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Evaluating SIR in 3D mmWave Deployments:
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Recently, new opportunities for utilizing the extremely high
frequencies have become instrumental to design the fifth-
generation (5G) mobile technology. The use of highly directional
antennas in millimeter-wave (mmWave) bands poses an impor-
tant question of whether 2D modeling suffices to capture the
resulting system performance accurately. In this work, we develop
a novel mathematical framework for performance assessment of
the emerging 3D mmWave communication scenarios, which takes
into account vertical and planar directivities at both ends of a
radio link, blockage effects in three dimensions, and random
heights of communicating entities. We also formulate models
having different levels of details and verify their accuracy for
a wide range of system parameters. We show that capturing
the randomness of both Tx and Rx heights as well as the
vertical antenna directivities becomes crucial for accurate system
characterization. The conventional planar models provide overly
optimistic results that overestimate performance. For instance,
the model with fixed heights that disregards the effect of vertical
exposure is utterly pessimistic. Other two models, one having
random heights and neglecting vertical exposure and another one
characterized by fixed heights and capturing vertical exposure
are less computationally expensive and can be used as feasible
approximations for certain ranges of input parameters.

Index Terms—Interference, mmWave systems, SIR, 3D mod-
eling, directional antennas, blockage, 5G

I. INTRODUCTION

With the adoption of advanced communication technology
in the forthcoming 5G networks [1], the wireless community
envisions that multiple handheld and wearable devices are
to be placed on and around user bodies [2]. These capable
‘carriables’ and ‘wearables’ may need to cooperate in prox-
imity while utilizing the emerging millimeter-wave (mmWave)
radios in ultra-dense deployments (e.g., augmented reality
glasses in crowded scenarios). The use of mmWave technology
allows for enabling extremely high network capacity and
achieving lower latency as compared to the conventional
communication under 6GHz [3]. As a result, mmWave systems
are expected to soon become an integral part of 5G mobile
networks by supporting unprecedented data rates at the air
interface along with more efficient spatial frequency reuse.
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To this aim, the utilization of mmWave bands, such as
28, 60, and 72GHz, has recently gained attention [4]. The
higher free-space propagation loss at these frequencies can be
partially compensated by the use of highly directional antenna
radiation patterns at both the transmitting and the receiving
ends of a link. The resultant ‘pencil’ beams are expected to
reduce the interfering signals; hence, improving performance
under specific conditions while approaching the noise-limited
communication regime [5]. Another feature connected with the
mmWave band is the incapability of the electromagnetic waves
at these frequencies to ‘travel around’ the objects, whose size
is larger than several centimeters. Therefore, various objects
in the radio channel, such as human bodies, lampposts, and
buildings, act as blockers to a propagating wave [6].

The evolution of communication systems in the 5G era is
accompanied by the increasing complexity of the considered
use cases. The envisioned use of drones to deliver service to
massive crowds on the move as well as widespread utilization
of ‘high-end’ wearable electronics (e.g., augmented reality
glasses) will enable wireless connectivity in three dimen-
sions [7]. Similarly, the emerging ultra-dense 5G scenarios,
such as shopping mall deployments [8], embrace another
powerful paradigm of device-to-device (D2D) communication,
which is expected to push the limits of (beyond-)5G wireless
systems by also exploring the third dimension, since the
heights of communicating entities may become random.

In this work, we consider these emerging 3D mmWave
communication scenarios with directional antennas at both
transmitting (Tx) and receiving (Rx) ends of a link, having
random heights and positions of the communicating entities,
as well as possible blockage of radio propagation paths.
Extending the tools of planar stochastic geometry to the third
dimension, we derive novel expressions for the mean inter-
ference and signal-to-interference ratio (SIR). After obtaining
these metrics, we continue with a numerical study to reveal
the crucial effects pertaining to 3D mmWave communication
scenarios as well as assess the accuracy of several simplified
models that are the special cases of our developed more
complex solution.

The main contributions of this work are as follows:
• novel mathematical framework allowing to capture the

effects of random heights of communicating entities, planar
and vertical directionalities of Tx and Rx antennas, as well as
3D blockage phenomenon for interference and SIR analysis
in 3D mmWave scenarios;
• rigorous performance evaluation regarding the effects of
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various system parameters, which shows that (i) randomness
of Tx and Rx heights and vertical exposure probability are
critical for accurate performance assessment of 3D mmWave
deployments; (ii) the conventional planar model may provide
optimistic results that overestimate the mean SIR by as much
as 20dB; (iii) the model with fixed heights that disregards
the effect of vertical directivity is utterly pessimistic, and the
gap between these two extremes may approach 40 − 60dB;
(iv) there exist simpler models that provide accurate approxi-
mations for the limited ranges of system parameters;
• performance assessment of various mmWave communi-

cation scenarios, including terrestrial, drone-aided, and D2D
deployments, which indicates that for the same intensity of
communicating entities the drone-assisted deployments are
characterized by the best SIR conditions slightly outperform-
ing the standard ground mmWave deployments and having
dramatic gains over the D2D case.

The rest of the paper is organized as follows. Section II
reviews the related work. The system model is formulated
in Section III. The analysis is conducted in Section IV.
Subsection IV-C outlines the special cases of the proposed
model. Numerical assessment of the model and the examples
that address various communication scenarios are provided in
Section V. Conclusions are drawn in the last section.

II. RELATED WORK

Conventionally, the performance of cellular communication
systems has been assessed with the tools of planar stochastic
geometry [9]. In that framework, the communicating entities
are represented as a realization of a spatial process on the
plane, while the metrics of interest are expressed as functions
of the Euclidean distance between them. Since the heights of
the communicating devices – both the user equipment (UE)
and the base station (BS) – are relatively small as compared
to the coverage range of a radio link, the distance between the
two nodes can be assumed to be planar, and thus geometric
methods can be applied to capture the key performance
metrics reasonably well, which includes interference, SIR, and
channel capacity.

Despite the increased use of highly directional antenna
radiation patterns, random heights of the involved entities,
and the emergence of complex 3D blockage situations, the
tools of planar stochastic geometry remain the most commonly
employed for the performance analysis of mmWave systems.
The moments of interference and SIR for mmWave systems in
the presence of blockage have been derived in [10], [11]. The
Laplace transform (LT) of interference and SIR probability
density functions (pdfs) in the absence of blockage have been
produced in [12]. The LT of SIR for the mmWave system
operating at 28GHz has been reported in [13], [14].

In [15], the authors provide SIR approximations for
mmWave and terahertz systems in the presence of atmospheric
absorption. More recently, engineering studies that address
various implementation aspects of mmWave networks started
to proliferate, see, e.g., [16], [17], [18]. However, all of the
referred studies assume 2D planar deployments, which may
lead to significant overestimation of the actual interference in

mmWave deployments, thus affecting the SIR and capacity
estimates.

Over the last two decades, several authors questioned the
popular 2D approximations of real-world 3D cellular network
deployments. The work in [19] from the early 90s focused
the community’s attention on the challenge of 3D antenna
analysis with respect to the signal incident angles. Particularly,
the authors demonstrated that the use of 3D modeling allows
to isolate the null appearances in the antenna radiation pattern
more accurately as compared to the 2D approach. A decade
later, the study in [20] rattled the 2D approximation conven-
tionally employed in wireless network planning with several
illustrative examples, where it leads to significant deviations
from the optimal design.

Notably, the ‘manifest’ was such that the network planners,
algorithm designers, and policy makers rely on a small set
of radio propagation scenarios, by often assuming fixed Rx
antenna heights. Therefore, the network design might be
heavily affected by the 2D approximation at hand and more
advanced 3D models are required for accurate modeling,
development, and planning of the emerging radio systems.
Specifically, the differences in the signal-to-interference-plus-
noise ratio (SINR) of up to 20dB have been revealed in several
scenarios. Similar ideas have been propagated in [21], [22].

The recent push for taming higher frequency bands, where
larger bandwidths for 5G mmWave systems are becoming
available, revives the discussion about the need for 3D models.
Today, most of the studies in this area are related to simulations
and measurements conducted in 3D where the focus is set
on mmWave communications. For example, [23] focuses on
developing a 3D model of the body blockage for smart
wearable devices in indoor square premises. Indeed, the use
of highly directional antennas, limited coverage range of the
mmWave access points (APs), as well as a broader range of
communication scenarios may inherently require capturing the
third dimension. The authors of [24] elaborate on the analytical
model for a 3D massive MIMO system that supports the
elevation dimension and thus improves the system SINR.

Further, [25] considers a more realistic “3D+” case, where
the APs are located higher than the UEs. One of the latest
works in [26] describes the 3D fluid model, which allows
to evaluate the cumulative distribution function (CDF) of
SINR. The authors demonstrate that their proposed model
provides higher accuracy than the counterpart 2D model
when compared with simulations. Overall, many works are
attempting to evaluate mmWave in 3D, but most of them rely
on ray-based modeling techniques that are computationally
hungry [27], [28], [29], [30]. One of the reasons to develop an
analytical model is to reduce the time required for system-level
network evaluation.

In our study [31], we preliminarily examined mmWave
deployments with random heights of the communicating Tx
nodes having highly directional radiation patterns as well as
omnidirectional Rx nodes. Even though the corresponding
analysis becomes much more complicated in contrast to 2D
modeling, the produced numerical results indicate that the
error of approximation for SIR heavily depends on the antenna
directivity pattern and may reach as high as 40dB. Such error
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levels may not be neglected as they can lead to extremely sub-
optimal network deployment and system design decisions.

III. SYSTEM MODEL

In this section, we formalize our system model by specify-
ing the 3D deployment, the antenna radiation pattern, as well
as the propagation and blockage models. We also introduce
the target metrics of interest. Notation used in this paper is
summarized in Table I.

A. Network Deployment and Blockage Model

The considered deployment model is illustrated in Fig. 1(a).
Assume that the locations of Rx nodes, labeled as Ri, i =
0, 1, . . . , are modeled by a Poisson point process in <2 with
the intensity of λ. Each Rx is associated with a Tx labeled as
Ti. Positions of the Tx nodes are distributed uniformly within
the circle of radius RT centered at the Rx. The Tx nodes are
assumed to use the same frequency channel, thereby acting
as ‘interferers’ to the tagged Rx. The heights of Tx and Rx
nodes, HT and HR, follow an exponential distribution with
the parameters µT and µR, respectively. Hence, the UE may
be located not only in the user’s hand but anywhere on the
body. Rx and Tx nodes are associated with the communicating
entities, e.g., humans are represented as cylinders with the
radius of rB , while the height, HB , follows an exponential
distribution with the parameter µB .

Among the Tx-Rx pairs, we randomly select an arbitrary
one (R0, T0) and limit the effective interference area around
the tagged Rx by a circle of radius RI . The interference
created by the Tx nodes located outside is assumed to be
negligible, i.e., lower than the noise floor. RI is computed
as a function of the propagation model, transmit power, and
antenna directivity. In Fig. 1(a), the green bars represent the
communicating pair of interest, while other bars correspond
to competing entities, whose transmission may or may not
affect the tagged Rx. Note that our model also considers
the scenario where the radiation passes over the ‘heads’ of
the blockers. However, as this work primarily focuses on
the three-dimensional effects of blockage, the self-blockage
phenomenon is not included.

We further assume that the communicating entities may
occlude the line-of-sight (LoS) path between the interferers
and the tagged Rx. Interference from a specific Tx may reach
the tagged Rx only if its transmission is directed towards the
tagged Rx and the LoS path is not blocked. In Fig. 1(a), the
red bars represent the interfering pair affecting the tagged Rx,
while the blue bars correspond to the pair, whose transmission
is blocked. One may further extend this model by assuming
an additional external Poisson field of blockers.

B. Propagation and Antenna Models

In this study, the power at the receiver is modeled by
following PR(r) = Ar−ζ [32], where ζ is the loss exponent,
A is the factor accounting for the transmit power, frequency,
and antenna gains, and r is the propagation distance. We
consider that the radiation patterns of the transmitting and

receiving antennas have similar shapes with different vertical
and planar directivities. An antenna pattern is approximated
as a pyramidal zone with the vertical and planar angles, αT,V
and αT,H , respectively, as displayed in Fig. 1(b).

To determine the gain A corresponding to certain directivi-
ties (αV , αH), observe that the surface area of the wavefront
equals the area of the spherical rectangle shown in Fig. 1(b).
Using the spherical law of cosines [33], we express cosχ as
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Observe that one quarter of the spherical excess of the
rectangle in Fig. 1(b) is (ρ− π/2), which implies

cos
(
ρ− π

2

)
= tan

(
LH
2

)
tan

(
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2

)
, (2)

where LH and LV are spherical geodesics.
The spherical geodesics LH and LV correspond to the

directivity angles αH and αV , respectively. Therefore, the area
of the spherical rectangle is

SA = 4 arcsin
(

tan
αV
2

tan
αH
2

)
. (3)

As the power density at the wavefront is given by PR =
Ar−ζ , the antenna directivity gain corresponding to angles αV
and αH can be established as

G(αV , αH) =
4π

SA
=

π

arcsin
(
tan αV

2 tan αH
2

) , (4)

which leads to A = PTG (αT,V , αT,H)G (αR,V , αR,H).
Hence, the received power takes the following form

PR(r) =

[
arcsin

(
tan

αV,R
2 tan

αH,R
2

)]−1
arcsin

(
tan

αV,T
2 tan

αH,T
2

) PTπ
2r−ζ , (5)

where one can determine the path loss exponent ζ for a
particular technology by using empirical data, see, e.g., [34]
for the frequency range of 0.5 − 100GHz. Note that for
simplicity we assume no power control on the end nodes.

C. Metrics of Interest

Our considered metrics are the first moments of aggre-
gate interference and SIR. In particular, SIR is one of the
fundamental metrics in wireless communications that char-
acterizes the channel conditions and affects many wireless
system parameters, such as the choice of the modulation and
coding scheme [35], [36]. Notably, in practical systems, the
knowledge of SIR value is mapped onto the modulation and
coding scheme that is used at the air interface. We specifically
note that the developed methodology can also be used to
obtain moments of other metrics, including spectral efficiency,
capacity, etc.
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TABLE I
NOTATION USED IN THIS PAPER.

Parameter Definition Parameter Definition

λ Spatial density of Rx nodes µI , σ
2
I Mean and variance of interference

Ri, Ti i-th Rx/Tx µPR Mean received power

HR, HT Rx/Tx heights KPR,I Covariance between interference/received power

1/µR, 1/µT Mean height of Rx/Tx E[In1 ] Moments of interference from an interferer

RT Maximum distance between Tx and Rx pC(r) Directional exposure probability at distance r

RI Interference radius around the tagged Rx pV (r) Vertical exposure probability at distance r

rB , HB Communication entity’s radius and height pH(r) Planar exposure probability at distance r

1/µB Mean communication entity’s height pB(r) Blockage probability at distance r

λB Spatial density of blockers Γ(z) Euler Gamma function

N Number of interferers Jzn Bessel function of the first kind

LP (r) Path loss at distance r En(x) Exponential integral function

ζ Path loss exponent Hz
n Struve function

PT , PR Transmit and receive power Gr Difference between LoS and blocker heights

A Factor accounting for Tx power and gains ξi, ηi Auxiliary variables

αT,H , αT,V Planar and vertical Tx antenna directivities J Jacobian of transformation

αR,H , αR,V Planar and vertical Rx antenna directivities {γ, θ, β} Angles defining vertical exposure probability

χ Spherical angle for wavefront density HIT , HIR Heights of interfering Tx/Rx pair

LH , LV Spherical geodesics dT , dI Distances to the tagged and interfering Tx nodes

ρ Spherical excess of a rectangle fX(x) Probability density function of RV X

SA Surface area of a wavefront f ~X(~x) Joint probability density function of RVs ~X

I Aggregate interference ~xn Vector of size n

S Signal-to-interference ratio xi Element i of vector ~xn, i = 1, 2, . . . , n

T2

T3

R3T3 R3

T4 R4
R2

T0
R0

(a) Considered 3D communication scenario. (b) Illustration of antenna radiation pattern modeling.

Fig. 1. Main system considerations.

The aggregate interference and SIR can be written as

I = A

N∑
i=1

d−ζi , S =
Ad−ζ0

A
∑N
i=1 d

−ζ
i

=
d−ζ0∑N
i=1 d

−ζ
i

, (6)

where N is a Poisson random variable (RV) with the mean
of λπR2

I , while di, i = 1, 2, . . . , N , are the distances in <3

between the Rx of interest and the interfering Tx nodes.
Our system model assumptions are summarized in Table II.

Below, we analyze the system under these assumptions. In
subsection IV-D, we relax some of them by showing how
our framework can be extended to accommodate additional
submodels.

IV. PERFORMANCE ANALYSIS

In this section, we evaluate the SIR in the introduced 3D
mmWave deployment. First, we provide an approximation
for the mean SIR by using a Taylor series expansion. Next,
we proceed with establishing the main results required to
determine the SIR. Finally, we describe the special cases of
the proposed model that can be considered as candidates for
a suitable approximation.

A. SIR Approximation

To obtain the mean SIR, we apply a Taylor series expansion
of the SIR function S = g(x, y) = PR/I . A second-order
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TABLE II
SUMMARY OF SYSTEM ASSUMPTIONS.

Consideration Assumption

Rx deployment Poisson point process in <2

Tx deployment Uniform distribution in a circle of radius RT
around Rx

Rx height Exponential distribution

Tx height Exponential distribution

Blocker model Cylinder with constant base radius and expo-
nentially distributed height

Propagation model UMi Street-Canyon LoS model converted to
Ar−ζ model

Blockage model Binary LoS blockage model (“zero-
interference” when LoS is blocked)

Radiation pattern
model

Pyramidal (constant power density at base, no
density outside)

Antenna sensitivity
model

Pyramidal (constant power density at base, no
density outside)

Metric of interest Signal-to-interference ratio (SIR)

approximation is obtained by expanding g(x, y) around ~µ =
(E[PR], E[I]) = (µPR , µI), which leads to [37]

E[g(~µ)] ≈ g(~µ) +
g′′xx(~µ)σ2

PR
+ 2g′′xyKPR,I + g′′yy(~µ)σ2

I

2
, (7)

where KPR,I is the covariance between P and I , while σ2
PR

and σ2
I are the variances of PR and I , respectively.

Observing that

g′′xx(x, y) = 0, g′′x,y(x, y) = −y−2, g′′yy(x, y) = 2x/y2, (8)

we arrive at the following approximation

E[PR/I] ≈ µPR
µI
− KPR,I

µ2
I

+
σ2
IµPR
µ3
I

. (9)

The moments of the aggregate interference are obtained by
using the Campbell’s theorem [38]

E[In] =

∫ RI

0

E[In1 (r)]pC(r)[1− pB(r)]2λπrdr, (10)

where 2λπrdr is the probability of having an interferer in
the infinitesimal increment of the circumference dr, pC(r) is
the probability that the transmit antennas of the interfering Tx
nodes are oriented such that they contribute to the interference
at the Rx (named here the exposure probability), pB(r) is the
probability that the LoS path is being blocked by some Tx or
Rx nodes, and E[In1 (r)] are the moments of the interfering
signal from a single interferer conditioned on the distance
between the Rx and the interferer.

B. Main Results

To obtain the mean SIR, the following are required: (i) the
mean received power, µPR = E[PR], (ii) the first two
conditional moments of the interference power from a single
interferer, E[In1 ], n = 1, 2, . . . , (iii) the exposure probability,
pC , (iv) the blockage probability conditioned on the distance

r, pB(r), and (v) the covariance between the received power
and the interference power, KPR,I . The propositions below
establish these quantities.

Proposition 1 (Mean Received Power). The moments of the
received signal power are given as

E[PnR] = An2
1
2−ζn [W (µT , µR) +W (µR, µT )]×

×
π

3
2 csc

(
πζn
2

)
sec
(
πζn
2

)
R
−(nζ−5

2 )
T

µ2
Rµ

2
T (µR + µT ) Γ

(
nζ
2

)
Γ
(
nζ−1

2

) , (11)

where W (x, y) is given by

W (x, y) = x3
[
2
√

2yζnR
nζ+1

2

T +R2
T 2

ζn
2 y

nζ+3
2 Γ

(
nζ − 1

2

)
×

×
(

cos

(
πζn

2

)
HyRT

3−nζ
2

− JyRTnζ−3
2

− sin

(
πζn

2

)
JyRT3−nζ

2

)]
,

where Γ(z) is the Euler Gamma function, Jzn is the Bessel
function of the first kind, and Hz

n is the Struve function.

Proof. The power of the received signal may be expressed as

PR = A
(√

(HT −HR)2 + r2
)−ζ

, (12)

where HT , HR, and r are the RVs.
The pdf of |HT −HR| is known to be

f|HT−HR|(y) =
(e−yµR + e−yµT )µRµT

µR + µT
, y > 0. (13)

Then, the sought moments, E[PnR(r)], n = 1, 2, . . . , of the
received signal power can be established as in [39]

E[PnR] =

RT∫
0

∞∫
0

An (e−yµR + e−yµT )µRµT 2r

(r2 + y2)
nζ
2 (µR + µT )R2

T

dydr. (14)

Evaluating the integrals in (14), we arrive at (11).

The obtained result immediately leads to the following
corollary, which delivers the conditional moments of inter-
ference power from a single interferer.

Corollary 1 (Conditional Moments of Interference Power
from a Single Interferer). The conditional moments of inter-
ference are produced directly from (14) by fixing the planar
distance between the interferer and the Rx, r, and assume the
form of

E[In1 (r)] =
[W1(µT ) +W1(µR)]

[
(µR + µT ) Γ

(
nζ
2

)]
2−

nζ+1
2 Anπ

3
2µRµT

, (15)

where W1(x) is given by

W1(x) =
[ r
x

] 1−nζ
2
[
2Jrxnζ−1

2

csc (nπζ)−

− Jrx1−nζ
2

sec

(
nπζ

2

)
+ csc

(
nπζ

2

)
Hrx

1−nζ
2

]
. (16)

To determine the LoS blockage probability, we introduce
the so-called LoS blockage zone, ABCD, as shown in Fig. 2.
Whenever at least one center of a blocker falls into this zone,
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a)

A

B

C

b)

D

Fig. 2. Illustration of blockage in three dimensions.

the LoS path becomes occluded. The blockage probability
pB(r) is established in the following proposition, while Fig. 2
illustrates the proof.

Proposition 2 (Blockage Probability). The blockage probabil-
ity in a Poisson field of blockers with exponentially distributed
heights of the Tx and Rx nodes is established as

pB(r) = 1−
(

µRµT
(µB + µR) (µB + µT )

) 2rBrλµRµT
µB(µB+µR+µT )

. (17)

Proof. Let Gr, 0 < r < RI , be the RV denoting the difference
between the height of the LoS path and the blocker height HB

at planar distance r from the Tx. Observe that the centers of
blockers falling into the LoS blockage zone are distributed
uniformly over (0, RI). Assuming HR ≥ HT , we have

Gr =
(HR −HT )Y

r
+HT −HB , (18)

where HT , HB , and HR are the RVs with known pdfs, Y is
the RV that is distributed uniformly in (0, r). Note that in case
of HR < HT , one needs to replace the RV Y with (r − Y ).
However, as long as Y remains distributed uniformly in (0, r),
the RV (r − Y ) is distributed as Y .

The probability that a single blocker located at the distance
of r from the Rx occludes the LoS path is delivered by

pB,1(r) = 1− Pr
{

(HR −HT )Y

r
+HT −HB > 0

}
. (19)

Knowing pB,1(r) and applying the properties of the Poisson
process, we establish the overall blockage probability as

pB(r) = 1−
∞∑
i=0

(2λrBr)
i

i!e2λrBr
[1− pB,1(r)]i =

= 1− e−2λrBr −
∞∑
i=1

(2λrBr)
i

i!e2λrBr
[1− pB,1(r)]i, (20)

where pB,1(r) = Pr{Gr −HB > 0} is the unknown term.
Let ~ξn = {ξ1, ξ2, ξ3, ξ4} = {HB , HR, HT , Y } where the

joint pdf (jpdf) of

f~ξn(~xn) =
µBe

−µBx1µRe
−µRx2µT e

−µT x3

r
, (21)

and define {η1} = {Gr} as the target variable. Supplementing
with auxiliary variables

~ηn = {η1, η2, η3, η4} = {Gr, HR, HT , Y }, (22)

the transformation at hand reads as

y1 = f(~xn) = Gr =
(x2 − x3)x4

r
+ x3 − x1, (23)

where the auxiliary functions are fi(xn) = xi, i ∈ {2, 3, 4}.
Note that the inverse transformation is a bijection

x1 = φ1 (~yn) = −ry1 − ry3 − y2y4 + y3y4
r

,

which is complemented with xi = φi(~y
n) = yi, i ∈ {2, 3, 4}.

Then, the jpdf can be represented as

f~ηn(~yn) = fξn(φ1(~yn), . . . , φn(~yn))|J|, (24)

where f~ξn(φ1(~yn), . . . , φn(~yn)) can be established as

f~ξn(~φn (~yn)) =
µRµTµB

r
×

× e
µB(ry1−ry3−y2y4+y3y4)

r −y2µR−y3µT , (25)

and the Jacobian is J = ∂φ1 (~yn) /∂y1 = −1.
The pdf of Gr can now be written as in (26), where

l1(~yn) = max

{
0,
y2y3 − ry2

y3
,
−ry2 + ry4 + y2y3

y3

}
, (27)

and the final integrand takes the following form in (28).
Evaluating the integral in (26) is not feasible in the closed

form. However, after changing the order of integration, we
arrive at

pB,1(r) = 1−
r∫

0

∞∫
0

fη1η4(y1, y4)dy1dy4 =

=
µRµT log

(
µRµT

(µB+µR)(µB+µT )

)
µB (µB + µR + µT )

. (29)

Substituting (29) into (20) and simplifying, yields (17).

Observing Fig. 3 one may deduce that the directional
exposure probability at the planar distance of r between the
Rx and the interferer, pC(r), can be found as

pC(r) = pV (r)pH(r), (30)

where pH(r) is the probability that the interferer exposes the
tagged Rx on the horizontal plane, pV (r) is the probability
that this also occurs in the third dimension. Following [11],
the planar exposure probability is produced by

pH(r) =
αT,Hr

2πr

αR,Hr

2πr
=
αT,HαR,H

4π2
, (31)

where αT,H and αR,H are the planar directivities at Tx and Rx,
respectively. The vertical exposure to interference is demon-
strated in Fig. 3(a). The following proposition establishes the
vertical exposure probability.
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fη1(y1) =

∫ ∫ ∫
R3

f~ξn [φi(~y
n)]|J|dy2dy3dy4 =

r∫
0

∞∫
0

∞∫
l1(~yn)

µRµTµB
r

e
µB(ry1−ry3−y2y4+y3y4)

r −y2µR−y3µT dy2dy3dy4 =

=

r∫
0

∞∫
0

µRµTµB
rµR + µBy4

e
rµBy1−ry3(µT+µB)+µBy3y4−(rµR+µBy4)max{0,r(y1−y3)y

−1
4 +y3}

r dy3dy4 =

r∫
0

fη1η4(y1, y4)dy4. (26)

fη1η4(y1, y4) = − (y4µB + rµR)
−1
e−

ry1µR
y4
− ry1µTr−y4 µBµRµT

(rµB − y4µB + rµT ) (−rµR + y4µR + y4µT )
× (28)

×
(
− e

ry1µT
r−y4 ry4µB + e

ry1µT
r−y4

+ry1
(
µR
y4

+
µT
−r+y4

)
ry4µB + e

ry1µT
r−y4 y24µB − e

ry1µT
r−y4

+ry1
(
µR
y4

+
µT
−r+y4

)
y24µB+

+ e
ry1µR
y4 r2µR − e

ry1µR
y4 ry4µR − e

ry1µR
y4 ry4µT − e

ry1µT
r−y4 ry4µT + e

ry1µT
r−y4

+ry1
(
µR
y4

+
µT
−r+y4

)
ry4µT

)
.

(a)

(b)

Fig. 3. Directional exposure for directional Tx and Rx nodes.

Proposition 3 (Vertical Exposure Probability). The vertical
exposure probability in a system with directional Tx and Rx
nodes is given by

pV (r) =

∞∫
−∞

y4+
αT,V

2∫
y4−

αT,V
2

y4+
αR,V

2∫
y4−

αR,V
2

fγ,θ,β (y1, y4, y6)dy1dy6dy4, (32)

where fγ,θ,β (y1, y4, y6) is the jpdf of the angles {θ, γ, β}, see
Fig. 3, while αT,V and αR,V are the vertical directivities at
Tx and Rx, respectively.

Proof. Consider the system of RVs {θ, γ, β}, see Fig. 3, where
θ is the angle at which the beam arrives to the tagged Rx
from the tagged Tx, γ is the angle at which the LoS between
the tagged Rx and the interferer rises above the horizon, and
β is the angle at which the beam is directed from a non-
tagged Tx to its associated Rx. Using αT,V and αR,V as the
vertical directivities of the Tx and the Rx, the vertical exposure
probability is characterized by (32).

Let us relabel the input RVs as

~ξn = {ξ1, ξ2, . . . , ξ6} = {HT , HR, dT , HIT , dI , HIR}, (33)

where HT and HR are the heights of the Tx and the Rx,
respectively, HIT and HIR are the heights of the Tx and
the Rx associated with the interfering radio link, while dT
and dI are the planar distances between the tagged and
the interfering communicating pairs. The jpdf of ξn1 has the
following multiplicative form

f~ξn (~xn) =
4x3x5µ

2
Tµ

2
R

R4
T

e−µT x1−µRx2−µT x4−µRx6 , (34)

which is due to independence of the involved RVs.
We also relabel the set of target RVs as

~ηm = {η1, η4, η6} = {θ, γ, β}, (35)

and since the number of the target RVs, m, is lower than the
number of the input RVs, n, we supplement them with the
auxiliary RVs as

~ηn = {η1, η2, . . . , η6} = {θ,HR, dT , γ, dI , β}. (36)

Further, the transformation in question and complementary
auxiliary functions are given by
y1 = f1 (~xn) = θ = tan−1

(
x1−x2

x3

)
,

y4 = f4 (~xn) = γ = tan−1
(
x4−x2

r

)
,

y6 = f6 (~xn) = β = tan−1
(
x4−x6

x5

)
,


y2 = f1 (~xn) = x2,

y3 = f3 (~xn) = x3,

y5 = f5 (~xn) = x5.

(37)

Note that the inverse transformation is a bijection within the
domain of θ, γ, and β = (−π/2, π/2). Hence, the inverses are
x1 = φ1 (~yn) = y2 + y3tan y1,

x4 = φ4 (~yn) = y2 + rtan y4,

x6 = φ6 (~yn) = y4 + y5tan y6,


x2 = φ2 (~yn) = y2,

x3 = φ3 (~yn) = y3,

x5 = φ5 (~yn) = y5.

(38)

As a result, the sought jpdf may be written as

f~ηn (~yn) =

∫∫∫
R3

f~ξn(φ1(~yn), . . . , φn(~yn))|J|dy2dy5dy3, (39)

where the Jacobian is computed by

J = −ry3y5sec2 (y1) sec2 (y4) sec2 (y6) , (40)
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and the integrand is available as

f~ξn(~φn(~yn)) =
4y3y5µ

2
Rµ

2
T

R4
T

e−y2µR−µT (y2+y3 tan[y1])×

× e−µT (y2+x tan[y4])−µR(y4−y5 tan[y6]). (41)

Performing the integration, we arrive at (42), where

h1 = max {0,−y4 cot (y1) ,−r tan (y4)} ,
h2 = max {0,−y3 tan (y1) ,−r tan (y4)} . (43)

Here, the latter two integrals can also be taken, which leads
to a closed-form expression for fγ,θ,β (y1, y4, y6). The final
form of the target jpdf is provided in Supplement1.

Note that the numerical integration according to (32) is
computationally challenging. The corresponding details are
provided in Appendix A.

Proposition 4 (Covariance KPR,I ). The covariance between
the interference and the received signal powers is given

E[PRI] = A2λπR2
IpCE[(XiX0)−ζ ], (44)

and E[(X0Xi)
−ζ ] is obtained by the numerical integration of

RI∫
0

RT∫
0

∞∫
0

∞∫
0

∞∫
0

[(x1 − x2)2 + x25]−
ζ
2

[(x1 − x3)2 + x24]
ζ
2

f(x1, .., x5)dx1..dx5, (45)

with the associated jpdf in the following form

f(x1, . . . , x5) =
µTµ

2
Re
−µT x1−µR(x2+x3)4x4x5

(RTRI)2
. (46)

Proof. By formulating KPR,I = E[PRI]− µPRµI , we have

E[PRI] = E
[
AX−ζ0

N∑
i=1

AX−ζi

]
, (47)

where X0 is the distance between the Tx and the tagged Rx,
Xi, i = 1, 2, . . . , N , are the distances between the interferers
and the Rx, and N is the number of interferers.

Applying the Wald’s identity [39] yields

E[PRI] = A2E[N ]E[(XiX0)−ζ ], (48)

where E[N ] = λπR2
IpC , E[(X0Xi)

ζ ] are the only unknowns.
Therefore, we rewrite E[(X0Xi)

−ζ ] as

E[([(HR −HT )2 − r0][(HR −HI)
2 − ri])−

ζ
2 ], (49)

where r0 is a constant, and consequently arrive at (44).

Note that the computational complexity of the numerical
integration depends on the integration order. By choosing it
as in (45), the said complexity may be reduced to the sum of
single integrals, which can be easily evaluated numerically.

1Supplement A [Available online]: http://winter.rd.tut.fi/supplement.pdf

C. Special Cases of the Model

Our proposed 3D model includes a number of cases of
particular interest that are characterized by different computa-
tional complexity. As these simpler models can be efficiently
utilized to approximate the SIR for certain limited ranges of
system parameters, we summarize them in what follows.

1) Directional Tx Nodes and Omnidirectional Rx Nodes
Mobile terminals are not expected to feature more than

several antennas, which implies that their sensitivity and
antenna directivity might not be too high. At the same time,
assuming omnidirectional antennas at one end of the radio
communication link permits for a drastic decrease in com-
putational complexity for the considered model. The critical
difference between the proposed 3D model and a model with
omnidirectional sensitivity at the Rx nodes lies in treating
the exposure probability. The planar exposure probability is
immediately delivered by pH(r) = α/2π, while the vertical
exposure probability is derived in Appendix B.

2) Fixed Heights of Communicating Entities
In certain mmWave-based scenarios, the heights of the

communicating entities are known in advance. In this case, the
heights of the Tx and Rx nodes can be fixed, which leads to a
significant simplification of the model. Another application of
this formulation is by approximating the original model having
random heights with the use of the mean heights. The main
difference between the proposed model and this simplification
is in the exposure and blockage probabilities. The propositions
that establish these components are provided in Appendix B.
Since the vertical exposure probability can be made available
in the closed form, the computational complexity of the model
with fixed heights is much smaller.

3) Fully Planar Model
This model is the simplest case, where both the interference

and the SIR can be expressed with the help of an exponential
integral function. The primary difference between the 3D
model and the planar case is in the probability of blockage,
pB(r), as well as the exposure probability, pC(r). Accordingly,
pC(r) reduces to pC(r) = (αTαR)/4π2, where αT and αR are
planar antenna directivities. Further, the blockage probability
in the planar model can be approximated by the probability
that the center of at least one blocker falls into the LoS
blockage zone having the sides of 2rB and X , where X
is the RV with the pdf of fX(x) = 2x/R2

T , see Fig. 2(b).
The conditional blockage probability is given by the void
probability of the spatial Poisson process, see e.g., [6]

pB(r) = e−2λrBr. (50)

Using (10), the moments of interference are expressed as

E[In] =

∫ RI

rB

(Ar−ζ)n(1− e−2λrBr) α
2π

2λπrdr =

= Anαλ
[Enζ−1 (−2λr2B

)
rζn−2B

− Enζ−1 (−2λrBRI)

Rζn−2I

]
,

(51)

where En(x) is the exponential integral function [40].
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f~ηn(~yn) = (42)

=

RT∫
0

RT∫
h1

∞∫
h2

4ry23y
2
5µ

2
Rµ

2
T sec y1

2 sec y4
2 sec y6

2

R4
T

e−y2µR−µT (y2+y3 tan y1)−µT (y2+r tan y4)−µR(y4−y5 tan y6)dy2dy5y3 =

=

RT∫
0

RT∫
h1

4ry23y
2
5µ

2
Rµ

2
T sec y1

2 sec y4
2 sec y6

2

R4
T (µR+2µT )

e−y4µR−(µR+2µT )h2−y3µT tan[y1]−rµT tan[y4]+y5µR tan[y6]dy5dy3.

Finally, the mean can be evaluated by using (9), where
KP,I = 0 for the 2D case, while the moments of interference
are delivered by (51) and the mean received signal is then

E[PR] =

∫ RT

rB

Ax−ζ
2x

R2
T

dx =
2A
(
r2−ζB −R2−ζ

T

)
(ζ − 2)R2

T

. (52)

D. Extensions of the Model

The system analyzed in this section follows the assumptions
summarized in Table II. However, some of those can be
relaxed, thus allowing to capture more complex environ-
ments. Below, we briefly summarize the feasible extensions
of our model.

One of the critical assumptions is the exponential distribu-
tion of Tx, Rx, and blocker heights. The rationale behind this
consideration is the analytical tractability of the exponential
distribution and the lack of data on heights of practical
mmWave-based entities. However, as verified by the authors,
one may use any distribution characterized by an exponential
function with constants. This class includes Laplace, Gaussian,
and Uniform distributions that may potentially provide better
approximations in specific scenarios of interest.

The developed framework assumes zero power density and
sensitivity outside of the half-power beamwidth (HPBW) of
the antenna radiation/sensitivity pattern. A straightforward
extension would be to use the pyramid with sphere abstraction
tackled in [11]. Another crucial assumption of our approach
is the use of UMi Street-Canyon model, which leads to “zero-
interference” conditions when blockers occlude the LoS path.
Although the framework in its current form cannot be ex-
tended to an algorithmic 3GPP cluster-based model originally
proposed in [41], one may capture non-zero interference by
using two power law propagation models in the form of
Aie
−ζi , i = 0, 1, where 0 and 1 correspond to LoS and nLoS

conditions. In this case, (10) takes the following form

E[In] =

∫ RI

0

E[In1,0(r)]pC(r)[1− pB(r)]2λπrdr+

+

∫ RI

0

E[In1,1(r)]pC(r)pB(r)2λπrdr, (53)

where E[In1,0] and E[In1,1] are the moments of interference
from a single interferer conditioned on the distance between
the Rx and the interferer as well as on the event that the LoS
path is non-blocked and blocked, respectively. The quantities
in question are obtained similarly to E[In1 ] in Proposition 1.

On top of the basic model, our developed framework is
flexible enough to account for additional considerations related
to blockage. First, one may capture the effect of an additional
Poisson field of blockers by increasing the blocker intensity
in Proposition 2. Self-blockage is captured by introducing an
additional multiplier to the Campbell expression in (10). Sim-
ilarly, one may extend our model to account for blockage by
large static objects, such as buildings. Particularly, one may use
the following blockage probability provided by 3GPP in [34]

pL(r) =

{
1, r ≤ 18 m(
18 + re−

r
36 − 18e−

r
36

)
/x, r > 18 m

, (54)

where r is the two-dimensional distance between Tx and Rx.
The methodology proposed in our paper can also be em-

ployed to obtain other metrics of interest, which includes
SINR, spectral efficiency, and Shannon channel capacity. As
an example, consider the Shannon capacity function, C =
f(P, I) = B log2(1 + P/I). In this case, the second-order
Taylor approximation for the mean capacity takes the form

E[C] =
2[(2+σ2

I )µi µP+(2+σ2
I )µ

2
P ]−B(2KPI+σ

2
P )µ2

i

2 log2 µ
2
i (µi+µP )2

,

(55)

where µP and µI are the mean received power and the mean
interference power, respectively, σ2

P and σ2
I are the variances

of the received power and the interference power, respectively,
and KPI is the covariance between them, while B is the
bandwidth. Here, the terms required to estimate E[C] are the
same as those derived in this work to determine the mean SIR.
Hence, knowing B one can estimate the Shannon capacity,
whereas setting B = 1 produces spectral efficiency as well.

The framework developed in this paper cannot be used to
provide the distributions of the metrics of interest. However,
one can obtain higher moments, such as variance, skewness,
and kurtosis, by providing a partial characterization of the
respective distributions. For example, a Taylor approximation
for the variance σ2[S] = P/(N + I) takes the following form

σ2[S] =
(N0 + µI)

2σ2
I + µ2

Pσ
2
P − 2KPI(N0 + µI)µP

N0 + µ4
I

,

(56)

where N0 is the Johnson-Nyquist noise.
Higher moments will not only provide quantitative and

qualitative description of the distributions, but may also be
used to produce approximations for the metrics of interest,
such as coverage and outage probabilities. The latter can be
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accomplished by using the Markov and Chebyshev inequali-
ties,

Pr{S ≥ a} =
E[S]

a
, Pr{|S − E[S]| ≥ kσ[S]} < 1

k2
. (57)

Alternatively, one can employ Hoeffding bounds [42].

V. NUMERICAL ASSESSMENT AND EXAMPLES

In this section, we conduct an extensive numerical evalu-
ation of the proposed model. We first assess the accuracy of
the developed formulation by comparing the results with those
obtained by using simulations. Further, we investigate the
effects of system parameters, characterize the approximation
error induced by utilizing the simplified models, and report
on the range of input parameters where they offer accurate
approximations. Finally, we analyze the SIR performance by
considering dissimilar antenna array configurations, which
correspond to various deployment options in mmWave systems
as well as typical use cases, including AP to UE, drone-cell
to UE, and UE to UE deployments. The default parameters
utilized throughout this section are summarized in Table III.

TABLE III
CONSIDERED SYSTEM PARAMETERS.

Parameter Value

Intensity of communicating pairs, λ 0.05 Tx/m2

Path loss exponent, ζ 2.1

Blocker radius, rB 0.3m

Carrier frequency 28GHz

Maximum distance between Tx and Rx, RT 15m

Maximum distinguishable interference distance, RI 150m

Mean Rx height, E[HR] = 1/µR 1.5m

Mean Tx height, E[HT ] = 1/µT 5m

Vertical directivity of Tx antenna, αT,V 2◦

Planar directivity of Tx antenna, αT,H 25◦

Vertical directivity of Rx antenna, αR,V 25◦

Planar directivity of Rx antenna, αR,H 25◦

Mean blocker height, E[HB ] = 1/µB 1.7m

A. Accuracy Assessment

The vertical exposure probability, pV , is a critical interme-
diate parameter that induces the difference between the planar
and the 3D model. Recalling that the estimation of pV is also
the most complicated step in the formulated model, we first
assess the accuracy of approximating pV and then proceed
with illustrating the accuracy of the SIR approximation.

The value of the vertical exposure probability as a function
of the distance between the Tx and the Rx as well as the
Tx vertical directivity are demonstrated in Fig. 4(a). Here,
the model approximates the simulation data tightly, while the
values reside within the confidence intervals. One may also
notice that the confidence intervals grow as the antenna direc-
tivities become smaller. The reason is that in our simulation
campaign the number of experiments was set to 107 trials

Tx vert. antenna direct.=25°

Tx vert. antenna direct.=2°
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(a) Vertical exposure probability.

Intensity of Tx and Rx pairs

(b) Values of SIR.

Fig. 4. Results obtained with our model and simulations.

for all of the considered points. For small antenna directivity,
the number of trials when the Rx is exposed is insufficient
for an accurate assessment within a reasonable time, which
provides additional motivation for mathematical modeling.
Similar conclusions can be made by observing Fig. 4(b),
which illustrates the SIR as a function of the intensity of
communicating pairs and the Tx planar directivity. Hence, in
what follows, we rely on the developed analytical model to
showcase the response of SIR to the system parameters.

B. Effects of System Assumptions
In our study, we have adopted a number of crucial assump-

tions regarding the interference model, noise, and height distri-
bution of entities. We now proceed by quantifying their effects.
Fig. 5(a) illustrates the mean SIR for different distributions of
heights of the communicating entities (Exponential, Laplace,
Uniform, and Normal) for two Tx planar antenna directivities,
2◦ and 25◦, as a function of the intensity of Tx and Rx pairs
in the environment. To provide a fair comparison with the
exponential distribution characterized by a single parameter,
we assume that the standard deviation equals the mean for all
the considered distributions as well. As one may notice, the
type of the distribution does not affect the mean SIR drastically
for the considered range of system parameters. It is interesting
to note that using exponential distribution results in slightly
more optimistic results.

Further, Fig. 5(b) demonstrates the mean SIR as a function
of the Tx-Rx pairs intensity for two types of interference mod-
els. The first model is the “zero-interference” consideration
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Tx planar direct. = 2°

Tx planar direct. = 25°

(a) The effect of height distribution.

Tx planar direct. = 2°

Tx planar direct. = 25°

(b) The effect of blocked interference.

Tx planar direct. = 2°

Tx planar direct. = 25°

(c) The effect of noise.

Fig. 5. The effects of noise, interference models, and height distribution.
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Fig. 6. Dependence of SIR on system parameters and comparison of models.
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Fig. 7. Dependence of SIR on system parameters and comparison of models.

used in this paper, where we assume that no interference is
produced in case of blockage. The second model is a two
power law abstraction, where in case of blockage the amount
of contributed interference is 7dB less as compared to the
LoS case. Analyzing the data presented in Fig. 5(b), one
may observe that accounting for interference created by the
nodes that are currently blocked does not affect the mean
SIR considerably. The reason is that the blockage probability
and thus the signal power from the blocked interferers affect
the total interference significantly less as compared to the
exposure probability. Note that we considered how to extend
our approach to the two power law interference model.

Finally, Fig. 5(c) offers a comparison between the SIR
captured by our study as a parameter of interest and the SINR
that also accounts for noise. First, we note that both curves are
characterized by a qualitatively similar behavior. Furthermore,

the introduction of noise does not result in a significant
difference as compared to the SIR. The underlying reason is
that the use of directional antennas in prospective mmWave
systems leads to relatively high values of the received power.

C. Effects of System Parameters

Further, we analyze the effects of system parameters on the
value of SIR. Our developed 3D model is characterized by
high numerical complexity, which is mostly attributed to the
computation of the vertical exposure probability. Therefore,
it should be useful in practice to have a less sophisticated
model that provides with a reasonable approximation. In this
subsection, we identify the range of parameters in addition to
analyzing the response of SIR to the input system parame-
ters, where simpler models that are the special cases of the
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developed 3D formulation lead to accurate approximations. In
addition to a simple planar model disregarding the random
heights and the vertical exposure probability, we also consider
various combinations of models with fixed/random heights
(FH/RH) that either take or do not take into account the
vertical exposure probability (±PV). We refer to these models
as FH, RH, and PV. Then, our 3D model is denoted as
RH+RV. Note that all of the models include blockage. Recall
that using the fixed heights and/or neglecting the vertical
exposure eliminates the need for numerical integration to
obtain pV , thus making the modeling computationally simpler.

To this end, Fig. 6 depicts the SIR values for different
models as a function of the two system parameters: the inten-
sity of communicating pairs, λ, and the Tx vertical antenna
directivity, αT,V . Analyzing the data outlined in Fig. 6(a), we
observe that SIR decreases as the intensity of communicating
pairs grows for all the considered models. This confirms that
all selected models provide accurate “qualitative” description
of the system at hand. Further, notice that no simpler models
provide an accurate approximation of SIR across the entire
range of λ.

Interestingly, the planar model that completely disregards
the effects of the third dimension drastically overestimates
the actual SIR performance in the system. The reason is that
neglecting the heights of communicating entities dramatically
increases the blockage probability, which eventually yields
less interference approaching the Rx nodes. Then, three other
models that partially account for the effects of the third
dimension underestimate the actual SIR performance. The
model taking into consideration the randomness of heights
but disregarding the vertical exposure probability remains the
closest to the proposed 3D model across the feasible range of
intensities of the communicating pairs. The difference between
these models is at most several decibels and decreases as λ
becomes smaller. The least accurate model is the one with the
fixed heights and the absence of vertical exposure probability.

Further, consider the effect of vertical antenna directivity as
illustrated in Fig. 6(b) and Fig. 6(c) for the two values of planar
antenna directivity at the Tx, αT,H = 2◦ and αT,H = 25◦.
Clearly, the levels of SIR predicted by the three models that
disregard the vertical exposure are independent of αT,V . For
the rest of the models, higher vertical antenna directivity leads
to better system performance for both considered values of
planar directivities. At the same time, the model with fixed
heights provides a large deviation from the actual values of
the mean SIR for all the considered values of the vertical
antenna directivity. Particularly, it constitutes at least 10dB
for the two values of the planar directivities. For small vertical
directivities within the range (1◦ − 5◦), the model neglecting
the vertical exposure probability, coincidentally, provides an
adequate approximation as we have already noticed by ana-
lyzing Fig. 6(a). This conclusion remains valid as long as the
Rx antenna directivities are rather large, i.e., 20◦ or more. The
rest of the models drastically underestimate the actual system
performance.

The mean height of the Tx and the Rx are critical system
parameters that affect the vertical exposure probability, pV ,
and, consequently, SIR. Fig. 7(a) demonstrates the effect of

the mean Tx height on the mean SIR. The mean height of
the Tx affects the SIR performance only over a rather small
subset of values, i.e., within the range of 1 − 10 meters,
thus implying that this parameter is important for the AP-UE
communication scenarios. For others, the mean SIR remains
constant. Analyzing the approximations, one may notice that
only the model with fixed heights that also takes into account
the vertical exposure probability captures the actual trend in
the mean SIR. However, quantitatively, the two curves are
approximately 20dB apart. For smaller mean Tx heights, the
model with random heights that neglects the effect of pV
provides an accurate approximation, while for larger values of
the mean Tx height, the results for the simplest planar model
are reasonably close. We note that the impact of the mean Rx
height is qualitatively similar and thus is omitted here.

We continue by considering the effect of the Tx planar
directivity as illustrated in Fig. 7(b) and Fig. 7(c) for the
vertical antenna directivity at the Tx of 2◦ and 25◦, re-
spectively. Intuitively, the higher the Tx planar directivity is,
the better the system performance becomes. Furthermore, a
monotonous trend is visible for both considered values of the
vertical directivity. The actual SIR predicted by our developed
model is in between the two models both offering reasonable
approximations across the entire range of the considered
planar directivities and the Tx vertical directivity of 2◦: one
with random heights that disregards the vertical exposure and
another one with fixed heights accounting for the vertical
exposure. However, for larger values of the vertical directivity,
only the latter one remains adequate.

Finally, we note that the planar 2D model offers an opti-
mistic upper bound on the SIR performance across the entire
range of the input system parameters. Similarly, the model
with fixed heights that neglects the vertical exposure probabil-
ity is always the most pessimistic choice. The gap between
these formulations can be as high as 60dB, thus implying
that none of them can be used as a tight performance bound.
The least computationally expensive model that provides with
a reasonable approximation is the one having fixed heights
and accounting for pV . However, for certain ranges of input
parameters, its prediction may still deviate by more than 10dB
from the actual SIR performance.

D. SIR in Typical Communication Scenarios

By design, our developed model is capable of characterizing
various types of communication scenarios. We now proceed
with assessing the SIR performance of the three typical
wireless setups, (i) AP to UE, (ii) Drone (UAV) to UE, and
(iii) UE to UE. The scenario parameters are summarized in
Table III except for the heights of the communicating entities.
The mean Rx and Tx heights for the corresponding three cases
are (5, 1.5), (40, 1.5), and (1.5, 1.5), respectively.

The use of highly directional antennas at both ends of a
radio link leads to challenges related to the need for efficient
and accurate electronic beamtracking mechanisms [43], [44].
It is particularly important when the Tx and the Rx are
mobile, and we consider three different choices of directivity
at both sides of a link. The first case features 128 × 4 and
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4 × 4 arrays at Tx and Rx, respectively, and is intended
to model the situation for the first generation of mmWave
systems. The second and the third cases are associated with
128 × 128/4 × 4 and 128 × 128/64 × 64 Tx/Rx arrays, and
reflect further evolution of mmWave systems. To obtain the
antenna directivities, we apply a well-accepted linear array
approximation for the HPBW, α = 102/M , where M is the
number of antenna elements in the corresponding dimension,
planar or vertical, see, e.g., [45]. We refer to these three cases
as today, near future, and distant future.

Accordingly, Fig. 8 displays the mean SIR as a function
of the intensity of communicating pairs for various antenna
configurations at Tx and Rx as well as different communi-
cation scenarios. Analyzing the antenna array configurations,
the gains achieved by using more sophisticated antenna design
at Tx and Rx are mostly quantitative, that is, for the same
intensity of communicating pairs the use of more antennas
improves the SIR. It is essential that a significant improvement
stems from enabling better vertical directivity at the Tx by
moving from 128 × 4 to 128 × 128 array. By analyzing the
data for the same antenna configurations, one may notice that
the D2D (UE to UE) scenario is characterized by the worst
SIR performance. This behavior is a direct consequence of
having a smaller mean Tx height that increases the vertical
exposure probability. The best performance across all the
antenna configurations is observed for the UAV scenario.
However, the difference between the Tx height of 5 and
40 meters is marginal for larger values of the intensity of
communicating pairs and is becoming larger as λ decreases.

VI. CONCLUSIONS

In this work, we proposed a 3D model for the evaluation
of SIR in the emerging mmWave systems, which takes into
account the vertical and planar directivities at both ends of a
radio link, the blockage effects in three dimensions, as well as
the random heights of communicating entities. By design, our
model is capable of characterizing a number of mmWave de-
ployment scenarios, which include standard AP-based layouts,
drone-assisted cases, and D2D-aided mmWave connectivity.
The resulting expressions for the mean interference and SIR
involve a series of integrals that cannot be solved in the closed
form or expressed in terms of tabulated functions. To provide
with more practical approximations, we additionally developed
several simpler models having different levels of details as well
as assessed their accuracy across a wide range of input system
parameters.

Utilizing our developed model, we further studied in detail
the response of SIR to the choice of system parameters.
Particularly, we demonstrated that both the randomness of
Tx and Rx heights and the vertical exposure probability
are essential for accurate performance characterization of 3D
mmWave deployments. The conventional planar stochastic
geometry models always provide an overly optimistic output
that can overestimate the mean SIR by as high as 20dB.
In contrast, the model with fixed heights that disregards the
effect of vertical exposure is entirely pessimistic. The range
between these two extremes may approach 40 − 60dB, thus

prohibiting their use as tight upper or lower bounds. The
other model assuming random heights but neglecting vertical
exposure as well as another one characterized by fixed heights
and capturing vertical exposure is much less computationally
expensive, and both can be utilized as adequate approximations
for certain ranges of system parameters.

Finally, we assessed the performance of various mmWave
communication scenarios, including AP-, UAV-, and D2D-
based deployments. We demonstrated that for the same inten-
sity of communicating entities the UAV-based deployments are
characterized by the best SIR conditions. It is important to note
that the gains in applying UAVs instead of the standard APs are
not dramatic, since the impact of heights on the SIR levels is
most prominent for smaller values. Conversely, the D2D-based
scenario is susceptible to the worst SIR performance.

APPENDIX A
EVALUATING VERTICAL EXPOSURE PROBABILITY

Numerical evaluation of the vertical exposure probability
is the most computationally expensive component of the pro-
posed model. Below, we briefly outline a computational pro-
cedure for estimating the vertical exposure probability pV (r).

An example of jpdf fγ,θ,β (y1, y4, y6) is shown in Fig. 9(a).
To estimate pV (r), one needs to integrate it according to (32).
Fig. 9(b) depicts regions, where |θ−γ| < αT,V /2 ∩ |θ−β| <
αR,V /2, over which the jpdf needs to be integrated to estimate
the vertical exposure probability. Finally, the intersections
between the piecewise integrand and the integration regions
are given in Fig. 9(c).

To illustrate the integration process, let us fix θ = −π/3.
Fig. 10(a) displays the jpdf of {γ, β} where θ = −π/3.
Further, by fixing β = −π/5, we arrive at the regions where
the jpdf has different shapes of piecewise function overlapping
with the |θ−γ| < αT,V /2 ∩ |θ−β| < αR,V /2 as shown in
Fig. 10(b). Further, we need to integrate over these regions.
We obtain pV (r) in the closed form (see in (58)) by selecting
one of them as shown in Fig. 10(c) to illustrate the process.

APPENDIX B
PROPOSITIONS FOR SPECIAL CASES OF THE MODEL

In this Appendix, we summarize our results for the spe-
cial cases of the model: (i) vertical exposure probability for
omnidirectional Rx nodes, (ii) vertical exposure probability
for fixed heights of communicating entities, and (iii) blockage
probability for fixed heights of Tx and Rx nodes.

Proposition 5 (Vertical Exposure Probability for Omnidirec-
tional Rx Nodes). The vertical exposure probability, pV (r), for
directional antennas at Tx nodes and omnidirectional ones at
Rx nodes, is established by integrating the jpdf of angles β, θ
over |β−θ| < αT,V /2 (Fig. 11), i.e.,

pV (r) =

∫ π
2

−π2

∫ y4+
αT,V

2

y4−
αT,V

2

fβ,θ (y1, y4)dy1dy4, (59)
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(b) Near future, 128× 128Tx, 4× 4 Rx
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(c) Distant future, 128× 128Tx, 64× 64 Rx

Fig. 8. SIR levels for different scenarios and antenna directivities.

(a) Example of jpdf of {γ, θ, β} (b) Integration regions (c) Regions intersecting domains

Fig. 9. Details of integration for vertical exposure probability pV (r).

(a) jpdf, θ = −π/3 (b) Sub-domains: β = −π/5, θ = −π/3 (c) Region of integration

Fig. 10. Details of integration for vertical exposure probability pV (r).

where fβ,θ (y1, y4) is the jpdf of β and θ is

fη1,η4 (y1, y4) =

∫∫∫
R3

f~ξn [φi(~y
n))] |J|dy2dy3dy5 =

=

RI∫
0

RT∫
0

∞∫
l(yi)

4µ3y23y
2
5e
−µ(y3 tan(y1)+3y2+y5 tan(y4))

sec−2(y1) sec−2(y4)R2
IR

2
T

dy2dy3dy5 =

=

RI∫
0

RT∫
0

4µ2y23y
2
5e
−µ(3l(yi)+y3 tan(y1)+y5 tan(y4))

sec−2(y1) sec−2(y4)3R2
IR

2
T

dy3dy5 =

=

RI∫
0

fη1η4η5(y1, y4, y5)dy5. (60)

Proof. Let ~ξn = {ξ1, . . . , ξ4} = {HR, HT , dT , HIT } and
observe that its jpdf has a multiplicative form due to inde-
pendence of the involved components, i.e.,

f~ξn(~xn) =
2x3
R2
T

µRe
−µRx1µT e

−µT x2µT e
−µT x4 . (61)

Let also ~ηm = {η1, η4} = {β, θ}. Since the number of the
target RVs, m, is lower than the number of the input RVs, n,
we complement the target RVs with the auxiliary ones as

~ηn = {η1, . . . , η4} = {β,HT , dT , θ}. (62)
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pV (r) =

1
10 (5αR−2π)∫

−cot−1

(
5
√
RT2

π

)
1
10 (5αT,V −2π)∫

−tan−1

(√
5−2
√

5r
RT

)
 4(

√
5−1)

2
r csc(y1) sec(y1) cot(y6)csc

2(y6)e
πµR

5
−
√

5−2
√

5r(µR+µT )−µTRT tan(y1)

µRµTRT 4(µR+2µT )

×
(
eµRRT tan(y6)(µRRT tan(y6)(µRRT tan(y6)− 2) + 2)− 2

)
×
(
µT

2
(
−RT 2

)
− 2µTRT cot(y1) + 2cot2(y1)

(
eµTRT tan(y1) − 1

))
dy1dy6 =

=

1
10 (5αR−2π)∫

−cot−1

(
5
√
R2
T

π

)



1
µRµTR4

T (µR+2µT )
4
(√

5− 1
)2
r cot (y6) csc2 (y6)

×
(
eµRRT tan(y6) (µRRT tan (y6) (µRRT tan (y6)− 2) + 2)− 2

)

×



− (2
√
5+5)((2

√
5−5)r2−R2

T )e
πµR

5
−
√

5−2
√

5r(µR+µT )

10r2

×

 −e
√

5−2
√
5µT r + µTRT e

√
5−2
√
5µT r sin

(
2tan−1

(√
5−2
√
5r

RT

))
−e
√

5−2
√
5µT r cos

(
2tan−1

(√
5−2
√
5r

RT

))
+ 2


−

(
eµTRT tan(π5−

αT,V
2 ) + sin

(
αT,V + π

10

)
eµTRT tan(π5−

αT
2 )

+µTRT cos
(
αT + π

10

) (
−eµTRT tan(π5−

αT,V
2 )

)
− 2

)
e
πµR

5
−
√

5−2
√

5r(µR+µT )

sin(αT,V + π
10 )−1




dy6 =

=

1
5R4

TµRµT (µR+2µT )
2
(
6− 2

√
5
)
e
πµR

5 −
√

5−2
√
5r(µR+µT )r

×


2(5+2

√
5)
(
5r2−2

√
5r2+R2

T+e
√

5−2
√

5rµT R2
T

(
−1+
√

5−2
√
5rµT

))
r2

+
20+10e

RT µT tan[π5 −
αT
2 ](−1+RTµT cos[ π10+αT ]−sin[ π10+αT ])

sin[ π10+αT ]−1


×

 e−
πµR

5

(
−e

πµR
5 (π2+25R2

T )+5R2
T (5+πµR)

)
π2

+ csc
[
π
5 −

αR
2

]2 − e−RTµR tan[π5−
αR
2 ] (1 +RTµR tan

[
π
5 −

αR
2

])
tan

[
1
10 (3π + 5αR)

]2
 .

(58)

fβ,θ(y1, y4) =



−4r cot(y1)csc2(y1)sec2(y4)[1−eRT µ tan(y1)+2RTµ tan(y1)+RT
2µ2tan2(y1)]

3R2
Tµe

µ[RT tan(y1)+r tan[y4]] , y1 ≥ 0 ∩ y4 ≥ 0,

4r cot(y1)csc
2(y1)sec

2(y4)[e
RT µ tan(y1)−2RTµ tan(y1)−R2

Tµ
2tan2(y1)−1]

3RT 2µeRT µ tan(y1)+2rµ tan(y4) ,

y4 < 0 ∩ (RT tan y1 ≥ r tan y4 ∪ y1 ≥ 0) ,
2e2RT µ tan(y1)RT 2µ2−2e2RT µ tan(y1)RTµ cot(y1)−cot2(y1)+e2RT µ tan(y1) cot2(y1)

6r−1 csc−1(y1) sec−1(y1) sec−12(y4)R2
Tµe

rµ tan(y4) , y1 < 0 ∩ y4 ≥ 0,

r cot(y1) csc(y1) sec
2(y4)

6R2
Tµe

rµ tan(y4) ×(
e2RTµ tan(y1) csc(y1)− 9e2rµ tan(y4) csc(y1) + 8e3rµ tan(y4) csc(y1)−
−2e2RTµ tan(y1)RTµ sec(y1) + 2e2RTµ tan(y1)R2

Tµ
2 sec(y1) tan(y1)− elsewhere.

−6e2rµ tan(y4)rµ csc(y1) tan(y4)− 6e2rµ tan(y4)r2µ2 csc(y1) tan2(y4)
)
,

(66)

Fig. 11. Vertical exposure for omnidirectional Rx nodes.

Hence, the transformation in question is{
y1 = f1(~xn) = β = arctan[(x1 − x2)/x3]

y4 = f4(~xn) = θ = arctan[(x4 − x2)/r]
, (63)

and the auxiliary functions are fi (~xn) = xi, i = {2, 3}.
The inverses are bijections in the domains of interest, i.e.,{

x1 = φ1(~yn) = y2 + y3tan y1

x4 = φ4(~yn) = y2 + rtan y4
, (64)

which are complemented with xi = φi(~y
n) = yi, i = {2, 3}.

The jpdf can then be represented as

f~ηn(~yn) = fξn(φ1(~yn), . . . , φn(~yn))|J|, (65)

where the Jacobian of the transformation is computed
in the form of J = y3rsec2y1sec2y4 and the jpdf
f~ξn(φ1(~yn), . . . , φn(~yn)) takes the form of (61).
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Denoting l(yi) = max(0,−y3 tan y1,−r tan y4), we ob-
tain (60). Performing the last integration, we arrive at the jpdf
of β and θ, fβ,θ(y1, y4) as in (66).

Proposition 6 (Vertical Exposure Probability for Fixed
Heights of Tx and Rx). The vertical exposure probability for
fixed heights of Tx and Rx nodes, hT and hR, is given by

pV (r) = pV (r, αT,V )pV (r, αR,V ), (67)

where the probability pV (r, α) is
(hT−hR)2

[
cot(α2−γ)

2−cot(α2 +γ)
2
]

R2
T

, (hT − hR)r ∈ U1,

1−(hT−hR)2 cot(α2 +γ)
2

R2
T

, (hT − hR)r ∈ U2,
(68)

where the regions are determined by

U1 = (A+, B) ∪ (B,A+), U2 = (A+, A−) ∪ (A−, B), (69)

and A± = cot(±α/2 + γ0), B = cot([π − α]/2).

Proof. Observe that when the heights of Tx and Rx nodes
are constant, the angles θ, γ, and β are mutually independent,
see Fig. 11. Therefore, the vertical exposure probability pV (r)
can be written as pV (r) = pV (r, αT,V )pV (r, αR,V ), where
pV (r, αT,V ) and pV (r, αR,V ) are the probabilities that Tx
‘hits’ a non-tagged Rx and the antenna of the Rx is directed
towards a non-tagged Tx, respectively. These probabilities can
be established similarly as follows.

Let ξ be the distance between Tx and Rx, and α be the
antenna directivity. Denoting the sought angle by ε, we have

pV (r, α) =

∫ γ+α/2

γ−α/2
fε(x)dx, (70)

where fε(x) is the pdf of the RV ε.
The transformation of interest is φ(y) = (hT − hR) cot(y)

and the pdf is fξ(x) = 2R−2T x. Completing the said transfor-
mation, we obtain fε(y) in the following form

fε(y) =
2(hT − hR)2 cot(y) csc(y2)

R2
T

, 0 < y <
π

2
. (71)

Performing the integration, we arrive at (68).

Proposition 7 (Blockage Probability for Fixed Heights of
Tx and Rx). The blockage probability in a Poisson field of
blockers with fixed heights of Tx and Rx, hT and hR, is

pB(r) = 1− e
2λ(e−hRµB−e−hT µB )rBr

(hR−hT )µB . (72)

Proof. Assuming hT > hR, observe that the height of the
LoS path is uniformly distributed within (hR, hT ). Since the
pdf of the difference between the LoS path and the height of a
blocker is uniformly distributed in (0, RI), Gr is a convolution
of the uniform and the exponential distributions, i.e.,

fGr (y) =
e−(hR+hT−y)µB

(
ehRµB − ehTµB

)
hR − hT

−

− −1 + e(−hT+y)µB

hT − hR
, hR < y ∩ hT > y. (73)

Then, the probability of blockage by a single obstacle is

pB,1(r) = 1− Pr{Gr > 0} = 1−
∫ ∞
0

fGr (y)dy =

1− e−hRµB − e−hTµB + hRµB − hTµB
hRµB − hTµB

=

=
−e−hRµB + e−hTµB

(hR − hT )µB
. (74)

Substituting (74) into (20), we arrive at (72).
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