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Abstract: We study the problem of multiwavelength absolute phase retrieval from noisy diffraction
patterns. The system is lensless with multiwavelength coherent input light beams and random phase
masks applied for wavefront modulation. The light beams are formed by light sources radiating
all wavelengths simultaneously. A sensor equipped by a Color Filter Array (CFA) is used for
spectral measurement registration. The developed algorithm targeted on optimal phase retrieval
from noisy observations is based on maximum likelihood technique. The algorithm is specified for
Poissonian and Gaussian noise distributions. One of the key elements of the algorithm is an original
sparse modeling of the multiwavelength complex-valued wavefronts based on the complex-domain
block-matching 3D filtering. Presented numerical experiments are restricted to noisy Poissonian
observations. They demonstrate that the developed algorithm leads to effective solutions explicitly
using the sparsity for noise suppression and enabling accurate reconstruction of absolute phase of
high-dynamic range.

Keywords: absolute phase retrieval; complex domain imaging; complex domain sparsity;
demosaicing of diffractive pattern; phase imaging; photon-limited imaging; robustness of phase
retrieval

1. Introduction

Reconstruction of a wavefront phase is on demand in holography [1,2], interferometry [3],
holographic tomography [4,5] and is of general interest due to important practical applications in such
areas as biomedicine (for instance for studies of living cells [6,7]), 3D-imaging [8], micromachining [9],
etc. There are two different approaches for extraction of spatial phase information. The first, which is
associated with the holography, implies recording interference patterns of object and reference waves,
while the second approach involves only sets of coherent diffraction patterns of object without
reference waves. In these intensity measurements the phase information of the registered wavefields is
eliminated, and then reconstructed by means of numerical iterative algorithms. The latter problem
is well known as the phase retrieval, where “phase” emphasizes that the missing phase defines the
principal difficulty of the problem and its difference with respect to holography.

The first phase retrieval algorithm was introduced by R. Gerchberg and W. Saxton [10]. They used
squared roots of intensities measured in image plane to replace amplitudes calculated in iterations.
Important update was developed by J. Fienup [11], who introduced constrains for the iterative process
by the amplitude distribution in Fourier plane, namely, a nonnegativity of the reconstructed image and
energy concentration in a certain area. A dataset of recorded intensity patterns which is characterized

Appl. Sci. 2018, 8, 719; doi:10.3390/app8050719 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-1507-3280
https://orcid.org/0000-0002-8866-7592
http://dx.doi.org/10.3390/app8050719
http://www.mdpi.com/journal/applsci


Appl. Sci. 2018, 8, 719 2 of 19

by diversity of one or several parameters of the optical setup is a crucial moment of the phase retrieval
problems. Defocusing and phase modulation are known as effective instruments in order to achieve
the measurement diversity sufficient for reliable phase reconstruction (e.g., [12–15]). Various types of
diffraction optical elements can be used for design of phase imaging systems [16]. The review and
analysis of this type of the systems as well as further developments of the algorithms can be found
in [17].

There are various optimization formulations of conventional Gerchberg-Saxton (GS)
algorithm [18–20]. Contrary to the intuitively clear heuristic of the GS algorithm, the variational
approaches have a stronger mathematical background including image formation modeling,
formulation of the objective function (criterion) and finally going to numerical techniques solving
corresponding optimization problems. The recent overview [21] is concentrated on the algorithms for
the phase retrieval with the Fourier transform measurements and applications in optics. The constrains
sufficient for uniqueness of the solution are presented in detail. The fundamental progress for the
methods based on the convex matrix optimization is announced in [22], where the novel algorithm
”Sketchy Decisions” is presented. This algorithm is effective for high dimensions typical for the
phase-lifting methods and is supported by the mathematical analysis and the convergence proof.
The Wirtinger flow (WF) and truncated Wirtinger flow (TWF) algorithms presented in [23,24] are
iterative complex-domain gradient descent methods applied to Gaussian and Poissonian likelihood
criteria, respectively.

The techniques based on the proximity operators developed in [25,26] provide a regularized
optimization of the maximum likelihood criteria also for both Gaussian and Poissonian observations.
The sparsity based techniques is a hot topic in phase retrieval (e.g., [27]). A sparse dictionary learning
for phase retrieval is demonstrated in [28]. The transform domain phase and amplitude sparsity for
phase imaging is developed in [29–31]. For the phase retrieval these techniques are applied in [32–34].

In recent years, there has been an increase in demand for multispectral imaging. Multispectral
information by recording object waves with multiple wavelengths that are irradiated from
multiwavelength light sources helps to analyze and recognize objects, to clarify color and tissue
distributions and dramatically improves the quality of imaging. Multiwavelength digital holography
has an enhanced ability for 3D wide-range shape measurements by using multiwavelength
phase unwrapping, due to the recording of multiwavelength quantitative phase information.
The multiwavelength is an effective instrument enabling good phase and data diversity in
phase retrieval.

The multiwavelength absolute phase imaging is much less studied as compared with the standard
single-wavelength formulation. These works by the principle of measurements can be separated in two
groups. In interferometry and holography scenarios the reference beams are applied to reveal the phase
information, e.g., [35–40]. After that, the phase unwrapping algorithms for 2D images are applied.
Recently, the phase unwrapping with simultaneous processing of multiwavelength complex-exponent
observations have been developed based on the maximum likelihood techniques [41,42].

Another group of the multiwavelength absolute phase imaging techniques uses as measurements
amplitudes or intensities of coherent diffraction patterns of an object without reference waves. In these
intensity measurements the phase information is missing. These formulations are from the class of the
multiwavelength phase retrieval problems, e.g., [43–48].

The Chinese Remainder Theorems, existing in many modifications, provide methods for absolute
phase reconstruction from multiwavelength data for noiseless data [49]. The reformulation of these
mathematically strong approaches for more practical scenarios with noisy data and for robust
estimation leads to the techniques similar to various forms of maximum likelihood [50,51].

In this paper we study the problem of multiwavelength absolute phase retrieval from noisy object
diffraction patterns with no reference beams. The system is lensless with multiwavelength coherent
input light beams and random phase masks applied for wavefront modulation. The light beams
are formed by light sources radiating all wavelengths simultaneously and a Complementary Metal
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Oxide Semiconductor (CMOS) sensor equipped by a Color Filter Array (CFA) is used for spectral
measurement registration. The developed algorithm is based on maximum likelihood optimization,
in this way targeted on optimal phase retrieval from noisy observations. The algorithm valid for both
Poissonian and Gaussian noise distributions is presented.

One of the key elements of the algorithm is an original sparse modeling of the
multiwavelength complex-valued images based on the complex-domain block-matching 3D filtering.
Numerical experiments demonstrate that the developed algorithm lead to the effective solutions
explicitly using the sparsity for noise suppression and enabling accurate reconstruction of absolute
phase for high-dynamic range of variations.

In this work, we use the approach which can be treated as a development of the Sparse Phase
and Amplitude Reconstruction (SPAR) algorithms [32,33] and the maximum likelihood absolute
phase reconstruction for multiwavelength observations [42]. This approach has been exploited in our
paper [52] for absolute phase retrieval from multifrequency in the different setup with observations
obtained for multiple single wavelength experiments. Remind, that in this paper the experiments are
multiwavelength and phase information for each wavelength is retrieved by the developed wavelength
multiplexing algorithm.

2. Optical Setup and Image Formation Model

2.1. Multiwavelength Object and Image Modeling

We present the problem of the absolute phase retrieval in the framework of thickness (profile)
measurement for a transparent object. A coherent laser beam impinges on surface of the object of
interest. A propagation of the coherent beam through the object results in a phase delay between the
original input and the output beams. In general, this phase delay is spatially varying with variations
proportional to variations of the thickness of the object. If the phase delay and the wavelength of the
laser beam are known the thickness of the object can be calculated. However, only wrapped phase
delays within the interval of 2π radians can be measured in experiments with a single wavelength.
It follows, that only very thin objects can be examined in this way. Use of multiwavelength beams
allows to overcome this restriction and to reconstruct absolute phases, and in this way to produce
surface measurements for much thicker objects. If the thickness is known the absolute phases for
all wavelengths can be defined. Thus, the approach can be focused in two a bit different directions:
measurement of the absolute phases for multiple wavelengths and measurement of the object surface.
This task is similar to the problem of surface contouring of a reflective object [43]. The model developed
below can be applied to both types of objects. Our aim to consider in details a more interesting case of
the transparent object with dispersion of the refractive index, because ignoring this dependence can
cause significant distortions in the profile of the object being reconstructed [53].

Let ho(x), x ∈ R2, be a thickness variation of a transparent object to be reconstructed.
A coherent multiwavelength light beam generates corresponding complex-valued wavefronts

uo ,λ = bo ,λ exp(jϕo,λ), λ ∈ Λ, where Λ is a set of the wavelengths and ϕo,λ =
2π

λ
ho(nλ − 1) are

phase delays corresponding to ho, where nλ is the refractive index.
In the lensless phase retrieval, the problem at hand is a reconstruction of the profile ho(x) from

the noisy observations of diffractive patterns, registered at some distance from the object. For the high
magnitude variation of ho the corresponding absolute phases ϕo,λ take values beyond the basic phase
interval [−π, π], then only wrapped phases can be obtained from uo,λ.

We demonstrate that the multiwavelength setup allows to reconstruct the profile of the objects
which height variations are significantly greater than the used wavelengths as well as to reconstruct
the corresponding multiwavelength absolute phases.

In what follows, we apply the following convenient notation for object modeling:

uo,λ = bo,λ exp(jµλ ϕo), λ ∈ Λ, (1)
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where uo,λ(x)∈ C2, ϕo(x) ∈ R2 is the object absolute phase in radians, µλ > 0 are dimensionless
relative frequencies and Λ = [λo, λ1, ..., λnλ−1] is the set of the wavelengths.

The link with the previous notation is obvious: µλ =
λ′(nλ − 1)
λ(nλ′ − 1)

and

ϕo =
2π

λ′
ho(nλ′ − 1). (2)

Here λ′ ∈ Λ is a reference wavelength and ϕo is an absolute phase corresponding to
this wavelength.

We are interested in two-dimensional imaging and assume that amplitude, phase and other
variables, in what follows, are functions of the argument x given on a regular N × N grid, X ⊂ Z2.

The parameter µλ establishes a link between the absolute phase ϕo and the wrapped phase ψo,λ
of uo,λ which can be measured at the λ-channel. The wrapped phase is related with the true absolute
phase, ϕo, as µλ ϕo = ψo,λ + 2πkλ, where kλ is an integer, ψo,λ ∈ [−π, π). The link between the absolute
and wrapped phase conventionally is installed by the wrapping operator as follows:

ψo,λ =W(µλ ϕo) ≡ mod(µλ ϕo + π, 2π)− π. (3)

W(·) is the wrapping operator, which decomposes the absolute phase µλ ϕo into two parts:
the fractional part ψo,λ and the integer part defined as 2πkλ.

The image and observation modeling is defined as

us,λ = Ps,λ,d{uo,λ}, (4)

ys,λ = |us,λ|2, (5)

zs,λ = G{ys,λ}, s = 1, ..., S, λ ∈ Λ, (6)

where us,λ is a wavefront propagated to the sensor plane, Ps,λ,d{} is an image (diffraction pattern)
formation operator, i.e., the propagation operator from the object to the sensor plane, ys,λ is the intensity
of the wavefront at the sensor plane and zs,λ are noisy observations of the intensity as defined by the
generator G{} of the random variables corresponding to ys,λ, S is a number of experiments, d is a
propagation distance.

The considered multiwavelength phase retrieval problem consists in reconstruction of ϕo and
bo,λ from the observations zs,λ provided that µλ, Ps,λ,d{} and G{} are known. If the phases
µλ ϕo ∈ [π,−π), the problem becomes nearly trivial as estimates of µλ ϕo and bo,λ can be found
processing data separately for each λ by any phase retrieval algorithm applicable for complex-valued
object, in particular by the SPAR algorithm [54]. It gives for us the estimates of bo,λ and µλ ϕo directly.
These estimates of µλ ϕo(x) are biased as the intensities ys,λ are insensitive with respect to invariant
additive errors in ϕo. We will represent these estimates in the form µλ ϕo(x)+ δλ, where δλ are invariant
on x.

The problem becomes nontrivial, much more interesting and challenging when the object phases
µλ ϕo go beyond the range [π,−π) and the phase unwrapping is embedded in the multiwavelength
phase retrieval. This paper is focused on the reconstruction of the absolute phase ϕo.

The light beam is formed by light sources radiating all wavelengths simultaneously and the
standard RGB CMOS sensor with CFA is used for measurement registration.

Then, the measurement model Equations (4)–(6) is modified to the following form:

ys,c(x) = |us,c(x)|2, x ∈ Ωc, (7)

zs,c(x) = G{ys,c(x)}, x ∈ Ωc, c ∈ (R, G, B), s = 1, ..., S, (8)

where Ωc, c ∈ (R, G, B), are the Bayer sensor areas with the corresponding RGB color filters. The index c
of the measured zs,c in Equation (8) is addressed to the sensor pixels with the corresponding color filters.
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These Ωc produce a segmentation of the sensor area Ω, such that ∪cΩc = Ω, Ωc ∩Ωc′ = ∅. In a
bit different terms, x ∈ Ωc, c ∈ (R, G, B), defines a subsampling of the sensor output forming images
of different colors. The sets Ωc define the structure of CFA (or mosaic filter) used in the sensor, i.e.,
the coordinates of the filters of the different colors.

The ideal color filters would have equal sensitivity to each of the spectral components and provide
a perfect separation of the three RGB sources of the corresponding wavelengths. In reality, the spectral
characteristics of the sensor must be measured [55] and taken into account. In particular, the cross-talk
between the color channels exist on both sides in sources and sensor color filters [38]. As a model of
this cross-talk the following linear convolution equation can be used:

us,c= ∑
λ∈Λ

wc,λus,λ, c ∈ (R, G, B), (9)

where us,λ are the source wavefronts and us,c are the sensor wavefronts as they are registered by the
sensor pixels.

In general, the number of the spectral components nΛ can be different from the number of the
color filters in the sensor.

Here wc,λ are the cross-talk spectral weights formalizing the sensitivity of (R, G, B)-filter outputs
to the wavelength of the sources with the index λ. Despite the importance of the cross-talk effects,
in this paper for simplicity of presentation we will assume that the color filters of CFA are nearly ideal
and the cross-talk problem can be omitted.

2.2. Noisy Observations

The measurement process in optics amounts to count the photons hitting the sensor’s elements
and is well modeled by independent Poisson random variables (e.g., [26,56,57]). In many applications
in biology and medicine the radiation (laser, X-ray, etc.) can be damaging for a specimen. Then,
the dose (energy) of radiation can be restricted by a lower exposure time or by use a lower power
radiation source, say up to a few or less numbers of photons per pixel of sensor what leads to heavily
noisy registered measurements. Imaging from these observations, in particular, phase imaging is
called photon-limited.

The probability that a random Poissonian variable zs,λ(x) of the mean value ys,λ(x) takes a given
non-negative integer value k, is given by

p(zs,λ(x) = k) = exp(−ys,λ(x)χ)
(ys,λ(x)χ)k

k!
, (10)

where ys,λ(x) is the intensity of the wavefront at the pixel x.
Recall that the mean and the variance of Poisson random variable zs,λ(x) are equal and are given

by ys,λ(x)χ, i.e., E{zs,λ(x)} = var{zs,λ(x)} = ys,λ(x)χ, here E{} is a mathematical expectation, var{}
is a variance. Defining the observation Signal-to-Noise Ratio (SNR) as the ratio between the square
of the mean and the variance of zs,λ(x), we have SNR = E2{zs,λ(x)}/var{zs,λ(x)} = ys,λ(x)χ. Thus,
the relative noisiness of observations becomes stronger as χ → 0 (SNR → 0) and approaches zero
when χ→ ∞ (SNR→ ∞). The latter case corresponds to the noiseless scenario: zs,λ(x)/χ→ ys,λ(x)
with the probability equal to 1.

The parameter χ > 0 in Equation (10) is a scaling factor defining a proportion between the
intensity of the observations with respect to the intensity of the input wavefront. This parameter is
of importance as it controls a level of the noise in observations. Physically it can be interpreted as an
exposure time and as the sensitivity of the sensor with respect to the input radiation.

In order to make the noise more understandable the noise level can be characterized by the
estimates of SNR

SNRλ = 10 log10
χ2 ∑S

s=1 ||ys,λ||22
∑S

s=1 ||ys,λχ− zs,λ||22
dB (11)
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and by the mean value of photons per pixel:

Nphoton,λ = ∑
x

zs,λ(x)/Nsensor. (12)

Here Nsensor is a number of sensor pixels. Smaller values of χ lead to smaller SNR and Nphoton,
i.e., to noisier observations zs,λ(x).

3. Algorithm Development

We consider the problem of wavefront reconstruction as an estimation of uo∈ Cn from noisy
observations {zs,λ}. This problem is rather challenging mainly due the periodic nature of the likelihood
function with respect to the phase ϕo and the non-linearity of the observation model. Provided
a stochastic noise model with independent samples, the maximum likelihood leads to the basic
criterion function

L0 = ∑
λ∈Λ

∑
s

∑
x∈Ω

l(zs,λ(x), |us,λ(x)|2), (13)

where l(z, |u|2) denotes the minus log-likelihood of a candidate solution for uo given through the
observed true intensities |u|2 and noisy outcome z.

For the Poissonian and Gaussian distributions we have, respectively, l(z, |u|2) = |u|2χ −
z log(|u|2χ), and l(z, |u|2) = 1

2σ2 ||u|2 − z|2, σ2 stands for the noise variance. In Equation (13) s
and x denote the experiment number and pixels of variables.

Including the image formation model Equations (4), (7) and (8) and amplitude/phase modeling
of the object Equation (1) by the penalty quadratic norms of residual we arrive to the following
extended criterion:

L(us,c, uo,λ, bo, ϕ , δλ) = ∑
s

∑
c∈(R,G,B)

∑
x∈Ωc

l(zs,c(x), |us,c(x)|2) + (14)

1
γ1

∑
s

∑
c∈(R,G,B)

||us,c −Ps,cuo,c||22 +
1

γ2
∑
λ

||bo.λ exp(j(µλ · ϕ + δλ))− uo,λ||22,

where γ1, γ2 > 0 are parameters, and || · ||22 is the Hadamard norm.
Remind, that phase retrieval algorithms may reconstruct the phase µλ ϕo only within invariant

additive errors. These unknown phase shifts are modelled by δλ as disturbance parameters.
We say that the object complex exponents of different frequencies are in-phase (or synchronized)

if δλ = 0, λ ∈ Λ and de-phased if some of δλ 6= 0. In the synchronized case the complex exponents of
the object become equal to 1 provided ϕo ≡ 0. For proper estimation of ϕo these phase shifts δλ should
be estimated and compensated.

The first summand in Equation (14) is a version of Equation (13) modified for the multiwavelength
CFA. The summation on x ∈ Ωc is produced independently for each c, what separates the observations
of different wavelengths. The sets Ωc define the structure of the CFA (or filter mosaic) used in the
sensor, i.e., the coordinates of the filters of the different wavelengths.

In the second summand us,c is approximated by Ps,cuo,c. The phase retrieval is a reconstruction of
ϕo and the amplitude of uo,λ from the observations zs,c. The algorithm is designed using minimization
of L with respect to us,c, uo,λ, bo, ϕ and the phase-shifts δλ.

The following solutions of the optimization problem are used in the developed algorithm.

1. Minimization of L with respect to us,c leads to the solution

us,c =

 θs,c ·
ũs,c

|ũs,c|
, x ∈ Ωc,

ũs,c, x /∈ Ωc,
(15)

ũs,c = Ps,cuo,c. (16)
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Here the ratio
ũs,c

|ũs,c|
means that the variables us,c and ũs,c have identical phases.

The amplitudes θs,c are calculated as

θs,c =
|ũs,c|+

√
|ũs,c|2 + 4zs,cγ1(1 + γ1χ)

2(1 + γ1χ)
(17)

for Poissonian noise and as the non-negative solution of the cubic Cardan equation

θ3
s,c + Cθs,c + D = 0, (18)

C =
σ2

2γ1
− zs,c, D = − σ2

2γ1
|ũs,c|.

for the Gaussian noise [32].

The input-ouput model of this filtering we denote as us,c = Φ1(ũs,c, zs,c), where the operator Φ1

is defined by the Equations (15)–(18). Let us clarify meaning of the operations in Equation (15).
Say c = R, then for all sensor pixels with the red filter, x ∈ ΩR, the amplitudes are updated using
the corresponding R measurements, the first line in Equation (15). For all other pixels us,R = ũs,R,
i.e., the amplitude of the ũs,R is not changed, the second line in Equation (15). In similar way, it
works for all colors.

This preserving the signal value if the sensor is not able to provide the relevant observation is
proposed and used in [32] for subsampled or undersampled observations.

This rule can be interpreted as a complex domain interpolation of the wavefront at the sensor
plane as well as a demosaicing algorithm for diffraction pattern observations. It is important to
note that this observation processing is derived as an optimal solution for noisy data.

2. Minimization of L with respect to uo,λ. The last two summands in L can be rewritten as

1
γ1

∑
s

∑
λ

||us,λ −Ps,λuo,λ||22 +
1

γ2
∑
λ

||bo.λ exp(j(µλ · ϕ + δλ))− uo,λ||22.

Then, we obtain as an optimal estimate for uo,λ

uo,λ = (∑
s
P∗s,λPs,λ + Iγ1/γ2)

−1 × (∑
s
P∗s,λũs,λ+γ1/γ2bo,λ exp(jµλ ϕ)). (19)

If Ps,λ are orthonormal such that ∑s P∗s,λPs,λ is the identity operator, ∑s P∗s,λPs,λ = I, the solution
takes the form

uo,λ =
∑s P∗s ũs,λ+γ1/γ2bo,λ exp(jµλ ϕo)

1 + γ1/γ2
. (20)

3. Minimization of L on bo,λ, ϕo and δλ (the last summand in the criterion Equation (14)) is the
non-linear least square fitting of uo,λ by the parameters bo,λ, ϕo and δλ. We simplify this problem
assuming that bo.λ ' |uo,λ|. Then, the criterion for this non-linear least square fitting takes
the form:

L1(ϕ , δλ) = ∑
λ

|||uo,λ| · [exp(j(µλ · ϕo))− exp(j(ψo,λ − δλ))]||22, (21)

where ψo,λ = angle(uo,λ), i.e., the wrapped phase of uo,λ.

In this representation, the phase shifts δλ are addressed to the wrapped phases ψo,λ in order to
stress that the complex exponent exp(j(ψo,λ)) can be not in-phase with exp(j(µλ · ϕo)) and the



Appl. Sci. 2018, 8, 719 8 of 19

variables δλ serve in order to compensation this phase difference and make the phase modeling
of the object by exp(j(µλ · ϕo)) corresponding to the complex exponent exp(j(ψo,λ)).

The assumption bo,λ ' |uo,λ| is supported in our algorithm implementation by the initialization
procedure enabling the high accuracy estimation of the amplitudes |uo,λ| in processing of separate
wavelength observations.

The Absolute Phase Reconstruction (APR) algorithm is developed for minimization of L1 on ϕo

and δλ. The derivation and details of this algorithm are presented in Appendix.

Algorithm’s Implementation

Combining the above solutions, the iterative algorithm is developed of the structure shown
in Table 1. We use an abbreviation WM-APR for this algorithm as corresponding to Wavelength
Multiplexing Absolute Phase Retrieval (WM-APR).

The initialization by the complex-valued u1
o,λ is obtained from the observations {zs,c} separately

for each wavelength by the SPAR algorithm [32] modified for the data provided by CFA.
This initialization procedure is identical to the algorithm in Table 1, where Step 4 is omitted.

The main iterations start from the forward propagation (Step 1) and follows by the amplitude
update and the interpolation for the wavefront pixels where there are no observations (Step 2).
The operator Φ1 for this update is defined by Equations (15)–(18) for Poissonian and Gaussian noise
models. The back propagation in Step 3, the operator Φ2, is defined by Equation (20). The absolute
phase reconstruction from the wrapped phases of ut+1

o,λ is produced in Step 4 by the APR algorithm
presented in Appendix. It is based on the grid optimization with respect to ϕo and the phase shift δλ′

for the reference channel-λ′.
The obtained amplitude and phase update ut+1

o,λ at Step 5. The number of iteration is fixed in
this implementation of the algorithm. The steps 3 and 4 are complemented by the Block-Matching 3
Dimensions (BM3D) filtering. In Step 3, it is the filtering of complex-valued ut+1/2

o,λ produced separately

for the wrapped phase and amplitude of ut+1/2
o,λ . In Step 4, this filtering is applied to the absolute phase

ϕ̂t+1/2
o . These BM3D filters are derived from the group-wise sparsity priors for the filtered variables.

The derivation is based on the Nash equilibrium formulation for the phase retrieval instead of the
more conventional constrained optimization with a single criterion function as it is in Equation (14).
We do not show here this derivation as it is quite similar to developed in [32].

Table 1. Wavelength Multiplexing Absolute Phase Retrieval (WM-APR) Algorithm.

Input: {zs,c}, s = 1, ..., S, c ∈ (R, G, B),
Initialization: u1

o,λ, λ ∈ Λ
Main iterations: t = 1, 2, ..., T

1. Forward propagation and mixing
ut+1/2

s,λ = Psut
o,λ, s = 1, ..., S, λ ∈ Λ;

ut+1/2
s,λ → ut+1/2

s,c ;

2. Noise suppression:
ut

s,c = Φ1(u
t+1/2
s,c , zs,c);

ut
s,c → ut

s,λ;

3. Backward propagation and filtering:
ut+1/2

o,λ = Φ2(ut
s,λ), ut+1

o,λ = BM3D(ut+1/2
o,λ );

4. Absolute phase retrieval and filtering:
{ϕt+1/2

o , bt+1/2
o.λ } = APR(ut+1

o,λ );
ϕt+1

o = BM3D(ϕt+1/2
o );

5. Object wavefront update:
ut+1

o,λ = bt+1
o,λ exp(jϕt+1

o µλ), λ ∈ Λ;

Output: ϕT+1
o , uT+1

o,λ .



Appl. Sci. 2018, 8, 719 9 of 19

Sparsity and Block-Matching 3 Dimensions Filtering

The sparsity rationale assumes that there is a transform of image or signal such that it can be
represented with a small number of transform coefficients or in a bit different terms with a small
number of basis functions [58]. This idea is confirmed and supported by a great success of many
sparsity based techniques developed for image or signal processing problems. Overall, the efficiency of
the sparsity depends highly on selection of the transforms, i.e., basic functions relevant to the problem
at hand. The so-called group-wise sparsity was proposed where similar patches of image are grouped
and processed together Equation (22). It is obvious that the similarity inside the groups enhances the
sparsity potential.

Within the framework of nonlocal group-wise sparse image modeling, a family of the
BM3D algorithms has been developed where the both ideas grouping of similar patches and the
transform design are taken into consideration. This type of the algorithms proposed initially
for image denoising [54] being modified for various problems demonstrate the state-of-the-art
performance [59,60].

Let us recall some basic ideas of this popular BM3D technique. At the first stage the image
is partitioned into small overlapping square patches. For each patch a group of similar patches is
collected which are stacked together and form a 3D array (group). This stage is called grouping.
The entire 3D group-array is projected onto a 3D transform basis. The obtained spectral coefficients are
hard-thresholded and the inverse 3D transform gives the filtered patches, which are returned to the
original position of these patches in the image. This stage is called collaborative filtering. This process is
repeated for all pixels of the entire wavefront and obtained overlapped filtered patches are aggregated
in the final image estimate. This last stage is called aggregation. The details of BM3D as an advanced
image filter can be seen in [54].

It follows from [61,62], that the above operations including the grouping define the analysis and
synthesis transforms which can be combined in a single algorithm. The notation BM3D is used for this
filtering algorithm.

In Step 3 of the proposed algorithm, ut+1
o,λ = BM3D(ut+1/2

o,λ ), the BM3D is applied to the

complex-valued variables ut+1/2
o,λ . It is implemented in this paper as independent filtering of amplitude

and phase:

|ut+1
o,λ | = BM3Dampl(|ut+1/2

o,λ |), (22)

angle(ut+1
o,λ ) = BM3Dphase(angle(ut+1/2

o,λ )),

thus the updated the complex-valued ut+1
o,λ is calculated as ut+1

o,λ = |ut+1
o,λ | exp(j·angle(ut+1/2

o,λ )).
In real experimental samples, edges and varying features in phase and amplitude often co-exist

in the same image pixels. Then, the joint phase/amplitude sparsity is a more efficient instrument for
complex-valued object reconstruction. Novel forms of a BM3D based joint phase-amplitude processing
are developed in [63], where the high-order singular value decompositions (HOSVD) are exploited for
design of sparse basis functions for complex valued variables without separation phase and amplitude.

In Step 4 of the proposed algorithm, ϕt+1
o = BM3D(ϕt+1/2

o ), the BM3D is applied for filtering of
the real-valued ϕo.

In our experiments the parameters of the algorithm are fixed for all tests. The parameters defining
the iterations of the algorithm are as follows: γ1 = 1/χ, where χ is the parameter of the Poissonian
distribution, γ1/γ2 = 0.2. The parameters of BM3D filters can be seen in [32].
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4. Numerical Experiments

4.1. Setup of Experiments

In numerical experiments, we model the lensless optical system (Figure 1a), where a thin
transparent phase object is illuminated by monochromatic three color (RGB) coherent light beams
from lasers. The wavelengths are Λ = [417, 532, 633] nm with the corresponding refractive indexes
[1.528, 1.519, 1.515] as taken for BK7 optical glass. The reference wavelength is λ′ = 633 nm, then the
relative wavelengths are µλ = [1.48, 1.17, 1]. The pixel sizes of CMOS camera and SLM are 1.4 and
5.6 µm, respectively. The distance d between the object and CMOS camera is equal to 5 mm. Figure 1b
illustrates arrangement for each color channel of the CMOS camera [64].

(a) (b)

Figure 1. (a) Optical setup. λ1 = 417 nm, λ2 = 532 nm, λ3 = 633 nm are wavelengths of the blue, green,
and red light sources, M are mirrors, BS are beam-splitters, SLM stands for Spatial Light Modulator,
O is the object, CMOS+CFA is a registration camera with CFA; (b) Color filter array. BGGR CFA is a
blue-green-green-red disposed CFA; Blue, Green and Red are separate color channels.

A free propagation of the wavefronts from the object to the sensor is given by the
Rayleigh-Sommerfeld model with the transfer function defined through the angular spectrum (AS) [65].

For the proper numerical AS propagation without aliasing effects, we introduce a zero-padding
in the object plane of the size obtained from the inequality:

d ≤ N∆x2

λ
, (23)

which binds the propagation distance d, the number of pixels N in one dimension of the zero-padded
object and the pixel size of the sensor ∆x [66]. For the distance d = 5 mm and the object 100× 100 pixels,
the zero-padded object has as a support 1700× 1700 pixels.

The intensities of the light beams registered on the sensor are calculated as
zs,λ = G{|ASλ,d{Ms ◦ uo,λ}|2}, s = 1, ..., S, λ ⊂ Λ.

HereASλ,d denotes the AS propagation operator and Ms are the modulation phase masks inserted
before the object and pixelated as the object, ′◦′ stands for pixel-wise multiplication of the object and
phase masks. These phase masks enable strong diffraction of the wavefield introduced in order to
achieve the phase diversity sufficient for reconstruction of the complex-valued object from intensity
measurements. As it was described in [34], we use the Gaussian random phase masks. These phase
masks are implemented on SLM. It follows that the pixels of these masks and SLM have the same size.

Thus, in our experiments the propagation operator Ps,λ,d in Equation (4) is implemented as a
combination of the angular spectrum propagation ASλ,d and the modulation phase mask Ms.

To produce multiwavelength color images we need the three color components at each pixel
location. It can be achieved by three sensors, each of which registers a light of the specific color.
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This optical setup for absolute phase retrieval from multiwavelength observations has been studied in
our paper [52].

To reduce the complexity and the cost, most digital cameras use a single sensor covered by CFAs.
In our simulation we assume that the popular RGB Bayer CFA pattern is used. The corresponding
sampled color values are termed mosaic images, Figure 1. To render a full-color pattern at the sensor
plane from these CFA samples, an image reconstruction process is applied as defined by Equation (15).

4.2. Reconstruction Results

The illustrating reconstructions are presented for two phase test-objects with the invariant
amplitudes equal to 1 and the phases: “truncated Gaussian” and “logo” of Tampere University
of Technology (TUT), 100× 100 pixels both. The wrapped and absolute phases of these test-objects
are shown in Figure 2. The TUT logo and truncated Gaussian phases are very different, the first one
is discontinuous binary and the second one is piecewise-smooth continuous. The both test-objects
are taken with a high peak-value of the absolute phase equal to 35π rad, that corresponds to about
35 reference wavelength λ′ in variations of the profile ho.

Figure 2. Wrapped and absolute phases of the investigated test-objects: truncated Gaussian and TUT
logo, the reference wavelength λ′ = λ3.

We demonstrate the performance of the WM-APR algorithm for this quite difficult test-objects
provided very noisy Poissonian observations. The noisiness of observations is illustrated by values of
SNR (Equation (11)) and Nphoton (Equation (12)).

The accuracy of the object reconstruction is characterized by Relative Root-Mean-Square Error
(RRMSE) calculated as RMSE divided by the root of the mean square power of the true signal:

RRMSEϕ =

√
||ϕ̂est − ϕtrue||22√
||ϕtrue||22

, (24)

In this criterion the phase estimate is corrected by the mean value of the error between the
estimate and true absolute phase. It is the standard approach to evaluation of the accuracy for the
phase retrieval, where the phase is estimated within an invariant error.

Note, that values of RRMSE are identical for accuracy of the phase and the profile ho. It happens
because these variables are different only by the invariant factors, which are the same in nominator
and denominator of RRMSE.

Figure 3 shows the performance of the developed WM-APR algorithm for different noise levels
by a dependence of RRMSE from the noisiness parameter χ. The RRMSE curves for truncated
Gaussian and logo TUT are given for different numbers of experiments S = 7 and S = 4, respectively.
They demonstrate a similar behavior: go down for growing χ and take values about 0.1 at χ = 40,
what corresponds to the very noisy observed data with a low value of SNR = 5.6 dB and small mean
photon number Nphoton = 1.42.
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RRMSEs for the logo TUT and Gaussian phases are shown in Figure 4 as functions of the
experiment number S and SNR after 300 iterations. Nearly horizontal areas (dark blue in color images)
correspond to high-accuracy reconstructions with small values of RRMSE, for other areas RRMSE
values are much higher and the accuracy is not so good.

As it can be seen from these maps, reconstruction results for logo TUT demonstrate good small
RRMSE values in wide ranges of SNR and S, while truncated Gaussian has such small RRMSE values
only for S ≥ 7 and SNR > 5. It can be explained by a complex structure of the wrapped phase of the
truncated Gaussian phase. It follows from Figure 4, that some improvement in the accuracy can be
achieved at the price of the larger number of experiments S.

In what follows, we provide the images of the reconstructed absolute phases obtained for
the iteration number T = 300, S = 4 and S = 7 for logo TUT and truncated Gaussian objects,
respectively. The high iteration number T = 300 is governed by complexity of reconstruction from
the CFA mosaic observations, where each pixel of the sensor captures only one red, green or blue
color-channel information.

It means that the color information is subsampled with the subsampling ratio 50% for green and
25% for red and blue channels. The missed color-information is restored for each pixel of the sensor
(demosaiced) in the iterations of the algorithm as defined by Equations (15)–(17).

Figures 5 and 6 illustrate the absolute phase reconstruction (3D/2D images) obtained in two
different ways: by the proposed WM-APR algorithm and by the SPAR algorithm reconstructing the
wrapped phases for the separate wavelength channels following by the phase unwrapping using the
PUMA algorithm [42]. The conditions of these experiments are: SNR = 6.4 dB, Nphoton = 1.78 for
both test-objects.

The multiwavelength WM-APR algorithm demonstrates a clear strong advantage in
reconstruction of the absolute phases while the processing based on separate wavelength channels
completely failed. The accuracy of the WM-APR reconstructions is very high despite of the very
noisy observations.

The wrapped phase for the true truncated Gaussian phase should have a form of circular fringes
for the parts of the image corresponding to the Gaussian peak. Instead of it in Figure 2, we can see quite
irregular structures which look like destroyed by random errors or moiré patterns. This disturbance
of the ideal circular fringes is an aliasing effect due to discretization (sampling) of the continuous
Gaussian phase with a low sampling rate, which does not satisfy the Nyquist–Shannon conditions.
It happens because the peak value of the truncated Gaussian phase is very high and the number of
samples (100 × 100) is comparatively small.

This aliasing disturbance of the Gaussian phase is so strong that even advanced 2D unwrapping
algorithms, in particular, the PUMA algorithm, failed to reconstruct the absolute truncated Gaussian
phase from the precisely noiseless sampled data shown in Figure 2. The impressive high-accuracy
performance of the proposed WM-APR algorithm in this extra difficult situation is amazing as
demonstrating a strong robustness of this algorithm with respect to errors caused by aliasing effects.

The reconstruction of the absolute phase for the binary logo TUT is also very difficult, in particular,
due to huge differences of the phase values for adjacent pixels in the areas of the discontinuity of the
phase. The sampling (pixelation) of this absolute phase also leads to the strong aliasing which can be
noticed in 2D image in Figure 2. Again the unwrapping of the true noiseless wrapped phase by the 2D
unwrapping algorithms is not possible, and then, the fail of the single wavelength based algorithms in
Figure 6 is not surprising.

Again, the amazing success of the WM-APR algorithm demonstrates that it is robust with
respect to the sampling effects and is able to achieve the high-accuracy reconstruction in very difficult
noisy scenarios.

In conclusion, we wish to note that the pair-wise beat-frequency synthetic wavelengths, one of
the conventional methods for phase retrieval from multiwavelength observations (e.g., [43,46]), do not
work in the considered scenario as the differences between the RGB wavelengths are not small.
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Figure 4. RRMSEs as functions of SNR and the number of experiments S, 300 iterations, left and right
3D images are for Logo TUT and truncated Gaussian, respectively.

Figure 5. Truncated Gaussian absolute phase reconstructions: RRMSE = 0.056 (SNR = 6.3 dB,
Nphoton = 1.42), top row - 3D absolute phase surfaces, bottom row - the corresponding 2D absolute
phase images. From left to right: WM-APR algorithm, and phase reconstructions obtained separately
for λ1, λ2, λ3 wavelengths, respectively, followed by the 2D phase unwrapping.
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Figure 6. Logo TUT phase reconstructions: RRMSE = 0.084 (SNR = 6.3 dB, Nphoton = 1.42),
(top row)—3D absolute phase surfaces, (bottom row)—the corresponding 2D absolute phases images.
From left to right: WM-APR algorithm, and phase reconstructions obtained separately for λ1, λ2, λ3

wavelengths, respectively, followed by the 2D phase unwrapping.

For simulations we use MATLAB R2016b on a computer with 32 Gb of RAM and CPU with
3.40 GHz Intel R© CoreTM i7-3770 processor, 108.8 GFLOPS. The computation complexity of the
algorithm is characterized by the time required for processing. For 1 iteration, S = 4, and
100× 100 images, zero-padded to 1700× 1700, this time equals to 12 s.

5. Conclusions

The multiwavelength absolute phase retrieval from noisy intensity observations is considered.
The system is lensless with multiwavelength coherent input light beams and random phase masks
applied for wavefront modulation. The light beams are formed by light sources radiating all
wavelengths simultaneously and CMOS sensor equipped with a color filter array (CFA) is used
for spectral measurements. The developed algorithm is based on maximum likelihood optimization
in this way targeted on optimal phase retrieval from noisy observations. The algorithm for the
Poissonian and Gaussian noise distribution is presented. The sparse modeling enables a regularization
of the inverse imaging problem and efficient suppression of random observation errors by BM3D
filtering of phase and amplitude. The effectiveness of the developed WM-APR algorithm is verified by
simulation experiments demonstrated in this work only for the Poissonian noise. The high-accuracy
performance of the algorithm is achieved for a high-dynamic range of absolute phase variations
while the algorithms operating with the single wavelength observations separately failed. Physical
experiments are our priorities for a further work. We consider nonidealities of SLM as a phase
modulator and the AS propagation operator as the main challenges for the accuracy of profile and
absolute phase reconstruction.

Author Contributions: V.K. developed the algorithm; V.K. and I.S. conceived and designed the experiments; I.S.
performed the experiments; V.K., I.S., N.V.P., and K.E. analyzed the data and wrote the paper.

Acknowledgments: This work is supported by Academy of Finland, project no. 287150, 2015–2019, Russian
Ministry of Education and Science (project within the state mission for institutions of higher education, agreement
3.1893.2017/4.6) and Horizon 2020 TWINN-2015, grant 687328—HOLO.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.



Appl. Sci. 2018, 8, 719 15 of 19

Abbreviations

The following abbreviations are used in this manuscript:

CFA Color Filter Array
CMOS Complementary Metal Oxide Semiconductor
SPAR Sparse Phase and Amplitude Reconstruction
SNR Signal-to-Noise Ratio
APR Absolute Phase Reconstruction
BM3D Block-Matching 3 Dimensions
SLM Spatial Light Modulator
AS Angular Spectrum
TUT Tampere University of Technology
RRMSE Relative Root Mean Square Error
WM-APR Wavelength Multiplex Absolute Phase Retrieval
GFLOPS 109 FLoating-point Operations Per Second
HOSVD High-Order Singular Value Decompositions

Appendix A. Absolute Phase Reconstruction (APR) Algorithm

The minimization of L1 (Equation (21)) on ϕo and δλ is an absolute phase estimation (unwrapping)
problem where the joint use of the λ-channels is required.

The algorithm is composed from three successive stages A, B, C. We name this algorithm Absolute
phase reconstruction (APR) algorithm.

1. Phase synchronization. Let λ′ ∈ Λ be a reference channel. Define the estimates for δλ in
(Equation 21) as follows

δ̂λ =W(δ̂λ′ · µλ/µλ′ + δλ,λ′µλ), (A1)

where δλ,λ′ are shifts between the phases of the reference and other channels:

δλ,λ′ = medianx(W(ψo,λ(x)/µλ − ψo,λ′(x)/µλ′)) (A2)

and δ̂λ′ is a hypothetical valued of unknown δλ′ . One of the goals of this calculations is to
reduce a number of unknown phase shifts δλ to a single parameter δλ′ , i.e., the phase-shift in
the reference channel. Note that in the above formulas ψo,λ(x) are known (measured) in the
algorithm iterations. Thus, indeed, all δλ are expressed through δ̂λ′ . The wrapping operator
W in Equations (A1)–(A2) is used for proper calculation of the wrapped phase and the median
averaging in order to get the robust estimate of the invariant δλ,λ′ .

Inserting δ̂λ in Equation (21) we obtain this criterion in the form

L1(ϕ , δλ) = ∑
λ

|||uo,λ|[exp(j(µλ · ϕo))− exp(j(ψo,λ − δ̂λ′ · µλ/µλ′ − δλ,λ′µλ))]||22, (A3)

where δλ,λ′ is given.

The meaning of L1(bo,λ, ϕ , δλ) can be revealed if we assume that all phase-shift estimates are
accurate than we can see that

ψo,λ − δ̂λ = µλ · ϕo + δλ − δ̂λ,

δ̂λ = δλ + µλ/µλ′(δ̂λ′ − δλ).

It follows, that
ψo,λ − δ̂λ = µλ · ϕo + µλ/µλ′(δ̂λ′ − δλ′). (A4)

If we know that δλ′ = δ̂λ′ than the perfect phase equalization is produced and ψo,λ − δ̂λ = µλ · ϕo.
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In general case, when δλ′ 6= δ̂λ′ , the in-phase situation is not achieved.

Going back to the criterion (Equation (A3)) we note that with this compensation it takes the form

L1(ϕo , δλ) = ∑
λ

|||uo,λ|[exp(j(µλ · ϕo))− exp(j(ψo,λ − δ̂λ))]||22 (A5)

and using (Equation (A4)) it can be rewritten as

L1(ϕo , δλ) = ∑
λ

|||uo,λ|[exp(j(µλ(ϕo + ∆ϕo))− |uo,λ| exp(j(ψo,λ − δλ))]||22, ∆ϕo = (δ̂λ′ − δλ′ )/µλ′ .

Thus, the accurate compensation of the phase shifts δλ in the wrapped phases ψo,λ is achieved
while the absolute phase ϕo can be estimated within an unknown but invariant phase shift ∆ϕo.
This is not essential error as in the phase retrieval setup, ϕo can be estimated only within an
invariant shift.

The equivalence of the calculations (Equations (A1) and (A2)) to the phase manipulations shown
in Equation (A4) cannot be proved analytically but careful numerical experiments confirm that
they are quite precise even for noisy data.

2. Minimization of Equation (A5) on ϕo is a solution of the problem

ϕ̂o(x, δλ′) = arg min
ϕo(x)
L1(ϕo , δ̂λ), (A6)

δ̂λ = δλ′ · µλ/µλ′ + δλ,λ′µλ, (A7)

where

L1(ϕo, δ̂λ) = 2 ∑
λ

∑
x
|uo,λ(x)|2[1− cos(µλ · ϕo(x)− (ψo,λ(x)− δ̂λ))]. (A8)

Minimization of Equation (A8) on ϕo gives the estimate of the absolute phase provided given δ̂λ.
It has no an analytical solution and is obtained by numerical calculations.

The calculations in Equation (A8) are produced pixel-wise for each pixel x independently.
Note that δ̂λ as well as the solution ϕ̂o both depend on the unknown invariant δ̂λ′ .

3. Minimization of Equation (A8) on δλ′ leads to the following scalar numerical optimization:

δ̂λ′ = min
δλ′

∑
λ

∑
x
|uo,λ|2[1− cos(µλ · ϕ̂o(x, δλ′)− (ψo,λ(x)− (δλ′ · µλ/µλ′ + δλ,λ′µλ))]. (A9)

Finalization of estimation. When δ̂λ′ is found the optimal values for ϕ̂o are calculated as

ϕ̂o(x) = ϕ̂o(x, δ̂λ′). (A10)

In our algorithm implementation, the solutions for Equations (A6) and (A9) are obtained by the
grid optimization.

It has been noted in our experiments that an essential improvement in the accuracy of the absolute
phase reconstruction is achieved due to optimization on δλ′ .
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