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Bacterial gene expression regulation occurs mostly during

transcription, which has two main rate-limiting steps: the close

complex formation, when the RNA polymerase binds to an

active promoter, and the subsequent open complex formation,

after which it follows elongation. Tuning these steps’ kinetics

by the action of e.g. transcription factors, allows for a wide

diversity of dynamics. For example, adding autoregulation

generates single-gene circuits able to perform more complex

tasks. Using stochastic models of transcription kinetics with

empirically validated parameter values, we investigate how

autoregulation and the multi-step transcription initiation

kinetics of single-gene autoregulated circuits can be combined

to fine-tune steady state mean and cell-to-cell variability in

protein expression levels, as well as response times. Next, we

investigate how they can be jointly tuned to control complex

behaviours, namely, time counting, switching dynamics and

memory storage. Overall, our finding suggests that, in bacteria,

jointly regulating a single-gene circuit’s topology and the

transcription initiation multi-step dynamics allows enhancing

complex task performance.
1. Introduction
Bacterial cells can tune their gene expression profile in response to

environmental changes [1–8]. E.g. in Escherichia coli, this

adaptability is made possible by, among other things, fine-tuning

the transcription kinetics of its genes [9]. This is enhanced by the

multi-step nature of transcript initiation [10–13], whose steps can

be individually or jointly controlled by promoter-specific external

signals (e.g. transcription factors), global regulators such as s

factors, etc. [10,14–19]. Evidence suggests that both the mean rate

and noise in this dynamics can be tuned [20].
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One way to halt a promoter’s activity is the intervention of a transcription factor (TF), capable of

negative regulation [11,21]. Other transcription factors can act as activators [10,21,22]. Relevantly, the

transcription dynamics is sequence dependent because e.g. the promoter sequence affects the kinetics

of the rate-limiting steps in the initiation, altering the mean and cell-to-cell variability in RNA, and

thus, protein numbers [15,18,23–25].

Almost 60% of the TFs produced by E. coli are autoregulators [26–28]. Autoregulation allows genes to

behave as molecular clocks, switches or memory storage units that assist cells in better controlling

response levels and times, etc. [29]. The outcome of introducing TFs in the cytoplasm is usually a

change in the kinetics of the rate-limiting steps in transcription initiation of a specific gene(s) [11]. The

result of this intervention depends on which rate-limiting step(s) is affected. Namely, acting on a

longer-lasting step is likely to have a stronger effect on the RNA production rate than when acting on

the shorter-lasting step [23].

In autoregulated genes, the regulatory mode (repression versus activation and the strength of the

regulation) is of importance in the resulting changes in mean and cell-to-cell variability in protein

numbers [15,30–34], as these affect the fitness of microbial populations [1,9,35,36]. Based on past

knowledge (see e.g. [23]) we predict that the effects of autoregulation depend not only on the mode and

strength of this regulation but also on the dynamics of transcription initiation of the gene under regulation.

Here, using parameter values extracted from recent single-cell measurements of transcription and

translation kinetics in live cells, we designed stochastic models of gene expression controlled by

different regulatory modes to explore how the combination of regulation by the action of TFs and

regulation of the rate-limiting steps in transcription initiation expands the state space of possible

behaviours of autoregulated and externally regulated single-gene circuits. For this, we perform

stochastic simulations for varying inducer concentrations, relative durations of the rate-limiting steps

in transcription initiation, and binding strengths of the activator/repressor transcription factors (to

tune the feedback strength in autoregulation). From these simulations, we assess the mean expression

levels at ‘steady state’ (i.e. after a long time period), the cell-to-cell variability in gene expression

products and the response times of our circuit in model cells. We note that the term ‘steady state’ here

refers to ‘noisy attractors’ [37] because, technically, stochastic models do not have steady states.

Finally, we also implement model constitutive genes as null-models, so as to provide a point of

reference for quantifying the effects of the autoregulation mechanisms on the gene expression kinetics.
2. Material and methods
2.1. Models of gene expression and regulation mechanisms
We model gene expression when constitutive (acting as a ‘null model’) and when externally or

autoregulated by activator/repressor TFs, which act on transcription initiation. The models are

depicted in figure 1. In all, we assume a multi-step model of active transcription [38,39], validated in

[12]. We note that this model should be applicable to plasmid-borne and chromosome-integrated

promoters, provided that the latter are not located in highly expressed operons and, thus, are not

strongly influenced by promoter halting due to the accumulation of positive supercoiling build-up [20].

From figure 1a, constitutive promoters are always active [40,41] (i.e. in the ON state). Thus, their

expression rate is regulated by the binding/unbinding rates of RNA polymerases (RNAPs) [41].

Constitutive gene expression levels usually depend mostly on the cell growth rate [17,41–43], as this

rate can affect the RNAP concentration.

Meanwhile, promoters subject to regulation by TFs can have their activity reduced/enhanced during

the time period when repressors/activators are present in the system [44,45]. For that, we assume that

when bound by an activator/repressor their activity is affected accordingly (enhanced/reduced). We

note that, given the use of a two-step model of transcription (reactions 2.5 and 2.6 below), this model

behaviour is not identical to that of a simple on–off switch. These interactions are modelled,

respectively, by reaction 2.1 and reaction 2.2:

POFF þ activator �! �
kB

kU

PON ð2:1Þ

and

PON þ repressor �! �
kB

kU

POFF: ð2:2Þ
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Figure 1. Regulatory modes of a gene expression. (a) Constitutive gene, (b) externally activated gene, (c) externally repressed gene,
(d ) autoactivated gene and (e) autorepressed gene. ( f ) Representation of the mean times spent in the rate-limiting steps in
transcription initiation. POFF, PON and PCC represent the promoter in three states (respectively, unavailable for transcription,
available for transcription and committed to closed complex formation). These states are controlled by the binding/unbinding of
activator/repressor molecules, followed by the binding/unbinding of an RNAP (RNA polymerase) and the kinetics afterwards.
Namely, tOFF, tCC and tafter represent the average time spent in each rate-limiting step, respectively, the ‘OFF’ state (i.e.
repressed), the closed complex formation, ‘CC’, and the open complex formation (after), after which an RNA molecule is
synthesized. In detail, tafter corresponds to the mean time spent following the commitment to open complex formation.
Finally, Dt corresponds to the time interval between consecutive RNA production events. In constitutive genes, tOFF � 0.
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In reactions 2.1 and 2.2, the unbinding of activators/repressors occurs at the constant rate kU, while

their binding occurs at the rate kB, which depends on inducer/repressor concentration and their effective

binding affinity (kB) [46] (estimated by equations (2.3) and (2.4)).

The inducer concentration is represented by I. The maximum and minimum affinities of activator/

repressor to the promoter are represented by, respectively, Cmax and Cmin (see electronic supplementary

material in [46]). Meanwhile, KI is a half-maximum concentration of inducers for activators (in % w/v)

and repressors (in mM). The binding strength of activators/repressors can be tuned by altering factor
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‘f’, which is the relative ratio of TF binding rates, which we use as a measure of the feedback strength of

autoregulated genes.

kB ¼ f : kU : (Cmax � Cmin) :
(I=KI)

2

1þ (I=KI)
2
þ Cmin

" #
ð2:3Þ

and

kB ¼ f : kU : (Cmax � Cmin) :
1

1þ (I=KI)
2
þ Cmin

" #
: ð2:4Þ

In all models, transcription starts with the binding of a free RNAP to an active promoter (PON),

forming a closed complex, PCC [10,19,22,47,48] (reaction 2.5). As this step is reversible, multiple closed

complex formations can occur between two consecutive RNA production events [12] (reaction 2.5).

When ‘successful’, it follows the irreversible open complex formation [10,49,50]. Once complete, an

mRNA will be produced and the promoter becomes again available to RNAPs [10,51] (reaction 2.6).

In reaction 2.6, k2 represents the inverse of the mean time-length for the open complex to be complete,

once initiated:

PON
! 
k1 :RNAP

k�1

PCC ð2:5Þ

and

PCC�!
k2

mRNAþ PON: ð2:6Þ

The model does not include transcription elongation nor termination because, in normal conditions,

these steps are much faster than the rate-limiting steps in initiation [11,52–59], not affecting significantly

the time intervals between RNA production events.

In models where gene expression is regulated by TFs, but feedback reactions are absent (figure 1b,c),

the production of activators/repressors is assumed to occur at a basal rate (reaction 2.7):

;!kbasal Activator

Repressor
: ð2:7Þ

Model autoregulated genes (figure 1d,e) produce their activators/repressors, which establish a

feedback regulatory system (reactions 2.1 and 2.2). Activators/repressors are produced from the RNAs

(reaction 2.8):

mRNA�!
kp

mRNAþ protein=activator=repressor: ð2:8Þ

Finally, we assume constant degradation rates of mRNAs (reaction 2.9) and TFs (reaction 2.10)

[60–62]:

mRNA ����!dmRNA ; ð2:9Þ

and

activator=repressor=protein ���!
dProtein ;: ð2:10Þ

The parameter values used here are based on empirical data or have been fitted to physiologically

realistic ranges (shown in table 1, unless stated otherwise). Finally, as an approximation, the models

assume only one copy of the gene of interest in the cell [12].
2.2. Transcription initiation kinetics and interval between transcription events
In [12], a method was proposed for dissecting the in vivo kinetics of the rate-limiting steps in active

transcription (figure 1f ). Shortly, from measurements of intervals between consecutive transcription

events in individual cells (Dt) at different RNAP concentrations, one can infer the mean duration of

the events prior to (tprior) and after (tafter) the commitment to open complex formation. This is possible

as the value of tprior differs with a concentration of RNAP, while tafter does not [10]. Here, for

simplicity, we assume that TFs also only affect the kinetics of the first step.



Table 1. List of parameter values of the models. Shown are their values and the references from which they were gathered. The
symbol ‘*’ stands for ‘fitted to achieve physiologically realistic ranges’. The symbol ‘þ ’ stands for ‘varied within realistic
intervals’. w/v stands for weight by volume. We opted for extracting as many rate constants as possible from the same
publication(s), for model consistence.

parameter description values refs.

kbasal basal synthesis rate of activator/repressor 0.07 protein min21 *

kU unbinding of activator/repressor from promoter 1.8 min21 [46]

Cmax max. affinity of activators to the binding site 1 molecule21 [46]

max. affinity of repressors to the binding site 0.2 molecule21 [46]

Cmin min. affinity of activators to the binding site 0 molecule21 [46]

min. affinity of repressors to the binding site 0.01 molecule21 [46]

KI half-maximal concentration of inducer for activator 2.5% (w/v) [46]

half-maximal concentration of inducer for repressor 0.035 mM [46]

k1 binding affinity of the RNAP to the promoter þ [12]

k21 unbinding affinity of the RNAP from the promoter 60 min21 [12]

k2 effective rate of events after transcription initiation until

mRNA synthesis

þ [12]

kp rate of translation 27 protein min21 [63 – 65]

dmRNA rate of mRNA degradation 0.12 min21 [60,66]

dprotein rate of protein/activator/repressor degradation 0.0231 min21 [67]

RNAP number of free RNA polymerases 1000 [68 – 70]

I inducer concentration for activators [0 – 2.5] % (w/v) [23,42,47]

inducer concentration for repressor [0 – 1] mM [23,42,47]

Dt avg. duration of transcription intervals [1 – 20] min [12,71 – 73]

rsos.royalsocietypublishing.org
R.Soc.open

sci.5:181170
5

According to the models, the mean interval between consecutive RNA production events (Dt) equals,

when regulated by activators or repressors, respectively (equations (2.11) and (2.12)):

Dt ¼ (kB þ kU)(k�1 þ k2)

RNAP � k1 � k2 � kB
þ 1

k2
ð2:11Þ

and

Dt ¼ (kB þ kU)(k�1 þ k2)

RNAP � k1 � k2 � kU
þ 1

k2
: ð2:12Þ

In constitutively expressed genes, Dt equals (equation (2.13)):

Dt ¼ (k�1 þ k2)

RNAP � k1 � k2
þ 1

k2
: ð2:13Þ
2.3. Simulations and dynamics evaluation
To simulate the models, we use SGNSim (Stochastic Gene Networks Simulator) [74], a simulator of

chemical reaction systems according to the Gillespie’s stochastic simulation algorithm [75,76]. In

addition, this simulator allows for the reaction rates to be calculated from complex functions or from

physical parameters, when necessary. SGNSim was designed to e.g. model specific genetic circuits

and systems of chemical reactions. It further allows for perturbations during simulations, including

the introduction of new components in the system.

We focus on how tuning the kinetics of transcription initiation affects the behaviour of the model

circuits. For this, instead of changing the mean transcription rate, we alter the fraction of time spent in

the events prior to and after initiation of the open complex formation. Namely, we vary tafter/Dt
between 0.05 and 0.95, to cover the wide diversity of empirical values reported in [13,18]. For this, Dt
is kept constant, and k1 and k2 are changed according to equations (2.12)–(2.15), depending on the
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circuit’s topology. By keeping Dt constant, the RNA production kinetics (e.g. its noise) is changed due to

changing the quantitative relationship between tprior and Dt, rather than due to changing the mean rate of

transcription (which would require changing Dt). This is because changes in Dt are limited by biophysical

constraints such as intracellular concentration of RNA polymerases, promoter affinity biophysical

limitations, etc. while empirical evidence suggests that tprior/Dt can be changed from almost 0 to

almost 1 [13,18].

The rates k1 and k2 for constitutive genes were estimated using equations (2.14) and (2.15). Since, in

this model, the kinetics of the steps following initiation of the open complex formation does not depend

on the regulatory molecules, k2 of externally regulated genes (thus, without feedback) is also estimated

using equation (2.15).

k1 ¼
Dt � k�1 � Dt � (tprior=Dt) � k�1 þ 1

Dt � RNAP � (tprior=Dt)
ð2:14Þ

and

k2 ¼
1

Dt : [1� (tprior=Dt)]
: ð2:15Þ

Meanwhile, k1 depends on the inducer and TF intracellular concentrations and, thus, is calculated using

equation (2.16) for positive regulation and equation (2.17) for negative regulation. To change the

induction strength, while maintaining Dt and tprior/Dt constant, we change k1, in accordance with

equation (2.16) (for activation) and equation (2.17) (for repression), for both externally regulated and

self-regulated genes.

k1 ¼
kB þ kU þ Dt � kU � k�1 � Dt:(tprior=Dt) : kU � k�1 þ Dt � kB:k�1 � Dt � (tprior=Dt) � kB � k�1

Dt � RNAP � kB � (tprior=Dt)
ð2:16Þ

and

k1 ¼
kB þ kU þ Dt � kU � k�1 � Dt � (tprior=Dt) � kU � k�1 þ Dt:kB:k�1 � Dt � (tprior=Dt) � kB � k�1

Dt � RNAP � kU � (tprior=Dt)
: ð2:17Þ

For any given set of values of variables (e.g. rate constants), we simulate 1000 individual model cells.

From these simulations, we extract the mean and cell-to-cell variability in protein numbers in individual

cells at steady state. We also estimate the mean activation time, defined as the time taken to reach half of

the protein expression levels at steady state. Finally, as TFs and RNAP numbers only affect tprior, we use

tprior/Dt as a means to evaluate the effective influence of transcription initiation on the overall protein

expression dynamics (as the dynamics of translation is identical in all models). We also explore how

the features added by autoregulation, such as memory storage, bimodal activation and oscillations are

affected by tprior/Dt, feedback strength and inducer concentration. We use this to determine the

optimal parameter values for performing these tasks.

We quantify noise in gene expression (variability in e.g. protein numbers over time) by the squared

coefficient of variation (CV2) (squared mean over standard deviation). This quantity is shown to differ

with tprior/Dt (e.g. figure 2b).

We further quantify the uncertainty (U) of estimation of a given quantity (Q) (e.g. CV2) from the

simulations (due to this estimation being performed from a finite set of simulations). U is here

quantified by the variance (equation (2.18)), and as expected is shown to differ with Dt (i.e. usually,

the higher is Dt, the higher is U ).

U ¼ Standard deviation(Q)

Mean(Q)
: ð2:18Þ

To analyse oscillatory behaviours, we calculate the frequency (F ) of the oscillations as follows, where n is

the number of frequency bins in the spectrum, Fi is the frequency of the spectrum at bin i of n and Pxxi ¼

power spectral density (dB Hz21) of spectrum at bin i of n:

Fmean ¼
Pn

i¼0 Pxxi � FiPn
i¼0 Pxxi

: ð2:19aÞ

We also calculate the spread of the amplitudes of each oscillation:

Spread ¼ Standard deviation(amplitude)

Mean(amplitude)
: ð2:19bÞ
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numbers at steady state for varying Dt and tprior/Dt. The inset shows the uncertainty of the measurements in each condition.
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Finally, as noted, changing k1 in reaction 2.5 alters tprior/Dt. The resulting values of this parameter can be

estimated from the rate constants of the models for constitutive, activated (auto- or externally) and

repressed (auto- or externally) genes, as follows, respectively:

tprior

Dt
¼ 1

1þ RNAP � k1=(k�1 þ k2)
, ð2:20Þ

tprior

Dt
¼ 1

1þ RNAP � k1 � kB=((kB þ kU ) � (k�1 þ k2))
ð2:21Þ

and
tprior

Dt
¼ 1

1þ RNAP � k1 � kU=((kB þ kU) � (k�1 þ k2))
: ð2:22Þ
3. Results and conclusion
3.1. Transcription initiation kinetics affects the mean and noise in protein numbers at steady

state, but not activation times of constitutive genes
Here, constitutive genes are used as a ‘null model’ to assess, by comparison, the effects of external and

autoregulation by TFs. Thus, we first characterize the dynamics of this null model. We simulated the

model in figure 1a for varying tprior/Dt (while keeping Dt constant). Also, we changed Dt for fixed

tprior/Dt values. From the simulations, we extracted the mean and variability (as measured by CV2) of

the protein numbers in individual cells at steady state, and the mean activation times. We also

estimated the uncertainty in these variables (equation (2.18)). In these simulations, the model is

initialized without proteins.

Results in figure 2 show that tprior/Dt does not affect the protein numbers at steady state (figure 2a), as

expected, because Dt was not altered. Only the cell-to-cell variability in protein numbers is affected, which

is expected because higher tprior/Dt allows more frequent binding and unbinding of the RNAPs to the

active promoters in between transcription events (figure 2b). As such, the uncertainty in these quantities

is not affected (figure 2, insets). Meanwhile, changing Dt while keeping tprior/Dt constant affects the

mean and cell-to-cell variability of the protein numbers at steady state. Finally, the uncertainty in these

quantities increases with Dt (figure 2, insets), due to the decrease in mean RNA and protein numbers.

3.2. Rate-limiting steps in transcription initiation have different effects on autoregulated genes
and externally regulated genes

Previous studies showed that the sensitivity of a promoter’s activity to TFs is affected by tprior/Dt, when

TFs do not affect identically the kinetics of the rate-limiting steps in transcription initiation [18,23]

(figure 1f ). For example, consider two TFs with similar repressing capabilities, with one being able to

double the mean duration of the first rate-limiting step, while the other can double the duration of the

second rate-limiting step. In this scenario, if e.g. the first rate-limiting step is more longer-lasting than
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the second, the TF acting on the first step will have a stronger effect on the rate of RNA production. Thus,

we hypothesized that the modes of regulation involving TFs (external and autoregulation) change in

sensitivity with tprior/Dt. To test this, we changed inducer concentration and tprior/Dt and assessed the

steady state expression levels in each model. Results are shown in figure 3.

Overall, in all cases, the quantitative behaviour of the circuits depends on all three variables (Dt,
tprior/Dt and inducer concentration). Meanwhile, the qualitative behaviour depends mostly on

tprior/Dt and inducer concentration. Interestingly, the effects of each variable depend on the value of

the other. E.g. in figure 3b,d, changing inducer concentration has stronger effects if tprior/Dt is large.

Also, changing tprior/Dt has stronger effects for weak inducer levels (figure 3d ).

In addition, comparing figure 3a and figure 3b, we find significant differences between external

activation and autoactivation. Meanwhile, comparing figure 3c and figure 3d, we find little difference

between external repression and autorepression. Further, comparing figure 3a and figure 3c, we see

little difference between external activation and repression. Finally, comparing figure 3b and figure 3d,

we see significant differences between autoactivation and autorepression.

Also from figure 3a,b, for weak inducer levels, decreasing tprior/Dt reduces protein numbers at steady

state. This is due to the time window for the RNAP to bind to the unrepressed promoter being shorter.

Externally activated genes change expression levels nearly monotonically with inducer concentration

until reaching the plateau of full induction (figure 3a,c). Meanwhile, autoactivation causes this

increase to be less monotonic (figure 3b). This would be relevant in the context of gene circuits,

allowing sharper state shifting. Meanwhile, in figure 3c,d, for weak inducer levels, increasing tprior/Dt
reduces protein numbers at steady state. I.e. it decreases leaky expression (i.e. protein production

when in the presence of repressors).
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3.3. Transcription initiation kinetics affects leaky expression in autorepressed genes
Repressed genes, especially autorepressed, exhibit leaky expression, which can be detrimental to cell

growth rates [77–79] and facilitate fast state switching [80], etc. We investigate how leakiness can be

tuned by tprior/Dt and autorepression strength. To change the latter, we alter the feedback strength, f
(equation (2.3)). In figure 4, we show the steady state expression levels of autorepressed genes as a

function of inducer concentration and tprior/Dt for three values of f.
From figure 4, weak feedback strength causes the circuit to be nearly impervious to changes in

inducer concentration and tprior/Dt. Meanwhile, for strong feedback, protein numbers at steady state

decrease with tprior/Dt. Owing to the negative autoregulation, induction levels have little to no effects.

Overall, this suggests that increasing tprior/Dt along with strengthening the feedback strength is the

best strategy for reducing leaky expression in autorepressed circuits.

3.4. Transcription initiation kinetics affects biphasic behaviour in autoactivation genes
From figure 3b, autoactivated genes exhibit biphasic behaviour for higher values of tprior/Dt. Next, we

explore how to tune the threshold inducer concentration to reach biphasic behaviour as a function of f
(equation (2.3)) and tprior/Dt. Results in figure 5 show the steady state expression levels of

autoactivated genes as a function of these parameters.

From figure 5, stronger feedback allows the biphasic behaviour to occur at lower induction levels.

Also, below a certain feedback strength, this phenomenon is no longer possible. The same occurs if
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tprior/Dt is too low. In this regard, figure 6a,b shows that having k1. k2 allows higher expression levels as

induction is increased (for high values of tprior/Dt alone), until a given threshold value, beyond which the

opposite occurs, resulting in a biphasic behaviour. From figure 6c,d, this is not observed in autorepressed

genes. Interestingly, the feedback strength determines the induction level at which the biphasic behaviour

emerges. Overall, these results indicate that the kinetics of transcription initiation can play a key role in

autoregulatory networks, even without affecting the mean transcription rate.

3.5. Transcription initiation kinetics affects cell-to-cell variability in protein numbers
of autoregulated genes

Next, we study how the kinetics of transcription initiation and the regulatory mode can be combined to

regulate cell-to-cell variability in protein numbers in single-gene circuits with feedback. To quantify this

variability, we use CV2 in protein numbers at steady state. Results are shown in figure 7.

From figure 7, in general, externally activated and autoactivated genes exhibit higher CV2 in protein

numbers at steady state than externally repressed and autorepressed ones. Also, they are more sensitive

to inducer concentrations. Externally activated and autoactivated genes differ in that the latter has more

variability in behaviour. Meanwhile, in all cases (except in figure 7c, i.e. for externally repressed genes),

tprior/Dt does not tune this variability significantly. Overall, we find the inducer concentration and,

secondly, Dt to be the main regulators of cell-to-cell variability in protein numbers at steady state,

confirming again the hypothesis that the kinetics of transcription initiation can play a key role in

autoregulatory networks, even without affecting the mean transcription rate.
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3.6. Autoregulation allows transcription initiation kinetics to tune activation time
Precise timing of events is essential in complex cellular processes [81,82]. Typically, the expression levels

of specific genes need to reach a threshold level to trigger subsequent events [81,83,84]. We studied how

the inducer concentration and tprior/Dt affect activation times (here assumed to be the time to reach half

the steady state level). Results are shown in figure 8.

In general, externally activated and autoactivated genes respond slower than externally repressed and

autorepressed ones, in agreement with [85–87] (figure 8). Meanwhile, in all cases, activation times are

nearly independent of tprior/Dt. Further, when and only when externally controlled, they are also

nearly independent of Dt. Finally, all circuits are affected by the inducer concentration.
3.7. Transcription initiation kinetics affects the memory storage capacity
of autoactivated circuits

We explore how the memory storage capacity of autoactivated circuits can be jointly tuned by the

feedback strength ( f ) and the transcription initiation kinetics (tprior/Dt by varying k1, equation (2.21)).

For this, for each case, cells were simulated under different induction levels until reaching their

respective steady states (‘ON’ states). We studied the transition from the ON to the OFF state, by

simulating cells whose initial condition corresponds to the steady state in protein numbers under full

induction. For each model, two curves were generated, from OFF to ON, and from ON to OFF.

Results in figure 9 show that, in all cases, the two curves do not overlap, demonstrating storage

capacity for memory from past states.

From figure 9, increasing the feedback strength enhances the memory storage. Decreasing k1 reduces

it. Namely, cells almost failed to store any memory when combining weak feedback with the smaller

value of k1 tested (figure 9a). Surprisingly, the higher value of k1 caused the ON state to remain, even

after removing the inducer (figure 9c). Finally, by changing k1 and the feedback strength, a wide

range of values of tprior/Dt was covered (0.2 to 0.8). This range is reduced by weakening the feedback

strength and/or k1 (figure 9, Insets).
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3.8. Transcription initiation kinetics regulates the modality of cell populations
with autoactivated genes

We study whether the behaviour of positively regulated genes can be jointly tuned by the transcription

initiation kinetics (k1) and feedback strength ( f ). From the simulations, we obtained histograms of the

fraction of cells with a given number of proteins at different time points (figure 10).

Figure 10 shows that the feedback strength can tune the probability of emergence of two ‘sub-

populations’ from ‘one initial population’, as well as the fraction of cells in each sub-population. These

are also affected by tprior/Dt (as regulated by k1). Meanwhile, the feedback strength affects the ranges

of tprior/Dt that can be reached by tuning k1.
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3.9. Transcription initiation kinetics affects oscillatory behaviour in autorepressed genes
Since tprior/Dt affects the time for transcript production to initiate, we hypothesize that it can be used to

tune the dynamics of oscillations in the protein numbers resulting from autorepressed genes. We

simulated these models for various values of k1 and feedback strength and extracted the mean

frequency and spread (equation (2.19)) of the oscillations (figure 11). We also calculated the ranges of

values of tprior/Dt (equation (2.22)) reached when changing the feedback strength and k1.

Results in figure 11 suggest an increase in both the mean frequency and spread of the oscillations for

increasing feedback strength. This increase is sensitive to the value of k1. Overall, longer-lasting

transcription initiation results in faster, more spread oscillations. Finally, in the regime of weak

induction, tprior/Dt is mainly controlled by the feedback strength while, overall, the ranges of tprior/Dt
decrease for increasing k1.
4. Discussion
The dissection of the dynamics of transcription initiation using E. coli as a model organism (first in vitro
[14] and, more recently, in vivo [12,23]) has subsequently allowed showing that the kinetics of the rate-

limiting steps in transcription initiation is sequence dependent, thus evolvable, and subject to external

regulation, and thus adaptive. There is also much evidence that the kinetics of the two main rate-

limiting steps can be tuned independently [11,18]. This has several consequences, e.g. two genes with

similar rates of mRNA and protein production in one condition can differ widely in other conditions

if the new conditions cause the relative durations of the rate-limiting steps of the two genes to differ

(e.g. [13]). In recent works, it was also suggested that the effects of this phenomenon may have multi-

scale effects, i.e. are tangible not only at the single-gene level but also at the level of small and large-

scale genetic circuits [88–90].

Previous studies have thoroughly investigated how negative and positive regulation affects noise (e.g.

[91]) and response times (e.g. [80]) in gene expression. Here, we focused on observing the state space of

these complex small genetic circuits’ models that combine autoregulatory mechanisms with rate-limiting

steps in transcription. To assess the added value of autoregulation, the effects of a combined modification

of the parameters of the multi-step transcription and the autoregulation on these circuits were compared

to those in constitutive (used as null-models) and externally regulated genes.
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Overall, we found that the efficiency with which the models exhibited complex dynamics regulation,

such as minimization of leaky expression, biphasic behaviour, regulation of cell-to-cell variability in

protein numbers, tuning of activation times, memory storage capacity and bimodal and oscillatory

behaviour, was achieved by combining the tuning of the autoregulatory mechanism parameter values

with the tuning of the rate-limiting steps in transcription.

This suggests that the strategy here used could be of assistance to improve the efficiency of presently

existing synthetic genetic circuits. Relevantly, most predictions regarding the changes in kinetics obtained

from the simulations could be tested by using such already engineered circuits (e.g. [46]), by changing

their original promoters for others with different initiation kinetics (strength and, in particular, relative

duration of the rate-limiting steps in transcription initiation [13,18,23]). Similar tests could be

performed by changing the binding affinities of TFs to the promoters, whose original values can be

found in [15,92–94], as these changes are expected to also allow changes in the transcription initiation

kinetics of the genes composing the circuits.

While too extensive to introduce in the present work, in the future, it will be of interest to focus on

specific models and further analyse how the various parameter values combine to generate the complex

behaviours here reported, such as biphasic response and behavioural transitions.

Evidence suggests that prokaryotic cells evolved several autoregulated genes for time tracking,

memory storage and decision making [29]. Given the results above, we hypothesize that this may

have been made possible by co-evolving the transcription initiation kinetics of the component genes

and the rate constants controlling the autoregulation.

In conclusion, our results may assist the engineering of single-gene synthetic circuits with predefined

dynamics using the combined tuning of the feedback strength of the proteins and the kinetics of the rate-

limiting steps in transcription initiation of the component promoter in order to maximize the circuit’s

efficiency. Such circuits, if efficient, may become of wide use due to their relative simplicity.
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59. Häkkinen A, Ribeiro AS. 2016 Characterizing rate
limiting steps in transcription from RNA
production times in live cells. Bioinformatics 32,
1346 – 1352. (doi:10.1093/bioinformatics/
btv744)

60. Bernstein JA, Khodursky AB, Lin P-H, Lin-Chao S,
Cohen SN. 2002 Global analysis of mRNA decay
and abundance in Escherichia coli at single-gene
resolution using two-color fluorescent DNA
microarrays. Proc. Natl Acad. Sci. USA 99,
9697 – 9702. (doi:10.1073/pnas.112318199)

61. Ribeiro AS. 2016 Delays as regulators of the
dynamics of genetic circuits. Markov Process.
Relat. Fields 22, 573 – 594.
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