of MS2d-GFP RNA
tagging has required microscopy and subsequent image analysis, which
heavily limits the amount of data that can be produced. Further, image
analysis introduces many errors (even with manual corrections). The
ability to extract information using this technique from flow cytometry
would overcome both limitations.

We have shown that it is possible to perform flow cytometry of cells
expressing MS2d-GFP and RNA targets for MS2d-GFP and accurately
estimate the mean, standard deviation, and skewness of the single-cell
distribution of RNA numbers. Importantly, we have shown that the
results cannot be distinguished, in a statistical sense, from those ob-
tained by microscopy followed by manually corrected image analysis.
Also, we have shown (Fig. 4) that the estimations of integer valued RNA
numbers in individual cells are highly correlated with single-cell
fluorescent protein levels, which is strong evidence of the accuracy of
the estimations.

Interestingly, the estimations of mean single-cell RNA numbers from
flow-cytometry data only exhibit significant discrepancy with the mi-
croscopy data when RNA production is weaker (Fig. 7). Past studies
using microscopy and image analysis of cells with MS2d-GFP tagged
RNAs (Häkkinen et al., 2014; Häkkinen and Ribeiro, 2015, 2016) sug-
gest that these discrepancies arise mostly from errors in the microscopy
data, which is based on ~500 cells per condition. In comparison, flow-
cytometry data is based on ~40,000 cells (each of which randomly
collected from a well-stirred medium). Consequently, the microscopy
data is more prone to errors due to small sample size, particularly in
weak expression conditions, where it is harder to select images of cells
that are good representatives of the population. Nevertheless, regarding
the estimations from flow-cytometry data, it is worth noting the un-
expected value for the standard deviation at 0 μM IPTG (Fig. 7B), likely
due to random biological variability.

In general, our results indicate that estimations of the statistics of
single-cell RNA numbers can largely be performed from flow cytometry
data and then be complemented by microscopy measurements (with
scaling only requiring population images in two conditions differing in
mean RNA numbers per cell). The large number of cells that can be
observed by flow-cytometry promises precise estimations these statis-
tics. Namely, we note that the estimations of single-cell RNA number
statistics performed here are accurate not only in what concerns mean
and standard deviation, but also skewness, which is in itself evidence of
the accuracy of the estimations. Relevantly, this ensures that this
technique can be used to estimate the propensity of a specific tran-
scription kinetics to overcome thresholds in RNA and protein numbers

(which is of significance in the context of small genetic circuits, among
other). Finally, it is worth noting that, in principle, the method is
readily applicable to cells with fluorescently tagged RNA using FISH
technology. In this case, the methodology is expected to contribute in
decreasing the effects of noise due to auto fluorescence from natural
cellular components.

Overall, we expect the methodology proposed here to be useful in
studies of in vivo transcription at single-molecule level, by adding more
reliability to the conclusions, as these will be based on larger number of
cells (by 2 to 3 orders of magnitude when compared to when collecting
data by microscopy and image analysis). Also, much more conditions
can be tested, due to the incomparably faster speed by which results can
be obtained, compared to when using microscopy and image analysis.
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