
 

     

Utilizing SPIN Rules to Infer the Parameters for Combined Capabilities of 

Aggregated Manufacturing Resources 
 

Eeva Järvenpää*, Otto Hylli**, Niko Siltala*, Minna Lanz* 


*Tampere University of Technology, Laboratory of Mechanical Engineering and Industrial Systems,                                      

Tampere, Finland (Tel: +358-40-8490869; e-mail:eeva.jarvenpaa@tut.fi, niko.siltala@tut.fi, minna.lanz@tut.fi) 

**Tampere University of Technology, Laboratory of Pervasive Computing, Tampere, Finland (e-mail: otto.hylli@tut.fi)  

Abstract: Fast reaction to changing requirements is a pre-requisite for modern manufacturing companies 

and their facilities. One enabler for such responsiveness is tools that can support the reconfiguration and 

system design process by semi-automatic matchmaking between product requirements and resource 

capabilities. This paper presents an approach, which uses SPARQL Inferencing Notation (SPIN) to infer 

and assert the combined capability information of two or more combined resources presented in OWL-

format. We show example rules for calculating the combined capability parameters both in textual and 

SPIN formats, and visualize a case example as a proof of concept. This approach can be used to infer the 

capability parameters of existing resource combinations, or to look for new resource combinations for 

specific capability requirements.  

Keywords: Capability model, Resource model, Combined Capabilities, SPARQL, SPIN, Semantic 

model, Inference 



1. INTRODUCTION 

Responsiveness is an important strategic goal for 

manufacturing companies operating in a highly dynamic 

environment characterized by constant change. Such 

responsiveness and adaptivity relates to the need to 

reconfigure and adjust the production and corresponding 

production system as efficiently as possible to the required 

changes in processing functions, production capacity, and the 

dispatching of the orders (Wiendahl 2007). The realization of 

these requirements for fast response calls for new methods 

and tools that can reduce the time and effort put into planning 

and implementing the alterations in a factory.  

Within the past decade, there have been multiple different 

projects trying to provide computerized support for the 

reconfiguration planning process. The currently running 

project ReCaM1 aims to develop a set of integrated tools for 

rapid and autonomous reconfiguration of production systems. 

The approach relies on a formal unified functional 

description of resources, providing a foundation for rapid 

creation of new system configurations through capability-

based matchmaking of product requirements and resource 

offerings.  

In ReCaM, we have developed a Manufacturing Resource 

Capability Ontology (MaRCO), which is an OWL-based 

information model for describing the capabilities of 

manufacturing resources. The MaRCO model aims to support 

                                                 
1 This research has received funding from the European 

Union’s Horizon 2020 research and innovation programme 

under grant agreement no 680759 (www.recam-project.eu).   

 

rapid semi-automatic system design, both in greenfield and 

brownfield design scenarios. Integral part of the capability-

based matchmaking with MaRCO is the generation of 

resource combinations (i.e. physical configurations) that can 

together satisfy the product’s processing requirements. The 

production system capabilities originate from the tool and 

equipment level. Especially in case of modular and 

reconfigurable “plug-and-produce” type production systems, 

the resources can be combined to form various different 

configurations. Hence, the capability model and associated 

software tools need to support the automatic inference of the 

combined capability information of these combined 

resources. Pure OWL (W3C 2004) does not provide solutions 

for making such inference and assertions of new instances 

and their property values (Meditskos et al. 2013). Therefore, 

the OWL-based ontology needs to be enriched with semantic 

rules and supported with external software.  

Literature reviews on existing capability and resource models 

have been presented in our earlier works, e.g. in (Järvenpää et 

al. 2016). The other existing models don’t consider the 

automatic inference of combined capabilities at parameter 

level, and do not thus need such rules. Similar idea to our 

matchmaking was presented by Ameri and McArthur (2014), 

who utilized SWRL (Semantic Web Rule Language) for 

intelligent supplier discovery based on the services they 

provide. With SWRL they were able to infer new capabilities 

that were not explicitly stated in the original service 

description, and to classify concepts based on the given 

property values. However, SWRL does not have functionality 

to assert new instances (Horrocks et al. 2004; Meditskos et al. 

2013), which is needed in our case. Meditskos et al. (2013) 

used SPIN (SPARQL Inferencing Notation) to perform 

temporal reasoning with context information and to assert 

http://www.recam-project.eu/


 

 

     

 

new named individuals. Their application related to human 

activity recognition. Aarnio et al. (2016) exploited SPIN for 

situation rules in context modelling with the goal to support 

industrial maintenance. Other applications of SPIN in 

comparable context do not exist, or at least are not published. 

 

In this paper, we will illustrate the usage of SPIN to 

automatically infer and assert the parameters of combined 

capabilities based on the parameters of the lower level 

capabilities represented in OWL-format. The paper is 

organized as follows. Section 2 will give more details of the 

MaRCO model, presented earlier in (Järvenpää et al. 2016; 

2017) and introduce the SPIN rule language. Section 3 

discusses the combined capability rules and their 

implementation with SPIN. In section 4, a case study of 

calculating the combined capabilities of a resource 

combination is presented. Section 5 concludes the paper.  

 

2. INTRODUCTION TO RELATED MODELS AND 

TECHNOLOGIES 

2.1  Manufacturing Resource Capability Ontology (MaRCO) 

Capability Model is a data model for describing capabilities 

of resources. The capability concept name indicates the 

natural name of the capability, such as “Moving”, 

“FingerGrasping”, “Drilling” and “Screwing”. Capability 

parameters describe the characteristics of a capability, e.g. the 

“Moving” capability is characterized by “speed” and 

“acceleration” parameters, among others. The Capability 

Model divides the capabilities into simple and combined 

capabilities. Combined capabilities are upper level 

capabilities, which can be divided by functional 

decomposition into simple, lower level capabilities (part_of 

hierarchy). Combined capabilities are combinations of two or 

more (simple or combined) capabilities. For instance, in order 

to transport an item the system needs to be able to move 

within some workspace and to grasp the item or to hold it by 

gravity.  

The capabilities, modelled as classes in the ontology, form 

the Capability Catalogue, which consists of the pool of 

capabilities that may exist in a production system. Capability 

parameters are implemented as datatype and object 

properties, depending on the nature of the parameter, and are 

associated to the capabilities by property restrictions. The 

capabilities can be assigned to resources through the 

Resource Model, which imports the Capability Model. The 

resource specific capabilities are saved as instances of the 

specific capability classes and filled with the resource 

specific parameter values. Based on the defined relations 

between the simple and combined capabilities, the resource 

combinations contributing to a certain combined capability 

can be identified. Figure 1 introduces the most relevant 

classes of the Resource Model, including only devices (i.e. 

machines and tools) and excluding e.g. human resources and 

factory areas (i.e. stations, cells and lines). The black arrows 

illustrate the class hierarchy, while the blue arrows illustrate 

the relations between the concepts in the OWL-model.  

The class Device is a parent class for different device-related 

classes. It has two subclasses DeviceBlueprint and 

IndividualDevice. DeviceBlueprint class contains the 

catalogue information of devices. The instances of 

DeviceBlueprint relate to specific Capability instances 

through hasCapability object property. The instances of 

IndividualDevice class represent the actual individual 

devices existing on the factory floor. The individual devices 

have reference to the DeviceBlueprint through 

hasDeviceBlueprint object property. This class stores updated 

capability information through hasCapabilityUpdated object 

property. DeviceCombination class includes instances, 

which represent combinations of multiple devices or device 

combinations. These instances refer to the instances of 

IndividualDevice or DeviceCombination through 

hasIndividualDevicesOrDeviceCombinations object property. 

Furthermore, for the DeviceCombination instance, combined 

capability information can be saved through 

hasCalculatedCapability object property. 

Device

Individual
Device

Device
Blueprint

Device 
Combination

Capability

Simple 
Capability

Combined 
Capability

isaisa

hasCapability hasCapabilityUpdated

hasCalculated
Capability

hasDeviceOr
DeviceCombination

hasDeviceOr
DeviceCombination

hasDevice
Blueprint

isa isa

hasInput
Capability

 

Fig. 1. Resource Model (reduced version).  

When two or more resources are combined together as a 

functional unit, combined capabilities emerge from the 

simple capabilities assigned to the individual resources. The 

parameters for the combined capabilities need to be reasoned 

out based on the capabilities and properties of the resources 

involved in the combination. These combined capabilities 

and their parameters should be automatically defined and 

saved to the Resource Model ontology without the need to 

manually fill in the parameters. For this, combined capability 

rules implemented with semantic rule language are needed.  

2.2  SPIN – SPARQL Inferencing Notation 

SPIN (SPARQL Inferencing Notation) is a W3C Member 

Submission that has become the de-facto industry standard to 

represent SPARQL rules and constraints on Semantic Web 

models (SPIN working group, 2017). SPARQL is an 

abbreviation of SPARQL Protocol and RDF Query 

Language. It is a semantic query language for databases, able 

to retrieve and manipulate data stored in Resource 

Description Framework (RDF) format and OWL-ontologies. 

It was made a standard by the RDF Data Access Working 

Group of the W3C consortium and it is recognized as one of 

the key technologies of the semantic web. (W3C 2008.) 

SPIN can be used to link class definitions with SPARQL 

queries to capture constraints and rules that formalize the 



 

 

     

 

expected behavior of those classes. A suitable reasoner tool 

such as SPIN API can then infer the extra information created 

by the rules and use it for example in SPARQL query 

execution (Knublauch 2016). This mechanism enables to 

organize SPARQL queries in an object-oriented way. It 

makes the rules accessible and easy to maintain, extend and 

share. Rules can be represented and stored as SPARQL 

queries as a natural part of ontology knowledge in the same 

knowledge base. (SPIN working group 2017.)  

SPIN can be used to calculate the value of a property based 

on other properties - for example, area of a rectangle as a 

product of its length and width. SPIN can also be used to 

isolate a set of rules to be executed under certain conditions, 

e.g. to support incremental reasoning, to initialize certain 

values when a resource is first created, or to drive interactive 

applications. The main advantage of SPIN is that it provides 

meta-modeling capabilities that allow users to define their 

own reusable SPARQL query templates and functions. 

Templates are parametrized SPARQL queries that can be 

customized by instantiating them with the argument values of 

a new context. SPIN function is a special kind of template 

query that returns only one result value, and can be used as a 

part of another SPARQL query. SPIN also includes a ready 

to use library of common functions. (SPIN working group 

2017.) 

 

3. COMBINED CAPABILITY RULES 

There are different ways how the combined capability 

parameters are formed: (1) Directly inheriting a parameter 

value from one of the involved lower level capabilities as 

such; (2) Calculating the parameter value by arithmetic 

operations from two or more involved lower level 

capabilities; (3) Defining the parameter value by comparing 

the values of the involved lower level capabilities and 

selecting max or min value, depending on the specific 

capability parameter; (4) Calculating a completely new 

capability parameter and value by applying arithmetic 

operations on two or more involved lower level capabilities. 

The term “lower level capability” is used to refer to 

capabilities that are on lower level in the part-of hierarchy. 

The term “simple capability” can not be used, as the 

capabilities involved in the combinations may be either 

simple or combined capabilities.  

We first defined the combined capability rules in informal 

textual format, based on domain expert knowledge. After 

that, we implemented them with SPIN. The following 

sections will show examples of some of the most 

representative cases. We intend to keep the examples simple, 

so that the reader can understand the approach without 

detailed knowledge on the MaRCO model itself.  

3.1  Example rules in textual form  

 “Transporting” capability consists of “Moving” and 

“Grasping” capabilities. Table 1 shows example rules for 

“Transporting” capability in case when the grasping is 

achieved through “FingerGrasping”. “Picking” capability 

consists of “Grasping” and “Moving” capabilities. “Placing” 

requires also “Releasing” capability. For these capabilities, 

the same rules for combined capabilities apply as with 

“Transporting” for the “payload” and “itemSize_min/max” 

properties. Other rules depend on which method is used for 

grasping, i.e. is it “FingerGrasping” or “VacuumGrasping”. 

Table 2 shows these rules for the case of “FingerGrasping”.  

Table 1. Example rules for Transporting capability. 

Property Rule 

payload “payload” property of “Moving” 

capability minus the “mass” of the 

gripper, OR  “payload” property of 

“FingerGrasping” capability. The 

smaller value is dominating.  

itemSize_max “fingerOpening_max” property of the 

“FingerGrasping” capability. Saved to 

the “width” property of itemSize_max. 

Similar rule for itemSize_min.  

dof “dof” property of the “Moving” 

capability.  

speed_x_max “speed_x_max” property of the 

“Moving” capability. Same applies to 

other movement directions.  

accuracy “accuracy” property of the “Moving” 

capability.  

repeatability “repeatability” property of the 

“Moving” capability. 

workspaceType 

AndDimensions 

“hasWorkspaceTypeAndDimensions” 

property of “Moving” capability. 

 

Table 2. Rules for Picking and Placing capabilities. 

Property Rule 

accuracy “accuracy” property of the “Moving” 

capability + “accuracy” property of the  

“FingerGrasping” capability (Represents 

the worst case scenario.)  

repeatability “repeatability” property of the “Moving” 

capability + “repeatability” property of the  

“FingerGrasping” capability (Represents 

the worst case scenario.)  

 

3.2  Implementation of the rules with SPIN  

For each parameter of a combined capability, there is a SPIN 

rule that is attached to that specific capability class in the 

ontology. There are a lot of similarities between the rules. In 

these cases the meta-modeling features of SPIN, i.e. functions 

and templates, are exploited. Every combined capability 

parameter rule has to get at least one of the lower level 

capabilities that produced the combined capability. Then the 



 

 

     

 

rule has to retrieve one of the parameters of that lower level 

capability. For this purpose, a SPIN function that gets the 

specified lower level capability instance of the given 

combined capability instance, was created (Example 1 in Fig. 

2). The function can be used in another SPARQL query by 

giving some values to its arguments, as shown in Example 3. 

There is also another function that gets the parameter 

directly, but it cannot always be used since SPIN functions 

can only return one value and some parameters can have 

multiple values. SPARQL rules are defined in terms of a 

CONSTRUCT and a WHERE clause. The former defines the 

set of triple patterns that should be added to the underlying 

resource model upon the successful pattern matching of the 

triple patterns in the WHERE clause. 

A very common kind of rule relates to inheriting a simple 

capability parameter. For example, the “accuracy” of 

“Transporting” is the same as the “accuracy” of “Moving”, 

and same goes with the “dof” (degrees of freedom) of the 

“Transporting”. In both cases the logic of the rule is the same, 

just the name of the capability and the parameter are 

different. In this kind of situation, we can use a SPIN 

template that is defined separately and given a name – 

inheritCapabilityParameter in this case (Example 2). A 

template has a body consisting of a SPARQL query and 

arguments whose values will be inserted into the query. The 

actual rule is then an instance of this template where the 

arguments are given concrete values. For example, the 

inheritCapabilityParameter template has arguments named    

 

Example 1: SPIN function for getting the capability instance of

interest - getPartCapability

SELECT ?result

WHERE {

(1) ?deviceCombination

rm:hasCalculatedCapability ?arg1 .

(2) ?deviceCombination

rm:hasIndividualDeviceOrDeviceCombination)* 

?part .

(3)  ?part rm:hasDeviceBlueprint ?blueprint .

(4)  ?blueprint rm:hasCapability ?result .

(5)  ?result a ?arg2 .

}

Comments related to the function: 

Purpose: Get an instance of the given lower level capability (arg2) for 

the given combined capability instance (arg1).

(1) Get the device combination which has the given combined 

capability instance (?arg1).

(2) Get a device from which the device combination or one of its 

device combinations consists of.

(3) Get a blueprint for the device.

(4) Get a capability instance of the blueprint.

Example 2: SPIN rule template for inheriting the capability

parameter - inheritCapabilityParameter

CONSTRUCT {

(1)  ?this ?parameter ?value .

}

WHERE {

(2) BIND (:getPartCapability(?this, ?capability) 

AS ?result) .

(3)  FILTER bound(?result) .

(4)  BIND (?result AS ?resourceCapability) .

(5)  ?resourceCapability ?parameter ?value .

}

Comments related to the template: 

Purpose: Assign the value of the given parameter of the given lower 

level capability to the combined capability instance in the variable 

?this.

(1) The construct part defines how we use the query results to 

modify our ontology. Give the parameter value to the combined 

capability instance.

(2) Get an instance of the given lower level capability for the 

combined capability instance (?this).

(3) Check if the function returned a result. If not, this does nothing.

(4) Assign the result to a different variable. Using the result 

variable directly would cause problems since if it is unbound 

after the function call it can bind to other capability instances.

(5) Get the value of the parameter for the lower level capability 

instance.

Example 3: SPIN rule for calculating the accuracy of Transporting capability

CONSTRUCT {

?this cm:accuracy ?value .

}

WHERE {

BIND (:getPartCapability(?this, cm:Moving ) AS ?result) .

FILTER bound(?result) .

BIND (?result AS ?resourceCapability) .

?resourceCapability cm:accuracy ?value .

Example 4: SPIN rule for calculating the payload of Transporting, Picking and

Placing capabilities

CONSTRUCT {

(1)  ?this cm:payload ?payload .

}

WHERE {

(2) BIND (:getPartCapability(?this, cm:FingerGrasping) AS 

?result) .

(3)  FILTER bound(?result) .

(4)  BIND (?result AS ?fingerGrasping) .

(5)  ?gripperBlueprint rm:hasCapability ?fingerGrasping .

(6)  ?gripperBlueprint rm:hasBasicResourceInformation ?info .

(7)  ?info cm:mass ?mass .

(8)  ?fingerGrasping cm:payload ?gripperPayload .

(9) BIND (:getPartCapability(?this, cm:Moving) AS 

?result2).

FILTER bound(?result2) .

BIND (?result2 AS ?moving) .

(10) ?moving cm:payload ?movingPayload .

(11) BIND ((?movingPayload - ?mass) AS ?alternative) .

(12) BIND (IF((?alternative > ?gripperPayload), 

?gripperPayload, ?alternative) AS ?payload) .

}

Comments related to the rule: 

(1) Give the combined capability instance (?this) the payload determined below 

by the rule.

(2) Get the instance of FingerGrasping for the combined capability instance.

(3) Check if the function returns a result. 

(4) Assign the result to a different variable. Using the result variable directly 

would cause problems since if it is unbound after the function call it can bind 

to other capability instances.

(5) Get the device blueprint whose capability we just got.

(6) Get the basic resource information of the blueprint.

(7) Get the mass of the blueprint from the basic resource information.

(8) Get the FingerGrasping payload.

(9) Get the lower level capability instance of Moving for the combined capability 

instance.

(10) Get the payload for moving.

(11) Subtract FingerGrasping blueprint mass from Moving payload and save to 

variable alternative.

(12) The lesser value of the ?alternative or ?gripperPayload is the combined 

capability payload.
 

Fig. 2. SPIN examples: functions, templates and rules. 



 

 

     

 

“capability” and “parameter” and when it is used to create 

the combined capability parameter rule for defining the 

“accuracy” of “Transporting”, these arguments are given 

the corresponding values “Moving” and “accuracy”. From 

this template instance, the SPIN rule engine executing the 

rules will then create the rule shown in Example 3. 

Also other similar templates have been defined, e.g. for 

comparing and selecting the greater or lesser value of two 

lower level capability parameter values, and for summing 

up the parameter values. The latter can be used e.g. to 

calculate the “repeatability” or “accuracy” of the 

“Picking” and “Placing” capabilities by summing up the 

“repeatability” and “accuracy” values of both 

“FingerGrasping” and “Moving” capabilities.  

Some rules are the same for different capabilities. For 

example, the payload rule of “Transporting”, “Picking” 

and “Placing" is the same, and therefore the same SPIN 

rule (Example 4) can be reused in each case.  

3.3  Running the rules 

For working with the MaRCO model and the rules we 

have implemented a software tool called Capability Query 

Library (CQL). It is a Java based application that offers a 

command line interface and a Java API for other 

applications to work with the MaRCO model. CQL uses 

the open source Jena semantic web framework (Apache 

Software Foundation 2017) and Pellet reasoner (Sirin et al. 

2007) for working with the ontology models. Jena or Pellet 

themselves do not support SPIN, so another open source 

library, that builds on top of Jena, called SPIN API 

(Knublauch 2016) is used to execute the SPIN rules. 

The defined SPIN rules, including the templates and 

functions the rules use, have been added to a separate 

Parameter Rules ontology used by the CQL. This ontology 

imports the Resource Model ontology.  CQL reads in the 

Resource Model instances ontology and defines the 

combined capabilities of the device combinations on 

concept name level. This combined capability information 

is saved to a temporary ontology inside CQL, which 

imports the original Resource Model instances ontology 

and the Parameter Rules ontology. The combined 

capability parameters are then inferred by SPIN API for 

that ontology. This information is then saved to a separate 

ontology file (Combinations), which can be used later for 

example during the capability matchmaking process. Fig. 

3 illustrates the explained procedure.   

1. Reads in the  device 
combinations, 

involved devices 
and their capabilities

Capability 
Query Library 

(CQL)

Capability 
Model 
(OWL) 

Resource 
Model 
(OWL)

imports

Parameter Rules Ontology 
(contains the SPIN rules)

(OWL)

2. Reads in the rules
3. Runs the rules

Combinations 
-file

(OWL)

4. Saves the 
results

5. Uses as input 
for decision making

imports

Resource Model 
instances

(OWL)

imports

 

Fig. 3. Combined capability calculation procedure.  

 
4. CASE 

We have tested the MaRCO model and SPIN rules in a 

simple case application. Fig. 4a shows example resource 

combination consisting of UR10 6-axis robot and a 2-

finger gripper. In the middle, it shows the (simple) 

capabilities of these resources and their parameters. On the 

right, it shows the expected results of applying the 

combined capability rules. Fig. 4b is a screenshot form the 

CQL command line application showing the inference 

results produced by the presented SPIN rules.  

UR10 6-axis 

manipulator

FingerGripper

ReCaM UR10-

robot 

FingerGripper 

combination
Moving

FingerGrasping

   Capability parameters

   DOF: 6, Translate X,Y,Z, Rotate X,Y,Z

   workspace: Polar, R916mm

   speed (x,y,z): 1 m/s

   acceleration (x,y): 30, z 20 m/s^2

   payload 10 kg

   accuracy 0.1 mm

   repeatablity 0.1 mm

 

  

   Capability parameters

   number of fingers: 2   

   gripper type: parallel

   finger type: mechanical

   grasping type: external

   grasping force min/max: 1 N

   accuracy: 0.2 mm

   repeatability: 0.2 mm

   payload: 2 kg

   finger opening min: 10 mm

   finger opening max: 60 mm

   

ForceApplying
   Capability parameters

   force max: 300 N

   force directions: x, y, z (+/-)

Releasing

Picking

   

   Capability parameters

   payload: 2 kg

   accuracy: 0.3 mm

   allowed item size max: W 60 mm  

   allowed item size min: W 10 mm

Transporting

   Capability parameters

   DOF: 6, Translate X,Y,Z, Rotate   

X,Y,Z

   workspace: Polar, R916mm  

   payload: 2 kg

   accuracy: 0.1 mm

   speed (x,y,z): 1 m/s

   allowed item size max: W 60 mm  

   allowed item size min: W 10 mm

Placing    Capability parameters 

   accuracy: 0.3 mm

   repeatability: 0.3 mm

Resources Capabilities Combined capabilities

BasicResourceInfo

Mass 0.3 kg

a) b)
 

Fig. 4. a) Example resources and their capabilities; b) Combined capabilities calculated based on the SPIN rules in CQL. 



 

 

     

 

 
5.  CONCLUSIONS 

We presented an approach for calculating the combined 

capability parameters based on the parameters of the lower 

level capabilities. An OWL-based ontology was used to 

model the capability- and resource-related concepts, 

properties and relations between these concepts. As OWL 

is not able to infer and assert new instances to the 

ontology, nor to perform complex arithmetic operations, 

we used SPARQL Inferencing Notation (SPIN) to extend 

the reasoning abilities of pure OWL-ontology and to 

perform the needed calculations as well as instance and 

property assertions.   

Research publications using SPIN in practical applications 

are still rare, whereas use of SWRL is more common. 

However, SPIN has many advantages over SWRL, 

including its expressiveness and meta-modeling abilities. 

The ability to create templates and functions reduces the 

effort of creating rules. Furthermore, SPIN is based on 

established SPARQL, which has good tool support (e.g. 

engines and databases).  

The presented approach will be used as part of the 

capability matchmaking process, which aims to support 

rapid system configuration scenarios generation for 

specific product requirements. In this context, the rules are 

used in two scenarios: 1) Inferring and asserting the 

parameter values for the capabilities of an existing 

resource combination; 2) Searching for suitable 

combinations of resources for a specific capability 

requirement. In our future work, we will concentrate on 

defining similar rules for comparing the product 

requirements against the combined capabilities that were 

inferred by utilizing the method presented in this paper.  

Often in real production environment the properties of the 

combined capabilities emerge as a behavior of the machine 

or station as a whole in a certain context and environment, 

and they cannot be decomposed into the properties of the 

various components (i.e. simple capabilities). Furthermore, 

some of the capabilities depend on the physical location 

between the combined resources. This information is not 

handled with the Capability Model, and can not thus be 

taken into consideration. Even though the combined 

capability rules can sometimes produce only crude 

estimations of the combined capabilities, we expect this 

approach to reduce the workload of a system designer and 

reconfiguration planner. Our approach can automatically 

filter out unsuitable resources and suggest viable  

alternative configurations for the system design and 

reconfiguration from large search spaces. This is expected 

to reduce the time used for searching and evaluating 

alternative resources, and to open up possibility to find 

new unexpected solutions.  

 

REFERENCES 

Aarnio, P., Vyatkin, V. and Hastbacka, D. (2016). Context 

modeling with situation rules for industrial 

maintenance. IEEE International Conference on 

Emerging Technologies and Factory Automation, 

ETFA, p. 9. 

Ameri, F. and McArthur, C. (2014). Semantic rule 

modelling for intelligent supplier discovery. 

International Journal of Computer Integrated 

Manufacturing, Vol. 27 No. April, pp. 570–590. 

Apache Software Foundation (2017). Apache Jena – A 

free and open source Java frawework for building 

Semantic Web and Linked Data applications. 

Available in: https://jena.apache.org/ [Accessed 

10.8.2017]. 

Horrocks, I. et al. (2004). SWRL: A Semantic Web Rule 

Language – Combining OWL and RuleML. W3C 

Member Submission. Available in: 

http://www.w3.org/Submission/SWRL/ [Accessed 

10.3.2016]. 

Järvenpää, E., Siltala, N., and Lanz, M. (2016). Formal 

Resource and Capability Descriptions Supporting 

Rapid Reconfiguration of Assembly Systems. In 

Proceedings of the 12th Conference on Automation 

Science and Engineering, and International 

Symposium on Assembly and Manufacturing, IEEE, 

2016. p. 120-125. 

Järvenpää, E., Lanz, M., and Siltala, N. (2018). Formal 

Resource and Capability Models supporting Re-use of 

Manufacturing Resources. Procedia Manufacturing, 

Vol. 19, pp. 87-94.  

Knublauch, H. (2016). The TopBraid SPIN API. Available 

in: http://topbraid.org/spin/api/ [Accessed 1.4.2017]. 

Knublauch, H., Hendler, J.A., and Idehen, K. (2011). SPIN 

– Overview and motivation. W3C Member 

Submission.  Available in: 

https://www.w3.org/Submission/spin-overview/ 

[Accessed 15.12.2016]. 

Meditskos, G., Dasiopoulou, S., Efstathiou, V. and 

Kompatsiaris, I. (2013). SP-ACT : A Hybrid 

Framework for Complex Activity Recognition 

Combining OWL and SPARQL Rules. IEEE 

Workshop on Context Modeling and Reasoning 2013, 

pp. 25–30. 

Sirin, E., Parsia, P. Cuenca Grau, B., Kalyanpur, A., and 

Katz, Y. (2007). Pellet: A Practical OWL-DL 

Reasoner. Journal of Web Semantics, 5(2), 51–53. 

SPIN working group. (2017). SPIN – SPARQL 

Inferencing Notation. Available in: http://spinrdf.org/. 

[Accessed 15.10.2017]. 

Wiendahl, H.-P. et al. (2007). Changeable Manufacturing - 

Classification, Design and Operation. CIRP Annals, 

56, 783-809. 

W3C (2004). OWL Web Ontology Language – Reference, 

Available in: http://www.w3.org/TR/owl-ref/ 

[Accessed 1.11.2015]. 

W3C (2008). SPARQL Query Language for RDF. 

Available in: http://www.w3.org/TR/rdf-sparql-query/ 

[Accessed 10.3.2016]. 

http://www.w3.org/Submission/SWRL/
https://tutcris.tut.fi/portal/en/persons/eeva-jarvenpaa%28932a381e-7784-48d7-b080-8cf814be176f%29.html
https://tutcris.tut.fi/portal/en/persons/niko-siltala%2835b629cf-8244-4768-ac60-5f2732c5f3df%29.html
https://tutcris.tut.fi/portal/en/persons/minna-lanz%2869c74eae-638a-4e72-8764-efd2111b464e%29.html
https://tutcris.tut.fi/portal/en/publications/formal-resource-and-capability-descriptions-supporting-rapid-reconfiguration-of-assembly-systems%281287beaa-e65e-4583-9c7b-234f8415d7a0%29.html
https://tutcris.tut.fi/portal/en/publications/formal-resource-and-capability-descriptions-supporting-rapid-reconfiguration-of-assembly-systems%281287beaa-e65e-4583-9c7b-234f8415d7a0%29.html
https://tutcris.tut.fi/portal/en/publications/formal-resource-and-capability-descriptions-supporting-rapid-reconfiguration-of-assembly-systems%281287beaa-e65e-4583-9c7b-234f8415d7a0%29.html
http://topbraid.org/spin/api/
https://www.w3.org/Submission/spin-overview/
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/rdf-sparql-query/

