
An Executable Capability Concept in
Formal Resource Descriptions ?

Niko Siltala ∗ Eeva Järvenpää ∗ Minna Lanz ∗

∗ Laboratory of Mechanical Engineering and Industrial Systems,
Tampere University of Technology, Tampere, Finland, (e-mail:
niko.siltala@tut.fi, eeva.jarvenpaa@tut.fi, minna.lanz@tut.fi)

Abstract: Neutral description of production resources’ capabilities, interfaces, and other
characteristics is required for efficient design or reconfiguration of production systems. In our
previous work, we have developed a Resource Description and Capability concepts. An integral
part of the Resource Description is an Executable Capability concept, which describes resource’s
control interface in a vendor neutral form. In this paper, we show the underlying data model
of Executable Capabilities, and how these capabilities can be utilised in the task programming
and execution of modular production systems. Finally, a few case examples are shown.

Keywords: data models, resource description, capability, system design and programming,
production execution, reconfigurable manufacturing

1. INTRODUCTION

The requirements for production systems are continuously
shifting towards higher flexibility and adaptivity. Adap-
tivity to new requirements means that the existing pro-
duction system needs to be reconfigured, either physically,
parametrically, or logically. There is a need for new so-
lutions that would drastically reduce the time and effort
put into planning and implementing the alterations in a
factory, or to allow autonomous adaptation during run-
time, based on machine-to-machine communication and
self-organization (Leitão et al., 2016). System creation
or reconfiguration implies that the system and/or its re-
sources need to be (re-)programmed and (re-)orchestrated.
Such programming requires expert knowledge. Due to the
requirements for fast adaptation, and shortage of talented
workforce, new methods and tools are needed to ease or
automatize this programming task.

The fourth industrial revolution, ”Industry 4.0” or ”Smart
Manufacturing”, aims to tackle the production system
adaptation issues by introducing Cyber-Physical Systems
(CPSs), which are physical systems, e.g. machines or work-
pieces, which combine with the digital world, i.e. sensors
and intelligence, and are thus able to communicate, act,
and control themselves and each other (Baheti and Gill,
2011). Important concept CPS presents is that it provides
a self-contained resource module, which includes its con-
trols and wraps them around interfaces. In Thoben et al.’s
(2017) review of the current Industry 4.0 and Smart Man-
ufacturing initiatives they identified the standardization
of both interfaces and information models as one of the
most relevant research issues for smart manufacturing. We
propose in this paper a solution for the control interface
part and related data model.

? This research has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agree-
ment No. 680759 ReCaM. http://www.recam-project.eu

Many projects have studied the automation of the execu-
tion program generation for production tasks based on skill
descriptions. Bøgh et al. (2012) developed skills in robotic
application, with the aim to support task-oriented pro-
gramming and re-use of robotic programs. Task-oriented
programming specifies what the resource should do in
terms of actions on the objects involved in the task and
not how the task should be achieved. The SkillPro-project
aimed to develop a holistic service-oriented framework for
modelling and orchestration of adaptable manufacturing
systems. Skills were used to represent the abilities of the
available assets (asset skills) and the requirements of differ-
ent production steps (production skills). AutomationML-
based format was used to store and communicate the skill
descriptions to facilitate autonomous setup and execution
of production tasks (Pfrommer et al., 2014; Puerto et al.,
2015). Backhaus and Reinhart (2017) presented a similar
concept aiming to simplify the task-oriented programming
of assembly systems by vendor-independent skill descrip-
tions. They represented a concept on modelling and con-
necting together the product, processes, and resources, and
a six-phase method for identification of applicative skills
in assembly system.

The aim of these approaches has been to decrease the
programming time of the resources, and to allow even non-
experts to create the robotic programs. These approaches
rely on specifically defined skill models and skill informa-
tion, but they do not consider from where that skill infor-
mation can be retrieved in large scale applications. They
are also domain specific, concentrating only on narrow
domain, such as robotic skills. Only a few examples of skills
have been published in detail, and those have been simple,
with limited amount of skill parameters. It is not clear,
if these approaches provide any solution for the system
design and reconfiguration planning phase, in terms of ca-
pability matchmaking between product requirements and
resource capabilities. Furthermore, the existing approaches

do not make difference between the design level capabilities
and the programming level capabilities. By design level ca-
pabilities we mean the functionalities that are required by
the product, i.e. ”pick and place”. By programming level
capabilities we refer to the executable capabilities that are
actually executed and controlled during the production,
such as ”open fingers”, ”move to position”, ...

We have developed an XML-based Resource Description
concept that targets to inclusive representation of re-
source’s capabilities, interfaces, and other characteristics
(Siltala, 2016; Siltala et al., 2016). The Resource Descrip-
tion (RD) acts as a comprehensive digital container of
all the information related to a single model or type of
resource. An integral part of the RD concept is recently de-
veloped Executable Capability concept, which is presented
in this paper. Executable Capability captures resource’s
abstract control interface information in a formalised and
vendor neutral format. This information can be utilised
when a) resource vendor makes the control implementation
for their resource, or when b) system integrator configures
(i.e. program and commission) the system for production,
even (semi-)automatically.

The paper is organised as follows. The second chapter
represents the proposed Executable Capability concept
and its relation to other related concepts. Next chapter
discusses the exploitation and utilisation of the concept,
followed by a few example use case scenarios. Finally, the
paper ends with conclusion.

2. EXECUTABLE CAPABILITY CONCEPT

In the next sections, the Executable Capability Concept is
first connected to the context of our other works and then
its data model is defined in the details.

2.1 Overview of associated concepts

In our previous works, we have presented: an OWL-
based Capability Model, which can be used to describe
the capabilities of manufacturing resources and combined
capabilities of two or more connected resources (Järvenpää
et al., 2016); capability matchmaking procedure, which
aims to make match between product requirements and
resource capabilities (Järvenpää et al., 2017); and interface
matchmaking approach, making sure that the suggested
resources can be combined from the hardware interface
perspective (Siltala et al., in press, 2018). These works
support the system design and reconfiguration until the
point in which the suitable resources fulfilling the product
requirements have been found. Executable Capability will
help us to make a step further, to support also for the
system’s execution phase including support for the auto-
programming and orchestration of resources.

Table 1 defines the main terms used in the context of
this paper. Fig. 1 positions Executable Capability in the
context of production system design, and shows it in asso-
ciation with other related concepts. The figure is divided
into two layers - design and execution - to differentiate the
timely nature and different requirements related to these
two phases. The elements on the design layer represent
concepts for which we have developed formal represen-
tation. The right side presents the Resource Description,

Runtime execution

Capability

Executable
Capability

0..n

0..1

Abstract Resource
Description (ARD)

Profile

Abstract
Profile

Implementable
Profile

Resource
Description

(RD)

refers to
hasCapability

implements

refers to

Process
functionality
(taxonomy)

implements

Product
Requirement
Description

Part or
Assembly

Process step

is preceded by

is
performed

on

requires functionality

Design Layer

System
Programming Orchestrationrecipe

(sequence+
parameters)

requires
process

information

resource's
control

interface

Resource’s control
implementation

Transformation for specific
technological solution

resource's
control

interface

calls
controls

0..n

Execution Layer

Fig. 1. Overview of associated concepts

where the resource capabilities and other characteristics
are being described. The left side concentrate on describing
the product requirements.

The Abstract Resource Description (ARD) concept and its
Profiles define the standardisation over characteristics of
different resources. The standardisation applies to Capa-
bilities, HW interfaces, properties, and characteristics, but
also to Executable Capabilities (ECs), which are assigned
to a resource. The resource provider chooses one of the
ARDs and one of its Profiles as basis for their resource
implementation, and for the associated RD. (Siltala et al.,
2016) Resource provider can then extend and add new ECs

Table 1. Definition of the key terms

Term Definition

Resource Production resource, a physical HW.

Resource
Description

Formal digital representation of a resource type
from a specific vendor.

Capability Capability is process functionality that the re-
source or resource combination provides to the
system. Capabilities have name, such as ”mov-
ing”, ”drilling”, or ”fixturing”, and parameters
which characterize that functionality, such as
”speed”, ”acceleration”, and ”force”.

Executable
Capability

Defines (abstract) control interface for a resource
with its parameters. After applying a technologi-
cal solution, it can be called at resource’s imple-
mentation.

System Implementation of a production system follow-
ing selected technological solution. It includes re-
sources and system Software (SW).

Technological
solution

System design and implementation following a
specific system architecture, control interface
technology and/or communication protocol, such
as RESTful Web Service (WS), OPC Unified Ar-
chitecture (OPC UA), Message Queue Telemetry
Transport (MQTT)

Orchestration Runtime sequencer used to synchronise produc-
tion operations. It executes the product recipe
and calls resources’ control interface(s) at right
time, with right parameters. Follows a specific
technological solution.

to the RD according to their resource implementation. The
RD makes these publicly known for the resource users.

The Product Requirement Description represents the re-
quirements related to the product’s manufacturing. It
contains the parts and assemblies of the product, and
the process steps required to manufacture the product.
It also represents the precedence constraints between the
process steps. The process steps are linked to the required
functionalities in the Process Taxonomy, where also the
parametric requirements related to the functionalities are
added.

Capabilities are used during the system design phase to
identify, which resources fulfil the functional requirements
of the product’s manufacturing, while the ECs are used to
program the system to perform those required function-
alities in a correct sequence and with correct parameters.
Resources have Capabilities and some of the Capabilities
implements process function from the Process Taxonomy.
(Järvenpää et al., 2016) Resource provider can connect an
EC to a Capability, which means that by calling this EC, it
provides an implementation for this Capability and con-
sequently the production functionality. In such case, the
execution related parameters defined for the Capability
must be present also at the EC.

2.2 Structure of the Executable Capability Description

The aim of the Executable Capability (EC) concept is
to define an abstract control interface of a resource in
a comprehensive, formal, and vendor neutral format. It
describes the actions or operations, with their parame-
ters, which can be executed on the production resource.
Examples of ECs are such as ”moveToAbsolutePosition”,
”stopMovement”, ”moveToJointPosition”, and ”getSys-
temState” for a manipulator resource; ”graspExternal”,
”release”, and ”closeFingers” for a gripper resource; or
”screwWithTorque”, and ”openScrew” for a screw driver
resource. Each EC contains individual set of parameters,
which characterise and parametrise the requested action,
and which are finally consumed by the orchestration dur-
ing the execution of an action on a resource.

Fig. 2 illustrates the structure of the EC description, which
is modelled in XML. For readability, the Fig. 2 shows only
the main information related to EC, omitting many other
elements and attributes. The complete data model of RD 1

is provided in XML Schema Definition (XSD) format. The
following styles are used in the text to denote different
components in the model: Elements, attributes, and values

of attributes.

The element ResourceDescription is the root element
for a RD. The RD has a dedicated section captur-
ing the Executable Capability information, where the
ExecutableCapabilities and ExecCapas work as con-
tainer elements. The main element in the context of
this paper is the ExecCapa, storing information about
an Executable Capability. It has mandatory attributes
id and gid for uniquely identifying the EC, in a local
and global context correspondingly. name and description

define human readable content for the EC element.

1 http://urn.fi/urn:nbn:fi:csc-kata20180327180333533227

Legend:
Occurences:
? = 0..1 1 = 1..1
* = 0..n + = 1..n
{n} = exactly n times
{min, max} = min..max

SharedPortSymbols

ExecCapas

LinkToDescriptionFile

1 id : ID
1 gid : anyURI
1 URL : anyURI
? name : string
? description : string
? format : string

* <value> : ##any

ConnectionMethod
CtrlAndComm

1 id : ID
1 name : string
? description : string

ConnectionMethods
ForCtrlAndComm

MethodRelatedData

? id : NMTOKEN

* <value> : ##any

ConnectionMethod
CtrlAndCommRef

1 idRef : IDREF

ConnectionMethods

SymbolRef

1 idRef : NCName
1 reqOpt : ReqOpt_ST

Outputs

Symbol

1 id : NCName
1 name : string
1 datatype:IEC61131_DT
? gid : anyURI
? description : string
? unit : string
? reqOpt : ReqOpt_ST
? min : string
? max : string
? defaultValue : string

InputsParameter
Ports

EventRef

1 idRef : NCName
1 reqOpt : ReqOpt_ST

LeadsToOutputEvent

1 idRef : NCName

Outputs

ParamPort

? reqOpt:ReqOpt_ST

1 <value> : NCName

LinkedParamPorts

Event

1 id : NCName
1 name : string
1 datatype:IEC61131_DT
? gid : anyURI
? description : string
? reqOpt : ReqOpt_ST

InputsEventPorts

ExecCapaMapping

1 idRef : NCName
1 mappingType : string(enum)
? gidRef : anyURI
? name : string
? reqOpt : ReqOpt_ST

ParameterValues

1 constrain : string(enum)

1 <value> : token

ParameterValue
Restriction

? idRef : NCName
? gidRef : anyURI
? name : string

CapabilityMapping

1 idRef : NCName
1 mappingType : string(enum)
? gidRef : anyURI
? name : string
? reqOpt : ReqOpt_ST

Mappings

Element

attribute : type

<subElement> : type

ExecCapaRef

1 idRef : NCName
? gidRef : anyURI
? name : string
? reqOpt : ReqOpt_ST

ParentExecCapasExecCapa

1 id : ID
1 name : string
1 gid : anyURI
? description : string
? reqOpt : ReqOpt_ST

ExecutableCapabilities
Resource

ResourceDescription

0..n

1

1

0..n0..n1

0..11..n0..1

0..1

0..n

0..n
0..n

0..n

0..n

0..n

0..n

0..n

0..n

0..n

0..1

0..n

0..n 1..n0..1

0..n0..1

0..n

0..n

0..10..n0..1

0..n0..1

1

0..n

0..n

Fig. 2. Structure of Executable Capabilities in XML

ExecCapa/ParentExecCapas/ExecCapaRef allows to cre-
ate parent-child hierarchies between ECs.

ExecCapa/Mappings/CapabilityMapping defines which
Capability is implemented by the EC. Further restrictions
can be defined with ParameterValueRestriction and
ParameterValues limiting the EC implementation to only
those Capabilities having named parameter set with given
values.

The description of the control interface has similarities
with the concept of function block interface defined in IEC-
61499 (2012), having two information flows - the event
flow and data flow. ExecCapa/EventPorts/Inputs and
/Outputs are used to describe event information either
triggering, i.e. calling the EC, or providing an output
event when the execution of EC ends. This associates
to the IEC-61499’s event flow. Event itself has id, gid,
name, and description identifying and describing each event.
datatype is usually boolean, as events are usually trig-
gers, but other data types defined in IEC-61131-3 (2013)
are also available. Following the model of IEC-61499,
each event is linked with parameters. This is defined
by Event/LinkedParamPorts/ParamPort Furthermore, in
case of input Events, Event/LeadsToOutputEvent can be
defined, telling which output events are possible outcomes
when this event is triggered. Events can be reused across

the ECs by using EventRef as reference to an existing
Event.

ExecCapa/ParameterPorts/Inputs and /Outputs are used
to describe the parameters associated to the events like
the IEC-61499’s data flow. A Symbol defines the pa-
rameter content. In addition to the basic information,
it has datatype defined as enumerated string according
IEC-61131-3 data types and unit used to define the mag-
nitude of the parameter. SI units should be preferred.
The parameter does not define the value, because it will
be defined at the runtime when an event is triggered.
However, the Symbol can define minimum and maximum
boundaries for the value, and a default value giving a
hint for the user from manufacturer’s expected optimum.
The latter is expected to match with the factory reset
value. Like in case of events, parameters can also be
reused by reference. This is done with SymbolRef. In
order to assist the reuse of parameters, a higher level ele-
ment ExecutableCapabilities/SharedPortSymbols col-
lects together reusable Symbols.

Finally, ExecCapa has ConnectionMethods/Connection
MethodCtrlAndCommRef for creating a link from the EC
to real implementation at the resource with some tech-
nological solution. The technological solution related im-
plementation data is defined one level higher under
ExecutableCapabilities/ ConnectionMethodsForCtrl
AndComm/ ConnectionMethodCtrlAndComm. This refers fi-
nally to a technological solution specific descriptions,
which are intended to provide enough information for the
use of the resource, within the solution specific develop-
ment environment.

3. EXPLOITING THE CONCEPT

The RD is intended to comprehensively capture and dis-
tribute the information about a resource, and it is pro-
vided by the resource manufacturer. The various phases of
production system design and commission, and associated
information systems, can make use of this information as
an input source.

As the EC provides the abstract control interface(s) of
a resource, a transformation (or mapping) from EC to a
technological solution is needed to apply the control inter-
face in practice. Our assumption is that by defining one
transformation for each technological solution, the solution
specific control interface access point can be generated
for any resource from its RD, and on need basis. Both
resource provider and system integrator can benefit from
this. Resource provider may use it when implementing
the control interfaces for their resource by following a
specific technological solution. System integrators will get
the access to available functions of resources through ECs
and a transformation, while programming the tasks for the
production system.

Fig. 3 represents how the resource and its interfaces can
be utilised when the production system is integrated and
commissioned. The left side of figure represents the imple-
mentation of a production resource (R1), illustrated with
a green dashed border, and the right side in blue, two
different system implementations (S1 and S2) each util-
ising a different technological solution. Following sections

associated with Fig. 3 explain how the resource provider
and system integrator can apply the ECs.

3.1 Resource provider view

First, the resource provider needs to describe the control
interface of their resource. They can derive the basis set of
ECs from ARD and its Profile while generating an initial
RD. Then they can append the RD with further ECs
to complete the resource’s control interface. The second
step is to take the resource’s RD and its control interface
description and provide the resource’s control implementa-
tion accordingly. The implementation basis on some tech-
nological solution selected by the provider. The resource
provider can utilise the transformation to generate a valid
control interface template for the selected technological
solution from an EC. Third, the resource provider pro-
grams the required actions starting from the generated
interface template ending to the real implementation. I.e.
the resource is delivered fully functioning with its logics
and behaviour implemented, and it offers a compatible
interface with EC. The three steps can also be reversed,
but more care is needed in order to guarantee the integrity
of ECs in such process.

The resource R1 (in Fig. 3) contains two Executable Ca-
pabilities (EC1 and EC2), which are defined in the RD
of the resource. Each of these Executable Capabilities
implements a Capability (EC1→C1 and EC2→C2). Fur-
thermore, the RD shows that the resource provider has
implemented these ECs according to three technological
solutions (TS1, TS2, and TS3). In case of the first tech-
nological solution (TS1), the vendor implements only the
first Executable Capability (EC1), denoted as EC1.TS1.
Next, the vendor decides to support another technological
solution with TS2. In this case, they implement both Ex-
ecutable Capabilities denoted correspondingly, EC1.TS2
and EC2.TS2.

The resource controller executes internally only one con-
trol implementation per EC, but it can offer multiple
access points to utilise the EC’s implementation. In other
words, there is a resource internal HW-related implemen-
tation with its internal interface, which is then linked to
the resource’s outer interfaces of different technological so-
lutions. For example, both the EC1.TS1 and the EC1.TS2
operate with the same implementation of the EC1 at
the resource’s controller (orange arrows in Fig. 3). Each
resource comes with its internal implementation of control
algorithms and logic, which is linked to the Executable
Capabilities, and through them also to Capabilities. The
internal implementation is completely hidden from the RD
and resource users, thus securing the Intellectual Property
(IP) of the resource provider. This part is represented with
a grey ribbon at the centre and at the left rim of the R1.

3.2 System integrator view

When coming to the execution layer in Fig. 1, the produc-
tion system needs to be commissioned. The programming
of the system, whether (semi-)automatic or manual, needs
inputs from the process steps and system layout, but
also from the resources. At this stage, the EC concept
provides assistance. The resource’s ECs can be used to

Capability1
(C1)

ExecCapa1
(EC1)

Capability2
(C2)

ExecCapa2
(EC2)

ExecCapa1
(EC1)

ExecCapa1
(EC1)

ExecCapa2
(EC2)

ExecCapa2
(EC2)

TechSolution1 (TS1)

TechSolution2 (TS2)

TechSolution3 (TS3)

Resource Description (RD)

Re
so

ur
ce

 B
ou

nd
ar

y

Orchestration O1 for
System S1 /w TechSolution TS1

Sy
st

em
 S

1
Sy

st
em

 S
2

Co
nt

ro
l

im
pl

em
en

-
ta

tio
n,

R1
 v

en
do

r
in

te
rn

al Executable
Capability1

(EC1)

Executable
Capability2

(EC2)

Executable
Capability1

(EC1)

Executable
Capability1

(EC1)

Executable
Capability1

(EC1)

Executable
Capability1

(EC1)

Ct
rl

Im
pl

.,
R1

 v
en

do
r

in
te

rn
al

Orchestration O2 for
System S2 /w TechSolution TS2

Resource Implementation (R1)

Fig. 3. Implementation and utilisation of Executable Capabilities. Modified from Siltala (2016)

create the control application for the production system,
as illustrated in the right side of Fig. 3. When the sys-
tem integrator implements the system, they first choose
a technological solution to follow. This must reflect the
selection made by the resource provider, so that there
is a match between these two technological solutions –
the provider (at left) meets the needs of the end user (at
right). In this example, the resource (R1) is used in two
different systems (S1 and S2), both of which use different
technological solution.

The interface implementations of the Executable Ca-
pabilities, following selected technological solutions (e.g.
EC1.TS1, EC1.TS2, and EC2.TS2), are published by the
resource provider, and the resource users can access and
use them through the RD. In other words, the system
integrators or end users, in their system implementations
based on a specific technological solution, cannot utilise
directly the Capabilities (C1 and C2) and corresponding
Executable Capabilities (EC1 and EC2), but only the
provided implementations of technological solution.

System integrator can use the technological solution spe-
cific transformation to translate all ECs from all associ-
ated resources to control interface definitions understand-
able by the system level controls, and start building the
control recipe for the system. The system is configured
out from the modular resources and in the case of con-
trol modularity, this means orchestration of the resources
and, especially, arranging and calling their ECs in a de-
sired sequence, and with right parameters. Finally, the
orchestration utilises the implemented EC interfaces (e.g.
EC1.TS1) to operate the resource. For example, in the case
of system S1 the application follows technological solution
TS1. Thus, the resource R1 can be connected and used
only through the interface EC1.TS1, making only the EC1
available for the S1.

Finally, during the system execution, orchestration engine
uses the recipe information for calling and synchronising
operations at system resources. The system orchestration
implements, executes, and monitors the execution of the
production process. The dashed blue arrows in the figure
show how the S1 makes three calls to EC1.TS1 in differ-

ent process phases, according to the process sequencer’s
commands.

The benefit of the proposed EC concept is that the recipe
programming and preparation of orchestration could be
performed without any access or communication with
the resource and its control implementation, but to have
available only the resource’s RD and the transformation
for the specific technological solution. The detailed system
implementation and process orchestration are beyond the
scope of this paper.

4. USE CASE SCENARIOS

The use case scenarios in this paper offer only a glance to
the implementations. First, the ECs a gripper resource are
discussed more in details and then use of transformations
are discussed.

4.1 Example resource and its Executable Capabilities

We have modelled a few resources with our RD model,
out of which a pneumatic gripper 2 is used as an example
resource for Executable Capabilities. Especially lines 289–
556 relate to the definition of ECs. The resource has seven
ECs: Grasping, Grasping-External, Grasping-Internal, Re-
lease, Close fingers, Open fingers, and Get resource state.
Grasping is a parent EC for external and internal grasping.
Grasping-External grasps the object from outside, while
the Grasping-Internal does it from inside. Both specific
graspings are linked to the associated Capability called
”FingerGrasping”. The Release knows the internal state of
the gripper and thus it is able to perform counter action
for last called grasping action. Close and Open fingers do
the corresponding actions, but those are not connected to
any Capability. Get resource state EC is administrative
in nature, and e.g. orchestration can utilise this control
interface for querying the current state of the resource.

Next, the content of Grasping-External EC is looked more
in detail. It uses ParentExecCapas/ExecCapaRef to make
a reference to its parent i.e. Grasping. Mappings/Capabili-

2 http://urn.fi/urn:nbn:fi:csc-kata20180327181410669395

tyMapping with value FingerGrasping define that this
EC implements ”FingerGrasping” Capability. Further-
more, ParameterValueRestriction defines a constraint.
It names a Capability property called ”graspingType” to
have value ”external”, in order to meet the system design
criteria. This means that this EC of Grasping-External is
offered as a solution only when product requires a Capa-
bility ”FingerGrasping” with property ”graspingType” =
”external”.

Grasping-External EC for this resource has one input
event (EventPorts/Inputs/Event) called trigger , which
can lead to one of the two output events (Event/LeadsTo-
OutputEvent) done or error . The trigger has no input
parameters. The output events themselves are defined in
EventPorts/Outputs/Event, having linked some output
parameters. The done is linked with parameter time.closing

and error with errorCode. Finally, the previous two param-
eters are defined in ParameterPorts/Outputs/Symbol.

4.2 Transformation from EC to a specific technological
solution

Currently we have only one transformation available, used
as a proof of concept. An XSLT is used to transform
any given RD and its EC information into format used
by NXT Control’s engineering tool. The transformation
processes EC’s information and produces a set of valid
files, containing the control interface information in the
format of the engineering tool. These files can be opened
in the engineering environment, and the resource provider
can start implementing this control architecture specific
implementation for the resource, which follows exactly the
control interface definitions defined by the ECs.

The future work includes developing and testing more
transformations (or mappers) from EC concept to other
technological solutions. Proposed ones as the targets are
such as OPC UA, Vorto, and AutomationML.

5. CONCLUSION

We introduced the developed Executable Capability (EC)
concept and associated data model, which aim to sup-
port and speed up the development of system design,
implementation, and commissioning, especially in case of
system controls. The main contribution of our work is to
provide continuous information chain from the product
requirements to system design and finally to the execution
of the processes in a production system. This is achieved
by offering a method to describe the production resource’s
control interface in a vendor neutral form and by showing
how to exploit this information in system design and com-
mission. The standardised description of control interfaces
will ease and accelerate the programming, deployment,
and commissioning of the production system. The detailed
system implementation and orchestration of controls were
beyond the scope of this paper. Only a limited view for
transformations from the ECs to control interface im-
plementation was offered. The practical implementation
and further tests remain as the future work, as well as
creation of more transformations for different technological
solutions.

REFERENCES

Backhaus, J. and Reinhart, G. (2017). Digital descrip-
tion of products, processes and resources for task-
oriented programming of assembly systems. Journal
of Intelligent Manufacturing, 28(8), 1787–1800. doi:
10.1007/s10845-015-1063-3.

Baheti, R. and Gill, H. (2011). Cyber-physical Systems,
161–166. IEEE Control Systems Society. URL
http://ieeecss.org/general/impact-control-
technology.

Bøgh, S., Nielsen, O.S., Pedersen, M.R., Krüger,
V., and Madsen, O. (2012). Does your
robot have skills? Proceedings of the 43rd
International Symposium on Robotics, 6. URL
http://forskningsbasen.deff.dk/Share.external?
sp=S9f184d42-459a-4d30-871c-bab8082cfbba&sp=
Saau.

IEC-61131-3 (2013). IEC 61131-3:2013 Programmable
controllers - Part 3: Programming languages.

IEC-61499 (2012). IEC 61499-1:2012 Function blocks -
Part 1: Architecture.

Järvenpää, E., Siltala, N., Hylli, O., and Lanz, M. (2017).
Capability matchmaking procedure to support rapid
configuration and re-configuration of production sys-
tems. Procedia Manufacturing, 11, 1053–1060. doi:
10.1016/j.promfg.2017.07.216.

Järvenpää, E., Siltala, N., and Lanz, M. (2016). Formal
resource and capability descriptions supporting rapid
reconfiguration of assembly systems, 120–125. IEEE.
doi:10.1109/ISAM.2016.7750724.

Leitão, P., Colombo, A.W., and Karnouskos, S. (2016).
Industrial automation based on cyber-physical sys-
tems technologies: Prototype implementations and chal-
lenges. Computers in Industry, 81, 11–25. doi:
10.1016/j.compind.2015.08.004.

Pfrommer, J., Stogl, D., Aleksandrov, K., Schubert, V.,
and Hein, B. (2014). Modelling and orchestration
of service-based manufacturing systems via skills, 1–4.
IEEE. doi:10.1109/ETFA.2014.7005285.

Puerto, M.J., Salle, D., Outon, J.L., Herrero, H., and
Lizuain, Z. (2015). Towards a flexible production system
Environment Server implementation, 16. IEEE. doi:
10.1109/EUROCON.2015.7313717.

Siltala, N. (2016). Formal Digital Description of
Production Equipment Modules for supporting
System Design and Deployment. Ph.D. thesis,
Tampere University of Technology. URL
http://urn.fi/URN:ISBN:978-952-15-3783-7.

Siltala, N., Järvenpää, E., and Lanz, M. (2016). Formal in-
formation model for representing production resources.
Advances in Production Management Systems. Initia-
tives for a Sustainable World. APMS 2016. IFIP Ad-
vances in Information and Communication Technology,
488, 53–60. doi:10.1007/978-3-319-51133-7 7.

Siltala, N., Järvenpää, E., and Lanz, M. (in press, 2018).
Creating Resource Combinations Based on Formally
Described Hardware Interfaces, 11. Ifip International
Federation For Information Processing.

Thoben, K.D., Wiesner, S., and Wuest, T. (2017). ”in-
dustrie 4.0” and smart manufacturing - a review of
research issues and application examples. International
Journal of Automation Technology, 11(1), 4–16. doi:
10.20965/ijat.2017.p0004.

