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A B S T R A C T

In addition to high-precision closed-loop control performance, energy efficiency is another vital characteristic
in field-robotic hydraulic systems as energy source(s) must be carried on board in limited space. This study
proposes an energy-efficient and high-precision closed-loop controller for the highly nonlinear hydraulic robotic
manipulators. The proposed method is twofold: 1) A possibility for energy consumption reduction is realized
by using a separate meter-in separate meter-out (SMISMO) control set-up, enabling an independent metering
(pressure control) of each chamber in hydraulic actuators. 2) A novel subsystem-dynamics-based and modular
controller is designed for the system actuators, and it is integrated to the previously designed state-of-the-art
controller for multiple degrees-of-freedom (n-DOF) manipulators. Stability of the overall controller is rigorously
proven. The comparative experiments with a three-DOF redundant hydraulic robotic manipulator (with a
payload of 475 kg) demonstrate that: 1) It is possible to design the triple objective of high-precision piston
position, piston force and chamber pressure trackings for the hydraulic actuators. 2) In relation to the previous
SMISMO-control methods, unprecedented motion and chamber pressure tracking performances are reported. 3)
In comparison to the state-of-the-art motion tracking controller with a conventional energy-inefficient servovalve
control, the actuators’ energy consumption is reduced by 45% without noticeable motion control (position-
tracking) deterioration.

1. Introduction

Due to hydraulic actuators’ many practical advantages like simplic-
ity, robustness, low cost, and large power-to-weight ratio, they has been
used for decades in a variety of off-highway machines (e.g., agricultural,
construction, forestry, and mining machines). Nowadays, these ma-
chines comprise a huge global industrial sector; in 2016, the construc-
tion business alone sold 700,000 units of construction machines (Grib-
bins, 2016), whereas the projected sell in 2019 for the thriving in-
dustrial robots is approximately 400,000 units (International Federa-
tion of Robotics (IFR), 2017). Due to present aspirations to increase
productivity and to lower operating costs, we are heading to a future
where these conventional working machines are becoming field-robotic
systems, requiring minimal human supervision. Indeed, it is projected
that: (1) robotics technology markets will grow substantially in the
coming decade (EU Robotics, 2014), and (2) the advent of robotics
will revolutionize the (hydraulic) heavy-duty machine industry (Mattila
et al., 2017), similarly as is currently happening, e.g., in traffic and
the car industry (Daily et al., 2017). In fact, the first commercial
semiautonomous products for hydraulic heavy-duty machines are al-
ready available in the market, e.g., HIAB crane tip control (HIAB,
2017) for loader cranes and John Deere intelligent boom control (John
Deere, 2013) for forest machines. Also, in advanced hydraulic robotic
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systems, an extensive academic research is ongoing for heavy-duty
machines (Hutter et al., 2017; Koivumäki & Mattila, 2015a,b, 2017a;
Mattila et al., 2017) and for legged robots (Boaventura et al., 2015;
Hyon et al., 2017a; Koivumäki et al., 2017; Kuindersma et al., 2016;
Rong et al., 2012; Semini et al., 2015, 2017).

Energy efficiency of ambulatory robotic systems has become an
important topic in the recent years (Nurmi & Mattila, 2017; Seok et al.,
2015; Xi et al., 2016). In hydraulic systems, energy efficiency has
remained one of the most important unsolved challenges (Mattila et al.,
2017). Indeed, the aforementioned academic hydraulic robotic systems
are all fundamentally energy inefficient due to the use of a conventional
energy-inefficient (servo)valve control; see Fig. 1(a). In stationary
applications, energy efficiency can be a secondary design objective.
However, the situation is different in ambulatory robotic systems where
energy sources must be carried on board in limited space (Mattila et al.,
2017). A good example of energy inefficient machine is the hydraulic
excavator, whose total energy efficiency can be as low as 10%, con-
tributing to approximately 60% of all the construction machinery CO2
emissions (Vukovic et al., 2017). Today, strict administrative regulations
demand energy consumption and CO2 emissions reductions for the
industry; see China’s 13th five-year plan (Government of China, 2017)
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and the new European Union directive for energy efficiency (European
Commission, 2012).

In addition to energy efficiency, high-precision motion and force
tracking controls are vital functionalities for robotic systems. However,
designing them for hydraulic (robotic) systems is a well-known chal-
lenge due to the significant nonlinearities.1 To address the nonlinear-
ities, nonlinear model-based (NMB) control methods2 are shown to
provide a superior control performance in relation to other control
methods (Bech et al., 2013; Mattila et al., 2017). However, due to the
overall complexity, only a handful of research papers have managed to
provide a stability-guaranteed NMB control design (Mattila et al., 2017).
This situation is unsatisfactory because the control system stability is
the primary requirement for all control systems and an unstable system
is typically useless and potentially dangerous (Krstić et al., 1995; Slotine
& Li, 1991).

The objective of this study is to design a high-precision and stability-
guaranteed controller for multiple degrees-of-freedom (𝑛-DOF) hydraulic
robotic manipulators, while simultaneously substantially improving
their energy efficiency. The solution suggests that: (1) A possibility for
reducing hydraulic actuators’ energy consumption can be realized by
using servovalves in separate meter-in separate meter-out (SMISMO)
control set-up (see Fig. 1(b)), enabling individual metering (pressure
control) for the actuators’ chambers. (2) A high-precision piston motion,
piston force and chamber pressure tracking controller can be designed
for the actuators in a 𝑛-DOF hydraulic robotic manipulator. The latter
is designed by using the control design principles of the virtual de-
composition control (VDC) approach (see Zhu, 2010; Zhu et al., 1997),
allowing that the original complex system can be virtually decomposed
to modular subsystems. This enables that the control design and its
stability analysis can be performed locally at the subsystem level and,
very importantly, the control system becomes modular in the sense that
changing the control (or dynamics) of one subsystem does not affect the
control equations of the rest of the system. A number of significant state-
of-the-art control performance improvements have been reported with
VDC for hydraulic robots (see Koivumäki & Mattila, 2015a,b, 2017a;
Mattila et al., 2017; Zhu & Piedboeuf, 2005) and for electric robots
(see Zhu et al., 1998; Zhu & De Schutter, 1999a,b, 2002; Zhu et al.,
2013).

This paper provides the following contributions. (1) It is theoretically
shown that hydraulic systems’ energy consumption can be reduced using
a SMISMO control setup. (2) Novel energy consumption optimizing
chamber pressure trajectories are designed. (3) Stability-guaranteed high-
precision SMISMO control for 𝑛-DOF hydraulic manipulators is pro-
posed for the first time with experimental verifications in 𝑛-DOF. (4)
It is shown that the triple objective of high-precision piston position,
piston force and chamber pressure trackings can be design for hydraulic
actuators. (5) The comparative experiments with a redundant 3-DOF
hydraulic manipulator (having a payload of 475 kg) demonstrate that
the proposed controller: (i) outperforms all non-VDC control methods
(reviewed in Mattila et al., 2017) in motion control accuracy in view
of a normalizing performance indicator 𝜌, and (ii) achieves an un-
precedented piston motion and chamber pressure tracking accuracies in
relation to the previous SMISMO-control methods. (6) In comparison

1 In articulated systems, the associated multibody dynamics are nonlinear.
Furthermore, hydraulic actuator dynamics can involve non-smooth and dis-
continuous nonlinearities due to actuator friction, hysteresis, control input
saturation, or directional change of valve opening, and also many model and
parameter uncertainties exist (Alleyne & Liu, 1999; Edge, 1997; Watton, 1989;
Yao et al., 2001, 2014). Altogether, the complex dynamic behavior of hydraulic
robotic systems (like manipulators) can be described by highly nonlinear
coupled third-order differential equations.

2 The aim is to design a specific feedforward term to proactively generate
the required actuator forces from the required inverse motion dynamics (Mistry
et al., 2010; Zhu, 2010).

to state-of-the-art VDC controller with a conventional energy-inefficient
servovalve control, the actuators’ total energy consumption is reduced by
45% without noticeable Cartesian position-tracking accuracy lost.

Next, Section 2 is devoted to the SMISMO control; Section 2.1 re-
views the SMISMO control strategies, Section 2.2 contributes to SMISMO
control by theoretically showing its ability for the energy consumption
reductions and, very importantly, Section 2.3 designs energy-optimized
chamber pressure trajectories for the proposed control method. Sec-
tion 3 introduces the VDC approach and designs the VDC-based SMISMO
controller for the studied 𝑛-DOF hydraulic manipulator. Section 4 pro-
vides a rigorous stability proof for the overall control design. Section 5
demonstrates the control performance of the method in comparative
experiments. Section 6 concludes the study.

2. SMISMO control

2.1. Previous works and their limitations

After SMISMO control was proposed in Jansson and Palmberg
(1990), an intensive research have been performed for single-DOF hy-
draulic actuators. However, these single-DOF SMISMO actuator control
designs are not immediately applicable to 𝑛-DOF systems and, thus,
are not reviewed. An overview of different hardware layouts to realize
SMISMO control can be found in Eriksson and Palmberg (2011). Today,
e.g., digital flow control units in digital hydraulics (see Linjama, 2011)
use an idea of individual metering.

An experimentally verified SMISMO control of 𝑛-DOF hydraulic ma-
nipulators was proposed for the first time by Mattila and Virvalo (2000).
The control design for a two-DOF hydraulic manipulator was based on
the computed torque control method using input/output linearization,
and SMISMO control was realized with closed-loop proportional valves.
Stability analysis and parameter uncertainties were not considered.

The SMISMO control of hydraulic manipulators has recently at-
tracted significant interest in research; see Choi et al. (2015), Huova
et al. (2010), Karvonen (2016), Liu et al. (2016), Lübbert et al. (2016)
and Xu et al. (2015). Relying on relatively simple control implemen-
tations, the main interest in these studies is improving the energy
efficiency of the system, while the system motion control performance
is mainly neglected; only (Huova et al., 2010; Karvonen, 2016) showed
some motion control data. In Choi et al. (2015) and Liu et al. (2016),
only simulation results were presented. No stability analysis is provided
in Choi et al. (2015), Huova et al. (2010), Karvonen (2016), Liu et al.
(2016), Lübbert et al. (2016) and Xu et al. (2015).

Koivumäki and Mattila (2013) demonstrated early attempts to de-
sign a VDC-based controller for an SMISMO-controlled two-DOF hy-
draulic manipulator. The stability was proven (cursory). Contrary to the
present study, parameter uncertainties were neglected in Koivumäki and
Mattila (2013). While reporting sufficiently improved motion control
performance (not comparable to the present study; see Section 5.3),
large chamber pressure tracking errors occurred during the driven test
trajectories, limiting the applicability, e.g., in high-precision robotic
applications.

The current state of the art in SMISMO control of hydraulic ma-
nipulators is shown in Liu and Yao (2008) and Lu and Yao (2014).
Liu and Yao (2008) proposed a coordinated control of energy-saving
programmable valves considering single-DOF boom dynamics (in fact,
a three-DOF robotic arm, where only one of the joints was driven) and
the hydraulic actuator dynamics. The two-level controller was designed
on (backstepping based) adaptive robust control, guaranteeing closed-
loop system stability and performance under various model uncertain-
ties and disturbances. The advancement of the proposed method was
demonstrated in experiments.
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Lu and Yao (2014) updated their previous controller in Liu and
Yao (2008) by adding an accumulator to the system and improving the
system energy consumption potential. A three-level stability-guaranteed
adaptive robust controller was developed for the same single-DOF
electro-hydraulic boom as in Liu and Yao (2008), and energy consump-
tion reduction in relation to Liu and Yao (2008) was reported.

As discussed, stability-guaranteed NMB control methods can pro-
vide the most advanced control performance for hydraulic manipula-
tors (Mattila et al., 2017). However, energy-efficient and high-precision
NMB control for 𝑛-DOF hydraulic manipulators, with guaranteed control
system stability, is still an open problem. This problem is addressed in the
present paper. Furthermore, contrary to all the above reviewed studies,
the present study introduces a kinematic redundancy in its mechanical
structure.

2.2. Energy efficiency and SMISMO control

Currently, an electro-hydraulic (servo)valve control is a necessity for
hydraulic actuators’ high-precision control in terms of control accuracy
and response time (Mattila et al., 2017).3 Indeed, all state-of-the-art
control methods for hydraulic robotic manipulators reviewed in Mattila
et al. (2017) have employed a conventional servovalve control (see
Fig. 1(a)). In this set-up, the valve meter-in (inlet) and meter-out (outlet)
orifices are mechanically connected by a spool, making the system
robust and easier to control (Eriksson & Palmberg, 2011).

The hydraulic cylinder piston force 𝑓p can be written as

𝑓p = 𝐴a𝑝a − 𝐴b𝑝b (1)

where 𝐴a > 𝐴b holds for the piston chamber areas, and 𝑝a and 𝑝b are the
chamber pressures; see Fig. 1. In the conventional control, the piston
force 𝑓p is controllable, whereas the individual chamber pressures 𝑝a and
𝑝b are not. Thus, this type of system lacks flexibility, and meter-out
orifices are needed to be dimensioned for an over-running load, leading
to unnecessary losses in the orifices (Eriksson & Palmberg, 2011; Mattila
& Virvalo, 2000).

In the SMISMO control (see Fig. 1(b)), the mechanical connection
between the meter-in and meter-out orifices is removed, and each
cylinder chamber is controlled with an individual (servo)valve. This
makes the chamber pressures 𝑝a and 𝑝b controllable, and, in theory, a
specific piston force 𝑓p can be now obtained with an infinite number
of chamber pressure combinations. This enables a possibility for hydraulic
actuators’ energy consumption reductions, if such high-precision chamber
pressure trackings can be designed for 𝑝a and 𝑝b that the pressures can
be set as low as practically possible. Obviously, this leads to a possibility
to lower also the system supply pressure 𝑝s.

Next, consider that both pistons in Fig. 1 are moving with velocity
𝑥̇ > 0 to right with the maximum piston force 𝑓p𝑚𝑎𝑥 > 0. In this quadrant
of 𝑥̇–𝑓p envelope, chamber A is the meter-in chamber and chamber B is
the meter-out chamber. Then, the hydraulic energy consumption 𝐸h can
be written as

𝐸h = ∫

𝑡

0
𝑄a(𝜏)𝑝s(𝜏)𝑑𝜏 = ∫

𝑡

0
𝐴a𝑥̇(𝜏)𝑝𝑠(𝜏)𝑑𝜏 (2)

3 As an alternative to servovalve control, a displacement control (Grabbel &
Ivantysynova, 2005; Hippalgaonkar & Ivantysynova, 2016) can be used for a
hydraulic actuator control by regulating the variable displacement pump (VDP)
fluid flow rate production, without using an energy dissipating control valve
between the pump and the actuator. However, the dynamic response of VDPs is
much slower compared with servovalves; response times for cutting-edge VDPs
vary between 65–160 ms (Parker Hannifin, 2016, p. 6), whereas that of cutting-
edge servovalves can be < 1.8 ms (MOOG, 2015). Furthermore, the above
mentioned displacement control studies lack of attention to high-bandwidth
actuator tracking performance, which is essential for robotic purposes. However,
some promising results are recently obtain in Hyon et al. (2017b) with a
hydraulic hybrid servo booster.

Fig. 1. (a) shows a conventional control set-up for an asymmetric cylinder. (b) shows a
SMISMO control set-up for an asymmetric cylinder.

where 𝑄a is the fluid flow rate to chamber A. Regulating 𝐸h with
𝑄a (=𝐴a𝑥̇) is generally irrelevant; a slower velocity 𝑥̇ increases a task
completion time 𝑡 in (2), thus, providing very minor (if any) reductions
in the energy consumption. Consequently, the remaining option for
energy efficiency is to regulate the system supply pressure 𝑝s (by
lowering 𝑝a and 𝑝b).

In the analyzed quadrant (𝑥̇ > 0, 𝑓p𝑚𝑎𝑥 > 0), the needed supply
pressure in the conventional control can be written as (Johnson, 1995)

𝑝s(CC) =
3
2
𝑓p𝑚𝑎𝑥
𝐴a

. (3)

The SMISMO control can provide a possibility for energy consump-
tion reductions due to its ability for the individual chamber pressure
control. Let the chamber pressures be minimized by designing a constant
pressure margin 𝛥𝑝c (typically 5–20 bar) across both of the meter-in and
meter-out orifices. Then, in the analyzed quadrant, the needed supply
pressure in the SMISMO control can be written as

𝑝s(SMISMO) = 𝑝a + 𝛥𝑝c =
𝑓p𝑚𝑎𝑥 + (𝐴a + 𝐴b)𝛥𝑝c

𝐴a
(4)

using (1) and 𝑝b = 𝑝t + 𝛥𝑝c, where 𝑝t = 0 is the return line pressure.
Then, Condition 1 can be derived from (3) and (4).

Condition 1. If 𝛥𝑝c <
𝑓p𝑚𝑎𝑥

2(𝐴a+𝐴b)
, then 𝑝s(SMISMO) < 𝑝s(CC).

It follows directly from (2) that reduced energy consumption can
be obtained with the SMISMO control, when Condition 1 holds. As an
example, let 𝑓p𝑚𝑎𝑥 = 100 kN, 𝐴a = 5.02 × 10−3 m2 and 𝐴b = 3.44 × 10−3

m2 (dimensions of cylinder 1 in the studied manipulator). Then, for the
energy consumption reductions, 𝛥𝑝c < 59 bar should be selected.

Remark 1. Respective analysis to Condition 1 can shown to be valid in
all four quadrants of 𝑥̇–𝑓p envelope. If a constant pressure pump is used,
Condition 1 can be used to set the system constant supply pressure level.
For further energy consumption reductions, the system supply pressure
𝑝s(𝑡) needs to be controlled such that 𝑝s(𝑡) = 𝑝in(𝑡)+𝛥𝑝c, ∀𝑡, where 𝑝in(𝑡) is
the meter-in chamber pressure. Methods for advanced supply pressure
control can be found in Koivumäki and Mattila (2017b), Lovrec and
Ulaga (2007) and Mattila et al. (2017).

The remaining question is: How to design such a high-precision chamber
pressure tracking control that 𝑝a and 𝑝b can be minimized according to
𝛥𝑝c, while simultaneously designing a high-precision piston motion tracking?
This is not a simple task. It is well known that designing a high-
precision motion and force tracking controller for the conventionally
controlled actuator (see Fig. 1(a)) is a challenging task due to the system
significant nonlinearities (Alleyne & Liu, 1999; Edge, 1997; Watton,
1989; Yao et al., 2001, 2014). In the SMISMO control (see Fig. 1(b)),
the control design task becomes even more complicated (Eriksson &
Palmberg, 2011). Thus, designing both high-precision piston motion and
chamber pressure trackings in the SMISMO-control is an extreme control
design challenge for a single actuator alone. Evidently, this task becomes
even more multifaceted challenge, when 𝑛-DOF manipulator’s nonlinear
dynamics are needed to be considered. This problem is addressed in the
present paper.
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Fig. 2. Non-differentiable chamber pressure trajectories. (For interpretation of colors in
this figure, the reader is referred to the web version of this article.)

2.3. Energy consumption optimizing SMISMO trajectories

Let the required piston force 𝑓pr (𝑡) (a control design variable spec-
ified in Section 3.4) be known and a smooth (differentiable) function.
Then, the following design constraints are imposed for required chamber
pressure trajectories 𝑝ar (𝑡) and 𝑝br (𝑡):

Condition 2. In view of (1), the following constraint must hold for the
chamber pressure trajectories 𝑝ar and 𝑝br :

𝑓pr = 𝐴a𝑝ar − 𝐴b𝑝br . (5)

Condition 3. To avoid cavitation in the chambers, 𝑝ar (𝑡) ⩾ 𝛥𝑝c and
𝑝br (𝑡) ⩾ 𝛥𝑝c must hold ∀𝑡, where 𝛥𝑝c > 0 is a constant pressure margin,
but also sets a desired minimum pressure level for the cylinder chambers.

Condition 4. To minimize the chamber pressure levels, 𝛥𝑝c must hold
at least one of the chamber pressure trajectories ∀𝑡, i.e., min{𝑝ar (𝑡), 𝑝br (𝑡)}
= 𝛥𝑝c, ∀𝑡.

In view of Conditions 2–4, the following chamber pressure trajecto-
ries are designed for 𝑝ar and 𝑝br using the known 𝑓pr (𝑡):

𝑝ar (𝑓pr ) =
𝑓pr + 𝐴b𝛥𝑝c

𝐴a
𝜂dc(𝑓pr ) + 𝛥𝑝c

[

1 − 𝜂dc(𝑓pr )
]

(6)

𝑝br (𝑓pr ) = −
𝑓pr − 𝐴a𝑝ar (𝑓pr )

𝐴b
(7)

where a discontinuous (non-differentiable) switching function 𝜂dc(𝑓pr )
is designed as

𝜂dc(𝑓pr ) =
{

1, if 𝑓pr − 𝛥𝑝c(𝐴a − 𝐴b) ⩾ 0
0, otherwise . (8)

Fig. 2(a) shows the behavior of the designed chamber pressure
trajectories (6) and (7) as a function of 𝑓pr . In the figure, 𝛥𝑝c = 10
bar, 𝐴a = 5.02 × 10−3 m2 and 𝐴b = 3.44 × 10−3 m2 are used. Fig. 2(b)
shows the behavior of the discontinuous switching function 𝜂dc(𝑓pr ) in
(8), which defines a switching point where both 𝑝ar and 𝑝br equal to
𝛥𝑝c. Fig. 2(c) shows a zoomed view to the switching point. The validity
of Condition 2 can be shown by substituting (6) and (7) into (5). The
validity of Conditions 3 and 4 can be seen in Fig. 2.

If time derivatives 𝑝̇ar and 𝑝̇br are needed in the control design, the
designed pressure trajectories in (6) and (7) cannot be used due to
the discontinuous (non-differentiable) switching function 𝜂dc(𝑓pr ). Thus,

Fig. 3. Continuously differentiable chamber pressure trajectories. (For interpretation of
colors in this figure, the reader is referred to the web version of this article.)

the following smooth (continuously differentiable) switching function
𝜂c(𝑓pr ) is designed

𝜂c(𝑓pr ) =
tanh

([

𝑓pr − 𝛥𝑝c(𝐴a − 𝐴b)
]

∕𝑐𝜂
)

+ 1
2

(9)

where 𝑐𝜂 > 0 is a sufficiently small constant. Now, the differentiable
chamber pressure trajectories can be designed as

𝑝ar (𝑓pr ) =
𝑓pr + 𝐴b𝛥𝑝c

𝐴a
𝜂c(𝑓pr ) + 𝛥𝑝c

[

1 − 𝜂c(𝑓pr )
]

(10)

𝑝br (𝑓pr ) = −
𝑓pr − 𝐴a𝑝ar (𝑓pr )

𝐴b
(11)

provided that ̇𝑓pr exists.
Fig. 3(a) shows the behavior of the designed smooth chamber

pressure trajectories in (10) and (11); note the similarity to Fig. 2(a).
Fig. 3(b) shows the behavior of the smooth switching function 𝜂c(𝑓pr )
in (9) with three 𝑐𝜂 values. The smaller the 𝑐𝜂 , the faster the switching
rate of 𝜂c(𝑓pr ), and when 𝑐𝜂 → 0, then 𝜂c(𝑓pr ) → 𝜂dc(𝑓pr ). Fig. 3(c) shows
a zoomed view to the switching point with 𝑐𝜂 = 5 and 𝑐𝜂 = 12. Some
undershoot exists in 𝑝ar and 𝑝br in relation to 𝛥𝑝c, making Conditions 3
and 4 invalid in the neighborhood of the switching point, however,
the amount of overshoot can be adjusted to be minimal with 𝑐𝜂 . Very
importantly, 𝑝ar and 𝑝br in (10) and (11) are constrained by 𝑓pr (𝑡) in
(5), i.e., Condition 2 holds; this can be shown by substituting (10) and
(11) into (5). Finally, note that the switching point for the pressure
trajectories in (10) and (11) is automatically adjusted with 𝛥𝑝c. Thus, 𝑐𝜂
and 𝛥𝑝c are the parameters governing the pressure trajectory behaviors
in (10) and (11).

3. Virtual decomposition control

In this study, the control system is designed based on a novel VDC
approach; see Zhu et al. (1997) and Zhu (2010). VDC is the first rigorous
control method to take full advantage of Newton–Euler dynamics,
and its unique subsystem-dynamics-based control design philosophy has
brought a modularity to control system engineering, enabling, e.g., that
changing the control (or dynamics) of one subsystem does not affect
the control equations of the rest of the system. As will be shown, an
adaptive control can be incorporated into the control design to cope
with all uncertain parameters involved in the subsystems’ dynamics.

In VDC, the original system is virtually decomposed into modular
subsystems (objects and open chains), allowing that the control design
and stability analysis can be performed at the subsystem level with-
out imposing additional approximations. The virtual decomposition is
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Fig. 4. (a) The studied robotic manipulator. (b) The virtual decomposition of the system.
(c) The simple oriented graph of the system. (For interpretation of colors in this figure,
the reader is referred to the web version of this article.)

performed by placing conceptual virtual cutting points (VCPs), which
are directed separation interfaces that conceptually cut through a rigid
body. At a VCP, two parts resulting from the virtual cut maintain equal
positions and orientations. Thus, the VCP forms a virtual cutting surface
on which six-dimensional force/moment vectors (see Appendix A) can
be exerted from one part to another. It is simultaneously interpreted as
a driving VCP by one subsystem (from which the force/moment vector
is exerted) and as a driven VCP by another subsystem (to which the
force/moment vector is exerted) (Zhu, 2010).

Fig. 4(a) shows the studied 3-DOF hydraulic manipulator. The system
has two hydraulic cylinder actuated rotational joints (closed-chain
structures in red and blue), and a hydraulic cylinder actuated prismatic
joint (in green) for a telescopic boom. The telescopic boom makes the
system redundant. Although a 3-DOF system is studied, the approach
developed in this paper is easily extendable for systems with any number
of actuators.

Fig. 4(b) shows the virtual decomposition of the system. Note that
the closed-chain structures (in Fig. 4(a)) are decomposed to open chains;
unactuated revolute open chains 2 and 4, and actuated prismatic open
chains 1 and 3. By neglecting the friction between the bearing-mounted
sliding booms, the telescopic boom can be decomposed to objects 2 and
3, and an actuated prismatic open chain 5 (in green). This treatment
enables that: (1) the control design for cylinder 3 becomes independent
from the sliding booms, and (2) the control design for all actuated open
chains becomes modular at the subsystem level. Similar modularity is
obtained for the objects 0–3, and for the unactuated open chains 2 and 4.
Fixed body frames are attached to the system to describe the motion and
force specifications (for simplicity, only the frames involved to cylinder
3 are shown in Fig. 4(b)). Blue frames are frames at the VCPs and red
frames are frames at the subsidiary VCPs of the open chain.

After the virtual decomposition, the system is represented by a sim-
ple oriented graph (SOG), which is shown in Fig. 4(c). The SOG describes

the system’s topological structure and the dynamic relationships among
the decomposed subsystems. In the SOG, each subsystem represents a
node, and each VCP represents a directed edge, the direction of which
defines the force reference direction. Nodes that have pointing-away
edges only are called source nodes, and nodes that have pointing-to edges
only are called sink nodes. No loop is allowed in a SOG (Zhu, 2010).

As mentioned, VDC allows that changing the control (or dynamics)
of a subsystem does not affect the control equations of the rest of the
system. Furthermore, when all subsystems qualify as virtually stable (see
Definition 3 in Appendix C), 𝐿2 and 𝐿∞ stability (see Lemma 1 in
Appendix B) of the entire system can be guaranteed. Thus, the main
objectives in this study are to

(1) design a high-precision motion, force and pressure tracking control
for the SMISMO-controlled hydraulic actuators, using the pres-
sure trajectories in (10) and (11), and

(2) design a virtually stable structure for the above mentioned con-
troller to ensure its direct connectivity to the previously de-
signed VDC-based controllers for 𝑛-DOF hydraulic manipulators
in Koivumäki and Mattila (2015a,b, 2017a).

For the above, hydraulic cylinder 3 (composing of open chain 5
dynamics and the actuator fluid dynamics) in Fig. 5 is used as an illus-
trative example. The virtually stable control designs for the remaining
subsystems (delimited with the dashed line in Fig. 4(c)) and for object 3
can be obtained as shown in Remark 2.

Remark 2. The control design for cylinders 1 and 2 can be obtained
by following a procedure similar to that presented for cylinder 3. The
control design for the unactuated open chains (open chains 2 and 4 in
Fig. 4), and kinematic and dynamic relations in the system closed chains
can be found in details in Koivumäki and Mattila (2015a,b). The control
design for the objects is a trivial case and can be obtained as described,
e.g., in Koivumäki and Mattila (2015a) and Zhu (2010).

Next, the kinematics and dynamics (open chain 5 dynamics and
cylinder 3 dynamics) for the SMISMO controlled hydraulic actuator
assembly are specified in Sections 3.1 and 3.2. Then, the detailed control
laws for the proposed SMISMO controller are derived in Sections 3.3
and 3.4, where the control design procedure is clarified in the remarks. The
system stability analysis is provided later in Section 4.

3.1. Open chain 5: Kinematics and dynamics

The notation in this section follows a standard notation used in
VDC. For more details on the linear/angular velocity vectors 𝐀𝑉 ∈ R6,
the force/moment vectors 𝐀𝐹 ∈ R6 and the transformation matrices
𝐀𝐔𝐁 ∈ R6×6; see Appendix A.

Open chain 5 (composing of rigid links 5 and 51) is shown in Fig. 5.
For the attached frames at VCP 5 and VCP 6, denoted in blue in Figs. 4(b)
and 5, the following relations hold:
{

𝐓O3
}

=
{

𝐓5
}

(12)
{

𝐁O2
}

=
{

𝐁5
}

. (13)

The kinematics of subsystems can be computed by propagating along
the direction of the VCP flow in the SOG (see Fig. 4) from the source
node (object 0) toward the sink node (object 3). Then, given 𝐁O2𝑉 ∈ R6,
the linear/angular velocity vector 𝐁5𝑉 at the driven VCP of open chain
5 can be written as
𝐁5𝑉 = 𝐁O2𝑉 (14)

in view of (13). Then, the remaining linear/angular velocity vectors in
open chain 5 can be written as
𝐁51𝑉 = 𝐱𝑓 𝑥̇3 + 𝐁5𝐔𝑇

𝐁51
𝐁5𝑉 (15)

𝐓5𝑉 = 𝐁51𝐔𝑇
𝐓5

𝐁51𝑉 (16)
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Fig. 5. The hydraulic actuator assembly (cylinder 3), composing of the prismatic open
chain 5 (with the black line), and the fluid dynamics with the SMISMO control layout (in
gray). (For interpretation of colors in this figure, the reader is referred to the web version
of this article.)

where 𝐱𝑓 = [1 0 0 0 0 0]𝑇 and 𝑥̇3 is the piston velocity of cylinder 3.
Then, in view of (12), the linear/angular velocity vector 𝐓O3𝑉 ∈ R6 at
the driven VCP of object 3 can be written as
𝐓O3𝑉 = 𝐓5𝑉 . (17)

After the kinematics, the dynamics of subsystems can be computed
by propagating along the opposite direction of the SOG from the
sink node toward the source node (see Fig. 4). First, using (A.5) in
Appendix A, the dynamics of link 5 (the cylinder case) and link 51 (the
cylinder piston) can be written as

𝐌𝐁5
𝑑
𝑑𝑡

(𝐁5𝑉 ) + 𝐂𝐁5
(𝐁5𝜔)𝐁5𝑉 +𝐆𝐁5

= 𝐁5𝐹 ∗ (18)

𝐌𝐁51
𝑑
𝑑𝑡

(𝐁51𝑉 ) + 𝐂𝐁51
(𝐁51𝜔)𝐁51𝑉 +𝐆𝐁51

= 𝐁51𝐹 ∗ (19)

where 𝐌𝐁5
, 𝐌𝐁51

∈ R6×6 are the mass matrices, 𝐂𝐁5
(𝐁5𝜔), 𝐂𝐁51

(𝐁51𝜔) ∈
R6×6 are the Coriolis and centrifugal matrices, and 𝐆𝐁5

, 𝐆𝐁51
∈ R6 are

the gravity vectors; see Appendix A.
Given 𝐓O3𝐹 ∈ R6, the force/moment vector in 𝐓5𝐹 at the driving VCP

of open chain 5 can be obtained in view of (12) as
𝐓5𝐹 = 𝐓O3𝐹 . (20)

Then, the remaining force/moment vectors can be obtained as
𝐁51𝐹 = 𝐁51𝐹 ∗ + 𝐁51𝐔𝐓5

𝐓5𝐹 (21)
𝐁5𝐹 = 𝐁5𝐹 ∗ + 𝐁5𝐔𝐁51

𝐁51𝐹 . (22)

The force/moment vector 𝐁O2𝐹 ∈ R6 at the driving VCP of object 2 can
be obtained from (22) as
𝐁O2𝐹 = 𝐁5𝐹 . (23)

Finally, cylinder 3 piston force can be written as

𝑓c3 = 𝐱𝑇𝑓
𝐁51𝐹 . (24)

3.2. Dynamics of the hydraulic actuator

It is well known that the cylinder piston friction is a highly nonlinear
and hard-to-model phenomenon. This can make a considerable differ-
ence between the cylinder pressure-induced force 𝑓p and the cylinder
output force 𝑓c. Taking the friction into account, the piston force 𝑓p3 for
cylinder 3 can be written as

𝑓p3 = 𝑓c3 + 𝑓f3 (25)

where 𝑓c3 comes from (24), and 𝑓f3 is the friction force. In this study,
a dynamics friction model from Zhu and Piedboeuf (2005) is used.
The friction model considers the Coulomb friction, Stribeck friction,
viscous friction, the average deformation of the seal bristles, and pro-
vides a smooth transition between presliding and sliding motion. Very
importantly, the model is differentiable (for smooth friction dynamics),

and it can be written in a parametrized form for an adaptive friction
compensation as

𝑓f3 = 𝐘f3𝜃𝜃𝜃f3 (26)

where 𝐘f3 ∈ R1×7 and 𝜃𝜃𝜃f3 ∈ R7 are defined in Zhu and Piedboeuf (2005)
in details. Additionally, some other friction model with fewer adaptable
friction parameters, e.g., Zhu (2014) or Yao et al. (2015), can be used
for the friction compensation.

In addition to (25), 𝑓p3 can be written as

𝑓p3 = 𝐴a3𝑝a3 − 𝐴b3𝑝b3 (27)

where 𝐴a3 > 𝐴b3 holds for the piston areas, and 𝑝a3 and 𝑝b3 are the
chamber pressures; see Fig. 5.

The following two assumptions are made.

Assumption 1. The cylinder piston position 𝑥3 never reaches its two
ends, i.e., 𝑥3 > 0 and 𝑠3−𝑥3 > 0, where 𝑠3 is the piston maximum stroke.

Assumption 2. The following system pressure relations hold: 𝑝s > 𝑝a3 >
𝑝r ⩾ 0 and 𝑝s > 𝑝b3 > 𝑝r ⩾ 0, where 𝑝s and 𝑝r are the system supply and
return line pressures.

Similarly to Koivumäki and Mattila (2015b), Liu and Yao (2008),
Lu and Yao (2014), Mattila and Virvalo (2000) and Zhu and Piedboeuf
(2005), if high-bandwidth (servo) valves are used, it is reasonable to
neglect the control valve dynamics. Then, the fluid flow rates 𝑄a3 and
𝑄b3 entering cylinder 3 chamber A and chamber B can be written as

𝑄a3 = 𝑐p1𝜐(𝑝s − 𝑝a3)𝑆(𝑢31)𝑢31 + 𝑐n1𝜐(𝑝a3 − 𝑝r )𝑆(−𝑢31)𝑢31 (28)

𝑄b3 = 𝑐p2𝜐(𝑝s − 𝑝b3)𝑆(𝑢32)𝑢32 + 𝑐n2𝜐(𝑝b3 − 𝑝r )𝑆(−𝑢32)𝑢32 (29)

where 𝑐p1 > 0 and 𝑐n1 > 0 are the flow coefficients of the chamber A
control valve, 𝑢31 is the control valve voltage, 𝑐p2 > 0 and 𝑐n2 > 0 are the
flow coefficients of the chamber B control valve, 𝑢32 is the control valve
voltage, and the pressure-related function 𝜐(⋅) and the selective function
𝑆(𝑢) are defined as

𝜐(⋅) = sign(⋅)
√

|(⋅)| (30)

𝑆(𝑢) =
{

1, if 𝑢 > 0
0, if 𝑢 ≤ 0.

(31)

Similarly to, e.g., Koivumäki and Mattila (2015b), Liu and Yao
(2008) and Lu and Yao (2014), the actuator internal leakages are
neglected; usually, these are minimal (if any) with well-sealed hydraulic
cylinders. Then, using (28) and (29), the fluid continuity equations in
the cylinder chambers can be written as

𝑝̇a3 =
𝛽f

𝐴a3𝑥3

(

𝑄a3 − 𝐴a3𝑥̇3
)

=
𝛽f
𝐴a3

(

𝑢v31 −
𝐴a3𝑥̇3
𝑥3

)

(32)

𝑝̇b3 =
𝛽f

𝐴b3(𝑠3 − 𝑥3)
(

𝑄b3 + 𝐴b3𝑥̇3
)

=
𝛽f
𝐴b3

(

𝑢v32 +
𝐴b3𝑥̇3
𝑠3 − 𝑥3

)

(33)

where 𝛽f is the bulk modulus of the fluid. The valve voltage-related
terms 𝑢v31 and 𝑢v32 in (32) and (33) can be written as

𝑢v31 =
𝑐p1𝜐(𝑝s − 𝑝a3)

𝑥3
𝑆(𝑢31)𝑢31 +

𝑐n1𝜐(𝑝a3 − 𝑝r )
𝑥3

𝑆(−𝑢31)𝑢31

= −𝐘v31𝜃𝜃𝜃v31 (34)

𝑢v32 =
𝑐p2𝜐(𝑝s − 𝑝b3)

𝑠3 − 𝑥3
𝑆(𝑢32)𝑢32 +

𝑐n2𝜐(𝑝b3 − 𝑝r )
𝑠3 − 𝑥3

𝑆(−𝑢32)𝑢32

= −𝐘v32𝜃𝜃𝜃v32. (35)

where the regressor vectors 𝐘v31, 𝐘v32 ∈ R1×2 and the parameter vectors
𝜃𝜃𝜃v31, 𝜃𝜃𝜃v32 ∈ R2 are given in Appendix E.

Finally, in view of Assumptions 1 and 2, univalences between 𝑢31
and 𝑢v31 and between 𝑢32 and 𝑢v32 exist.4 Thus, for the given 𝑢v31 and

4 When Assumptions 1 and 2 hold, 𝑥3 > 0, 𝑠3 − 𝑥3 > 0, 𝜐(𝑝s − 𝑝a3) > 0,
𝜐(𝑝a3 − 𝑝r ) > 0, 𝜐(𝑝s − 𝑝b3) > 0, and 𝜐(𝑝b3 − 𝑝r ) > 0 hold. Thus, non-singular
solutions for (34)–(37) are ensured.

181



J. Koivumäki, W.-H. Zhu and J. Mattila Control Engineering Practice 85 (2019) 176–193

𝑢v32, the unique valve control voltages 𝑢31 and 𝑢32 can be found as

𝑢31 =
𝑥3𝑆(𝑢v31)

𝑐p1𝜐(𝑝s − 𝑝a3)
𝑢v31 +

𝑥3𝑆(−𝑢v31)
𝑐n1𝜐(𝑝a3 − 𝑝r )

𝑢v31 (36)

𝑢32 =
(𝑠3 − 𝑥3)𝑆(𝑢v32)
𝑐p2𝜐(𝑝s − 𝑝b3)

𝑢v32 +
(𝑠3 − 𝑥3)𝑆(−𝑢v32)
𝑐n2𝜐(𝑝b3 − 𝑝r )

𝑢v32. (37)

3.3. Open chain 5: Control

In VDC, the required velocity serves as a reference trajectory for
system. The control objective is to make the controlled velocities track
the required velocities. The general format of the required velocity
includes the desired velocity and one or more terms that are related
to control errors (Zhu, 2010). The required cylinder velocity 𝑥̇𝑖r for the
𝑖th actuator, ∀𝑖 ∈ {1, 2, 3}, is designed as

𝑥̇𝑖r = 𝑥̇𝑖d + 𝜆x𝑖(𝑥𝑖d − 𝑥𝑖) (38)

where 𝑥𝑖d is the desired piston position, and 𝜆x𝑖 > 0 is the position
control gain. In the Cartesian space control, the desired Cartesian motion
data can be converted to the respective desired actuator space values 𝑥̇𝑖d
and 𝑥𝑖d, as shown in Koivumäki and Mattila (2015a).

Let 𝐁O2𝑉r ∈ R6 be known. Using (14)–(17), the required lin-
ear/angular velocity vectors in open chain 5 can be written as
𝐁5𝑉r = 𝐁O2𝑉r (39)
𝐁51𝑉r = 𝐱𝑓 𝑥̇3r + 𝐁5𝐔𝑇

𝐁51
𝐁5𝑉r (40)

𝐓5𝑉r = 𝐁51𝐔𝑇
𝐓5

𝐁51𝑉r (41)
𝐓O3𝑉r = 𝐓5𝑉r . (42)

Then, using (14), (15), (39) and (40), the required net force/moment
vectors for link 5 (the cylinder case) and link 51 (the cylinder piston)
can be written as
𝐁5𝐹 ∗

r = 𝐘𝐁5
𝜃𝜃𝜃𝐁5

+𝐊𝐁5
(𝐁5𝑉r − 𝐁5𝑉 ) (43)

𝐁51𝐹 ∗
r = 𝐘𝐁51

𝜃𝜃𝜃𝐁51
+𝐊𝐁51

(𝐁51𝑉r − 𝐁51𝑉 ) (44)

where, by substituting 𝐀 for 𝐁5 and 𝐁51, 𝐘𝐀𝜃𝜃𝜃𝐀 ∈ R6 is the model-based
feedforward compensation term (see Appendix A) for the rigid body
dynamics in (18) and (19); 𝜃𝜃𝜃𝐀 is the estimate of the parameter vector
𝜃𝜃𝜃𝐀 ∈ R13; and 𝐊𝐀 ∈ R6×6 is a positive-definite gain matrix for the
velocity feedback control.

The estimated parameter vectors 𝜃𝜃𝜃𝐁51
and 𝜃𝜃𝜃𝐁5

, in (43) and (44), need
to be updated. Define

𝐬𝐁51
= 𝐘𝑇

𝐁51
(𝐁51𝑉r − 𝐁51𝑉 ) (45)

𝐬𝐁5
= 𝐘𝑇

𝐁5
(𝐁5𝑉r − 𝐁5𝑉 ). (46)

Then, using the 𝒫 function in Appendix D, the 𝛾th elements of 𝜃𝜃𝜃𝐁51
and

𝜃𝜃𝜃𝐁5
are updated, ∀𝛾 ∈ {1, 2,… , 13}, as

𝜃𝐁51𝛾 = 𝒫 (s𝐁51𝛾 , 𝜌𝐁51𝛾 , 𝜃𝐁51𝛾
, 𝜃𝐁51𝛾 , 𝑡) (47)

𝜃𝐁5𝛾 = 𝒫 (s𝐁5𝛾 , 𝜌𝐁5𝛾 , 𝜃𝐁5𝛾
, 𝜃𝐁5𝛾 , 𝑡) (48)

where, by substituting 𝐀 for 𝐁5 and 𝐁51, 𝜃𝐀𝛾 is the 𝛾th element of 𝜃𝜃𝜃𝐀;
s𝐀𝛾 is the 𝛾th element of 𝐬𝐀; 𝜌𝐀𝛾 > 0 is the update gain; 𝜃𝐀𝛾 is the lower
bound of 𝜃𝐀𝛾 ; 𝜃𝐀𝛾 is the upper bound of 𝜃𝐀𝛾 .

The required force/moment vectors in open chain 5 can be obtained
by reusing (20)–(23) as
𝐓5𝐹r = 𝐓O3𝐹r (49)
𝐁51𝐹r = 𝐁51𝐹 ∗

r + 𝐁51𝐔𝐓5
𝐓5𝐹r (50)

𝐁5𝐹r = 𝐁5𝐹 ∗
r + 𝐁5𝐔𝐁51

𝐁51𝐹r (51)
𝐁O2𝐹r = 𝐁5𝐹r . (52)

The required actuation force of cylinder 3 can be written as

𝑓c3r = 𝐱𝑇𝑓
𝐁51𝐹r . (53)

Remark 3. Subject open chain 5 control, a stability-preventing term
(𝑓c3r − 𝑓c3)(𝑥̇3r − 𝑥̇3) will appear in the time derivative 𝜈̇oc5 of the
non-negative accompanying function 𝜈oc5 ; see (F.2) in Lemma 4 in
Appendix F. Next, in Section 3.4, a stabilizing counterpart is be designed
for the stability-preventing term.

3.4. Control of the hydraulic actuator

In view of (25) and (26), the following control law is designed for
cylinder 3

𝑓p3r = 𝑓c3r + 𝐘f3𝜃𝜃𝜃f3. (54)

The estimated friction parameter vector 𝜃𝜃𝜃f3 needs to be updated. De-
fine

𝐬f3 = (𝑥̇3r − 𝑥̇3)𝐘𝑇
f3. (55)

Then, the 𝛾th element of 𝜃𝜃𝜃f3 is updated, using the 𝒫 function in
Appendix D, as

𝜃f3𝛾 = 𝒫 (sf3𝛾 , 𝜌f3𝛾 , 𝜃f3𝛾 , 𝜃f3𝛾 , 𝑡), ∀𝛾 ∈ {1, 2,… , 7} (56)

where 𝜃f3𝛾 is the 𝛾th element of 𝜃𝜃𝜃f3; sf3𝛾 is the 𝛾th element of 𝐬f3; 𝜌f3𝛾 > 0
is the update gain; 𝜃f3𝛾 is the lower bound of 𝜃f3𝛾 ; and 𝜃f3𝛾 is the upper
bound of 𝜃f3𝛾 .

Next, let the desired position 𝑥𝑖d in (38) be a continuously differen-
tiable function in 𝐶2, i.e., {𝑥𝑖d, 𝑥̇𝑖d, 𝑥̈𝑖d, 𝑥

(3)
𝑖d } ∈ 𝐿∞ holds. Then, similarly

to Zhu (2010) and Zhu and Piedboeuf (2005), it can be seen from (38)–
(54) that 𝑓p3r in (54) is a smooth function, i.e., ̇𝑓p3r (𝑡) exists ∀𝑡. The
existence of ̇𝑓p3r is needed next in sections Control of Chamber A and
Control of Chamber B as the time derivatives of the chamber pressure
trajectories 𝑝ar (𝑓pr ) in (10) and 𝑝br (𝑓pr ) in (11) are needed in the control
design.

Control of chamber A
In view of (32) and using differentiable 𝑝ar (𝑓pr ) in (10) with differen-

tiable 𝑓p3r in (54), the chamber A control is designed as

𝑢v31d =
𝐴a3
𝛽f

𝑝̇a3r + 𝐴a3
𝑥̇3
𝑥3

+ 𝑘p31(𝑝a3r − 𝑝a3) + 𝑘x31(𝑥̇3r − 𝑥̇3)

= 𝐘d31𝜃𝜃𝜃d31 + 𝑘p31(𝑝a3r − 𝑝a3) + 𝑘x31(𝑥̇3r − 𝑥̇3) (57)

where 𝑘p31, 𝑘x31 > 0. The regressor vector 𝐘d31 ∈ R1×2 and the parameter
vector 𝜃𝜃𝜃d31 ∈ R2 are given in Appendix E.

Then, in view of (36), the control law for the control valve of
chamber A can be written as

𝑢31 =
𝑥3𝑆(𝑢v31d)

𝑐p1𝜐(𝑝s − 𝑝a3)
𝑢v31d +

𝑥3𝑆(−𝑢v31d)
𝑐n1𝜐(𝑝a3 − 𝑝r )

𝑢v31d (58)

where 𝑐p1 and 𝑐n1 are updated parameters for 𝑐p1 and 𝑐n1.
When Assumptions 1 and 2 hold, the control law (58) can be

inversely written, in view of (34), as

𝑢v31d = −𝐘v31𝜃𝜃𝜃v31. (59)

The estimated parameter vectors 𝜃𝜃𝜃d31 and 𝜃𝜃𝜃v31 need to be updated.
Define

𝐬d31 = (𝑝a3r − 𝑝a3)𝐘𝑇
d31 (60)

𝐬v31 = (𝑝a3r − 𝑝a3)𝐘𝑇
v31. (61)

Then, the 𝛾th elements of 𝜃𝜃𝜃d31 and 𝜃𝜃𝜃v31 are updated, using the 𝒫 function
in Appendix D, as

𝜃d31𝛾 = 𝒫 (sd31𝛾 , 𝜌d31𝛾 , 𝜃d31𝛾 , 𝜃d31𝛾 , 𝑡), ∀𝛾 ∈ {1, 2} (62)

𝜃v31𝛾 = 𝒫 (sv31𝛾 , 𝜌v31𝛾 , 𝜃v31𝛾 , 𝜃v31𝛾 , 𝑡), ∀𝛾 ∈ {1, 2} (63)

where, by substituting (⋅)k for (⋅)d31 and (⋅)v31, 𝜃k𝛾 is the 𝛾th element of
𝜃𝜃𝜃k ; sk𝛾 is the 𝛾th element of 𝐬k ; 𝜌k𝛾 > 0 is the update gain; and 𝜃k𝛾 and
𝜃k𝛾 are the lower and upper bounds of 𝜃k𝛾 .
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Fig. 6. The diagram of the proposed controller. The VDC controller is outlined in blue. The proposed adaptive SMISMO controller (for the system actuators) is outlined in red. The
system feedback variables are shown in the dashed line. Inputs 𝜒d and 𝜒̇d are desired Cartesian position and velocity trajectories. (For interpretation of colors in this figure, the reader is
referred to the web version of this article.)

Remark 4. Subject to chamber A control, term −𝐴a3(𝑝a3r −𝑝a3)(𝑥̇3r − 𝑥̇3)
is designed for the time derivative 𝜈̇a3 of the non-negative accompanying
function 𝜈a3; see (G.2) in Lemma 5 in Appendix G. This term is a part of a
stabilizing counterpart for the stability preventing term in (F.2) in Lemma 4.
Another stabilizing counterpart is designed next in the below.

Control of chamber B
In view of (33) and using differentiable 𝑝br (𝑓pr ) in (11) with differen-

tiable 𝑓p3r in (54), the chamber B control is designed as

𝑢v32d =
𝐴b3
𝛽f

𝑝̇b3r − 𝐴b3
𝑥̇3

𝑠3 − 𝑥3
+ 𝑘p32(𝑝b3r − 𝑝b3) − 𝑘x32(𝑥̇3r − 𝑥̇3)

= 𝐘d32𝜃𝜃𝜃d32 + 𝑘p32(𝑝b3r − 𝑝b3) − 𝑘x32(𝑥̇3r − 𝑥̇3) (64)

where 𝑘p32, 𝑘x32 > 0. The regressor vector 𝐘d32 ∈ R1×2 and the parameter
vector 𝜃𝜃𝜃d32 ∈ R2 are given in Appendix E.

Then, in view of (37), the control law for the control valve of
chamber B can be written as

𝑢32 =
(𝑠3 − 𝑥3)𝑆(𝑢v32d)
𝑐p2𝜐(𝑝s − 𝑝b3)

𝑢v32d +
(𝑠3 − 𝑥3)𝑆(−𝑢v32d)

𝑐n2𝜐(𝑝b3 − 𝑝r )
𝑢v32d (65)

where 𝑐p2 and 𝑐n2 are updated parameters for 𝑐p2 and 𝑐n2.
When Assumptions 1 and 2 hold, the control law (65) can be

inversely written, in view of (35), as

𝑢v32d = −𝐘v32𝜃𝜃𝜃v32. (66)

The estimated parameter vectors 𝜃𝜃𝜃d32 and 𝜃𝜃𝜃v32 need to be updated.
Define

𝐬d32 = (𝑝b3r − 𝑝b3)𝐘𝑇
d32 (67)

𝐬v32 = (𝑝b3r − 𝑝b3)𝐘𝑇
v32. (68)

The 𝛾th elements of 𝜃𝜃𝜃d32 and 𝜃𝜃𝜃v32 are updated, using the 𝒫 function in
Appendix D, as

𝜃d32𝛾 = 𝒫 (sd32𝛾 , 𝜌d32𝛾 , 𝜃d32𝛾 , 𝜃d32𝛾 , 𝑡), ∀𝛾 ∈ {1, 2} (69)

𝜃v32𝛾 = 𝒫 (sv32𝛾 , 𝜌v32𝛾 , 𝜃v32𝛾 , 𝜃v32𝛾 , 𝑡), ∀𝛾 ∈ {1, 2} (70)

where, by substituting (⋅)k for (⋅)d32 and (⋅)v32, 𝜃k𝛾 is the 𝛾th element of
𝜃𝜃𝜃k ; sk𝛾 is the 𝛾th element of 𝐬k ; 𝜌k𝛾 > 0 is the update gain; and 𝜃k𝛾 and
𝜃k𝛾 are the lower and upper bounds of 𝜃k𝛾 .

Note that the following holds for required piston force

𝑓p3r = 𝐴a3𝑝a3r − 𝐴b3𝑝b3r (71)

due to the use of (10) and (11), which satisfy Condition 2.
Fig. 6 shows the diagram for the proposed controller. The control

theoretical contribution of this study is outlined in red. Note that the system
structural multibody dynamics is addressed inside the block ‘‘Control of
rigid body dynamics’’.

Remark 5. Subject to chamber B control, term 𝐴b3(𝑝b3r−𝑝b3)(𝑥̇3r− 𝑥̇3) is
designed for the time derivative 𝜈̇b3 of the non-negative accompanying
function 𝜈b3; see (H.2) in Appendix H. This term is another part of the
stabilizing counterpart for the stability preventing term in (F.2) in Lemma 4.
Then, as Lemma 7 in Appendix I shows, the stabilizing counterpart
−(𝑓c3r − 𝑓c3)(𝑥̇3r − 𝑥̇3) can be designed for the stability preventing term
(𝑓c3r − 𝑓c3)(𝑥̇3r − 𝑥̇3).

4. Stability analysis

Virtual power flows (VPFs), defined in Appendix C, are a unique
feature of VDC. The virtual stability (Definition 3 in Appendix C) of every
subsystem ensures that at every VCP, a positive VPF (at a driven VCP)
is connected to its corresponding negative VPF (at a driving VCP) in
the adjacent subsystem. Thus, VPFs act as stability connectors between
subsystems and, when all subsystems qualify as virtually stable, all the
VPFs cancel each other out, eventually, leading to 𝐿2 and 𝐿∞ stability
(Lemma 1 in Appendix B) of the entire system.

Consider the hydraulic actuator assembly control design (composing
of open chain 5 dynamics and cylinder 3 fluid dynamics) in Sections 3.3
and 3.4, with the dynamic properties in Lemmas 4–7 (in Appendices F–
I). Theorem 1 ensures that the hydraulic actuator assembly qualifies as
virtually stable.

Theorem 1. Consider the hydraulic actuator assembly, composing of
open chain 5 control dynamics (addressed in Lemma 4) and the hydraulic
cylinder control dynamics (addressed in Lemma 7), and having one driven
VCP associated to VCP 5 and one driving VCP associated to VCP 6 (see
Fig. 4(c)). This subsystem qualifies as virtually stable with its affiliated
vector (𝐀𝑉r − 𝐀𝑉 ), ∀𝐀 ∈ 𝛹oc5, and its affiliated scalar variables (𝑝a3r − 𝑝a3)
and (𝑝b3r − 𝑝b) being virtual functions in both 𝐿2 and 𝐿∞ in the sense of
Definition 3 in Appendix C. This is because, using Lemmas 4 and 7, a non-
negat. accompanying function

𝜈5 ⩾
1
2

∑

𝐀∈𝛹oc5

(𝐀𝑉r − 𝐀𝑉 )𝑇𝐌𝐀(𝐀𝑉r − 𝐀𝑉 )

+
𝐴2
a3

2𝛽f𝑘x31
(𝑝a3r − 𝑝a3)2 +

𝐴2
b3

2𝛽f𝑘x32
(𝑝b3r − 𝑝b3)2 (72)

can be found such that

𝜈̇5 ⩽ −
∑

𝐀∈𝛹oc5

(𝐀𝑉r − 𝐀𝑉 )𝑇𝐊𝐀(𝐀𝑉r − 𝐀𝑉 ) + 𝑝𝐁5
− 𝑝𝐓5

−𝐴a3
𝑘p31
𝑘x31

(𝑝a3r − 𝑝a3)2 − 𝐴b3
𝑘p32
𝑘x32

(𝑝b3r − 𝑝b3)2 (73)

holds, where set 𝛹oc5 contains frames {𝐁5} and {𝐁51}, and 𝑝𝐁5
and 𝑝𝐓5

are
the VPFs at the (driven) VCP 5 and (driving) VCP 6 of the subsystem.

Proof. The proof for Theorem 1 is given in Appendix J. ■

Theorem 2 ensures that the remaining subsystem, delimited with a
dashed line in Fig. 4(c), qualifies as virtually stable.
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Theorem 2. Consider the remaining subsystem, composing of objects 0–
2 and open chains 1–4, and having one driving VCP associated to VCP 5
(see Fig. 4(c)). This subsystem qualifies as virtually stable with its affiliated
vector (𝐀𝑉r − 𝐀𝑉 ), ∀𝐀 ∈ 𝛹r , and its affiliated scalar variables (𝑝a𝑖r − 𝑝a𝑖)
and (𝑝b𝑖r − 𝑝b𝑖) for the actuator i, ∀𝑖 ∈ {1, 2}, being virtual functions in both
𝐿2 and 𝐿∞ in the sense of Definition 3 (in Appendix C). This is because a
non-negative accompanying function

𝜈𝐑 ⩾ 1
2

∑

A∈𝛹r

(𝐀𝑉r − 𝐀𝑉 )𝑇𝐌𝐀(𝐀𝑉r − 𝐀𝑉 )

+ 1
2

2
∑

𝑖=1

[

𝐴2
a𝑖

𝛽f𝑘x𝑖1
(𝑝a𝑖r − 𝑝a𝑖)2 +

𝐴2
b𝑖

𝛽f𝑘x𝑖2
(𝑝b𝑖r − 𝑝b𝑖)2

]

(74)

can be found such that

𝜈̇𝐑 ⩽ −
∑

A∈𝛹r

(𝐀𝑉r − 𝐀𝑉 )𝑇𝐊𝐀(𝐀𝑉r − 𝐀𝑉 ) − 𝑝𝐁O2

−
2
∑

𝑖=1

[

𝐴a𝑖
𝑘p𝑖1
𝑘x𝑖1

(𝑝a𝑖r − 𝑝a𝑖)2 + 𝐴b𝑖
𝑘p𝑖2
𝑘x𝑖2

(𝑝b𝑖r − 𝑝b𝑖)2
]

(75)

holds, where set 𝛹r contains rigid body frames of the rigid links and objects
in the remaining subsystem and 𝑝𝐁O2

denotes VPF at the (driving) VCP 5 of
this subsystem.

Proof. The proof for Theorem 2 can be obtained by using the results
in Koivumäki and Mattila (2015b) (for objects 0–2 and open chains 2
and 4) and in Theorem 1 (for actuated open chains 1 and 3). ■

Theorem 3 ensures that object 3 qualifies as virtually stable.

Theorem 3. Consider object 3, having one driven VCP associated to VCP 6
(see Fig. 4(c)). This subsystem qualifies as virtually stable with its affiliated
vector (𝐎3𝑉r−𝐎3𝑉 ) being a virtual function in both 𝐿2 and 𝐿∞ in the sense of
Definition 3 (in Appendix C). This is because a non-negative accompanying
function

𝜈𝐎3
⩾ 1

2
(𝐎3𝑉r − 𝐎3𝑉 )𝑇𝐌𝐎3

(𝐎3𝑉r − 𝐎3𝑉 ) (76)

can be found such that

𝜈̇𝐎3
⩽ −(𝐎3𝑉r − 𝐎3𝑉 )𝑇𝐊𝐎3

(𝐎3𝑉r − 𝐎3𝑉 ) + 𝑝𝐓O3
− 𝑝𝐆 (77)

holds, where 𝑝𝐓O3
denotes the VPF at the (driven) VCP 6, and

𝑝𝐆 = (𝐆𝑉r − 𝐆𝑉 )𝑇 (𝐆𝐹r − 𝐆𝐹 ) = 0 (78)

holds in the manipulator free-space motions (zero end-effector force →
𝐆𝐹r = 0 and 𝐆𝐹 = 0).

Proof. The proof for Theorem 3 (the virtual stability of object 3) is
trivial and is similar to those in Koivumäki and Mattila (2015a) and Zhu
(2010). ■

In view of (14), (17), (20), (23), (39), (42), (49), (52) and (C.1) in
Appendix C, the following relations hold for the VPFs at the VCPs of the
hydraulic cylinder assembly:

𝑝𝐁O2
= 𝑝𝐁5

(79)

𝑝𝐓O3
= 𝑝𝐓5

. (80)

Theorem 4 provides the stability of the entire system.

Theorem 4. Using (72), (74) and (76), the non-negative accompanying
function for the entire system can be written as

𝜈tot = 𝜈𝐑 + 𝜈5 + 𝜈𝐎3

⩾ 1
2
∑

A∈𝛷
(𝐀𝑉r − 𝐀𝑉 )𝑇𝐌𝐀(𝐀𝑉r − 𝐀𝑉 )

+ 1
2

3
∑

𝑖=1

[

𝐴2
a𝑖

𝛽f𝑘x𝑖1
(𝑝a𝑖r − 𝑝a𝑖)2 +

𝐴2
b𝑖

𝛽f𝑘x𝑖2
(𝑝b𝑖r − 𝑝b𝑖)2

]

(81)

Fig. 7. The interconnections between the lemmas and theorems for the stability of the
entire system.

where set 𝛷 contains frame {𝐎3} and sets 𝛹oc5 and 𝛹r . Then, in view of
(73), (75) and (77)–(80), the time derivative of 𝜈tot can be written as

𝜈̇tot = 𝜈̇𝐑 + 𝜈̇5 + 𝜈̇𝐎3

⩽ −
∑

A∈𝛷
(𝐀𝑉r − 𝐀𝑉 )𝑇𝐊𝐀(𝐀𝑉r − 𝐀𝑉 )

−
3
∑

𝑖=1

[

𝐴a𝑖
𝑘p𝑖1
𝑘x𝑖1

(𝑝a𝑖r − 𝑝a𝑖)2 + 𝐴b𝑖
𝑘p𝑖2
𝑘x𝑖2

(𝑝b𝑖r − 𝑝b𝑖)2
]

. (82)

Finally, in view of Lemmas 1 and 2 (in Appendix B), (81) and (82), it
follows that (𝐀𝑉r − 𝐀𝑉 ) ∈ 𝐿2

⋂

𝐿∞,∀𝐀 ∈ 𝛷, (𝑝a𝑖r − 𝑝a𝑖) ∈ 𝐿2
⋂

𝐿∞,
(𝑝b𝑖r − 𝑝b𝑖) ∈ 𝐿2

⋂

𝐿∞, (𝑥̇𝑖r − 𝑥̇𝑖) ∈ 𝐿2
⋂

𝐿∞, (𝑥̇𝑖d − 𝑥̇𝑖) ∈ 𝐿2
⋂

𝐿∞, and
(𝑥𝑖d−𝑥𝑖) ∈ 𝐿2

⋂

𝐿∞ hold, ∀𝑖 ∈ {1, 2, 3}, leading to the stability of the entire
system.

Proof. The proof for Theorem 4 is given in Appendix K. ■

Fig. 7 shows the control design procedure for the stability of the
entire system. In short, open chain 5 control creates a stability-preventing
term (𝑓c3r −𝑓c3)(𝑥̇3r − 𝑥̇3) in Lemma 4. Then, such chamber pressure con-
trols are designed (whose control dynamics are addressed in Lemmas 5
and 6) that a stabilizing counterpart −(𝑓c3r − 𝑓c3)(𝑥̇3r − 𝑥̇3) will appear in
Lemma 7. Using Lemmas 4 and 7, it can be shown that the hydraulic
actuator assembly qualifies as virtually stable (in Theorem 1). Then, all
VPFs among the subsystems cancel each other out (see Theorems 1–3 in
Fig. 7). Eventually, the entire system qualifies as 𝐿2 and 𝐿∞ stable in
view of Theorem 4.

An asymptotic convergence of the proposed controller can be ad-
dressed as shown in Remark 6.

Remark 6. Let the desired piston position 𝑥𝑖d be a continuously
differentiable function in 𝐶2, i.e., {𝑥𝑖d, 𝑥̇𝑖d, 𝑥̈𝑖d, 𝑥

(3)
𝑖d } ∈ 𝐿∞ holds. Then,

Lemma 3 in Appendix B can be used to prove the asymptotic conver-
gence of the designed controller. Following the procedure presented
in Zhu (2010), it can be shown that (𝐀𝑉̇r − 𝐀𝑉̇ ) ∈ 𝐿∞,∀𝐀 ∈ 𝛷,
(𝑝̇a𝑖r − 𝑝̇a𝑖) ∈ 𝐿∞, (𝑝̇b𝑖r − 𝑝̇b𝑖) ∈ 𝐿∞, (𝑥̈𝑖d − 𝑥̈𝑖) ∈ 𝐿∞, and (𝑥̇𝑖d − 𝑥̇𝑖) ∈ 𝐿∞
hold, leading to asymptotic convergence of the feedback signals in view
of Lemma 3.

5. Experiments

This section demonstrates the performance of the proposed SMISMO
control. Section 5.1 outlines the system implementation issues. Sec-
tion 5.2 presents the results with the SMISMO control in relation to
the conventional servovalve control. Section 5.3 evaluates the SMISMO
control performance with respect to the state-of-the-art solutions. Sec-
tion 5.4 evaluates the energy consumption reductions with the SMISMO
control.
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Fig. 8. The experimental set-up. The manipulator’s base frame {𝐁} is shown in red.
The manipulator’s position in this figure shows the starting point of the driven motion
trajectories. (For interpretation of colors in this figure, the reader is referred to the web
version of this article.)

5.1. Experiment set-up and implementation issues

The studied three-DOF redundant manipulator is shown in Fig. 8.
The maximum reach of the manipulator is approximately 4.2 m. The
payload of 475 kg is attached to the manipulator. For cylinders 1 and 2,
Bosch 4WRPEH10 proportional valves (bandwidth of 100 Hz and 100
dm3/min @ 𝛥p = 35 bar per notch) were used to realize the SMISMO
control; for cylinder 3, Bosch 4WRPEH6 proportional valves (bandwidth
of 100 Hz and 40 dm3/min @ 𝛥p = 35 bar per notch) were used. The
remaining of the system is identical to that described in Koivumäki and
Mattila (2015a). The hardware for the conventional servovalve control
set-up was identical to the above; however, only one control valve per
cylinder was used (as shown in Fig. 1). Hereinafter, the conventional
control denotes the VDC control design for the studied system employing
one control valve per cylinder.

The sample time of control system was set to 3 ms (the turnaround
time was ≈ 2.8 ms). The actuators’ feedback gains are shown in Table 1.
As in the conventional control, the piston force is controlled, whereas,
in the SMISMO control, also the chamber pressures are controlled,
thus, the gains are not exactly same. The same parameter update
gains were used to update the rigid body parameters and the friction
parameters in the conventional and the SMISMO controls. Due to the
different actuator control designs, regressors (and parameter update
gains) were not exactly same to update the actuators’ parameters.5
For the importance of a parameter adaptation and the effect of the
parameter adaptation law (D.1) (see Appendix D) to the high-precision
tracking control with hydraulic systems, interested readers are referred
to Koivumäki and Mattila (2017b) and Zhu and Piedboeuf (2005). In
the control, the same first-order filter as, e.g., in Koivumäki and Mattila
(2015a) and Koivumäki et al. (2014), was used for the chamber pressure
measurements to eliminate sensor noises. The choice of the filter is
to make sure that considerable phase lags only happen at frequencies
beyond the range of the system dynamics. All data in Figs. 9–14 are raw
(unfiltered) data.

The applicable motion (velocity) specifications of the system are
directly related to the sizes of the control valves (the flow coefficients
𝑐p1, 𝑐n1, 𝑐p2 and 𝑐n2) and the pressure differences across the valves; see
(28) and (29). In the SMISMO control, the pressure difference across
the valves is intended to be minimized with 𝛥𝑝c (which also defines

5 In the conventional control, 𝐬d𝑖 = (𝑓p𝑖r − 𝑓p𝑖)𝐘𝑇
d𝑖 and 𝐬v𝑖 = (𝑓p𝑖r − 𝑓p𝑖)𝐘𝑇

v𝑖 are
used to update the fluid dynamics parameters and the valve flow coefficients
(see Koivumäki & Mattila, 2015b), whereas 𝐬d31, 𝐬v31, 𝐬d32 and 𝐬v32 in (60), (61),
(67), and (68), respectively, are used to update the fluid dynamics parameters
and the valve flow coefficients in the SMISMO control.

Table 1
Actuator space feedback gains.

Conventional hydraulic cylinder control; see (76) and (111)
in Koivumäki and Mattila (2015a).
Cylinder 1 Cylinder 2 Cylinder 3

𝜆𝑖 [m/s]: 30 34 27
𝑘f 𝑖 [m2/(N⋅s)]: 6.0 ⋅ 10−8 8.0 ⋅ 10−8 20.0 ⋅ 10−8
𝑘x𝑖 [m]: 0.030 0.030 0.028

The proposed SMISMO control; see (38), (57), and (64).

Cylinder 1 Cylinder 2 Cylinder 3
𝜆𝑖 [m/s]: 32 28 26
𝑘p𝑖1 [m2/(Pa⋅s)]: 5 ⋅ 10−10 3.0 ⋅ 10−10 5.0 ⋅ 10−10
𝑘p𝑖2 [m2/(Pa⋅s)]: 4 ⋅ 10−10 1.4 ⋅ 10−10 2.1 ⋅ 10−11
𝑘x𝑖1 [m]: 0.020 0.026 0.010
𝑘x𝑖2 [m]: 0.020 0.005 0.002

Fig. 9. The piston position trajectories produced by the driven Cartesian motion trajec-
tory in black. The measured piston position with the SMISMO control are shown in red,
blue and green. Note the different scale in the y-axes. (For interpretation of colors in this
figure, the reader is referred to the web version of this article.)

the desired minimum pressure level for the cylinders’ chambers; see
Sections 2.2 and 2.3). Such a value for 𝛥𝑝c should be used such that
cavitation and control valve saturation are avoided, and the intended
motion specifications (depending on the fixed flow coefficients and
adjustable 𝛥𝑝c) can be obtained. In the experiments, 𝛥𝑝c = 20 bar is used
for all cylinders to ensure the use of sufficiently fast velocity trajectory
(the maximum Cartesian velocity of 0.9 m/s).

5.2. The experimental results

In Figs. 9–13, similar colors as in Fig. 4 are used to depict the cylinder
variables; i.e., cylinders 1–3 variables are shown in red, blue and green,
respectively. The reference trajectories (if any) are shown in black. In
the experiments, the same parallelogram Cartesian point-to-point path
(height in 𝑌 -axis 2 m, length in 𝑋-axis 1 m) as in Koivumäki and Mattila
(2015a) was driven with the conventional control and with the SMISMO
control. A quintic rest-to-rest trajectory generator was used to generate
the desired motion trajectories between the corner points. The transition
time between two points was set to 2.3 s. The piston position trajectories,
produced by the trajectory generator (Koivumäki & Mattila, 2015a), are
shown in Fig. 9 and their position trackings with the SMISMO control
are shown in red, blue and green. The detailed position tracking errors
with the conventional control and the SMISMO control are shown later in
Figs. 10 and 12. In the experiments, a constant displacement pump with
a supply pressure of 200 bar was used.

Tracking results with the conventional control
Figs. 10–11 show the results with the conventional control. The first

plot in Fig. 10 shows the piston position tracking errors during the test
trajectory. The maximum absolute tracking errors are |𝑒1|max = 0.70 mm,
|𝑒2|max = 0.57 mm, and |𝑒3|max = 0.98 mm for pistons 1–3, respectively.
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Fig. 10. The conventional hydraulic cylinder control. The first plot shows the piston
position tracking error for cylinders 1–3. The middle plots show the measured piston
forces for cylinders 1–3. The required piston force trajectories are shown in black. The
last plot shows the normalized control valve voltages. (For interpretation of colors in this
figure, the reader is referred to the web version of this article.)

Fig. 11. The chamber pressures with the conventional hydraulic cylinder control. For all
cylinders, the chamber A pressure is given in the solid line, and the chamber B pressure is
given in the dashed line. (For interpretation of colors in this figure, the reader is referred
to the web version of this article.)

The respective maximum absolute piston velocities in the test trajectory
were |𝑥̇1|max = 0.180 m/s, |𝑥̇2|max = 0.135 m/s, and |𝑥̇3|max = 0.040
m/s. The second and third plots show the piston force tracking for the
pistons. The last plot shows the normalized control valve voltages for
the cylinders’ control valves.

Fig. 11 shows the chamber pressures of the cylinders in the conven-
tional control. The solid lines are for chamber A pressures, and the dashed
lines are for chamber B pressures. As discussed, in the conventional
control, only the piston forces are controllable, whereas the individual
chamber pressures are not. Thus, no pressure trajectories exist in Fig. 11.

Tracking results with the smismo control
Figs. 12 and 13 show the results with the SMISMO control. The

first plot in Fig. 12 shows the piston position tracking errors during
the test trajectory. As the plot shows, very similar piston position
tracking behaviors are obtained in relation to the conventional control
(see relation to Fig. 10). The maximum absolute tracking errors are
|𝑒1|max = 0.54 mm, |𝑒2|max = 0.81 mm, and |𝑒3|max = 1.00 mm for pistons
1–3, respectively. The respective maximum absolute piston velocities
in the test trajectory were |𝑥̇1|max = 0.178 m/s, |𝑥̇2|max = 0.134 m/s,
and |𝑥̇3|max = 0.039 m/s. The second and third plots show the piston
force tracking for pistons 1–3. As the plots show, almost an identical
high-precision force trackings are obtained in relation to the conventional
control (see the relation to Fig. 10). The last plot shows the normalized

Fig. 12. The proposed SMISMO control. The first plot shows the piston position tracking
error for cylinders 1–3. The middle plots show the measured piston forces for cylinders
1–3. The required piston force trajectories are shown in black. The last plot shows the
normalized control valve voltages. (For interpretation of colors in this figure, the reader
is referred to the web version of this article.)

Fig. 13. The chamber pressures for the SMISMO control. For all cylinders, the chamber
A pressure is given in the solid line, and the chamber B pressure is given in the dashed
line. The required chamber pressures are given in black. (For interpretation of colors in
this figure, the reader is referred to the web version of this article.)

control valve voltages for the SMISMO control valves of the cylinders.
As the plot shows, the maximum achievable velocity range was used in
the experiments as the maximum valve opening occurred in the driven
test trajectory for one of the valves (𝑢22 data in the dashed blue line).

Fig. 13 shows the cylinders’ chamber pressure trackings in the
test trajectory with the SMISMO control. Despite the challenges (see
Section 2.2), accurate pressure tracking is obtained in all chambers. The
chamber pressures are substantially lowered in relation to the chamber
pressures in the conventional control (see Fig. 11), although very similar
piston force trackings are obtained in Figs. 10 and 12. As Figs. 12 and
13 show, the triple objective of the high-precision piston position, piston
force and chamber pressures trackings are designed.

Table 2 shows the root mean square (RMS) pressure tracking errors
|𝑒p|RMS and the maximum absolute pressure tracking errors |𝑒p|max for
each cylinder chamber. In addition to the superior position control per-
formance (discussed next), an unprecedented chamber pressure tracking
is obtained with the proposed SMISMO control in relation to previous
pressure tracking studies; see Figs. 7–8 in Mattila and Virvalo (2000)
and Figs. 8–10 in Koivumäki and Mattila (2013). No detailed chamber
pressure tracking is reported in Liu and Yao (2008) and Lu and Yao
(2014).
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Table 2
Chamber pressure tracking errors.

Cylinder 1 Cylinder 2 Cylinder 3
Chamber A Chamber B Chamber A Chamber B Chamber A Chamber B

|𝑒p|RMS 1.57 bar 2.37 bar 2.09 bar 2.40 bar 1.78 bar 3.82 bar
|𝑒p|max 4.58 bar 6.94 bar 8.74 bar 10.72 bar 6.64 bar 17.68 bar

Cartesian motion control performances
The end-effector position-tracking accuracy is typically the most

important factor in the motion control of manipulators. Fig. 14 shows
the Cartesian position tracking errors (the first plot) and Cartesian
velocities (the second plot) for the conventional control (in gray) and
for the SMISMO control (in black) in the driven test trajectory. Very
similar behaviors are obtained with these two methods. For the conven-
tional control, the absolute maximum Cartesian position tracking error
is |𝑒𝜒 |max = 4.8 mm, the RMS position tracking error is |𝑒𝜒 |RMS =
2.7 mm, and the maximum Cartesian velocity is |𝜒̇|max = 0.915 m/s. The
respective values for the SMISMO control are |𝑒𝜒 |max = 5.2 mm, |𝑒𝜒 |RMS
= 2.6 mm, and |𝜒̇|max = 0.920 m/s. The position tracking accuracies can
be considered a significant result in the light of the manipulator scale
(the maximum reach of ≈ 4.2 m).

5.3. Motion control performance evaluation

To promote the scientific cornerstones of reproducible and mea-
surable research (see Bonsignorio & del Pobil, 2015), the following
normalizing performance indicator 𝜌 from Zhu et al. (2013), Zhu and
Piedboeuf (2005) and Zhu and Vukovich (2011) is used for the motion
control performance evaluation

𝜌 =
max(|𝑥𝑑𝑒𝑠 − 𝑥|)

max(|𝑥̇|)
=

|𝑒|max
|𝑥̇|max

(83)

where 𝑥𝑑𝑒𝑠 is the desired position and 𝑥 is the measured position. The
index quantifies the tracking control performance of a robot. The index
is expressed in seconds (s), which is the inverse of the bandwidth. Thus,
the smaller the 𝜌, the better the performance. The rationale for selecting
this index is that usually large velocities in the task space are associated
with large accelerations, which, in turn, result in large position tracking
errors considering the uncertainties in robot dynamics (Zhu et al., 2013).

Using data in Fig. 14, 𝜌 = 0.0048 m
0.915 m∕s ≈ 𝟎.𝟎𝟎𝟓𝟐 (s) can be measured for

the conventional control in the Cartesian space. For the proposed SMISMO
control, 𝜌 = 0.0052 m

0.920 m∕s ≈ 𝟎.𝟎𝟎𝟓𝟕 (s) can be measured. As the values imply,
a slightly better performance indicator 𝜌 value is achieved with the
conventional control; however, the difference to the proposed SMISMO
control is minor. The state-of-the-art in Cartesian motion tracking for
hydraulic robotic manipulators using conventional servovalve control
are reported in Mattila et al. (2017, Table II). From the data in Mattila
et al. (2017), only the VDC-based controller (Koivumäki & Mattila, 2015a)
reports a better Cartesian space performance indicator value (𝜌 = 0.0050 s)
in relation to the proposed controller, whereas the other methods are
far behind.

Table 3 shows the performance indicator values in the actuator space
for SMISMO control methods of hydraulic robotic manipulators; no
Cartesian space data available in Koivumäki and Mattila (2013), Liu
and Yao (2008), Lu and Yao (2014) and Mattila and Virvalo (2000).
The performance indicators are reported for the best actuator. The
abbreviation DOF in the last column of Table 3 denotes the number
of driven actuators in the experiments. Note that in Liu and Yao (2008)
and Lu and Yao (2014) only one actuator was driven in the experiments,
disabling cross-coupled dynamics between the links. As Table 3 shows,
the proposed controller achieves the best performance indicator value
in relation to Koivumäki and Mattila (2013), Liu and Yao (2008), Lu
and Yao (2014) and Mattila and Virvalo (2000). It is valid to mention
that the controllers in Liu and Yao (2008) and Lu and Yao (2014) used
cartridge valves (with a natural frequency of 353.6 rad/s) instead of

Fig. 14. The Cartesian motion data for the conventional control (in gray) and for the
proposed SMISMO control (in black). The first plot shows the Cartesian position tracking
error profiles in the driven test trajectory. The second plot shows the Cartesian velocity
profiles.

Table 3
The actuator space performance indicator values for SMISMO control of hydraulic robotic
manipulators.

Study 𝜌 [s] DOF
This study 0.0030 3
Koivumäki 2013 (Koivumäki & Mattila, 2013) 0.0055 2
Liu 2008 (Liu & Yao, 2008) 0.0072a 1b

Mattila 2000 (Mattila & Virvalo, 2000) 0.0130 2
Lu 2014 (Lu & Yao, 2014) 0.0280a 1b

aThe maximum absolute velocity |𝑥̇|max was not reported; the maximum absolute desired
velocity |𝑥̇d|max was used instead.
bThree-DOF hydraulic arm, however, in the experiments only one of the actuators was
driven.

Table 4
Hydraulic energy consumptions.

Cyl1 [J] Cyl2 [J] Cyl3 [J] Total [J]
Conventional 2.56 × 104 2.10 × 104 1.44 × 103 𝟒.𝟖𝟎 × 𝟏𝟎𝟒
SMISMO 1.64 × 104 0.93 × 104 0.71 × 103 𝟐.𝟔𝟒 × 𝟏𝟎𝟒

servovalves used in the other studies. Finally, in relation to the best
measured actuator space motion tracking accuracy reported in Mattila
et al. (2017, Table I), the very same performance indicator value (𝜌 =
0.0030 s) is obtained with the proposed SMISMO control.

5.4. Energy consumption evaluation

The hydraulic energy 𝐸ha consumed by an actuator can be written as

𝐸ha = ∫

𝑡1

𝑡0
𝑄𝑖𝑛(𝜏)𝑝𝑖𝑛(𝜏)𝑑𝜏 (84)

where 𝑄𝑖𝑛 is the fluid flow rate taken from the supply line and 𝑝𝑖𝑛 is the
pressure of the meter-in chamber.

Table 4 shows the hydraulic energy consumed by cylinders 1–3
during the test trajectory (from 𝑡0 = 0 to 𝑡1 = 10) with the conventional
control and the SMISMO control. The last column shows the total
hydraulic energy consumed by all the actuators. In relation to the
conventional control, the energy consumption of cylinders 1–3 is reduced
by 35.9%, 55.7% and 50.7%, respectively, with the SMISMO control.
The total energy consumption of all the cylinders is reduced by 45.0%
with the SMISMO control. Finally, Fig. 15 shows the total energy
consumption curves with the conventional control (in gray) and the
SMISMO control (in black).

Table 4 and Fig. 15 demonstrate the maximum potential for the
energy consumption reductions with the SMISMO control in the driven
test trajectory. With the current setup, the hydraulic energy is still
significantly wasted through the system’s control valves and pressure
relief valve due to the use of a constant displacement pump. In future
studies, the hydraulic manipulator (with the proposed SMISMO control)
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Fig. 15. The system total energy consumption for the conventional control (in gray) and
for the proposed SMISMO control (in black).

will be coupled to an electro-hydraulically controlled variable displace-
ment pump (see Koivumäki & Mattila, 2017b,c) to further investigate
the system’s total energy consumption reduction. The highly complex
dynamic interactions between these two systems will be addressed by
using the tools provided by VDC and the method in Koivumäki and
Mattila (2017b).

6. Conclusions

This study addressed a challenging problem of improving energy effi-
ciency of hydraulic 𝑛-DOF robotic systems without losing a high-precision
control performance needed in robotic tasks. For energy efficiency, a
SMISMO-control setup was used for individual metering control of the
chambers of hydraulic actuators, and energy consumption optimizing
chamber pressure trajectories were designed. The control design princi-
ples of the VDC approach were used (i) to virtually decompose the three-
DOF redundant hydraulic robotic manipulator to modular subsystems
and (ii) to design the control in the subsystem level, allowing to address
hydraulic actuators’ high-precision piston position, piston force and
chamber pressure trackings. A rigorous stability proof for the entire
system was given.

The experiments with the three-DOF hydraulic manipulator reveal
that: (1) It is possible to design the triple objective of hydraulic
actuators’ high-precision piston position, piston force and chamber pressure
trackings. This is demonstrated for the first time. (2) Unprecedented
piston motion and chamber pressure trackings is designed in relation
to previous SMISMO control methods. (3) In relation to the state-of-
the-art controllers for 𝑛-DOF manipulators reviewed in Mattila et al.
(2017), only one method (using also VDC) have reported slightly better
motion control performance in view of the performance indicator 𝜌. (4)
In relation to the state-of-the-art controller with the conventional energy-
inefficient servovalve control, the actuators’ total energy consumption
is reduced by 45% (see Fig. 15) without noticeable Cartesian position-
tracking accuracy lost (see Fig. 14).

Due to the possibility to improve the system energy efficiency
without losing motion control accuracy, the need for an extra control
valve per actuator and more complex control design can be justifi-
able. Furthermore, the results of the study demonstrates an important
step toward energy-autonomous ambulatory hydraulic robotic systems,
where the control performance cannot not sacrificed in the process of
improving the system’s energy efficiency.
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Appendix A. Dynamics of a rigid body

Consider an orthogonal, three-dimensional coordinate system {A}
(frame {A}) attached to the rigid body. Let 𝐀𝐯 ∈ R3 and 𝐀𝜔 ∈ R3 be the
linear and angular velocity vectors of frame {A}, expressed in frame {A}.
To facilitate the transformations of velocities among different frames,
the linear/angular velocity vector of frame {A} can be written, in view
of Zhu (2010), as

𝐀𝑉
def
= [𝐀𝐯 𝐀𝝎]𝑇 ∈ R6. (A.1)

Let 𝐀𝐟 ∈ R3 and 𝐀𝐦 ∈ R3 be the force and moment vectors applied
to the origin of frame {A}, expressed in frame {A}. Similar to (A.1),
the force/moment vector in frame {A} can be written, in view of Zhu
(2010), as

𝐀𝐹
def
= [𝐀𝐟 𝐀𝐦]𝑇 ∈ R6. (A.2)

Consider two given frames, denoted as {A} and {B}, fixed to a
common rigid body. The following relations hold (Zhu, 2010):

𝐁𝑉 = 𝐀𝐔𝑇
𝐁
𝐀𝑉 (A.3)

𝐀𝐹 = 𝐀𝐔𝐁
𝐁𝐹 (A.4)

where 𝐀𝐔𝐁 ∈ R6×6 denotes a force/moment transformation matrix that
transforms the force/moment vector measured and expressed in frame
{B} to the same force/moment vector measured and expressed in frame
{A}; for more details, see Zhu (2010).

Let frame {A} be fixed to a rigid body. The rigid body dynamics,
expressed in frame {A}, can be written as

𝐌𝐀
𝑑
𝑑𝑡

(𝐀𝑉 ) + 𝐂𝐀(𝐀𝜔)𝐀𝑉 +𝐆𝐀 = 𝐀𝐹 ∗ (A.5)

where 𝐀𝐹 ∗ ∈ R6 is the net force/moment vector of the rigid body
expressed in frame {A}, and 𝐌𝐀 ∈ R6×6, 𝐂𝐀(𝐀𝜔) ∈ R6×6 and 𝐆𝐀 ∈ R6

are the mass matrix, the Coriolis and centrifugal matrix and the gravity
vector, respectively. The detailed expressions can be found in Zhu
(2010).

Now, let 𝐀𝑉r ∈ R6 be the required vector of 𝐀𝑉 ∈ R6. In view of Zhu
(2010), the linear parameterization expression for the required rigid
body dynamics can be written as

𝐘𝐀𝜃𝜃𝜃𝐀
def
= 𝐌𝐀

𝑑
𝑑𝑡

(𝐀𝑉r ) + 𝐂𝐀(𝐀𝜔)𝐀𝑉r +𝐆𝐀. (A.6)

The detailed expressions of the regressor matrix 𝐘𝐀 ∈ R6×13 and the
parameter vector 𝜃𝜃𝜃𝐀 ∈ R13 can be found in Zhu (2010).

Appendix B. 𝑳𝟐 and 𝑳∞ stability

The Lebesgue space is defined as shown in Definition 1.

Definition 1 (Zhu, 2010). The Lebesgue space, denoted as 𝐿𝑝 with 𝑝 be-
ing a positive integer, contains all Lebesgue measurable and integrable
functions 𝑓 (𝑡) subject to

‖𝑓‖𝑝 = lim
𝑇→∞

[

∫

𝑇

0
|𝑓 (𝑡)|𝑝𝑑𝜏

]

1
𝑝
< +∞. (B.1)

Two particular cases are considered:
(a) A Lebesgue measurable function 𝑓 (𝑡) belongs to 𝐿2 if and only if

lim𝑇→∞ ∫ 𝑇
0 |𝑓 (𝑡)|2𝑑𝜏 < +∞.

(b) A Lebesgue measurable function 𝑓 (𝑡) belongs to 𝐿∞ if and only if
max𝑡∈[0,∞) |𝑓 (𝑡)| < +∞.

Lemma 1 (a simplified version of Lemma 2.3 in Zhu (2010)) provides
that a system is 𝐿2 and 𝐿∞ stable with its affiliated vector 𝐱(𝑡), being a
function in 𝐿∞ and its affiliated vector 𝐲(𝑡), being a function in 𝐿2.
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Lemma 1 (Zhu, 2010). Consider a non-negative differentiable function 𝜉(𝑡)
defined as

𝜉(𝑡) ⩾ 1
2
𝐱(𝑡)𝑇𝐏𝐱(𝑡) (B.2)

with 𝐱(𝑡) ∈ R𝑛, 𝑛 ⩾ 1, and 𝐏 ∈ R𝑛×𝑛 being a symmetric positive-definite
matrix. If the time derivative of 𝜉(𝑡) is Lebesgue integrable and governed by

𝜉̇(𝑡) ⩽ −𝐲(𝑡)𝑇𝐐𝐲(𝑡) (B.3)

where 𝐲(𝑡) ∈ R𝑚, 𝑚 ⩾ 1, and 𝐐 ∈ R𝑚×𝑚 being a symmetric positive-definite
matrix. Then it follows that 𝜉(𝑡) ∈ 𝐿∞, 𝐱(𝑡) ∈ 𝐿∞ and 𝐲(𝑡) ∈ 𝐿2 hold.

Lemma 2 provides that the 𝐿2 and 𝐿∞ signal retains its properties
after passing through a first-order MIMO filter.

Lemma 2 (Zhu, 2010). Consider a first-order MIMO system described by

𝐱̇(𝑡) +𝐊𝐱(𝑡) = 𝐮(𝑡) (B.4)

with 𝐱(𝑡) ∈ R𝑛, 𝐮(𝑡) ∈ R𝑛, and 𝐊 ∈ R𝑛×𝑛 being symmetrical and positive-
definite. If 𝐮(𝑡) ∈ 𝐿2

⋂

𝐿∞ holds, then 𝐱(𝑡) ∈ 𝐿2
⋂

𝐿∞, and 𝐱̇(𝑡) ∈ 𝐿2
⋂

𝐿∞
hold.

If asymptotic stability is demanded for the control system, then the
well-known Barbalat lemma is typically used (Slotine & Li, 1991).
Lemma 3 provides an alternative to Barbalat’s lemma.

Lemma 3 (Tao, 1997). If 𝑒(𝑡) ∈ 𝐿2 and 𝑒̇(𝑡) ∈ 𝐿∞, then lim
𝑡→∞

𝑒(𝑡) = 0.

Remark 7. As a distinction to Lyapunov approaches, Lemma 1 allows
different appearances of variables in the non-negative function itself and
in its time-derivative. When all error signals are proven to belong to 𝐿2
and 𝐿∞ in the sense of Lemma 1, then asymptotic stability can be proven
with Lemma 3, if the time-derivatives of all error signals belong to 𝐿∞.

Appendix C. Virtual stability

The unique feature of the VDC approach is the introduction of
a scalar term, namely the virtual power flow (VPF) (Zhu, 2010); see
Definition 2. The VPFs uniquely define the dynamic interactions among
the subsystems and play an important role in the definition of virtual sta-
bility (Zhu, 2010), which is defined in a simplified form in Definition 3.

Definition 2 (Zhu, 2010). The virtual power flow with respect to frame
{𝐀} is the inner product of the linear/angular velocity vector error and
the force/moment vector error as

𝑝𝐀 = (𝐀𝑉r − 𝐀𝑉 )𝑇 (𝐀𝐹r − 𝐀𝐹 ) (C.1)

where 𝐀𝑉r ∈ R6 and 𝐀𝐹r ∈ R6 represent the required vectors of 𝐀𝑉 ∈ R6

and 𝐀𝐹 ∈ R6, respectively.

Definition 3 (Zhu, 2010). A subsystem with a driven VCP to which
frame {𝐀} is attached and a driving VCP to which frame {𝐂} is attached
is said to be virtually stable with its affiliated vector 𝐱(𝑡) being a virtual
function in 𝐿∞ and its affiliated vector 𝐲(𝑡) being a virtual function in
𝐿2, if and only if there exists a non-negative accompanying function

𝜈(𝑡) ⩾ 1
2
𝐱(𝑡)𝑇𝐏𝐱(𝑡) (C.2)

such that

𝜈̇(𝑡) ⩽ −𝐲(𝑡)𝑇𝐐𝐲(𝑡) + 𝑝𝐀 − 𝑝𝐂 (C.3)

holds, where 𝐏 and 𝐐 are two block-diagonal positive-definite matrices,
and 𝑝𝐀 and 𝑝𝐂 denote the virtual power flows (by Definition 2) at frames
{𝐀} and {𝐂}, respectively.

Appendix D. Parameter adaptation

The following projection function 𝒫 from Zhu (2010) is used for
parameter adaptation:

Definition 4. A projection function 𝒫 (𝑠(𝑡), 𝑘, 𝑎(𝑡), 𝑏(𝑡), 𝑡) ∈ R is a
differentiable scalar function defined for 𝑡 ⩾ 0 such that its time
derivative is governed by

̇𝒫 = 𝑘𝑠(𝑡)𝜅 (D.1)

with

𝜅 =

⎧

⎪

⎨

⎪

⎩

0, if 𝒫 ⩽ 𝑎(𝑡) and 𝑠(𝑡) ⩽ 0
0, if 𝒫 ⩾ 𝑏(𝑡) and 𝑠(𝑡) ⩾ 0
1, otherwise

where 𝑠(𝑡) ∈ R is a scalar variable, 𝑘 > 0 is a constant, and 𝑎(𝑡) ⩽ 𝑏(𝑡)
holds.

The projection function in (D.1) has the following property: For any
constant 𝒫𝑐 subject to 𝑎(𝑡) ⩽ 𝒫𝑐 ⩽ 𝑏(𝑡), it yields

(𝒫𝑐 − 𝒫 )
(

𝑠(𝑡) − 1
𝑘

̇𝒫
)

⩽ 0. (D.2)

Appendix E. Regressor and parameter vectors

The detailed expressions for the regressor vector 𝐘v31 ∈ R1×2 and the
parameter vector 𝜃𝜃𝜃v31 ∈ R2 are written as

𝐘v31 =
⎡

⎢

⎢

⎣

− 𝜐(𝑝s−𝑝a3)
𝑥3

𝑆(𝑢31)𝑢31
− 𝜐(𝑝a3−𝑝r )

𝑥3
𝑆(−𝑢31)𝑢31

⎤

⎥

⎥

⎦

𝑇

, 𝜃𝜃𝜃v31 =
[

𝑐p1
𝑐n1

]

. (E.1)

The detailed expressions for the regressor vector 𝐘v32 ∈ R1×2 and the
parameter vector 𝜃𝜃𝜃v32 ∈ R2 are written as

𝐘v32 =
⎡

⎢

⎢

⎣

− 𝜐(𝑝s−𝑝b3)
𝑠3−𝑥3

𝑆(𝑢32)𝑢32
− 𝜐(𝑝b3−𝑝r )

𝑠3−𝑥3
𝑆(−𝑢32)𝑢32

⎤

⎥

⎥

⎦

𝑇

, 𝜃𝜃𝜃v31 =
[

𝑐p2
𝑐n2

]

. (E.2)

The detailed expressions for the regressor vector 𝐘d31 ∈ R1×2 and the
parameter vector 𝜃𝜃𝜃d31 ∈ R2 are written as

𝐘d31 =
[

𝑝̇a3r
𝑥̇3
𝑥3

]

, 𝜃𝜃𝜃d31 =
[

𝐴a3
𝛽f

𝐴a3

]𝑇
. (E.3)

The detailed expressions for the regressor vector 𝐘d32 ∈ R1×2 and the
parameter vector 𝜃𝜃𝜃d32 ∈ R2 are written as

𝐘d32 =
[

𝑝̇b3r −
𝑥̇3

𝑠3 − 𝑥3

]

, 𝜃𝜃𝜃d32 =
[

𝐴b3
𝛽f

𝐴b3

]𝑇
. (E.4)

Appendix F. Lemma 4 (Open Chain 5 Dynamics)

Lemma 4 holds for open chain 5 control and with its parameter
adaptations.

Lemma 4. Consider open chain 5 described by (15), (16), (18), (19), (21),
(22) and (24), combined with the control equations (40), (41), (43), (44),
(50), (51) and (53) and with the parameter adaptations (45)–(48). Let the
non-negative accompanying function for open chain 5 be

𝜈oc5 = 𝜈𝐁5
+ 𝜈𝐁51

= 1
2

∑

A∈𝛹oc5

[

(𝐀𝑉r − 𝐀𝑉 )𝑇𝐌𝐀(𝐀𝑉r − 𝐀𝑉 ) +
13
∑

𝛾=1

(𝜃𝐀𝛾 − 𝜃𝐀𝛾 )2

𝜌𝐀𝛾

]

(F.1)

where set 𝛹oc5 contains frames {𝐁5} and {𝐁51}. Then, the time derivative of
(F.1) can be expressed by

𝜈̇oc5 = −
∑

𝐀∈𝛹oc5

(𝐀𝑉r − 𝐀𝑉 )𝑇𝐊𝐀(𝐀𝑉r − 𝐀𝑉 )

+ (𝑓c3r − 𝑓c3)(𝑥̇3r − 𝑥̇3) + 𝑝𝐁5
− 𝑝𝐓5

. (F.2)
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Proof. Consider open chain 5 containing rigid links 5 and 51; see Fig. 5.
In view of (A.6), by subtracting (18) from (43), and (19) from (44), it
follows that
𝐀𝐹 ∗

r − 𝐀𝐹 ∗ = 𝐌𝐀
𝑑
𝑑𝑡

(𝐀𝑉r − 𝐀𝑉 ) + 𝐂𝐀(𝐀𝜔)(𝐀𝑉r − 𝐀𝑉 )

− 𝐘𝐀(𝜃𝜃𝜃𝐀 − 𝜃𝜃𝜃𝐀) +𝐊𝐀(𝐀𝑉r − 𝐀𝑉 ) (F.3)

holds, ∀𝐀 ∈ {𝐁5,𝐁51}. Then, the skew-symmetric property of 𝐂𝐁5
(𝐁5𝜔)

and 𝐂𝐁51
(𝐁51𝜔) yields

(𝐁5𝑉r − 𝐁5𝑉 )𝑇𝐂𝐁5
(𝐁5𝜔)(𝐁5𝑉r − 𝐁5𝑉 ) = 0 (F.4)

(𝐁51𝑉r − 𝐁51𝑉 )𝑇𝐂𝐁51
(𝐁51𝜔)(𝐁51𝑉r − 𝐁51𝑉 ) = 0. (F.5)

Let the non-negative accompanying function 𝜈oc5 for open chain 5 be
defined as written in (F.1), i.e.,

𝜈oc5 = 𝜈𝐁5
+ 𝜈𝐁51

= 1
2
(𝐁5𝑉r − 𝐁5𝑉 )𝑇𝐌𝐁5

(𝐁5𝑉r − 𝐁5𝑉 )

+ 1
2
(𝐁51𝑉r − 𝐁51𝑉 )𝑇𝐌𝐁51

(𝐁51𝑉r − 𝐁51𝑉 )

+ 1
2

13
∑

𝛾=1

(𝜃𝐁5𝛾 − 𝜃𝐁5𝛾 )
2

𝜌𝐁5𝛾
+ 1

2

13
∑

𝛾=1

(𝜃𝐁51𝛾 − 𝜃𝐁51𝛾 )
2

𝜌𝐁51𝛾
. (F.6)

Then, using (46), (48), (D.2), (F.3) (with 𝐀 = 𝐁5) and (F.4), the time
derivative 𝜈̇𝐁5

can be written as

𝜈̇𝐁5
= (𝐁5𝑉r − 𝐁5𝑉 )𝑇𝐌𝐁5

𝑑
𝑑𝑡

(𝐁5𝑉r − 𝐁5𝑉 ) −
13
∑

𝛾=1
(𝜃𝐁5𝛾 − 𝜃𝐁5𝛾 )

̇̂𝜃𝐁5𝛾

𝜌𝐁5𝛾

= −(𝐁5𝑉r − 𝐁5𝑉 )𝑇𝐂𝐁5
(𝐁5𝜔)(𝐁5𝑉r − 𝐁5𝑉 )

− (𝐁5𝑉r − 𝐁5𝑉 )𝑇𝐊𝐁5
(𝐁5𝑉r − 𝐁5𝑉 )

+ (𝐁5𝑉r − 𝐁5𝑉 )𝑇𝐘𝐁5
(𝜃𝜃𝜃𝐁5

− 𝜃𝜃𝜃𝐁5
)

−
13
∑

𝛾=1
(𝜃𝐁5𝛾 − 𝜃𝐁5𝛾 )

̇̂𝜃𝐁5𝛾

𝜌𝐁5𝛾
+ (𝐁5𝑉r − 𝐁5𝑉 )𝑇 (𝐁5𝐹 ∗

r − 𝐁5𝐹 ∗)

= − (𝐁5𝑉r − 𝐁5𝑉 )𝑇𝐊𝐁5
(𝐁5𝑉r − 𝐁5𝑉 )

+ (𝐁5𝑉r − 𝐁5𝑉 )𝑇 (𝐁5𝐹 ∗
r − 𝐁5𝐹 ∗)

+
13
∑

𝛾=1

{

(𝜃𝐁5𝛾 − 𝜃𝐁5𝛾 )
[

s𝐁5𝛾 −
̇̂𝜃𝐁5𝛾

𝜌𝐁5𝛾

]}

⩽ −(𝐁5𝑉r − 𝐁5𝑉 )𝑇𝐊𝐁5
(𝐁5𝑉r − 𝐁5𝑉 )

+ (𝐁5𝑉r − 𝐁5𝑉 )𝑇 (𝐁5𝐹 ∗
r − 𝐁5𝐹 ∗). (F.7)

Identically to (F.7), using (45), (47), (D.2), (F.3) (with 𝐀 = 𝐁51) and
(F.5), the time derivative 𝜈̇𝐁51

can be written as

𝜈̇𝐁51
⩽ − (𝐁51𝑉r − 𝐁51𝑉 )𝑇𝐊𝐁51

(𝐁51𝑉r − 𝐁51𝑉 )

+ (𝐁51𝑉r − 𝐁51𝑉 )𝑇 (𝐁51𝐹 ∗
r − 𝐁51𝐹 ∗). (F.8)

Then, using (15), (22), (24), (40), (51), (53) and (C.1), the term
(𝐁5𝑉r − 𝐁5𝑉 )𝑇 (𝐁5𝐹 ∗

r − 𝐁5𝐹 ∗) in (F.7) can be written as

(𝐁5𝑉r − 𝐁5𝑉 )𝑇 (𝐁5𝐹 ∗
r − 𝐁5𝐹 ∗)

= (𝐁5𝑉r − 𝐁5𝑉 )𝑇
[

(𝐁5𝐹r − 𝐁5𝐹 ) − 𝐁5𝐔𝐁51
(𝐁51𝐹r − 𝐁51𝐹 )

]

= 𝑝𝐁5
−
[

𝐁51𝐔𝑇
𝐁5
(𝐁51𝑉r − 𝐁51𝑉 ) − 𝐁51𝐔𝑇

𝐁5
𝐱𝑓 (𝑥̇3r − 𝑥̇3)

]𝑇

× 𝐁5𝐔𝐁51
(𝐁51𝐹r − 𝐁51𝐹 )

= 𝑝𝐁5
− 𝑝𝐁51

+ (𝑥̇3r − 𝑥̇3)𝐱𝑇𝑓 (
𝐁51𝐹r − 𝐁51𝐹 )

= 𝑝𝐁5
− 𝑝𝐁51

+ (𝑥̇3r − 𝑥̇3)(𝑓c3r − 𝑓c3) (F.9)

and, similarly to (F.9), using (16), (21), (41), (50), and (C.1) the term
(𝐁51𝑉r − 𝐁51𝑉 )𝑇 (𝐁51𝐹 ∗

r − 𝐁51𝐹 ∗) in (F.8) can be written as

(𝐁51𝑉r − 𝐁51𝑉 )𝑇 (𝐁51𝐹 ∗
r − 𝐁51𝐹 ∗)

= (𝐁51𝑉r − 𝐁51𝑉 )𝑇
[

(𝐁51𝐹r − 𝐁51𝐹 ) − 𝐁51𝐔𝐓5
(𝐓5𝐹r − 𝐓5𝐹 )

]

= 𝑝𝐁51
−
[

𝐓5𝐔𝑇
𝐁51

(𝐓5𝑉r − 𝐓5𝑉 )
]𝑇 𝐁51𝐔𝐓5

(𝐓5𝐹r − 𝐓5𝐹 )

= 𝑝𝐁51
− 𝑝𝐓5

. (F.10)

Finally, taking the time derivative from (F.1), and using (F.7)–(F.10)
yields

𝜈̇oc5 = 𝜈̇𝐁5
+ 𝜈̇𝐁51

⩽ −
∑

𝐀∈𝛹oc5

(𝐀𝑉r − 𝐀𝑉 )𝑇𝐊𝐀(𝐀𝑉r − 𝐀𝑉 )

+ (𝑓c3r − 𝑓c3)(𝑥̇3r − 𝑥̇3) + 𝑝𝐁5
− 𝑝𝐓5

(F.11)

where set 𝛹oc5 contains frames {𝐁5} and {𝐁51}, qualifying the proof for
Lemma 4. ■

Appendix G. Lemma 5 (Chamber A Dynamics)

Lemma 5 holds for chamber A control with its parameter adapta-
tions.

Lemma 5. Consider the hydraulic cylinder chamber A dynamics described
by (32) and (34), combined with the respective control equations (57) and
(59), and with the parameter adaptation (60)–(63). Let the non-negative
accompanying function for this subsystem be

𝜈a3 =
𝐴2
a3

2𝛽f𝑘x31
(𝑝a3r − 𝑝a3)2 +

𝐴a3
2𝑘x31

2
∑

𝛾=1

(𝜃d31𝛾 − 𝜃d31𝛾 )2

𝜌d31𝛾

+
𝐴a3
2𝑘x31

2
∑

𝛾=1

(𝜃v31𝛾 − 𝜃v31𝛾 )2

𝜌v31𝛾
. (G.1)

Then, the time derivative of (G.1) can be expressed by

𝜈̇a3 ⩽ −
𝐴a3𝑘p31
𝑘x31

(𝑝a3r − 𝑝a3)2 − 𝐴a3(𝑝a3r − 𝑝a3)(𝑥̇3r − 𝑥̇3). (G.2)

Proof. It follows from (32), (34), (57), and (59) that
𝐴a3
𝛽

(𝑝̇a3r − 𝑝̇a3) =𝐘v31(𝜃𝜃𝜃v31 − 𝜃𝜃𝜃v31) + 𝐘d31(𝜃𝜃𝜃d31 − 𝜃𝜃𝜃d31)

− 𝑘p31(𝑝a3r − 𝑝a3) − 𝑘x31(𝑥̇3r − 𝑥̇3) (G.3)

holds. Differentiating 𝜈a3 in (G.1) with respect to time and using (60),
(61), (D.2) and (G.3) yields

𝜈̇a3 = (𝑝a3r − 𝑝a3)
𝐴2
a3

𝛽f𝑘x31
(𝑝̇a3r − 𝑝̇a3)

−
𝐴a3
𝑘x31

2
∑

𝛾=1

[

(𝜃d31𝛾 − 𝜃d31𝛾 )
̇̂𝜃d31𝛾
𝜌d31𝛾

+ (𝜃v31𝛾 − 𝜃v31𝛾 )
̇̂𝜃v31𝛾
𝜌v31𝛾

]

= −
𝐴a3𝑘p31
𝑘x31

(𝑝a3r − 𝑝a3)2 − 𝐴a3(𝑝a3r − 𝑝a3)(𝑥̇3r − 𝑥̇3)

+
𝐴a3
𝑘x31

[

(𝑝a3r − 𝑝a3)𝐘d31(𝜃𝜃𝜃d31 − 𝜃𝜃𝜃d31) −
2
∑

𝛾=1
(𝜃d31𝛾 − 𝜃d31𝛾 )

̇̂𝜃d31𝛾
𝜌d31𝛾

+ (𝑝a3r − 𝑝a3)𝐘v31(𝜃𝜃𝜃v31 − 𝜃𝜃𝜃v31) −
2
∑

𝛾=1
(𝜃v31𝛾 − 𝜃v31𝛾 )

̇̂𝜃v31𝛾
𝜌v31𝛾

]

= −
𝐴a3𝑘p31
𝑘x31

(𝑝a3r − 𝑝a3)2 − 𝐴a3(𝑝a3r − 𝑝a3)(𝑥̇3r − 𝑥̇3)

+
𝐴a3
𝑘x31

2
∑

𝛾=1
(𝜃d31𝛾 − 𝜃d31𝛾 )

⎛

⎜

⎜

⎝

sd31𝛾 −
̇̂𝜃d31𝛾
𝜌d31𝛾

⎞

⎟

⎟

⎠

+
𝐴a3
𝑘x31

2
∑

𝛾=1
(𝜃v31𝛾 − 𝜃v31𝛾 )

⎛

⎜

⎜

⎝

sv31𝛾 −
̇̂𝜃v31𝛾
𝜌v31𝛾

⎞

⎟

⎟

⎠

⩽ −
𝐴a3𝑘p31
𝑘x31

(𝑝a3r − 𝑝a3)2 − 𝐴a3(𝑝a3r − 𝑝a3)(𝑥̇3r − 𝑥̇3) (G.4)

which qualifies the proof for Lemma 5. ■
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Appendix H. Lemma 6 (Chamber B Dynamics)

Lemma 6 holds for chamber B control with its parameter adaptations.

Lemma 6. Consider the hydraulic cylinder chamber B dynamics described
by (33) and (35), combined with the respective control equations (64) and
(66), and with the parameter adaptation (67)–(70). Let the non-negative
accompanying function for this subsystem be

𝜈b3 =
𝐴2
b3

2𝛽f𝑘x32
(𝑝b3r − 𝑝b3)2 +

𝐴b3
2𝑘x32

2
∑

𝛾=1

(𝜃d32𝛾 − 𝜃d32𝛾 )2

𝜌d32𝛾

+
𝐴b3
2𝑘x32

2
∑

𝛾=1

(𝜃v32𝛾 − 𝜃v32𝛾 )2

𝜌v32𝛾
. (H.1)

Then, the time derivative of (H.1) can be expressed by

𝜈̇b3 ⩽ −
𝐴b3𝑘p32
𝑘x32

(𝑝b3r − 𝑝b3)2 + 𝐴b3(𝑝b3r − 𝑝b3)(𝑥̇3r − 𝑥̇3). (H.2)

Proof. It follows from (33), (35), (64), and (66) that
𝐴b3
𝛽

(𝑝̇b3r − 𝑝̇b3) = 𝐘v32(𝜃𝜃𝜃v32 − 𝜃𝜃𝜃v32) + 𝐘d32(𝜃𝜃𝜃d32 − 𝜃𝜃𝜃d32)

− 𝑘p32(𝑝b3r − 𝑝b3) + 𝑘x32(𝑥̇3r − 𝑥̇3) (H.3)

holds. Differentiating 𝜈b3 in (H.1) with respect to time and using (67),
(68), (D.2) and (H.3) yields

𝜈̇b3 = (𝑝b3r − 𝑝b3)
𝐴2
b3

𝛽f𝑘x32
(𝑝̇b3r − 𝑝̇b3)

−
𝐴b3
𝑘x32

2
∑

𝛾=1

[

(𝜃d32𝛾 − 𝜃d32𝛾 )
̇̂𝜃d32𝛾
𝜌d32𝛾

+ (𝜃v32𝛾 − 𝜃v32𝛾 )
̇̂𝜃v32𝛾
𝜌v32𝛾

]

= −
𝐴b3𝑘p32
𝑘x32

(𝑝b3r − 𝑝b3)2 + 𝐴b3(𝑝b3r − 𝑝b3)(𝑥̇3r − 𝑥̇3)

+
𝐴b3
𝑘x32

[

(𝑝b3r − 𝑝b3)𝐘d32(𝜃𝜃𝜃d32 − 𝜃𝜃𝜃d32) −
2
∑

𝛾=1
(𝜃d32𝛾 − 𝜃d32𝛾 )

̇̂𝜃d32𝛾
𝜌d32𝛾

+ (𝑝b3r − 𝑝b3)𝐘v32(𝜃𝜃𝜃v32 − 𝜃𝜃𝜃v32) −
2
∑

𝛾=1
(𝜃v32𝛾 − 𝜃v32𝛾 )

̇̂𝜃v32𝛾
𝜌v32𝛾

]

= −
𝐴b3𝑘p32
𝑘x32

(𝑝b3r − 𝑝b3)2 + 𝐴b3(𝑝b3r − 𝑝b3)(𝑥̇3r − 𝑥̇3)

+
𝐴b3
𝑘x32

2
∑

𝛾=1
(𝜃d32𝛾 − 𝜃d32𝛾 )

⎛

⎜

⎜

⎝

sd32𝛾 −
̇̂𝜃d32𝛾
𝜌d32𝛾

⎞

⎟

⎟

⎠

+
𝐴b3
𝑘x32

2
∑

𝛾=1
(𝜃v32𝛾 − 𝜃v32𝛾 )

⎛

⎜

⎜

⎝

sv32𝛾 −
̇̂𝜃v32𝛾
𝜌v32𝛾

⎞

⎟

⎟

⎠

⩽ −
𝐴b3𝑘p32
𝑘x32

(𝑝b3r − 𝑝b3)2 + 𝐴b3(𝑝b3r − 𝑝b3)(𝑥̇3r − 𝑥̇3) (H.4)

which qualifies the proof for Lemma 6. ■

Appendix I. Lemma 7 (Hydraulic Cylinder Dynamics)

Lemma 7 holds for the control of the hydraulic cylinder dynamics
with its parameter adaptation.

Lemma 7. Consider the hydraulic cylinder dynamics, decomposed to
chambers A and B dynamics in Lemmas 5 and 6, and with the piston
dynamics described by (25)–(27), combined with the control laws (54) and
(71), and with the parameter adaptation (55) and (56). Let the non-negative
accompanying function for the hydraulic cylinder be

𝜈c3 = 𝜈a3 + 𝜈b3 +
1
2

7
∑

𝛾=1

(𝜃f3𝛾 − 𝜃f3𝛾 )2

𝜌f3𝛾

=
𝐴2
a3

2𝛽f𝑘x31
(𝑝a3r − 𝑝a3)2 +

𝐴2
b3

2𝛽f𝑘x32
(𝑝b3r − 𝑝b3)2

+
𝐴a3
2𝑘x31

2
∑

𝛾=1

[

(𝜃d31𝛾 − 𝜃d31𝛾 )2

𝜌d31𝛾
+

(𝜃v31𝛾 − 𝜃v31𝛾 )2

𝜌v31𝛾

]

+
𝐴b3
2𝑘x32

2
∑

𝛾=1

[

(𝜃d32𝛾 − 𝜃d32𝛾 )2

𝜌d32𝛾
+

(𝜃v32𝛾 − 𝜃v32𝛾 )2

𝜌v32𝛾

]

+1
2

7
∑

𝛾=1

(𝜃f3𝛾 − 𝜃f3𝛾 )2

𝜌f3𝛾
. (I.1)

Then, the time derivative of (I.1) can be expressed by

𝜈̇c3 ⩽ −
𝐴a3𝑘p31
𝑘x31

(𝑝a3r − 𝑝a3)2 −
𝐴b3𝑘p32
𝑘x32

(𝑝b3r − 𝑝b3)2

− (𝑓c3r − 𝑓c3)(𝑥̇3r − 𝑥̇3). (I.2)

Proof. Differentiating 𝜈c3 in (I.1) with respect to time and using (25)–
(27), (54)–(56), (71), (D.2), (G.2), and (H.2) yields

𝜈̇c3 = 𝜈̇a3 + 𝜈̇b3 −
7
∑

𝛾=1
(𝜃f3𝛾 − 𝜃f3𝛾 )

̇̂𝜃f3𝛾
𝜌f3𝛾

⩽ −
𝐴a3𝑘p31
𝑘x31

(𝑝a3r − 𝑝a3)2 − 𝐴a3(𝑝a3r − 𝑝a3)(𝑥̇3r − 𝑥̇3)

−
𝐴b3𝑘p32
𝑘x32

(𝑝b3r − 𝑝b3)2 + 𝐴b3(𝑝b3r − 𝑝b3)(𝑥̇3r − 𝑥̇3)

−
7
∑

𝛾=1
(𝜃f3𝛾 − 𝜃f3𝛾 )

̇̂𝜃f3𝛾
𝜌f3𝛾

= −
𝐴a3𝑘p31
𝑘x31

(𝑝a3r − 𝑝a3)2 −
𝐴b3𝑘p32
𝑘x32

(𝑝b3r − 𝑝b3)2

− (𝑓p3r − 𝑓p3)(𝑥̇3r − 𝑥̇3) −
7
∑

𝛾=1
(𝜃f3𝛾 − 𝜃f3𝛾 )

̇̂𝜃f3𝛾
𝜌f3𝛾

= −
𝐴a3𝑘p31
𝑘x31

(𝑝a3r − 𝑝a3)2 −
𝐴b3𝑘p32
𝑘x32

(𝑝b3r − 𝑝b3)2

+ (𝑥̇3r − 𝑥̇3)𝐘f3(𝜃𝜃𝜃f3 − 𝜃𝜃𝜃f3) −
7
∑

𝛾=1
(𝜃f3𝛾 − 𝜃f3𝛾 )

̇̂𝜃f3𝛾
𝜌f3𝛾

− (𝑓c3r − 𝑓c3)(𝑥̇3r − 𝑥̇3)

= −
𝐴a3𝑘p31
𝑘x31

(𝑝a3r − 𝑝a3)2 −
𝐴b3𝑘p32
𝑘x32

(𝑝b3r − 𝑝b3)2

− (𝑓c3r − 𝑓c3)(𝑥̇3r − 𝑥̇3) +
7
∑

𝛾=1
(𝜃f3𝛾 − 𝜃f3𝛾 )

⎛

⎜

⎜

⎝

sf3𝛾 −
̇̂𝜃f3𝛾
𝜌f3𝛾

⎞

⎟

⎟

⎠

⩽ −
𝐴a3𝑘p31
𝑘x31

(𝑝a3r − 𝑝a3)2 −
𝐴b3𝑘p32
𝑘x32

(𝑝b3r − 𝑝b3)2

− (𝑓c3r − 𝑓c3)(𝑥̇3r − 𝑥̇3) (I.3)

which qualifies the proof for Lemma 7. ■

Appendix J. Proof for Theorem 1

The proof for Theorem 1 follows directly from Lemmas 4 and 7.
Using (F.1) and (I.1), the non-negative accompanying function 𝜈5 can
be written as

𝜈5 = 𝜈oc5 + 𝜈c3

= 1
2

∑

𝐀∈𝛹oc5

(𝐀𝑉r − 𝐀𝑉 )𝑇𝐌𝐀(𝐀𝑉r − 𝐀𝑉 )

+1
2

13
∑

𝛾=1

[

(𝜃𝐁5𝛾 − 𝜃𝐁5𝛾 )
2

𝜌𝐁5𝛾
+

(𝜃𝐁51𝛾 − 𝜃𝐁51𝛾 )
2

𝜌𝐁51𝛾

]
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+
𝐴2
a3

2𝛽f𝑘x31
(𝑝a3r − 𝑝a3)2 +

𝐴2
b3

2𝛽f𝑘x32
(𝑝b3r − 𝑝b3)2

+
𝐴a3
2𝑘x31

2
∑

𝛾=1

[

(𝜃d31𝛾 − 𝜃d31𝛾 )2

𝜌d31𝛾
+

(𝜃v31𝛾 − 𝜃v31𝛾 )2

𝜌v31𝛾

]

+
𝐴b3
2𝑘x32

2
∑

𝛾=1

[

(𝜃d32𝛾 − 𝜃d32𝛾 )2

𝜌d32𝛾
+

(𝜃v32𝛾 − 𝜃v32𝛾 )2

𝜌v32𝛾

]

+ 1
2

7
∑

𝛾=1

(𝜃f3𝛾 − 𝜃f3𝛾 )2

𝜌f3𝛾

⩾ 1
2

∑

A∈𝛹oc5

(𝐀𝑉r − 𝐀𝑉 )𝑇𝐌𝐀(𝐀𝑉r − 𝐀𝑉 )

+
𝐴2
a3

2𝛽f𝑘x31
(𝑝a3r − 𝑝a3)2 +

𝐴2
b3

2𝛽f𝑘x32
(𝑝b3r − 𝑝b3)2. (J.1)

Then, it follows from (F.2) and (I.2) that the time derivative 𝜈̇5 can be
written as

𝜈̇5 = 𝜈̇oc5 + 𝜈̇c3
⩽ −

∑

A∈𝛹oc5

(𝐀𝑉r − 𝐀𝑉 )𝑇𝐊𝐀(𝐀𝑉r − 𝐀𝑉 ) + 𝑝𝐁5
− 𝑝𝐓5

−
𝐴a3𝑘p31
𝑘x31

(𝑝a3r − 𝑝a3)2 −
𝐴b3𝑘p32
𝑘x32

(𝑝b3r − 𝑝b3)2

+ (𝑓c3r − 𝑓c3)(𝑥̇3r − 𝑥̇3) − (𝑓c3r − 𝑓c3)(𝑥̇3r − 𝑥̇3)

= −
∑

A∈𝛹oc5

(𝐀𝑉r − 𝐀𝑉 )𝑇𝐊𝐀(𝐀𝑉r − 𝐀𝑉 ) + 𝑝𝐁5
− 𝑝𝐓5

−
𝐴a3𝑘p31
𝑘x31

(𝑝a3r − 𝑝a3)2 −
𝐴b3𝑘p32
𝑘x32

(𝑝b3r − 𝑝b3)2. (J.2)

Consider that the subsystem has one driven VCP and one driving VCP
associated with frames {𝐁5} and {𝐓5}, respectively. Then, (J.1) and (J.2)
complete the proof of the virtual stability of the subsystem in the sense
of Definition 3. ■

Appendix K. Proof for Theorem 4

The proof for Theorem 4 follows directly from Theorems 1–3. It
follows from (72), (74) and (76) that

𝜈tot = 𝜈𝐑 + 𝜈5 + 𝜈𝐎3

⩾ 1
2
∑

𝐀∈𝛷
(𝐀𝑉r − 𝐀𝑉 )𝑇𝐌𝐀(𝐀𝑉r − 𝐀𝑉 )

+ 1
2

3
∑

𝑖=1

[

𝐴2
a𝑖

𝛽f𝑘x𝑖1
(𝑝a𝑖r − 𝑝a𝑖)2 +

𝐴2
b𝑖

𝛽f𝑘x𝑖2
(𝑝b𝑖r − 𝑝b𝑖)2

]

(K.1)

holds, where set 𝛷 contains frame {𝐎3} and sets 𝛹oc5 and 𝛹r . Then, using
(73), (75) and (77)–(80), it yields

𝜈̇tot = 𝜈̇𝐑 + 𝜈̇5 + 𝜈̇𝐎3

⩽ −
∑

A∈𝛷
(𝐀𝑉r − 𝐀𝑉 )𝑇𝐊𝐀(𝐀𝑉r − 𝐀𝑉 )

−
3
∑

𝑖=1

[𝐴a𝑖𝑘p𝑖1
𝑘x𝑖1

(𝑝a𝑖r − 𝑝a𝑖)2 +
𝐴b𝑖𝑘p𝑖2
𝑘x𝑖2

(𝑝b𝑖r − 𝑝b𝑖)2
]

+𝑝𝐓O3
− 𝑝𝐓5

+ 𝑝𝐁5
− 𝑝𝐁O2

− 𝑝𝐆
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=0, in view of (78)–(80).

(K.2)

It follows from Lemma 1 in Appendix B, (K.1), and (K.2) that (𝐀𝑉r −
𝐀𝑉 ) ∈ 𝐿2

⋂

𝐿∞,∀𝐀 ∈ 𝛷, (𝑝a𝑖r−𝑝a𝑖) ∈ 𝐿2
⋂

𝐿∞ and (𝑝b𝑖r−𝑝b𝑖) ∈ 𝐿2
⋂

𝐿∞,
∀𝑖 ∈ {1, 2, 3} hold. Then, using (15), (40) and (𝐀𝑉r − 𝐀𝑉 ) ∈ 𝐿2

⋂

𝐿∞,
it yields (𝑥̇𝑖r − 𝑥̇𝑖) ∈ 𝐿2

⋂

𝐿∞. Finally, subtracting 𝑥̇𝑖 from both sides of
(38), and using (𝑥̇𝑖r − 𝑥̇𝑖) ∈ 𝐿2

⋂

𝐿∞ and Lemma 2 (in Appendix B), it
yields that (𝑥̇𝑖d − 𝑥̇𝑖) ∈ 𝐿2

⋂

𝐿∞ and (𝑥𝑖d − 𝑥𝑖) ∈ 𝐿2
⋂

𝐿∞ hold. ■
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