
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Fair Testing and Stubborn Sets

Antti Valmari1, Walter Vogler2

1 Department of Mathematics, Tampere University of Technology
P.O. Box 553, FI–33101 Tampere, FINLAND
e-mail: antti.valmari@tut.fi

2 Institut für Informatik, University of Augsburg
D-86135 Augsburg, GERMANY
e-mail: walter.vogler@informatik.uni-augsburg.de

The date of receipt and acceptance will be inserted by the editor

Abstract. Partial order methods alleviate state explo-
sion by considering only a subset of actions in each con-
structed state. The choice of the subset depends on the
properties that the method promises to preserve. Many
methods have been developed ranging from deadlock-
preserving to CTL∗-preserving and divergence-sensitive
branching bisimilarity preserving. The less the method
preserves, the smaller state spaces it constructs. Fair
testing equivalence unifies deadlocks with livelocks that
cannot be exited, and ignores the other livelocks. It is
the weakest congruence that preserves whether or not
the system may enter a livelock that it cannot leave. We
prove that a method that was designed for trace equiva-
lence also preserves fair testing equivalence. We demon-
strate its effectiveness on a protocol with a connection
and data transfer phase. This is the first practical par-
tial order method that deals with a practical fairness
assumption.

Key words: partial order methods; stubborn sets; fair-
ness; progress; fair testing equivalence

1 Introduction

State spaces of systems that consist of many parallel
components are often huge. Typically many states arise
from executing concurrent actions in different orders.
The methods discussed in, e.g., [3,5,9–11,13,19,20,25–
29,33–37], try to reduce the number of states by, roughly
speaking, studying only some orders that represent all of
them. This is achieved by only investigating a subset of
actions in each state. This subset is usually called ample,
persistent, or stubborn. In this study we call it aps, when
the differences between the three do not matter.

The differences between stubborn, ample, and per-
sistent set methods were discussed in detail in [37]. We

call them aps set methods. They are usually called partial
order methods, but this phrase is also often used in a sig-
nificantly wider sense, causing ambiguity. The literature
on partial order methods is extensive, so it is not possi-
ble to provide a survey here. Let us, however, mention
two classes of methods that are also called partial order
but are fundamentally different from aps set methods.

The basic form of dynamic partial order methods (e.g.,
[1,7,12,22]) is restricted to acyclic systems, but cyclic
systems can be dealt with to some extent with trick-
ery. These methods investigate a sufficient collection of
executions by firing one transition at a time. They do
not compute aps sets. Instead, they recognize potential
choice or conflict situations afterwards and, if necessary,
later backtrack to investigate the opposite choice. When
this works well, most states are encountered only once.
This facilitates “stateless” model checking, meaning that
states that are not along the current execution path need
not be kept in memory. It makes it possible to analyse
bigger systems than aps set methods do, but also runs
the risk of extremely long analysis times if, against the
expectation, same states are encountered repeatedly.

Unfolding methods (e.g., [4,17,22]) are based on build-
ing a partial order data structure that represents the
behaviour of the system in a true concurrency fashion.
Individual states are not represented explicitly. Instead,
information on each individual state is distributed over
many nodes of the structure. Again, difficulties arise
when applying the idea to cyclic systems. Cyclic systems
can be handled, but at a potentially high cost.

Aps set, dynamic partial order, and unfolding meth-
ods each have their distinct advantages and disadvan-
tages. In the present publication, cyclic behaviour and
explicit representation of states are central, making it
hard to see how dynamic partial order or unfolding meth-
ods could apply.

The phrase “partial order” refers to the intuition that
if two executions only differ in the order in which two

concurrent actions occur, then they are linearizations of
the same, more abstract concurrent execution that does
not specify the order. Unfolding methods represent these
abstract executions rather directly, while aps set and dy-
namic partial order methods are often described as try-
ing to represent only one linearization for each abstract
execution. This intuition works well with executions that
lead to a deadlock, that is, to a state that has no outgo-
ing transitions.

However, traces and divergence traces, for instance,
arise from not necessarily deadlocking executions. With
them, to obtain good reduction results, a constructed ex-
ecution must often lack occurrences of invisible actions
and contain additional occurrences of invisible actions
compared to executions that it represents. With branch-
ing time properties, thinking in terms of executions is
insufficient to start with. Therefore, most aps set meth-
ods would better not be called partial order methods,
because partial order intuition leads to subtly but dan-
gerously wrong expectations on how the methods work,
and thus hampers understanding them.

The more properties a method preserves, the worse
are the reduction results that it yields. As a consequence,
a wide range of aps set methods has been developed.
The simplest only preserve the deadlocks (that is, the
reduced state space has precisely the same deadlocks as
the full state space) [25], while at the other end the CTL∗

logic (excluding the next state operator) and divergence-
sensitive branching bisimilarity are preserved [9,20,29].

The preservation of the promised properties is guar-
anteed by stating conditions that the aps sets must sat-
isfy. Various algorithms for computing sets that satisfy
the conditions have been proposed. In an attempt to
improve reduction results, more and more complicated
conditions and algorithms have been developed. There
is a trade-off between reduction results on the one hand,
and simplicity and the time that it takes to compute an
aps set on the other hand.

Consider a cycle where the system does not make
progress, but there is a path from it to a progress action.
As such, traditional methods for proving progress treat
the cycle as a violation against progress. However, this is
not always the intention. Therefore, so-called fairness as-
sumptions [15] are often formulated, stating that the ex-
ecution eventually leaves the cycle. Unfortunately, how
to take them into account while retaining good reduc-
tion results has always been a problem for aps set meth-
ods. For instance, fairness is not mentioned in the partial
order reduction chapter of [3]. Furthermore, as pointed
out in [5], the most widely used condition for guarantee-
ing the preservation of linear-time progress (see, e.g., [3,
p. 155]) often works in a way that is detrimental to re-
duction results.

Fair testing equivalence [21], which goes back to Sec-
tion 3.3.2 in [40], always treats this kind of cycles as
progress. If there is no path from a cycle to a progress
action, then both fair testing equivalence and the tra-

ditional methods treat it as non-progress. This makes
fair testing equivalence suitable for catching many non-
progress errors, without the need to formulate fairness
assumptions. For instance, Section 3 presents a system
where suitable fairness assumptions are difficult to for-
mulate, but fair testing works well.

Fair testing equivalence implies trace equivalence. As
a consequence, it cannot have better reduction meth-
ods than trace equivalence. Fair testing equivalence is
a branching time notion. So one might have guessed
that any method that preserves it would rely on strong
conditions, resulting in bad reduction results. Supris-
ingly, it turned out that a more than 20 years old trace-
preserving stubborn set method [27,29] also preserves
fair testing equivalence. This is the first main result of
the present study. It means that no reduction power is
lost compared to trace equivalence.

Most conditions in aps set methods can be enforced
with algorithms that only look at the current state of
the system under analysis. However, many methods also
have a condition that looks at all states in a cycle or ter-
minal strong component of the reduced LTS. Without
the additional condition, if some part of the system can
execute a cycle without the rest of the system participat-
ing, the method may incorrectly terminate after inves-
tigating only the behaviour of that part. This is known
as the ignoring problem, because the method ignores the
behaviour of the rest of the system.

Conditions that solve the ignoring problem are par-
ticularly difficult to enforce without significant loss of
reduction power. In the present study, new observations
and theorems lead to the conclusion that when preserv-
ing the trace (and fair testing) equivalence, in most cases,
the ignoring problem need not be solved at all! This is
our second main result.

General background concepts are introduced in Sec-
tion 2. Section 3 discusses two telecommunication proto-
cols and fairness in their verification. Fair testing equiv-
alence is defined in Section 4. Section 5 introduces stub-
born sets. In Section 6 we prove that the trace-preserving
stubborn set method also applies to fair testing equiva-
lence, and a modified method to a modified equivalence.
Implementation of stubborn sets excluding solutions to
the ignoring problem is discussed in Section 7. This ma-
terial makes this publication self-contained. Section 8
discusses further the ignoring problem and why it is good
to avoid strong conditions. The new results on the ignor-
ing problem are presented in Section 9. Section 10 shows
some performance measurements, after which a conclu-
sions section ends the study.

A much shorter version of this study appeared as [39].
Compared to it, the novel results on the ignoring prob-
lem are new; the method that preserves tree failure equiv-
alence is new; and the discussion of many issues has been
made much more extensive, with many small illustrative
examples. The old solution to the ignoring problem has
been removed.

2

2 Labelled Transition Systems

In this section we first define labelled transition systems
and two operators for composing systems from them. We
also define some useful notation. Then we define the well-
known trace equivalence and stable failures equivalence,
and discuss why the failures must be stable.

The symbol τ denotes the invisible action. A labelled
transition system or LTS is a tuple L = (S,Σ,∆, ŝ)
such that τ /∈ Σ, ∆ ⊆ S × (Σ ∪ {τ}) × S, and ŝ ∈ S.
The elements of S, Σ, and ∆ are called states, visible
actions, and transitions, respectively. The state ŝ is the
initial state. An action is a visible action or τ .

In drawings, states are represented as circles, and
transitions as labelled arrows from a state to a state.
The initial state is distinguished with an arrow whose
tail is not adjacent to any state. If the alphabet is not
given explicitly, it consists of the labels of transitions
other than τ . Figure 1 later in this section shows four
LTSs. The alphabets of the first two and last two are
{a, b} and {b}, respectively.

We use the convention that, unless otherwise stated,
L′ = (S′, Σ′, ∆′, ŝ′), Li = (Si, Σi, ∆i, ŝi), and so on.

The empty string is denoted with ε. We have ε 6= τ
and ε /∈ Σ.

Let n ≥ 0, s and s′ be states, and a1, . . . , an be ac-
tions. The notation s −a1 · · · an→ s′ denotes that there
are states s0, . . . , sn such that s = s0, sn = s′, and
(si−1, ai, si) ∈ ∆ for 1 ≤ i ≤ n. For instance, ŝ −τaaab→
s4 in the L in Figure 1. The notation s −a1 · · ·an→ de-
notes that there is some s′ such that s −a1 · · · an→ s′.
The set of enabled actions of s is defined as en(s) = {a ∈
Σ ∪ {τ} | s −a→}. The L in Figure 1 has en(ŝ) = {τ},
en(s2) = {a, b}, en(s3) = {a}, and en(s4) = ∅.

The reachable part of L is the LTS (S′, Σ,∆′, ŝ),
where

– S′ = {s ∈ S | ∃σ ∈ (Σ ∪ {τ})∗ : ŝ −σ→ s} and
– ∆′ = {(s, a, s′) ∈ ∆ | s ∈ S′}.

For instance, the reachable part of a b is
b with the alphabet {a, b}.
The parallel composition of L1 and L2 is denoted

with L1 || L2. It is the reachable part of (S,Σ,∆, ŝ),
where S = S1 × S2, Σ = Σ1 ∪ Σ2, ŝ = (ŝ1, ŝ2), and
((s1, s2), a, (s

′
1, s

′
2)) ∈ ∆ if and only if

– (s1, a, s
′
1) ∈ ∆1, s

′
2 = s2 ∈ S2, and a /∈ Σ2,

– (s2, a, s
′
2) ∈ ∆2, s

′
1 = s1 ∈ S1, and a /∈ Σ1, or

– (s1, a, s
′
1) ∈ ∆1, (s2, a, s

′
2) ∈ ∆2, and a ∈ Σ1 ∩Σ2.

That is, if a belongs to the alphabets of both compo-
nents, then an a-transition of the parallel composition
consists of simultaneous a-transitions of both compo-
nents. If a belongs to the alphabet of one but not the
other component, then that component may make an a-
transition while the other component stays in its current
state. Also each τ -transition of the parallel composition
consists of one component making a τ -transition without

the other participating. The result of the parallel com-
position is pruned by only taking the reachable part.

It is easy to check that (L1 ||L2) ||L3 is isomorphic to
L1 || (L2 || L3). This means that “ || ” can be considered
associative, and that L1 || · · · || Lm is well-defined for
any positive integer m. Figure 7 in Section 5 shows an
example of a parallel composition. For the time being,
please read τ1 and τ2 as τ in it.

The hiding of an action set A in L is denoted with
L \ A. It is L \ A = (S,Σ′, ∆′, ŝ), where Σ′ = Σ \ A
and ∆′ = {(s, a, s′) ∈ ∆ | a /∈ A} ∪ {(s, τ, s′) | ∃a ∈ A :
(s, a, s′) ∈ ∆}. That is, labels of transitions that are in A
are replaced by τ and removed from the alphabet. Other
labels of transitions are not affected. Figure 1 shows two
examples.

Let σ ∈ Σ∗. The notation s =σ⇒ s′ denotes that
there are a1, . . . , an such that s −a1 · · · an→ s′ and σ
is obtained from a1 · · ·an by leaving out each τ . We say
that σ is the trace of the path s −a1 · · · an→ s′, of the se-
quence a1 · · ·an, and of the state s. The notation s =σ⇒
denotes that there is s′ such that s =σ⇒ s′. The set of
traces of L is the set of traces of its initial state, that is,

Tr(L) = {σ ∈ Σ∗ | ŝ =σ⇒} .

In Figure 1 we have Tr(L) = Tr(L′) = {ε, a, aa, . . . ,
b, ab, aab, . . .} and Tr(L \ {a}) = Tr(L′ \ {a}) = {ε, b}.

The LTSs L1 and L2 are trace equivalent if and only
if Σ1 = Σ2 and Tr(L1) = Tr(L2). The first two LTSs in
Figure 1 are trace equivalent, and so are the second two.

An equivalence “≈” is a congruence with respect to
an operator f if and only if for every L and L′, L ≈ L′

implies f(L) ≈ f(L′). Trace equivalence is a congruence
with respect to “ || ”, “\”, and all other widely used LTS
operators. Please see [30] for a proof that all operators
in a very wide class can be constructed from “ || ” and
“\” up to trace equivalence. Therefore, trace equivalence
is a congruence with respect to this class of operators.

A state s is stable if and only if ¬(s −τ→). Let A ⊆
Σ. A state s refuses A if and only if ¬(s =a⇒) for every
a ∈ A. A stable failure of an LTS L is a pair (σ,A) where
σ ∈ Σ∗ and A ⊆ Σ such that there is some stable s that
refuses A such that ŝ =σ⇒ s; A is called a refusal set.
It follows from the definition that if (σ,A) is a stable
failure of L, then σ ∈ Tr(L). Furthermore, σ leads to a
deadlock if and only if (σ,Σ) is a stable failure of L. The
stable failures of the L and L′ in Figure 1 are (an, A)
and (anb, B) where n ∈ N, A ⊆ {b}, and B ⊆ {a, b}.
The stable failures of L \ {a} and L′ \ {a} are (b, ∅) and
(b, {b}).

Two LTSs are stable failure equivalent if and only
if they have the same alphabets and the same stable
failures. Stable failure equivalence is a congruence with
respect to “ || ” and “\”. It is not a congruence with
respect to the widely used “choice” operator and the
more rare “interrupt” operator, but the equivalence that
compares the alphabets, the traces, the stable failures,

3

L

b

τ τ
a a

s4

s2 s3

s1

L′

b

τ τ
a

a

L \ {a}

b

τ τ
τ τ

L′ \ {a}

b

τ τ
τ

τ

Fig. 1. Ordinary failures suffer from a congruence problem

and the initial stability is a congruence with respect to
both (L is initially stable if and only if ŝ is stable).

Around 1990, some attention was paid to (ordinary)
failures, defined otherwise like stable failures but not re-
quiring that s is stable. Every stable failure is a failure,
but not necessarily vice versa. If (σ,A) is a failure but
not a stable failure, then σ is a divergence trace, that is,
there is s such that ŝ =σ⇒ s −ττ · · ·→. For instance,
(ε, {b}) is an ordinary but not a stable failure of the
L \ {a} in Figure 1.

What is more, (ε, {b}) is not a failure of L′ \ {a}. On
the other hand, L and L′ have the same alphabet, the
same traces, the same failures, and the same divergence
traces, and both are initially unstable. This means that
unlike stable failures, ordinary failures do not yield a
congruence, not even if aided by traces, etc. This is why
stable failures became more popular.

Let us relate these failure concepts to the two most
well known process-algebraic semantic models. The fail-
ures in the failures–divergences equivalence of CSP [23]
are neither ordinary nor stable. Instead, they are the
union of stable failures with all pairs (σ,A) ∈ Σ∗ × 2Σ

such that some prefix of σ is a divergence trace. This
implies that failures–divergences equivalence does not
preserve any information on the behaviour of the sys-
tem beyond minimal divergence traces, a phenomenon
sometimes called catastrophic divergence. To see beyond
divergence, the equivalence that compares the traces and
stable failures was later added to the CSP theory.

Milner’s observation equivalence [18] preserves fail-
ures and is a congruence with respect to “ || ” and “\”.
However, it is too strong for many verification purposes
in the sense that it preserves much more information
than needed. Because of its strength, although an aps set
reduction method for it has been found [29], it is much
less powerful than the methods in the present study.

In Section 4 we will find the weakest congruence that
preserves ordinary failures. Before that we introduce the
example system used in the experiments of this study,
because it can be used to illustrate the benefits of the
congruence.

3 Self-Synchronizing Alternating Bit Protocol

In this section we introduce the self-synchronizing alter-
nating bit protocol used in the experiments in Section 10.

sen rec

di d
′

i

aia
′

i

Sender Receiver

DC

AC

Sender

sen d0

τ

a
′

1

a
′

0a
′

0

sen

d1

τa
′

0

a
′

1

a
′

1

DCd0

d
′

0

τ

d1

d
′

1

τ

ACa0

a
′

0

τ

a1

a
′

1

τ

Receiver

d
′

0 rec

a0d
′

0

d
′

1rec

a1 d
′

1

1
2

3

6
5

4

Fig. 2. The architecture and LTSs of the alternating bit protocol

We first introduce the famous original alternating bit
protocol, from which our protocol has been developed. In
mainstream verification, it is customary to use so-called
fairness assumptions [15] to ensure that a system even-
tually provides service. In this publication we adopt a
different approach to fairness. To motivate this decision,
we discuss the use of the mainstream fairness assump-
tions on the original and self-synchronizing alternating
bit protocols, pointing out problems.

Figure 2 shows the alternating bit protocol [2] mod-
elled as a system of four LTSs. Its architecture is

(Sender||DC||AC||Receiver)\{d0, d
′
0, d1, d

′
1, a0, a

′
0, a1, a

′
1} .

The actions sen, rec, di, and d
′
i carry a data value that

is not shown in the model. The black states and dashed
transitions will be explained later.

The purpose of the protocol is to provide reliable data
transmission from the sending site to the receiving site
despite the fact that the communication channels be-
tween the sites may lose messages. A data value is given
for transmission via the action sen. Sender composes a
message consisting of the data value and an alternat-
ing bit that is either 0 or 1. Accordingly, the message is
modelled with d0 or d1. Sender sends it to Receiver via
DC, which models a data channel. DC either loses the
message by executing τ , or delivers it to Receiver by exe-
cuting d

′
0 or d′1. (Please remember that τ -transitions by

component LTSs of a parallel composition are not syn-
chronized. So Sender and AC do not participate in the
τ -transition of DC.)

If the message has the alternating bit value that Re-
ceiver expects, then Receiver delivers its data content via
rec, sends an acknowledgement with the same bit value,
and then changes its expected bit value. If the message
has the wrong bit value, Receiver only sends an acknowl-
edgement. Analogously, the acknowledgement channel
AC either loses the acknowledgement or delivers it to
Sender.

When Sender receives an acknowledgement with the
correct alternating bit value, it changes its own bit value
and becomes ready for the transmission of the next data
value. If such an acknowledgement does not arrive in
time, Sender executes a τ -transition (this is called time-
out) and re-sends the data message. The length of the

4

senN senY

recN recY

ττ τ

τ

Fig. 3. The service provided by the alternating bit protocol

waiting time is not modelled. If an acknowledgement
with the wrong bit value arrives, Sender just consumes
it.

In the figure, we have abstracted from the data val-
ues. In the model, each black state has a copy for each
possible value of the data so that, in case of a re-send,
the same value is sent.

If the data message gets through but the acknowl-
edgement is lost or delayed, Sender re-sends a data value
that has already been delivered. Thanks to the alternat-
ing bit, Receiver recognizes this situation and does not
re-deliver the data value. The alternating bit in the ac-
knowledgements prevents Sender from mis-interpreting a
delayed acknowledgement of an earlier data message as
an acknowledgement of the most recent data message.

Figure 3 shows an LTS that has the same traces,
stable failures, and divergence traces as the system in
Figure 2, assuming that there are two different data val-
ues, N and Y. Altogether, the only way how the pro-
tocol may fail is that Sender re-sends the same data
message forever. This may happen because of repeated
losses of data messages or acknowledgements, or because
Sender repeatedly chooses a τ -transition although an a′i-
transition with the correct i is or will become enabled.
If no data message gets through, this is seen as a τ -self-
loop before the recN- or recY-transition in the figure, and
otherwise as the third τ -self-loop. When Sender receives
a correct acknowledgement, it becomes ready for a new
sen-action. While waiting for it, the protocol may con-
sume the data messages and acknowledgements that are
still in transit, but from then on it does nothing until
the next sen-action.

Often it is reasonable to assume that although the chan-
nels may lose messages, they are not totally broken, and
although pre-mature timeouts are possible, Sender is not
always too fast. In mainstream verification, these as-
sumptions are modelled with fairness assumptions [15].
Full discussion would require more (or different) infor-
mation on transitions than the labels in the LTS formal-
ism provide. Therefore, we describe the idea in a slightly
simplified form that is not technically correct in general,
but works in the case of Figure 2.

Fairness is easiest to understand via its negation, un-
fairness. An infinite execution ŝ −a1→ s1 −a2→ . . . is
weakly unfair towards an action a, if and only if there
is n ∈ N such that when i ≥ n, si −a→ but ai 6= a.
That is, from some point on, a is continuously enabled
but does not occur. The execution is strongly unfair to-
wards a, if and only if there is n such that si −a→

for infinitely many i, but ai 6= a when i ≥ n. That is,
from some point on, a is repeatedly enabled but does
not occur. Strong fairness towards a implies weak fair-
ness towards a. In applications, two sets Fw and Fs of
actions are chosen, and it is assumed that all executions
of the modelled system are weakly fair towards every el-
ement of Fw and strongly fair towards every element of
Fs. As a consequence, unfair executions of the model are
considered to not correspond to “real” executions of the
modelled system and thus are not considered as valid
counter-examples to a property.

In the case of Figure 2, let Fw = Fs = {sen, rec, d0,
. . . , a′1}. This models the informal assumption that, for
instance, although messages may be lost at any time,
they are not systematically lost. We now argue that in
the presence of the dashed transitions in Figure 2, if an
execution contains never-ending re-sendings, then it vi-
olates our fairness assumption. This means that it is not
considered to correspond to a “real” execution. So in any
“real” execution, any message that is sent is eventually
delivered.

Assume that at some stage, Sender runs around the
d0-τ -cycle without executing a′0. Executions of a′1 may
but need not occur. For simplicity, we assume that Re-

ceiver is in its initial state (number 1 in the figure); sim-
ilar arguments apply if it is in some other state. Strong
fairness towards d′0 prevents indefinite losses in DC and
forces Receiver to move to state 2. Weak fairness towards
rec forces Receiver to continue to state 3. If AC is not in
its initial state, strong fairness towards a′0 and a′1 guar-
antees that it eventually moves there, by executing ei-
ther a′0 (which we assumed not to happen), a′1, or τ .
(When fairness towards x forces an LTS to leave a state,
it does not necessarily mean that the state must be left
via an x-transition.) Weak fairness now guarantees that
Receiver executes a0, entering state 4. Then strong fair-
ness towards d′0 forces Receiver to move again. It returns
to state 3, since d

′
1 is not available. Thus, a0 is repeated

infinitely many times. As a consequence, a′0 is enabled in-
finitely often but not executed, so the execution violates
strong fairness.

We now argue that if certain apparently innocent
modifications are made to Sender, then our fairness as-
sumption no longer rules out all never-ending re-sendings
and thus no longer guarantees that any message that
is sent is eventually delivered. Let us use subscripts to
indicate the LTS whose τ -transition is executed. First,
if the dashed transitions are removed, then the cycle
d0τSenderd

′
0a0τAC (where Receiver is in state 4 at the be-

ginning) is fair, because a′0 is never enabled in it. Sec-
ond, if the dashed transitions are kept but the solid ver-
tical a

′
0- and a

′
1-transitions are removed, then the cy-

cle d0d
′
0a0τACτSender is fair. So, despite the use of fair-

ness assumptions, these two versions may degenerate
to never-ending re-sendings. The last version is obser-
vation equivalent [18] to the original version. This il-
lustrates that fairness is not necessarily preserved dur-

5

sen ok err rec

Sender

Receiver

Dloss

Aloss

D D D· · ·

A A A· · ·

Sender

sen f0

err

ā0
ā1

d1

err
senf1

err

ā1
ā0

d0

err
ā0

ā1

ok sen

ā1

ā0

oksen

Receiver

d̄0 rec

f̄0

a0
d̄0

f̄0
d̄1rec

f̄1

a1d̄1 f̄1

D
f̄0 f0

f̄1

f1

d̄0d0

d̄1

d1
A ā0

a0ā1

a1

Dloss f̄0

f̄1

d̄0

d̄1

Aloss

ā1 ā0

Fig. 4. The example system: architecture, Sender, Receiver, D,
A, Dloss, and Aloss. Each sen, rec, d0, d1, d̄0, and d̄1 carries a
parameter that is either N or Y. Each black state corresponds to
two states, one for each parameter value. Each x̄ synchronizes with
x along a line in the architecture picture as explained in the main
text. The output of the rightmost D is consumed either by Receiver

or Dloss, and similarly with the leftmost A

ing equivalence-preserving reductions, which is a major
problem for process-algebraic verification methods.

This example also illustrates that to verify progress
properties, the modeller may have to put in details that
do not arise naturally from the original system descrip-
tion, such as the dashed transitions in Figure 2. The
error scenario in the absence of the dashed transitions
and presence of fairness is that always when the acknowl-
edgement is in AC, Sender happens to be in the tail state
of the d0-transition at least until the acknowledgement
is lost. Because τSender models timeout, an eternally re-
sending Sender spends much more time in the head than
the tail state of the d0-transition. This makes the er-
ror scenario unrealistic in practice, so one would want a
better fairness assumption.

In real life, it is usually unacceptable that a protocol
may degenerate to never-ending re-sendings. Instead, the
protocol should eventually give up and inform the user
about the error situation. It should also be able to re-
cover if the channel is later fixed. In the remainder of this
section we design such a protocol by modifying the al-
ternating bit protocol. It is called the self-synchronizing
alternating bit protocol. To our best knowledge, it was
first presented in [38]. It will be used to illustrate one

more problem related to traditional fairness. It will also
be used in the experiments in Section 10.

The self-synchronizing protocol is shown in Figure 4.
To get an infinite family of systems with bigger and big-
ger LTSs facilitating an interesting series of reduction
measurements, we have replaced DC and AC by channels
which can store more than one message. The data chan-
nel consists of some constant number of copies of cells
D, together with Dloss. Each cell can hold one message,
which it reliably delivers further. A message delivered
by the rightmost D is consumed either by Receiver or
by Dloss. The latter models the loss of a data message.
The acknowledgement channel is modelled in a similar
fashion.

The system could be modelled by labelling the ac-
tions between Receiver and the first A-cell with a00 and
a01, the actions between the first and second A-cell with
a10 and a11, and so on, and similarly with the data chan-
nel. To avoid the resulting notational complexity, we use
overbar notation instead. Excluding sen, ok, err, and rec,
synchronization occurs between x in one LTS and x̄ in
another LTS connected to the former LTS in the archi-
tecture picture. For instance, d0 from Sender synchro-
nizes with d̄0 from the first D-cell.

We have added two actions to Sender, ok and err.
They indicate that it is or is not certain that the mes-
sage got through. Sender has an upper bound to how
many times it tries to send each data message. We de-
note it with ℓ. To not make Figure 4 too complicated,
ℓ = 1 in it. Sender executes ok after getting an acknowl-
edgement with the correct alternating bit value, and err

after getting a timeout after the maximum number of
sending attempts.

Assume that Sender has just executed err. If the data
message was lost, then Receiver did not change its alter-
nating bit value, but if it did get through (and the ac-
knowledgement was lost or delayed), Receiver did change
it. So Sender cannot know which alternating bit value to
use for the next data message, so that Receiver will not
reject it as a re-send of the previous message.

Because of this, after receiving the next sending re-
quest after err, Sender sends a flush message, waits for
an acknowledgement for it, and only then sends the data
message. Receiver acknowledges the flush message with-
out executing rec. When the acknowledgement comes to
Sender, it is certain that there are no remnant messages
with the opposite bit value in the system, so the use
of that value for the next data message is safe. This is
true despite the fact that the acknowledgement with the
expected bit value may itself be a remnant message.

Timeouts and re-sending also apply to flush mes-
sages. If ℓ flushing attempts have been made in vain,
Sender executes err again. To make the protocol more
fault-tolerant, the flush mechanism is used also in con-
nection with the first sending request.

There are two kinds of data items: N and Y. Each
black state in Figure 4 exists in two copies, one holding

6

N and another holding Y. Beyond this, the data items
are not shown in the figure, to avoid cluttering it. In
reality, instead of sen, there are the actions senN and
senY, and similarly with rec, d0, d̄0, d1, and d̄1.

The protocol is expected to provide the following ser-
vice. For each sen, it eventually replies with ok or err. If
it replies with ok, it has delivered the data item with rec.
If it replies with err, delivery is possible but not guaran-
teed, and it may occur before or after the err. There are
no unsolicited or double deliveries. If the channels are
not totally broken, the protocol cannot lose the ability
to reply with ok.

Let us apply typical fairness assumptions to this sys-
tem. In particular, we assume that neither channel can
lose infinitely many messages in a row. These guaran-
tee that if there are infinitely many sen-actions, then
infinitely many flush or data messages go through, and
infinitely many acknowledgements come back. To avoid
the problem that we had with the original alternating
bit protocol, let us further assume that Sender actually
reads infinitely many of these acknowledgements.

Even these do not guarantee that any data item is
ever delivered. This is because they do not prevent the
data channel from passing every flush message and losing
every data message.

Let us make the stronger assumption that the chan-
nels are fair to each kind of messages separately. That
is, if both infinitely many flush messages and infinitely
many data messages are sent, then both infinitely many
flush messages and infinitely many data messages pass
through the data channel. Then infinitely many sen-
actions do guarantee infinitely many rec-actions. Unfor-
tunately, they still do not guarantee any ok-actions. This
is because the flush and data messages use the same ack-
messages, so AC has the permission to work such that
it passes acknowledgements only when Sender has most
recently sent a flush message.

It might be that by introducing separate kinds of
acknowledgements for flush and data messages, fairness
assumptions could be made to work also for ok. How-
ever, this would mean making a non-trivial change to
the protocol.

As a consequence, the traditional approach of prov-
ing progress that is based on fairness assumptions is dif-
ficult to use with the alternating bit protocol, and is not
appropriate for the self-synhcronizing protocol. In the
next section we introduce an LTS equivalence that of-
fers an alternative approach to fairness that is free from
this problem.

4 Fair Testing Equivalence

In this section we define the fair testing equivalence
of [21] and discuss its intuition and properties that make
it useful for verifying progress properties. As a prelimi-
nary step we define and discuss tree failure equivalence,

x x x

x

x

x

· · ·

σ

K

Fig. 5. The LTS LK
σ

which is a strictly stronger equivalence with a related
but much simpler definition.

In Section 2, the failures of an LTS L were defined
as the pairs (σ,A) where σ is a trace and A is a set
of visible actions such that L can execute σ and then
refuse A. Refusing A means that L is in a state where
it cannot execute any member of A, not even if L is
allowed to execute zero or more τ -transitions before the
member of A. Not necessarily all possible ways in which
L can execute σ lead to the refusal of A, but at least
one does. Now we replace A by a set K of non-empty
strings of visible actions, obtaining a more general notion
of refusal. Refusal of K means that L can execute no
member κ of K to completion, not even if L is allowed
to also execute invisible actions. The empty string ε is
ruled out from K because no state can refuse ε anyway.

Definition 1. Let L be an LTS, K ⊆ Σ+, and s ∈ S.
The state s refuses K if and only if for every κ ∈ K
we have ¬(s =κ⇒). The pair (σ,K) ∈ Σ∗ × 2Σ

+

is a
tree failure of L, if and only if there is s ∈ S such that
ŝ =σ⇒ s and s refuses K. The set of tree failures of L is
denoted with Tf(L). The LTSs L1 and L2 are tree failure
equivalent if and only if Σ1 = Σ2 and Tf(L1) = Tf(L2).

For example, ŝ refusesK if and only if K∩Tr(L) = ∅.
Ordinary failures are a special case of tree failures, with
the length of each κ ∈ K being one. We have σ ∈ Tr(L)
if and only if (σ, ∅) ∈ Tf(L).

Although, when refusing K, L cannot execute any
member κ of K to completion, L can execute ε and may
be able to execute some non-empty proper prefixes of κ.
To discuss such situations, we define that ρ ∈ Σ∗ is a
prefix of K if and only if there is π such that ρπ ∈ K.
We write ρ−1K for {π | ρπ ∈ K}. So ρ is a prefix of K
if and only if ρ−1K 6= ∅.

Tree failure equivalence preserves ordinary failures
and is a congruence with respect to “ || ” and “\” [21].
However, it is not the weakest such congruence.

To see why this is the case, let us follow the line
of thought in typical weakest congruence proofs. Take
two LTSs L1 and L2 over Σ that are related by such
congruence, and consider some (σ,K) ∈ Tf(L1). We only
discuss the case K 6= ∅. From this tree failure and some
x /∈ Σ, we can construct LK

σ with alphabet Σ ∪ {x} as
illustrated in Figure 5. This LTS consists of a σ-labelled
path ending in zσ, say, and a tree rooted at zσ. This
tree represents K. Formally, there is a state zρ for each

7

prefix ρ of σ, and for each ρ of the form ρ = σπ, where
π is a prefix of K. For each state zρa where a ∈ Σ, LK

σ

has the transition (zρ, a, zρa). So zε −ρ→ zρ holds for
every zρ ∈ SK

σ . There also is the x-self-loop (zρ, x, zρ)
for every proper prefix of σ, and (zσκ, x, zσκ) for every
κ ∈ K. The initial state is zε.

Since (σ,K) ∈ Tf(L1), by executing σ, L1 can go
to a state s1 from which it cannot execute any member
of K to completion. If L1 does this as a component of
(L1 ||LK

σ)\Σ, the latter goes to the state (s1, zσ) ∈ S1×
SK
σ . By the structure of LK

σ , this state does not enable
x. The same holds for every state that is reachable from
it, because L1 prevents the execution of any member of
K to completion. This means that (L1 ||LK

σ)\Σ has the
(ordinary) failure (ε, {x}).

This must also hold for (L2 ||LK
σ) \Σ, by the choice

of L1 and L2. It holds if and only if the system can
go to a state (s2, z) ∈ S2 × SK

σ from which it cannot
continue to a state that enables x. Here z must be zσρ
for some ρ that is a prefix (but not a member) of K,
ŝ2 =σρ⇒ s2, and s2 must refuse ρ−1K. That is, we
cannot prove that (σ,K) ∈ Tf(L2), we only can prove
that (σρ, ρ−1K) ∈ Tf(L2) for some prefix ρ of K.

This observation motivates the following definition.
The either-part in item 2 handles the case K = ∅, and
overlaps with the or-part (with ρ = ε) when K 6= ∅.

Definition 2. Let L1 and L2 be LTSs. They are fair
testing equivalent if and only if

1. Σ1 = Σ2,
2. if (σ,K) ∈ Tf(L1), then either (σ,K) ∈ Tf(L2) or

there is a prefix ρ of K such that (σρ, ρ−1K) ∈
Tf(L2), and

3. part 2 holds with the roles of L1 and L2 swapped.

Fair testing equivalence is a congruence with respect
to “ ||”, “\”, and some other operators, and the addition
of the comparison of initial stability makes it a congru-
ence also with respect to the choice operator. Our dis-
cussion above indicates that it is the weakest congruence
that preserves ordinary failures. For the same reason, it
is also the weakest congruence that preserves the claim
“in all futures always, there is a future where eventually
x occurs”. Furthermore, if L1 and L2 are fair testing
equivalent, then σ ∈ Tr(L1) implies by the definitions
that (σ, ∅) ∈ Tf(L1), (σ, ∅) ∈ Tf(L2), and σ ∈ Tr(L2).
So fair testing equivalence implies trace equivalence. As
a consequence, it cannot have better reduction methods
than trace equivalence.

In [32] it was proven that trace equivalence is the
only non-trivial alphabet-preserving congruence with re-
spect to “ || ”, “\”, and (functional) renaming that is
strictly weaker than fair testing equivalence. By the triv-
ial alphabet-preserving congruence we mean the one that
unifies two LTSs if and only if they have the same al-
phabets. With also the choice operator, precisely six

sen τ

τ

ττ

rec

sen τ

τ

ττ

rec τ

sen τ τ

τ τ

τ

τ

τ

rec

Fig. 6. A progressing, an intermediate, and a non-progressing LTS

non-trivial alphabet-preserving and eight non-alphabet-
preserving congruences are strictly weaker than fair test-
ing equivalence with initial stability. Four of the six are
rather artificial, one is the trace equivalence, and one
unifies all unstable LTSs while comparing the initial vis-
ible actions of stable LTSs. The latter is the weakest
alphabet-preserving congruence that preserves initial sta-
bility.

Fair testing equivalence is insensitive to divergence in
the sense that for every L, L || τ is fair testing equiv-
alent to L. This means that if only sen and rec are vis-
ible, it abstracts away from the infinite sequences of re-
sending that caused problems in Section 3. On the other
hand, if the protocol can enter a situation from which
rec is no longer possible, fair testing equivalence reveals
it as a refusal of {rec}. As a consequence, mainstream
fairness assumptions are not needed to verify progress.

The notion of progress that can be verified with fair
testing equivalence is strictly weaker than with main-
stream fairness assumptions. Both notions treat the first
LTS in Figure 6 as guaranteeing progress and the last
LTS as not guaranteeing. Fair testing does and the main-
stream notion does not treat the second LTS as yield-
ing progress. This means that if the mainstream no-
tion of progress is the real goal, then fair testing equiva-
lence may fail to reveal some errors but never gives false
alarms. From this perspective, it is thus not perfect, but
better than nothing and easy to use, because there is
no need to formulate fairness assumptions. On the other
hand, sometimes the weaker guarantee of progress pro-
vided by fair testing equivalence is sufficient. On finite-
state LTSs, it actually corresponds to strong fairness
with respect to transitions instead of actions [21].

5 Stubborn Sets

Stubborn set methods for process algebras apply to LTS
expressions of the form

L = (L1 || · · · || Lm) \A .

To discuss them, it is handy to first give indices to the
τ -actions of the Li. Let τ1, . . . , τm be symbols that are
distinct from each other and from all elements of Σ =
Σ1∪· · ·∪Σm. For 1 ≤ i ≤ m, we let L̄i = (Si, Σ̄i, ∆̄i, ŝi),
where

– Σ̄i = Σi ∪ {τi} and
– ∆̄i = {(s, a, s′) | a ∈ Σi ∧ (s, a, s′) ∈ ∆i} ∪

{(s, τi, s′) | (s, τ, s′) ∈ ∆i} .

8

(a)

L̄1

τ1 v

||

L̄2

u τ2

v

b

||

L̄3

a

u

a

(b)

L̄1 || L̄2 || L̄3

τ2
a

a

a

u τ2

τ1

τ1 τ1

τ2 v b

u τ2 v b

a a a

a

a

τ1

τ1 τ1

(c)

L̄1 || L̄2 || L̄3

τ2
a

a

a

u τ2

τ1

τ1 τ1

τ2 v b

u τ2 v b

a a a

a

a

τ1

τ1 τ1

Fig. 7. (a) A system with V = {a, b} and I = {u, v, τ1, τ2}
(b) The LTS and a reduced LTS of (a) obeying D0, D1,

and D2. The reduced LTS consists of the states and transitions on
yellow (grey in black/white print) background, with τ replacing
the labels in I. Stubborn sets are computed with esc(s, x), where
x is the leftmost enabled action in (a)

(c) Like (b), but also V is obeyed

The methods compute a reduced version of

L′ = (L̄1 || · · · || L̄m) \ (A ∪ {τ1, . . . , τm}) .

For convenience, we define

– L̄ = L̄1 || · · · || L̄m ,
– V = Σ \A (the set of visible actions), and
– I = (Σ ∩ A) ∪ {τ1, . . . , τm}

(the set of invisible actions).

Now we can write L′ = (L̄1 || · · · || L̄m) \ I = L̄ \ I.
It follows from the definitions that L′ is the same

LTS as L. The only difference between L̄1 || · · · || L̄m

and L1 || · · · || Lm is that the τ -transitions of the latter
are τi-transitions of the former, where i reveals the Li

from which the transition originates. The hiding of I
makes them τ -transitions again. We have V ∩ I = ∅,
V ∪I = Σ̄ = Σ∪{τ1, . . . , τm}, and L̄ has no τ -transitions
at all (although it may have τi-transitions). Therefore,
when discussing stubborn sets, the elements of V and I
are called visible and invisible, respectively.

If Li has no τ -transitions, then τi is unnecessary. To
simplify our examples, we often drop such τis.

Figure 7 (a) shows an example of L̄1 || · · · || L̄m with
m = 3. In it, L = L′ = (L̄1 || L̄2 || L̄3) \ {u, v, τ1, τ2}. The
corresponding L̄ = L̄1 || L̄2 || L̄3 is shown in (b). We will
refer to this system many times in the sequel, explaining
the rest of the figure.

Each stubborn set method uses a function A that
assigns to each s ∈ S a subset of Σ̄, called a stubborn
set. Before discussing the definition of A, let us see how
it is used. The method computes a subset of S called Sr

and a subset of ∆ called ∆r. It starts by letting Sr =
{ŝ} and ∆r = ∅. For each s that it has put in Sr and
for each a ∈ A(s), it puts in Sr every s′ that satisfies
(s, a, s′) ∈ ∆̄ (unless s′ is already in Sr). Furthermore, it
puts (s, a′, s′) in ∆r (even if s′ is already in Sr), where
a′ = τ if a ∈ I and a′ = a otherwise. The only difference
to the computation of L′ = (S,Σ,∆, ŝ) is that in the
latter, every a ∈ Σ̄ is used instead of every a ∈ A(s).

We will also talk about ∆̄r = {(s, a, s′) | s ∈ Sr ∧
a ∈ A(s)∧ (s, a, s′) ∈ ∆̄}. It is otherwise like ∆r, but the
labels in I have not yet been hidden.

In Figure 7, the elements of Sr and ∆̄r are drawn
on yellow background. To get ∆r, τ must be replaced
for the labels in I. In (b), A(ŝ) = {a}. In (c), A(ŝ) =
{a, b, u, τ2}. There is, however, neither b- nor u-transition
from the initial state, because b and u are disabled there.
We will see in Section 7 why u ∈ A(ŝ) and, in general,
how the A(s) are obtained. The τ1-transition from the
initial state is not on yellow background, because τ1 /∈
A(ŝ).

Let L̄r = (Sr, Σ̄, ∆̄r, ŝ). The LTS

Lr = (Sr, Σ,∆r, ŝ) = L̄r \ I

is the reduced LTS, while

L = L′ = (S,Σ,∆, ŝ)

is the full LTS. Because Lr is easy to obtain from L̄r

and the labels of transitions are more informative in L̄r,
when we say that we show a picture of a reduced LTS,
we sometimes actually show L̄r. We will refer to concepts
in Lr and L̄r with the prefix “r-”, and to L and L̄ with
“f-”. For instance, if s ∈ Sr and ¬(s =σ⇒) holds in Lr

for all σ ∈ K, then s is an r-state and s r-refuses K.
Because Sr ⊆ S and ∆r ⊆ ∆, every r-state is also an
f-state and every r-trace is an f-trace. Furthermore, if an
r-state f-refuses a set, then it also r-refuses the set.

In Figure 7 (b), b and ba are f-traces but not r-traces.
In Figure 7 (c), the f-traces and r-traces are the same.
We will soon state conditions on A that guarantee that
every f-trace of an r-state is also its r-trace.

Typically many different functions could be used as
A, and the choice between them involves trade-offs. For
example, a function may be easy and fast to compute,
but it may also tend to give worse reduction results (that
is, bigger Sr and ∆r) than another more complex func-
tion. Therefore, we will not specify a unique function A.

Instead, we now give four conditions such that ifA(s)
satisfies them in every s ∈ Sr, then the traces of the
system are preserved. The efficient computation of sets
that satisfy the conditions and yield good reduction is
a difficult problem. We will deal with it in two steps in
Sections 7 and 9. The first two conditions are illustrated
in Figure 8.

9

a a

a1a2 · · · an

a1a2 · · · an

s

s′n

a a

a1a2 · · · an

a1a2 · · · an

s

s′

sn

s′n

Fig. 8. Illustrating D1 (left) and D2 (right). The solid states
and transition sequences are assumed to exist and the condition
promises the existence of the dashed ones. The yellow part is in
the reduced LTS, the rest is not necessarily

a1

a1

τ1 τ1
τ1

Fig. 9. An example with A(ŝ) = {τ1} but τ1 and a1 are not
independent, although D1 and D2 hold

D1 If a ∈ A(s), s −a1 · · ·ana→ s′n, and a1, . . . , an are
not in A(s), then s −aa1 · · · an→ s′n.

D2 If a ∈ A(s), s −a1 · · · an→ sn, a1, . . . , an are not
in A(s), and s −a→ s′, then there is s′n such that
s′ −a1 · · · an→ s′n and sn −a→ s′n.

V If A(s) ∩ V ∩ en(s) 6= ∅, then V ⊆ A(s).
SV For each a ∈ V there is an r-state sa and an r-path

from s to sa such that a ∈ A(sa).

Intuitively, D1 says two things. First, it says that a
sequence of actions that are not in the current stubborn
set (a1 · · · an in the definition) cannot enable an action
that is in the current stubborn set (a in the definition).
That is, disabled actions in a stubborn set remain dis-
abled while actions outside the set occur. Second, to-
gether with D2 it says that the enabled actions inside the
current stubborn set are in a certain kind of a commuta-
tivity relation with enabled sequences of outside actions.
In theories where actions are deterministic (that is, for
every s, s1, s2, and a, s −a→ s1 and s −a→ s2 imply
s1 = s2), the then-part of D2 is usually written simply
as sn −a→. It, D1, and determinism imply our current
version of D2. However, we do not assume that actions
are deterministic.

Certain partial order semantic models of concurrency
use a so-called independence relation [16]. Unlike in the
present study, actions are assumed to be deterministic.
If a1 and a2 are independent, then in every state s (1)
if s −a1→ s1 and s −a2→ s2, then there is an s′ such
that s1 −a2→ s′ and s2 −a1→ s′; (2) if s −a1a2→ then
s −a2→; and (3) if s −a2a1→ then s −a1→. It is often
claimed that ample, persistent, and stubborn set meth-
ods rely on an independence relation. This is why they
are classified as “partial order methods”. In reality, they
rely on various strictly weaker relations. For instance,
even if determinism is assumed, D1 and D2 do not im-
ply independence of a1 from a, because they fail to yield
(3). Figure 9 demonstrates that because the definition of
independence refers to all states, an enabled action inside
and outside the stubborn set need not satisfy part (1)

of independence. Please see [36,37] for a more extensive
discussion on this issue.

The names D1 and D2 reflect the fact that together
with a third condition called D0, they guarantee that
the reduced LTS has precisely the same deadlocks as the
full LTS. Indeed, all deadlocks in Figure 7 are on yellow
background. D0 is not needed in the method that is the
main topic of the present study, because its purpose is
not to preserve deadlocks but traces. However, various
issues are much easier to explain in the presence of D0
instead of SV. Therefore, we now present D0 and then a
result that uses it. We will later replace SV for D0.

D0 If en(s) 6= ∅, then A(s) ∩ en(s) 6= ∅.

That is, if s is not a deadlock, then A(s) contains an
enabled action.

To understand how D0, D1, and D2 do their job,
we now prove that they guarantee that deadlocks are
preserved, although the proof can be found in [29] and
elsewhere. We also illustrate how V acts in proofs. It
says that if the stubborn set contains an enabled visible
action, then it contains all visible actions (also disabled
ones). It makes the reduction preserve the ordering of
visible actions. Together with D0, D1, and D2 it guar-
antees that traces that lead to deadlocks are preserved.

Theorem 1. Assume D0, D1, and D2. Assume that
n ∈ N, sn ∈ Sr, s

′ ∈ S is a deadlock, and sn −a1 · · · an→
s′ in L. Then there is a permutation b1 · · · bn of a1 · · · an
such that sn −b1 · · · bn→ s′ in Lr. If also V is assumed,
then b1 · · · bn has the same trace as a1 · · · an.

Proof. To prove the first claim, we use induction on n.
The base case n = 0 is obvious, since then s′ = sn.

If n > 0, then sn −a1→. By D0, there is a ∈ A(sn)
such that sn −a→. If none of a1, . . . , an is in A(sn),
then s′ −a→ by D2, contradicting the fact that s′ is a
deadlock. So there is a smallest i such that 1 ≤ i ≤ n and
ai ∈ A(sn). There is some s′n such that sn −a1 · · ·ai→
s′n −ai+1 · · ·an→ s′ in L. By D1, there is sn−1 ∈ Sr such
that sn −ai→ sn−1 in Lr and sn−1 −a1 · · · ai−1→ s′n in
L. Since sn−1 −a1 · · · ai−1→ s′n −ai+1 · · ·an→ s′ in L,
the induction hypothesis yields sn−1 −b2 · · · bn→ s′ in Lr

for some permutation b2 · · · bn of a1 · · · ai−1ai+1 · · · an.
By choosing b1 = ai we have the claim.

To get the second claim, it suffices to prove that
sn −aia1 · · · ai−1ai+1 · · · an→ s′ has the same trace as
sn −a1 · · · an→ s′. This is obvious if ai ∈ I. If ai ∈ V ,
then ai is an enabled visible action in A(sn). By V, all
visible actions are in A(sn). So a1, . . . , ai−1 are invisible.
As a consequence, again sn −aia1 · · · ai−1ai+1 · · ·an→ s′

has the same trace as sn −a1 · · · an→ s′. ⊓⊔

The system in Figure 7 (a) has the traces ε, a, aa,
ab, b, and ba. Indeed, the reduced LTS in (c) has them
all. However, there was a cost: the reduced LTS in (c) is
much bigger than in (b). We can see from the figure that
ba cannot be preserved unless τ2 ∈ A(ŝ), and aa cannot

10

be preserved unless a or τ1 is in A(ŝ). We will return to
this example in Section 7.

The function A∅ that always returns the empty set
satisfies D1, D2, and V. Its use as A would result in a
reduced LTS that has one state and no transitions. It
is thus obvious that D1, D2, and V alone do not guar-
antee that the reduced LTS has the same deadlocks as
the full LTS. Adding D0 solves the problem for dead-
locks and deadlock traces, but not for all traces, because
{τ1} satisfies D0, D1, D2, and V in the initial state of
(τ1 || a) \ {τ1}. Then a reduced LTS is obtained
whose only transition is a τ -transition from the initial
state to itself, losing the trace a. This is an example of
the ignoring problem mentioned in Section 1.

The condition SV forces the method to investigate,
intuitively speaking, everything that is relevant for the
preservation of the traces. It does that by guaranteeing
that every visible action is taken into account, not neces-
sarily in the current state but necessarily in a state that
is r-reachable from the current state. Taking always all
visible actions into account in the current state would
make the reduction results much worse. In Section 6 we
prove that D1, D2, V, and SV guarantee that the re-
duced LTS is fair testing equivalent (and thus also trace
equivalent) to the full LTS. The details of how SV does
its job will become clear in the proof of Lemma 2.

The name is SV because, historically, a similar condi-
tion was first used to guarantee the preservation of what
is called safety properties in the linear temporal logic
framework [15]. So “S” refers to safety and “V” refers to
the use of the notion of visibility. Recently, an improve-
ment of SV has been found [33,35,37], but its definition
is so complicated that we skip it in the present study.

If V = ∅, then A∅ satisfies also SV. Then Tr(L) =
{ε} = Tr(Lr) even if Lr is the one-state LTS that has no
transitions. That is, if V = ∅, then A∅ is trace-preserving
and yields ideal reduction results.

No matter what V is, the function A(s) = Σ̄ always
satisfies D1, D2, V, and SV (and D0). However, it does
not yield any reduction.

6 The Fair Testing and Tree Failure

Equivalence Preservation Theorems

In most of this section we assume that Lr = (Sr, Σ,∆r, ŝ)
has been constructed with the trace-preserving stubborn
set method in Section 5, that is, obeying D1, D2, V, and
SV. We first show that Lr is fair testing equivalent to
L, where L = (S,Σ,∆, ŝ) denotes the corresponding full
LTS, based on a series of lemmata. Then we demonstrate
that the method does not necessarily preserve tree fail-
ure equivalence, but it can be made to preserve it by
replacing a stronger condition for V.

We first prove a result that will afterwards be used
to prove the induction step in an induction proof. The

ε ε

σn

σn−1λn−1

ai

sn
s0,0

sh,0
sn−1

s′n
s0,n

s′n−1

sh,n

σ ε

σ

ε

s

z

s′

z′

Fig. 10. Illustrating Lemma 2 (left) and Lemma 3 (right)

induction proof will show that if an r-state has a non-
empty f-trace, then the state has the trace also as an r-
trace. By the definition of traces, the f-trace arises from
some path in L. Lemma 2 tells that there is a path in L
that starts at the same state, has the same trace, whose
first part is in Lr, and the rest of whom is shorter than
the original path. The lemma and its proof are illustrated
in Figure 10 left.

Lemma 2. Assume D1, D2, V, and SV. Assume that
n ∈ N, sn ∈ Sr, s

′
n ∈ S, ε 6= σn ∈ V ∗, and there is an

f-path of length n from sn to s′n such that its trace is σn.
Then there are sn−1 ∈ Sr, s

′
n−1 ∈ S, λn−1 ∈ V ∪{ε}, and

σn−1 ∈ V ∗ such that λn−1σn−1 = σn, sn =λn−1⇒ sn−1

in Lr, s
′
n =ε⇒ s′n−1 in L, and there is an f-path of length

n− 1 from sn−1 to s′n−1 such that its trace is σn−1.

Proof. Let s0,0 = sn and s0,n = s′n. Let the f-path
of length n be s0,0 −a1 · · · an→ s0,n. Because σn 6= ε,
there is a v such that 1 ≤ v ≤ n and av ∈ V . By SV,
there are k ∈ N, s1,0, . . . , sk,0, and b1, . . . , bk such that
av ∈ A(sk,0) and s0,0 −b1→ s1,0 −b2→ . . . −bk→ sk,0
in Lr. Let h be the smallest natural number such that
{a1, . . . , an} ∩ A(sh,0) 6= ∅. We have 0 ≤ h ≤ k because
av ∈ A(sk,0). By h applications of D2 at s0,0, . . . , sh−1,0,
there are s1,n, . . . , sh,n such that si,0 −a1 · · · an→ si,n in
L for 1 ≤ i ≤ h and s0,n −b1→ s1,n −b2→ . . . −bh→
sh,n in L. If bi ∈ V for some 1 ≤ i ≤ h, then V ⊆
A(si−1,0) by V. It yields av ∈ A(si−1,0), which contra-
dicts the choice of h. So {b1, . . . , bh} ⊆ I. As a conse-
quence, s0,0 =ε⇒ sh,0 in Lr and s0,n =ε⇒ sh,n in L.

Because {a1, . . . , an} ∩ A(sh,0) 6= ∅, there is a small-
est i such that 1 ≤ i ≤ n and ai ∈ A(sh,0). By D1
at sh,0, there is sn−1 such that sh,0 −ai→ sn−1 in Lr

and sn−1 −a1 · · · ai−1ai+1 · · ·an→ sh,n in L. Let σn−1

be the trace of a1 · · · ai−1ai+1 · · · an. We choose s′n−1 =
sh,n. If ai /∈ V , then we choose λn−1 = ε, yielding
λn−1σn−1 = σn. If ai ∈ V , then V ⊆ A(sh,0) by V, so
none of a1, . . . , ai−1 is in V , and by choosing λn−1 = ai
we obtain λn−1σn−1 = σn. That sn =λn−1⇒ sn−1 in Lr

follows from s0,0 =ε⇒ sh,0 −ai→ sn−1 in Lr. The rest of
the claim is obtained by replacing s′n for s0,n and s′n−1

for sh,n in already proven facts. ⊓⊔

We now show that if an r-state has an (empty or
non-empty) f-trace, then the state has the trace also as
an r-trace. What is more, there is an f-state that is f-
reachable via invisible actions from the end of both the
original f-path and the r-path. This latter property will
be used afterwards to prove that the refusal sets after

11

σn σn

ε

ε

sn
s0,0

s′n
s0,n

sk,0 sk,n

or

σn

ρn−1 ρn−1

ε

ε
ai

sn
s0,0

sh,0
sn−1

s′n
s0,n

s′n−1

sh,n

sk,0

Fig. 11. Illustrating Lemma 4; ai is invisible

the trace in Lr are what they should be. The lemma is
illustrated in Figure 10 right.

Lemma 3. Assume D1, D2, V, and SV. Assume that
n ∈ N, s ∈ Sr, s′ ∈ S, σ ∈ V ∗, and s =σ⇒ s′ in L
due to an f-path of length n. Then there are z ∈ Sr and
z′ ∈ S such that s =σ⇒ z in Lr, z =ε⇒ z′ in L, and
s′ =ε⇒ z′ in L.

Proof. The proof is by induction on n. We start with
the observation that, in case σ = ε, the claim holds with
choosing z = s and z′ = s′. This settles the base case
n = 0 and a subcase of the induction step, and it leaves
us with the case n > 0 and σ 6= ε.

We apply Lemma 2 and get sn−1 ∈ Sr, s
′
n−1 ∈ S,

λn−1 ∈ V ∪{ε}, and σn−1 ∈ V ∗ such that λn−1σn−1 = σ,
s =λn−1⇒ sn−1 in Lr, and s′ =ε⇒ s′n−1 in L. Further-
more, sn−1 =σn−1⇒ s′n−1 in L due to an f-path of length
n − 1, for which the lemma holds by the induction as-
supmtion. Hence, there are z ∈ Sr and z′ ∈ S such that
sn−1 =σn−1⇒ z in Lr, z =ε⇒ z′ in L, and s′n−1 =ε⇒ z′

in L. These give s =λn−1⇒ sn−1 =σn−1⇒ z in Lr and
s′ =ε⇒ s′n−1 =ε⇒ z′ in L, so we are done. ⊓⊔

The next two lemmata deal with refusal sets analo-
gously to how Lemmas 2 and 3 dealt with traces. Lemma
4 has two cases, both of which and whose proofs are il-
lustrated in Figure 11.

Lemma 4. Assume D1 and D2. Assume that n ∈ N,
sn ∈ Sr, σn ∈ V ∗, sn =σn⇒ in Lr, s

′
n ∈ S, and there

is an f-path of length n from sn to s′n such that its trace
is ε. Then either s′n =σn⇒ in L or there are sn−1 ∈ Sr,
s′n−1 ∈ S, and ρn−1 such that ρn−1 is a prefix of σn,
sn =ρn−1⇒ sn−1 in Lr, s′n =ρn−1⇒ s′n−1 in L, and
there is an f-path of length n− 1 from sn−1 to s′n−1 such
that its trace is ε.

Proof. Let s0,0 = sn and s0,n = s′n. Let the f-path of
length n be s0,0 −a1 · · · an→ s0,n; obviously, the ai are
invisible. By the assumption, there is a path s0,0 −b1→
s1,0 −b2→ . . . −bk→ sk,0 in Lr such that its trace is σn.

If {a1, . . . , an}∩A(si,0) = ∅ for 0 ≤ i < k, then k ap-
plications of D2 yield s1,n, . . . , sk,n such that s0,n −b1→

s1,n −b2→ . . . −bk→ sk,n in L. This implies s′n =σn⇒
in L.

Otherwise, there is a smallest h such that 0 ≤ h < k
and {a1, . . . , an} ∩ A(sh,0) 6= ∅. There also is a small-
est i such that 1 ≤ i ≤ n and ai ∈ A(sh,0). Applying
D2 h times yields s1,n, . . . , sh,n such that s0,n −b1→
. . . −bh→ sh,n in L and sh,0 −a1 · · · an→ sh,n in L. By
D1 there is sn−1 such that sh,0 −ai→ sn−1 in Lr and
sn−1 −a1 · · · ai−1ai+1 · · · an→ sh,n in L. The claim fol-
lows by choosing s′n−1 = sh,n and letting ρn−1 be the
trace of s0,0 −b1 · · · bh→ sh,0. ⊓⊔

Lemma 5. Assume D1 and D2. Assume that n ∈ N,
K ⊆ V ∗, κ ∈ K, z ∈ Sr, z

′ ∈ S, and z =ε⇒ z′ due to
an f-path of length n. Assume further that z′ f-refuses K
and z =κ⇒ in Lr. Then there exist s ∈ Sr and a prefix
π of K such that z =π⇒ s in Lr and s r-refuses π−1K.

Proof. The proof is by induction on n. The case n = 0
yields z′ = z, implying z′ =κ⇒ in Lr and, consequently,
in L. On the other hand, κ ∈ K and z′ f-refusesK. These
are in contradiction. So the assumptions cannot all hold
when n = 0, making the case n = 0 hold vacuously.

To prove the induction step, we assume the assump-
tions in the lemma for n and that the lemma holds for
n − 1. We apply Lemma 4 to z, z′, and κ. In the first
case, we would again have the impossible z′ =κ⇒. So
only the second case can hold. According to it, we have
a zn−1 ∈ Sr, z

′
n−1 ∈ S, and prefix ρ of κ and thus of K

such that z =ρ⇒ zn−1 in Lr, z
′ =ρ⇒ z′n−1 in L, and

zn−1 =ε⇒ z′n−1 due to an f-path of length n− 1.
Since z′ f-refusesK, z′n−1 must f-refuse ρ−1K. If zn−1

r-refuses ρ−1K, we can choose s = zn−1 and π = ρ,
and we are done. Otherwise, we can apply the induction
hypothesis to zn−1 =ε⇒ z′n−1 and ρ−1K. This results in
an s ∈ Sr and a prefix π′ of ρ−1K such that zn−1 =π′⇒ s
in Lr and s r-refuses π′−1(ρ−1K) = (ρπ′)−1K. We also
have that ρπ′ is a prefix of K and z =ρπ′⇒ s in Lr. So
after choosing π = ρπ′ we are done. ⊓⊔

We are ready to prove our first main theorem.

Theorem 6. If Lr obeys D1, D2, V, and SV, then it is
fair testing equivalent to L.

Proof. Part 1 of Definition 2 is immediate from the con-
struction.

Let (σ,K) be a tree failure of Lr. That is, there is s ∈
Sr such that ŝ =σ⇒ s in Lr and s r-refuses K. Consider
any ρ ∈ V ∗ such that s =ρ⇒ in L. By Lemma 3, s =ρ⇒
also in Lr. This implies that s f-refusesK and that (σ,K)
is a tree failure of L. In conclusion, part 2 of Definition 2
holds.

Let (σ,K) be a tree failure of L. That is, there is
s′ ∈ S such that ŝ =σ⇒ s′ in L and s′ f-refuses K.
By Lemma 3 there are z ∈ Sr and z′ ∈ S such that
ŝ =σ⇒ z in Lr, s

′ =ε⇒ z′ in L, and z =ε⇒ z′ in L.
Since s′ f-refuses K, also z′ f-refuses K.

12

L1

a u

L2

u τ

(L1 || L2) \ {u}

a

τ

a
τ

τa

Fig. 12. A counterexample to the preservation of all tree failures.
In (L1 ||L2)\{u}, the solid states and transitions are in the reduced
and the dashed ones only in the full LTS

Either z r-refuses K and we are done, or we apply
Lemma 5, giving us an s ∈ Sr and a prefix π of K
such that z =π⇒ s in Lr and s r-refuses π−1K. Hence,
(σπ, π−1K) ∈ Tf(Lr) and part 3 of Definition 2 also
holds. ⊓⊔

We now discuss a counterexample that shows that
the method does not preserve tree failure equivalence.
Consider (L1 ||L2) \ {u}, where L1 and L2 are shown in
Figure 12 left and middle. Initially three sets are stub-
born: {a}, {a, u}, and {a, u, τ2}. If {a} is chosen, then the
LTS is obtained that is shown with solid arrows on the
right in Figure 12. The full LTS also contains the dashed
arrows. The full LTS has the tree failure (ε, {aa}) that
the reduced LTS lacks.

We conclude this section by proving that if V is replaced
by the stronger condition C2 from [3, p. 149], then the
method does preserve tree failure equivalence.

C2 If A(s) ∩ V ∩ en(s) 6= ∅, then A(s) = Σ̄.

C2 says that if the aps set contains an enabled visible ac-
tion, then it must contain all actions. (To be precise, [3]
only requires that the aps set contains all enabled ac-
tions. However, that yields the same reduced LTS.)

Lemma 7. Assume D1, D2, and C2. Assume that n ∈
N, K ⊆ V ∗, sn ∈ Sr, s

′
n ∈ S, and there is an f-path of

length n from sn to s′n such that its trace is ε. Assume
further that s′n f-refuses K. Then there exists s ∈ Sr such
that sn =ε⇒ s in Lr and s r-refuses K.

Proof. We use induction on n. The base case n = 0 is
obvious, because then s′n = sn and f-refusal guarantees
r-refusal.

In the induction step, n > 0. If sn r-refuses K, then
we can choose s = sn and we are done. Otherwise, there
is κ ∈ K such that sn =κ⇒ in Lr. Because s′n f-refuses
K, κ 6= ε. Let b be the first action of κ, and let s0,0 =
sn. So there is a path s0,0 −b1 · · · bk→ sk,0 in Lr such
that bk = b ∈ V and bi ∈ I when 1 ≤ i < k. Let
sn −a1 · · · an→ s′n be the path in L of length n. The ai
are invisible, because the trace of the path is ε. Because
n > 0, a1 exists. By C2, A(sk−1,0) = Σ̄. So there is
a smallest h such that 0 ≤ h < k and {a1, . . . , an} ∩
A(sh,0) 6= ∅.

Similarly to the last paragraph of the proof of Lemma
4, h applications of D2 followed by an application of D1

yield an i, sn−1, and s′n−1 such that sn −b1 · · · bhai→
sn−1 in Lr, sn−1 −a1 · · · ai−1ai+1 · · · an→ s′n−1 in L, and
s′n −b1 · · · bh→ s′n−1 in L. Because h < k, the bj are
invisible. So sn =ε⇒ sn−1 in Lr, there is an f-path of
length n − 1 from sn−1 to s′n−1 with the trace ε, and
s′n =ε⇒ s′n−1 in L. Because s′n f-refuses K, also s′n−1

f-refuses K. By the induction hypothesis, there is s ∈ Sr

such that sn−1 =ε⇒ s in Lr and s r-refuses K. Because
sn =ε⇒ sn−1 in Lr was already shown, sn =ε⇒ s in Lr

and we have the claim. ⊓⊔

Theorem 8. If Lr obeys D1, D2, C2, and SV, then it
is tree failure equivalent to L.

Proof. It is immediate from the construction that Σ1 =
Σ2. The second part of the proof of Theorem 6 actually
shows that if (σ,K) is a tree failure of Lr, then it also
is a tree failure of L. Because C2 implies V, this fact
applies also here.

It remains to be proven that if (σ,K) is a tree failure
of L, then it also is a tree failure of Lr. So we assume
that there is s′ such that ŝ =σ⇒ s′ in L and s′ f-refuses
K. By Lemma 3 there are z ∈ Sr and z′ ∈ S such that
ŝ =σ⇒ z in Lr, z =ε⇒ z′ in L, and s′ =ε⇒ z′ in L.
Since s′ f-refuses K, also z′ f-refuses K. By Lemma 7,
there is s ∈ Sr such that z =ε⇒ s in Lr and s r-refuses
K. Clearly ŝ =σ⇒ s in Lr via z, so we are done. ⊓⊔

7 On Computing Stubborn Sets

The computation of stubborn sets that satisfy D1, D2,
V, and SV and yield good reduction consists of two quite
different tasks. First, sets that satisfy D1, D2, V, and an
additional property called D0V are computed based on
information on only the current state. Second, based on
information on more than one state, algorithms that per-
form the first task are executed in a coordinated man-
ner to enforce SV. How to do this has been described
in [29,33,37,39], among others. However, as we will ar-
gue in Section 9, SV often holds automatically. Section 9
also introduces D0V. In this section we discuss one algo-
rithm for the first task using, for simplicity, D0 instead
of D0V. We emphasize that it is not the only good al-
gorithm. Other possibilities have been discussed in [28,
36], among others.

Because the expression under analysis is of the form
(L̄1 || · · · ||L̄m)\I, its states are of the form (s1, . . . , sm),
where si ∈ Si for each 1 ≤ i ≤ m. We employ the
notation eni(si) = {a | ∃s′i : (si, a, s

′
i) ∈ ∆̄i}, that is, the

set of actions that are enabled in si in L̄i. We have τ /∈
eni(si) ⊆ Σ̄i = Σi∪{τi}. Furthermore, if a /∈ en(s), then
there is at least one i such that a ∈ Σ̄i and a /∈ eni(si).
Let dis(s, a) denote the smallest such i. For instance, in
Figure 7, en1(ŝ1) = {v, τ1}, en2(ŝ2) = {u, τ2}, en3(ŝ3) =
{a}, dis(ŝ, u) = 3, and dis(ŝ, v) = 2.

We start by presenting a sufficient condition for D1
and D2 that does not refer to other states than the cur-
rent.

13

a τ2
v τ1

b u

Fig. 13. The “❀ŝ”-graph of the system in Figure 7

Theorem 9. Assume that the following hold for s =
(s1, . . . , sm) and for every a ∈ A(s):

1. If a /∈ en(s), then there is i such that 1 ≤ i ≤ m,
a ∈ Σ̄i, and a /∈ eni(si) ⊆ A(s).

2. If a ∈ en(s), then for every i such that 1 ≤ i ≤ m
and a ∈ Σ̄i we have eni(si) ⊆ A(s).

Then A(s) satisfies D1 and D2.

Proof. Let a1 /∈ A(s), . . . , an /∈ A(s).

Let first a /∈ en(s). Obviously s −a→ does not hold,
so D2 is vacuously true. We prove now that D1 is as
well. By condition 1, there is i such that L̄i disables a
and eni(si) ⊆ A(s). To enable a, it is necessary that
L̄i changes its state, which requires that some action in
eni(si) occurs. These are all in A(s) and thus distinct
from a1, . . . , an. So s −a1 · · · ana→ cannot hold.

Let now a ∈ en(s). Our next goal is to show that
there are no 1 ≤ j ≤ m and 1 ≤ k ≤ n such that both
a ∈ Σ̄j and ak ∈ Σ̄j. To derive a contradiction, con-
sider a counterexample where k has the smallest possible
value. So none of a1, . . . , ak−1 is in Σ̄j . If s −a1 · · ·an→,
then there is s′ such that s −a1 · · · ak−1→ s′ −ak→.
Obviously ak ∈ enj(s

′
j). This implies ak ∈ enj(sj), be-

cause L̄j does not move between s and s′ since none of
a1, . . . , ak−1 is in Σ̄j . By condition 2, enj(sj) ⊆ A(s).
This contradicts ak /∈ A(s).

This means that the L̄j that participate in a are dis-
joint from the L̄j that participate in a1 · · · an. From this
D1 and D2 follow by well-known properties of the par-
allel composition operator. ⊓⊔

Theorem 9 makes it easy to represent a sufficient con-
dition for D1 and D2 as a directed graph that depends on
the current state s. The set of the vertices of the graph is
Σ̄. There is an edge from a ∈ Σ̄ to b ∈ Σ̄, denoted with
a ❀s b, if and only if a 6= b and either a /∈ en(s) and
b ∈ eni(si) where i = dis(s, a), or a ∈ en(s) and there is
i such that a ∈ Σ̄i and b ∈ eni(si). The graph for the
initial state of Figure 7 (b) is shown in Figure 13 without
the dashed edge. Enabled actions are shown with double
circles and visible actions with grey circles.

By the construction, if A(s) is closed under the graph
(that is, for every a and b, if a ∈ A(s) and a ❀s b, then
b ∈ A(s)), then A(s) satisfies D1 and D2. To also satisfy
D0, it is necessary and sufficient that either there are no
enabled actions, or the closed set contains an enabled
action. Many closed sets can be found in Figure 13, in-
cluding ∅, {a}, {a, u}, and {a, u, τ2}. D0 rules out ∅ and
accepts the rest. Of the rest, {a} and {a, u} are equally

good and better than the others, because their only en-
abled action is a, while the others also have at least τ2.
This is why A(ŝ) = {a} in Figure 7 (b).

It is not necessary for correctness to use the smallest
i, when more than one L̄i disables a. The choice to use
the smallest i was made to obtain a fast algorithm and
to avoid confusion in the examples. An alternative algo-
rithm (called deletion algorithm in [28]) is known that
exploits the freedom to choose any i that disables a. It
has the potential to yield smaller reduced LTSs than the
algorithm described in this section. On the other hand,
it consumes more time per constructed state.

Furthermore, the condition in Theorem 9 and the
corresponding “❀s”-relation are not the weakest possi-
ble to achieve D1 and D2. To see this, we now discuss
two scenarios.

Assume that w writes to a finite-capacity fifo L̄f , r
reads from it, and they have no other L̄i in common.
Although Σ̄f links them, we need not declare w ❀s r
when w is enabled, and we need not declare r ❀s w when
r is enabled, since they commute if both are enabled. We
will exploit this in Section 10. (On the other hand, when
the fifo is empty, it may be that dis(s, r) = f , yielding
r ❀s w. That is, to enable reading from a fifo that is
currently empty, it is necessary to write something to it.
Similarly, when the fifo is full, w ❀s r may hold, because
to enable writing, one has to make room in the fifo.) At
the LTS level, it is laborious to detect if any of the L̄i

models a fifo, while at a higher level of description, it
has usually been mentioned explicitly.

As another scenario, if i = dis(s, a) and there is no
path in L̄i from si to any s′i with a ∈ eni(s

′
i), then a is

permanently disabled, so a ❀s b need not be declared
for any b ∈ eni(si) – and, indeed, for any b at all. Con-
sider the state in Figure 7 that is reachable by executing
aτ2. In it, u is permanently disabled by L̄2. However, the
condition in Theorem 9 unnecessarily declares u ❀s v.
Because systems are often meant to repeat the same ac-
tivity forever (for instance, the protocols in Section 3 are
not meant to deliver two messages and then stop, but are
meant to deliver messages as long as there are any to de-
liver), LTSs are often strongly connected, so testing this
condition at the LTS level would often be wasted work.
Testing it becomes worthwile if higher-level knowledge
tells that the LTS is not strongly connected.

These scenarios illustrate that the more knowledge
there is about the system at a level higher than the LTS,
the more optimizations tend to be available. As a con-
sequence, trying to make the condition in Theorem 9 as
weak as possible would not succeed, and it would make
it very hard to read. On the other hand, D1, D2, and
so on have been made very weak, with the hope that
when new optimizations are found, it would suffice to
prove that they guarantee D1, D2, and so on, instead of
having to prove anew all correctness theorems, such as
Theorems 6 and 8 in the present publication.

14

It is trivial to also take V into account in the graph
representation of the stubborn set computation problem.
It suffices to add the edge a ❀s b from each a ∈ V ∩en(s)
to each b ∈ V \ {a}. This extended edge set is what we
denote by “❀s” henceforth. In the case of Figure 13, the
dashed edge a ❀ŝ b is added. Then there are four closed
sets: ∅, {a, b, u, τ2}, {a, b, u, v, τ2}, and {a, b, u, v, τ1, τ2}.
Again, D0 rules out ∅. All the other three have at least
two enabled actions, a and τ2. The last one is infe-
rior, because it also has the enabled τ1. In Figure 7
(c), {a, b, u, τ2} was chosen, but {a, b, u, v, τ2} could have
been chosen as well.

At this point we emphasize that the graph (Σ̄,“❀s”)
need not be represented as an explicit data structure.
So its use does not entail the cost of constructing it for
every s ∈ Sr. Instead, there is a piece of program that,
given a and having access to s and every L̄i, returns,
one by one, the b such that a ❀s b. If a is enabled, it
finds every i such that a ∈ Σ̄i, finds each si, and returns
the labels of the output transitions of si in L̄i except
a itself. (As a matter of fact, it is harmless to return a
itself. So it is unnecessary to write additional code to
protect against returning a itself.) If a is disabled, it
computes i = dis(s, a), finds si, and continues like when
a is enabled.

Let “❀∗
s” denote the reflexive transitive closure of

“❀s”. By the definitions, if a ∈ Σ̄, then {b | a ❀
∗
s b}

satisfies D1 and D2 (and V, if “❀s” respects it). We
denote it with clsr(s, a). If A ⊆ Σ̄, by clsr(s, A) we mean⋃

a∈A clsr(s, a). Both can be computed quickly with well-
known elementary graph search algorithms.

D0 may be enforced by choosing an enabled a and
computing A(s) = clsr(s, a). Unfortunately, the quality
of the result is vulnerable to the choice of a. In Figure 13,
clsr(ŝ, τ1) yields a worse result than clsr(ŝ, a).

Therefore, we employ an algorithm called esc(s, a),
for “enabled strong component”. Applied at some state
s, it uses a as the starting point of a depth-first search
in (Σ̄, “❀s”). During the search, the strong components
(that is, the maximal strongly connected subgraphs) of
(Σ̄, “❀s”) are recognized using Tarjan’s algorithm [6,
8,24]. It recognizes each strong component at the time
of backtracking from it. When esc(s, a) finds a strong
component C that contains an action enabled at s, it
stops and returns clsr(s, C) as the result; note that a
might not be in C. If esc(s, a) does not find such a strong
component, it returns clsr(s, a).

Obviously esc(s, a) ⊆ clsr(s, a). So esc(s, a) has po-
tential for better reduction results. By the properties of
Tarjan’s algorithm, all enabled actions of clsr(s, C) are
in C. Therefore, esc(s, a) is optimal in the sense that
no closed proper subset of esc(s, a) contains enabled ac-
tions. In Figure 13, no matter what x is, esc(ŝ, x) returns
{a} in the absence and {a, b, u, τ2} in the presence of the
dashed edge. In contrast, clsr(ŝ, b) = {a, b, u, τ2} in the

absence and clsr(ŝ, τ1) = {a, b, u, v, τ1, τ2} in the pres-
ence of the dashed edge.

Tarjan’s algorithm adds very little overhead to depth-
first search, in particular if the optimizations in [6,8] are
exploited. Therefore, esc(s, a) is never much slower than
clsr(s, a). On the other hand, esc(s, a) might find a suit-
able strong component early on, in which case it is much
faster than clsr(s, a).

The publicly available ASSET tool [31] contains an
implementation of this algorithm, with the modification
that instead of returning any set, it executes each en-
abled action that it finds (that is, finds the s′ such that
s −a→ s′ and puts (s, a, s′) in ∆̄r), and terminates when
the C described above has been processed. It returns a
truth value telling whether it executed at least one ac-
tion.

8 On the Performance of Various Conditions

In this section we discuss some problems in the use of
aps sets that have not received as much attention in the
literature as they deserve. In addition to pointing out
potential topics for future research, they motivate the
approach in Section 9.

The goal of aps set methods is to alleviate the state
explosion problem. Therefore, reducing the size of the
state space is a main issue. However, if the reduction in-
troduces too much additional work per preserved state,
then time is not saved. So the cost of computing the
aps set is important. Also the software engineering issue
plays a role. Little is known on the practical performance
of ideas that have the biggest theoretical reduction po-
tential, because they are complicated to implement, so
few experiments have been made. For instance, first big
experiments on weak stubborn sets [28] and the deletion
algorithm [28] appeared in [13].

Often a state has more than one aps set. Let T1 and
T2 be two of them and let E(T1) and E(T2) be the sets
of enabled actions in T1 and T2. It is obvious that if the
goal is to preserve deadlocks and if E(T1) ⊆ E(T2), then
T1 can lead to better but cannot lead to worse reduction
results than T2. We are not aware of any significant re-
sult on the question which should be chosen, T1 or T2,
if both are aps, E(T1) 6⊆ E(T2), and E(T2) 6⊆ E(T1). Let
us call it the non-subset choice problem. Already [26]
gave an example where always choosing the set with
the smallest number of enabled actions does not yield
the best reduction result. Recently it has been observed
that always choosing a singleton stubborn set if one is
available does not necessarily guarantee best reduction
results [37].

Figure 14 illustrates that the order in which the com-
ponent LTSs of a system are given to a tool can have a
tremendous effect on the running time and the size of
the reduced LTS. In it, the stubborn sets are computed
with the esc(s, a)-algorithm, picking the starting points

15

(L̄1 || L̄2 || L̄3 || L̄4)r
τ2 v b

u τ2 v b

a a a

a

a

τ1

τ1 τ1τ4
τ4

τ4

(L̄4 || L̄1 || L̄2 || L̄3)r

Σ̄
τ4

L̄4

τ4

Fig. 14. Two reduced LTSs, where L̄1, L̄2, and L̄3 are from Fig-
ure 7, and L̄4 is shown on bottom right. The alphabet of the LTS
on top right is Σ̄

from the alphabet of the first LTS, then from the alpha-
bet of the second, and so on, until a suitable set is found
or the LTSs are exhausted. The method that preserves
deadlocks and traces that lead to them is used. That is,
D0, D1, D2, and V are obeyed, but not necessarily SV.

In the case of (L̄1 || L̄2 || L̄3 || L̄4)r, the algorithm
finds the same stubborn sets as in Figure 7 (c), except
when Figure 7 (c) deadlocks. In the latter states, no
enabled actions are found from Σ̄1, Σ̄2, and Σ̄3, so the
algorithm proceeds to Σ̄4 = {τ4}. Therefore, it tries τ4
and finds that it introduces a self-loop to the state. The
algorithm thus correctly finds out that the system has
no deadlocks.

With (L̄4 || L̄1 || L̄2 || L̄3)r, the algorithm tries Σ̄4 first.
Therefore, it uses {τ4} as the stubborn set already in the
initial state, and thus constructs the self-loop ŝ −τ4→ ŝ.
D0, D1, D2, and V do not tell it to investigate anything
else. So it stops extremely quickly, after constructing
only one state and one transition. Again, the algorithm
correctly finds out that the system has no deadlocks.

It is clear that any parallel composition could be in
the place of L̄1 || L̄2 || L̄3 in the above example. Further-
more, similar examples can be constructed also in the
presence of SV. For instance, one input order could lure
the algorithm into investigating a huge sub-LTS that has
no occurrences of visible actions, while it is avoided with
another input order. These examples mean that the very
same method and verification program can give dramat-
ically different results on the very same example system,
if the system is written in two different orders. A similar
observation on dynamic partial order redcution has been
made in [14]. For this and other reasons, measurements
are not as reliable for comparing different methods as we
would like.

Technically, optimal sets could be defined, for in-
stance, as those (not necessarily aps) sets of enabled ac-
tions that yield the smallest reduced state space that
preserves the deadlocks. Unfortunately, it was shown
in [36] that finding subsets of transitions of a 1-safe Petri
net that are optimal in this sense is at least as hard as
testing whether the net has a deadlock. Another similar
result was proven in [3, p. 154]. Therefore, without ad-
ditional assumptions, optimal sets are too hard to find.

This negative result assumes that optimality is de-
fined with respect to all possible ways of obtaining infor-

u

u

u ||

v

v

v =

11

21

31

12

22

32

13

23

33

v

v

u
v

v

u
v

v

u

u

v
u

u

v

u
u

u
v

Fig. 15. Actions are tried in the order u, v until one is found
that does not close a cycle. If such an action is not found, then all
actions are taken

mation on the behaviour of the system. Indeed, optimal
sets can be found by first constructing and investigating
the full state space. Of course, aps set methods do not do
so, because constructing the full state space is what they
try to avoid. In [36], a way of obtaining information was
defined such that most (but not all) deadlock-preserving
aps set methods conform to it. Using non-trivial model-
theoretic reasoning, it was proven in [36] that, in the
case of 1-safe Petri nets, the best possible (not neces-
sarily aps) sets that can be obtained in this context are
of the form E(esc(s, a)) for some a. (Unfortunately, we
do not know which a to choose.) In this restricted but
nevertheless meaningful sense, the esc(s, a)-algorithm is
optimal.

The situation is much more complicated when pre-
serving other properties than deadlocks. We only dis-
cuss one difficulty. Instead of SV, [3, p. 155] assumes
that the reduced state space is constructed in depth-
first order and tells to choose an aps set that does not
close a cycle if possible, and otherwise use all enabled
actions. In [5] it was demonstrated that this condition
performs badly on a variant of the dining philosophers’
system. Figure 15 shows an example where this condition
causes the method to zigzag through the LTS such that
all reachable states are constructed, although the com-
ponent LTSs do not interact at all. SV is less vulnerable
to but not totally free from this kind of difficulties. Far
too little is known on this problem area.

In general, it is reasonable to try to find as weak
conditions as possible in place of D1, V, SV, and so on,
because the weaker a condition is, the more potential
it has for good reduction results. Because of the non-
subset choice problem and other similar problems, it is
not certain that the potential can be exploited in prac-
tice. However, if the best set is ruled out already by the
choice of the condition, then it is certain that it cannot
be exploited.

For instance, instead of V, [3, p. 149] requires the
condition C2 that we met in Section 6. It is strictly
stronger than V and thus has less potential for reduc-
tion. Furthermore, the algorithm in Section 7 can exploit
the additional potential of V at least to some extent. In
Figure 7 (c), τ1 ∈ en(ŝ) and τ1 /∈ A(ŝ). On the other
hand, C2 would force to take τ1 into the set, because

16

a ∈ A(ŝ) ∩ V ∩ en(ŝ). So V yields better reduction than
C2 in this example.

This also illustrates why stubborn sets are defined
such that they may contain disabled actions. The part
V ⊆ A(s) in the definition of V could not be formu-
lated easily, or perhaps not at all, if A(s) cannot contain
disabled actions. For instance, V ∩ en(s) ⊆ A(s) fails,
because it lets to choose A(ŝ) = {a} and thus loses the
trace b in Figure 7 (c).

9 The SV Condition Often Holds Automatically

In this section we make the novel observation that if the
stubborn sets are computed using the visible actions as
the starting points, then either SV holds or the system
and its reduced LTS exhibit pathological behaviour. This
means that the implementations of SV presented in [29,
33,37,39], among others, are usually not needed. There-
fore, we do not present any in this study, but, of course,
they can be used if considered necessary.

The observation continues a line of research started
in [34], whose conference version was published in 2015.
We say that a system is always may-terminating if and
only it from every reachable state, it can continue to
a deadlock. The main result of [34] was that it is easy
to check from the reduced LTS whether the system is
always may-terminating, and if it is, then SV holds au-
tomatically. This means that when we want the system
be always may-terminating, then we need not implement
SV (even if we do not know whether it indeed is always
may-terminating). We could apply this idea to our ex-
ample protocols by adding a sending client to the mod-
els that in its initial state chooses between entering a
deadlock or executing senN or senY and then return-
ing to the initial state. In this section we obtain results
of similar spirit, with weaker conditions in the place of
may-termination.

We first investigate the following easily implement-
able condition that is strictly weaker than SV.

D0V If en(s) 6= ∅, then V ⊆ A(s) or A(s) ∩ en(s) 6= ∅.

D0V is strictly weaker than D0 (also in the presence
of D1, D2, and V), because it is implied by D0 but allows
A(s)∩ en(s) = ∅ when there are enabled actions outside
but not inside clsr(s, V). D0V is implied by SV, because
if A(s) ∩ en(s) = ∅, then the sa in SV can only be s
itself, so a ∈ A(s) for each a ∈ V . D0V combined with
D1, D2, and V does not guarantee the preservation of
traces, because it allows A(ŝ) = {τ1} in τ1 || a.

Our strategy is to only use subsets of clsr(s, V) as
stubborn sets, to avoid executing actions that do not
contribute towards satisfying SV. If clsr(s, V) contains
no enabled actions, then no actions need to be executed,
because A(s) = clsr(s, V) implies V ⊆ A(s), making
D0V hold in s and SV hold in every r-state from which
s is r-reachable. There may be enabled actions also in

this case, but they are invisible and cannot lead to oc-
currences of visible actions.

D0V with D1, D2, and V can be implemented by
computing esc(s, a) for each a ∈ V until an enabled ac-
tion is encountered or V is exhausted, taking the union
of the results. We call this the esc(s, V)-algorithm. In the
former case, esc(s, V) = esc(s, a′) ∪

⋃
a∈V ′ clsr(s, a) and

esc(s, V)∩en(s) = esc(s, a′)∩en(s), where a′ is the a ∈ V
that yielded an enabled action, and V ′ is the set of a ∈ V
that were tried before a′. In the latter case, esc(s, a) =
clsr(s, a) for each a ∈ V , so esc(s, V) = clsr(s, V).

The esc(s, V)-algorithm inputs a single state and re-
turns a stubborn set in it. By the D0V-algorithm we
mean the algorithm that constructs a reduced LTS by
always choosing A(s) = esc(s, V). The D0V-algorithm
inputs a system description and produces a reduced LTS
that satisfies D0V, D1, D2, and V, but not necessarily
SV.

We say that an LTS is always may-stabilizing, if and
only if from every reachable state, a stable state is reach-
able. It is always may-progressing, if and only if from
every reachable state, a deadlock or an occurrence of
a visible action is reachable. (Calling a deadlock may-
progress arises from the fact that it is easy to check from
each deadlock state whether it represents intended or
erroneous termination. So in the present context, dead-
locks can be ignored as a sub-case that has already been
solved.)

Lemma 10. If an LTS is always may-stabilizing, then
it is always may-progressing.

Proof. If L is always may-stabilizing, then from every
s ∈ S, a stable s′ is reachable. If s′ is not a deadlock,
then it has an outgoing transition. Its action is visible,
because otherwise s′ would not be stable. ⊓⊔

The following observation is important.

Theorem 11. If Lr obeys D0V and V and is always
may-progressing or always may-stabilizing, then it obeys
SV.

Proof. To prove the first claim, let Lr be always may-
progressing and s ∈ Sr. By the definition of always may-
progressing, at least one of the following two cases ap-
plies to some s′ that is r-reachable from s. Each case
yields V ⊆ A(s′), making SV hold for s.

If s′ −a→ in Lr where a ∈ V , then V ⊆ A(s′) by V.
If s′ is an r-deadlock, then D0V yields either V ⊆

A(s′) or that s′ is an f-deadlock. In the latter case we
can use A(s′) = Σ̄ without loss of reduction, and thus
have V ⊆ A(s′) in any case.

The second claim follows from Lemma 10. ⊓⊔

That Lr is always may-progressing can be checked
in linear time with breadth-first or depth-first search,
using r-deadlocks and tail states of visible r-transitions

17

as starting points and traversing the r-transitions back-
wards.

So we can construct a reduced LTS for the system
obeying D0V, D1, D2, and V with the D0V-algorithm,
and then test whether it is always may-progressing. If it
is, we can use it. Let us study some facts that together
suggest that always may-progressing reduced LTSs are
common.

Lemma 12. Assume D1 and D2. If the system is al-
ways may-stabilizing, then also the reduced LTS is.

Proof. Let sn ∈ Sr, and let sn −a1 · · ·an→ s be an f-
path to an f-stable f-state s. We show by induction on
n that there is an r-path from sn to an r-stable r-state.
Because any f-stable r-state is also r-stable by ∆r ⊆ ∆,
the base case n = 0 holds.

Let now n > 0. If sn is r-stable, the claim holds
trivially. Otherwise there is a ∈ I ∩ en(sn) ∩ A(sn). If
none of a1, . . . , an is in A(sn), then D2 yields s −a→,
contradicting the f-stability of s. So there is a small-
est i such that 1 ≤ i ≤ n and ai ∈ A(sn). By D1,
there is sn−1 ∈ Sr such that sn −ai→ sn−1 in Lr and
sn−1 −a1 · · · ai−1ai+1 · · · an→ s in L. By the induction
assumption, an r-stable r-state is r-reachable from sn−1,
and thus from sn. ⊓⊔

The opposite does not necessarily hold even when
adding V, D0, and SV, since A(ŝ) = {a} = V satisfies
D0, D1, D2, V, and SV on τ1 || a, yielding Lr =

a.
The system τ1 || a is always may-progressing,

the choice A(ŝ) = {τ1} is allowed by D0V, D1, D2, and
V, and it yields the reduced LTS τ1 that is not always
may-progressing. So there is no analogy of Lemma 12
about always may-progressing systems.

Many (but not necessarily all) correct systems have
the property that if the system is not given any input
(such as sen), then the system eventually stops to wait
for input or at least keeps on having the ability to do so.
This means that the system is always may-stabilizing. By
Lemma 12, its reduced LTS is always may-progressing.
As can be seen from Figure 3, the alternating bit pro-
tocol is always may-stabilizing. Thanks to the following
lemma, we can reason that also the self-synchronizing
alternating bit protocol is always may-stabilizing.

Lemma 13. Consider any LTS. If s is a state from
which no stable state is reachable, then s diverges, and
so does every state that is reachable from s.

Proof. Choose s0 = s. Assume we have found s0 −τ→
s1 −τ→ s2 −τ→ · · · −τ→ sn in L; this holds for n = 0
since then the execution is just s0. By assumption, there
is some sn −τ→ sn+1. By induction, this constructs a
diverging execution. Also by assumption, a state reach-
able from s cannot reach a stable state, so the second
claim follows. ⊓⊔

b

b

||

b

τ2 τ2

u τ2

||

u

||

u

a

a

=

b

τ2

u

τ2

τ2

a a

a a

a a

τ2

τ2

τ2τ2

τ2

τ2τ2

τ2

τ2

s0

s1

s2

s12

s4 s7 s10

s3 s6 s9

s5
s8 s11

Fig. 16. A system with V = {a, b} and I = {u, τ2} that yields a
not always may-progressing reduced LTS

In the self-synchronizing alternating bit protocol, sen,
rec, ok, and err are visible. Of the rest, let us call f̄0,
f̄1, and so on barred, and f0, f1, and so on unbarred. In
the protocol, the invisible transitions always arise from
a barred action synchronizing with its unbarred coun-
terpart. Thus, if we can bound the number of possible
unbarred action occurrences in the components after the
last visible action, we cannot have a diverging execution.
Let nD and nA denote the number of D-cells and A-cells.

Let us assume that there is a reachable state of the
protocol with a diverging execution. Without the vis-
ible transitions, Sender has no cycle with an unbarred
transition; along the execution, it can perform at most
two unbarred transitions. So let us concentrate on the
diverging execution after the last one of those.

In all components, each unbarred transition is fol-
lowed by a barred or visible one. Thus, the first D-cell
can perform at most 1 unbarred action and then blocks,
since Sender will not perform such a transition anymore.
Similarly, the second D-cell can perform at most 2 un-
barred actions, etc., Receiver at most nD + 1, the first
A-cell at most nD + 2, etc., and the last A-cell at most
nD+nA+1. By the discussion above, this contradicts our
assumption. Hence, the system has no divergence traces.

By ∆r ⊆ ∆, no reduced LTS of the system has di-
vergence traces either. By Lemma 13, Lr will be always
may-stabilizing.

Please notice that the user of the D0V-algorithm
need not reason like this. It suffices that they run the
algorithm and detect that the resulting reduced LTS is
always may-progressing.

We now start to investigate the case where the result is
not always may-progressing. The reduced LTSs in Fig-
ure 14 are not always may-progressing. However, the
D0V-algorithm was not used when constructing them.
If it is used, then always A(s) ⊆ clsr(s, V). Because
τ4 /∈ clsr(s, V), it yields an LTS that is isomorphic to Fig-
ure 7 (c), thus always may-progressing. A similar thing
happens with τ1 || a: the D0V-algorithm yields

a from it.
Figure 16 shows an example where things are not so

nice. The D0V-algorithm produces a not always may-
progressing (and not trace-preserving) reduced LTS in
it. In s3, the stubborn set computation begins with a.

18

Because a is visible and enabled, a ❀s3 b. We have
b ❀s3 τ2, because dis(s3, b) = 2. Furthermore, τ2 6❀s3 x
for every action x. So A(s3) = esc(s3, V) = {τ2}. The
algorithm executes s3 −τ2→ s4. In s4 we get the same
stubborn set for the same reason as in s3. In the next
state s5 we have a ❀s5 b ❀s5 τ2, b ❀s5 u, and τ2 ❀s5 u.
Because dis(s5, u) = 3, we do not have u ❀s5 x for
any x. So A(s5) = esc(s5, V) = {u, τ2}. The action u
is disabled, and the execution of τ2 leads to s3 that has
already been processed. The algorithm terminates ignor-
ing a.

It is obvious with Figure 16 that to preserve the
traces, a must be executed in s3, s4, or s5. For the sake
of an example, we extend A(s3) such that it becomes
clsr(s3, a) = {a, b, τ2}, and let the D0V-algorithm con-
tinue. It constructs the transition s3 −a→ s6. It turns
out that “❀s6”, “❀s7”, and “❀s8” are the same as
“❀s3”, “❀s4”, and “❀s5”, respectively. Therefore, the
algorithm constructs s6 −τ2→ s7 −τ2→ s8 −τ2→ s6 and
terminates. If we again intervene and force the algorithm
to construct s6 −a→ s9, it continues by constructing
the last two states. All states of the parallel composition
would be constructed.

In this example, the D0V-algorithm computed a ter-
minal strong component only containing occurrences of
invisible actions, although an occurrence of a visible ac-
tion was reachable in the full LTS. Let us call the ac-
tions in the stubborn sets of such a component unpro-
ductive, and the remaining enabled actions productive.
We also call the component unproductive. In the exam-
ple, u and τ2 are unproductive and a is productive. The
reduction result was bad, because the occurrence of a
did not change the relevant part of the “❀s”-relation,
so the enabled unproductive actions were executed again
after a.

If a productive action could enable or disable any of
the unproductive actions, by D1 and D2 it would not
have been ignored. So the only way an occurrence of a
productive action can change the relevant part of the
“❀s”-relation is by making dis(s, u) smaller for some
disabled unproductive u. This means that if the D0V-
algorithm constructs an unproductive terminal strong
component, there is a high risk that if SV is made to
hold using only ideas in the earlier publications, there
will eventually be many copies of the component, so the
reduction results will not be good. This is what hap-
pened with Figure 16.

A solution to this problem was found very recently
[35]. It is based on “freezing” the unproductive actions,
that is, computing the stubborn sets of the subsequent
states as if the frozen actions did not exist at all. Also [33]
presents a freezing technique, but it solves a different
problem and is thus not the same. In the latter, the goal
was to preserve divergence traces.

10 An Experiment

In this section we discuss analysis experiments on the
self-synchronizing alternating bit protocol, using the AS-
SET tool [31,34]. ASSET does not input parallel com-
positions of LTSs, but it allows to mimic their behaviour
with C++ code. It also allows to express the “❀s” re-
lation in C++ and computes stubborn sets with the
esc(s, a)-algorithm, trying each a ∈ Σ̄ as a starting point
until an enabled action is encountered or Σ̄ is exhausted.
The result obeys D0, D1, D2, and V.

ASSET contains neither a mechanism for ensuring
SV nor an implementation of a test whether the result
is always may-progressing. However, it can test whether
the result is always may-terminating. We used this test
to show that the reduced LTS is always may-progressing,
by first adding a visible transition to deadlock to each
tail state of sen in Sender. Then ASSET verified that
the modified protocol passes this test and that all of its
deadlocks are due to the added transitions. This shows
that the original protocol can always continue to a state
where sen is enabled, and is thus always may-progressing.
Furthermore, in Section 9 we obtained the same result
manually. So Theorem 11 implies that SV holds.

To gain confidence that the modelling with C++ is
correct, additional runs were conducted where the AS-
SET model contained machinery that verified most of
the correctness properties listed in Section 3, including
that the protocol cannot lose the ability to deliver data
items and reply ok.

Table 1 shows analysis results obtained with a model
that is faithful to Figure 4. The experiments were run on
a 2.6 GHz Linux laptop with 7 GiB of memory, which is
ample memory for the largest experiment. When c = 8,
the analysis time was 14.3, 0.03, 24.6, and 0.05 seconds,
and when c = 40 it was 11.7 and 19.2 seconds. ASSET al-
lows to choose whether the actions are scanned forwards
or backwards, when used as the a in esc(s, a). When
this setting was changed, the last line (c = 40) became
8 632152, 8 885 544, 27 003 716, and 28 039 718. This sug-
gests that the effect of the order is non-negligible. The
effect was in opposite direction with and without the
re-sending.

The table shows spectacular reduction results, but
one may argue that the model of the channels in Fig-
ure 4 is unduely favourable to stubborn sets. The mes-
sages travel through the channels step by step. Without
stubborn sets, any combination of empty and full chan-
nel cells may be reached, creating an exponential num-
ber of states. If a message is ready to move from a cell
to the next one, then the corresponding action consti-
tutes a singleton stubborn set. Therefore, the stubborn
set method has the tendency to quickly move messages
to the front of the channel, dramatically reducing the
number of constructed states.

To not give stubborn sets unfair advantage, another
series of experiments was made where the messages are

19

Table 1. Each channel consists of c separate cells

only one sending one sending and one re-sending
full LTS stubborn sets full LTS stubborn sets

c states edges states edges states edges states edges

1 380 1 068 312 594 822 2 270 640 1 180
2 1 880 6 212 1 030 1 686 3 780 12 210 1 956 3 126
3 9 200 34 934 2 570 3 792 17 318 64 414 4 826 7 018
4 44 000 188 710 5 360 7 354 78 384 330 448 9 736 13 156
5 205 760 983 614 9 946 12 938 350 322 1 650 074 17 898 23 064
6 944 000 4 977 246 16 972 21 208 1 548 668 8 059 068 29 888 36 986
7 4 263 680 24 582 270 27 182 32 928 6 784 206 38 653 782 47 522 57 214
8 19 013 120 119 011 454 41 420 48 962 29 494 824 182 624 072 71 228 83 668

10 85 856 97 928 144 772 164 442
20 970 176 1 028 858 1 537 912 1 629 892
30 4 346 996 4 506 888 6 676 552 6 921 642
40 12 910 316 13 246 018 19 457 692 19 964 692

Table 2. Each channel is a single reduced LTS

only one sending one sending and one re-sending
full LTS stubborn sets full LTS stubborn sets

c states edges states edges states edges states edges

10 42 680 183 912 15 628 27 652 64 622 273 188 25 772 45 358
20 287 280 1 278 742 85 968 144 542 395 442 1 732 118 134 502 226 298
30 913 880 4 112 572 251 108 410 832 1 208 662 5 361 048 382 432 627 238
40 2 102 480 9 513 402 551 048 886 522 2 720 282 12 143 978 825 562 1 332 178
50 4 033 080 18 309 232 1 025 788 1 631 612 5 146 302 23 064 908 1 519 892 2 425 118
60 6 885 680 31 328 062 1 715 328 2 706 102 8 702 722 39 107 838 2 521 422 3 990 058
70 10 840 280 49 397 892 2 659 668 4 169 992 13 605 542 61 256 768 3 886 152 6 110 998
80 16 076 880 73 346 722 3 898 808 6 083 282 20 070 762 90 495 698 5 670 082 8 871 938
90 22 775 480 104 002 552 5 472 748 8 505 972 28 314 382 127 808 628 7 929 212 12 356 878

100 7 421 488 11 498 062 10 719 542 16 649 818

always immediately moved as close to the front of the
channel as possible during reading from and writing to
a channel. The fact about fifo queues and the “❀s” re-
lation that was mentioned in Section 7 is also exploited.
The results are shown in Table 2. Although they are less
spectacular, they, too, show great benefit by the stub-
born set method. The running times on the line c = 90
were 91.5, 11.6, 115.1, and 16.5 seconds. Reversing the
action scanning order converted the line c = 100 to
4 774 892, 7 538 066, 18 683 266, and 32 716 878. Again,
this is a significant decrease without and significant in-
crease with re-sending.

11 Conclusions

We proved that stubborn sets obeying D1, D2, V, and
SV yield reduced LTSs that are fair testing equivalent,
but not necessarily tree failure equivalent, to the orig-
inal system. Tree failure equivalence is obtained using
C2 instead of V. To our best knowledge, these are the
first powerful aps set methods that deal with any rea-
sonable fairness assumption (here the inherent assump-
tion in the equivalences). The results are surprising, be-

cause aps set methods have been not so powerful with
branching-time properties, and fair testing equivalence
preserves the canonical branching-time property “in all
futures always, there is a future where eventually a oc-
curs”.

We also gave new insight to situations where SV fails
because of the ignoring problem. We provided evidence
that such situations tend to be rare but nasty. We pre-
sented a condition that can be cheaply checked from the
reduced LTS. If it holds, then also SV holds and trace
/ fair testing / tree failure equivalence holds. If it fails,
earlier algorithms that enforce SV can be used. Unfortu-
nately, we found a new performance problem with them.
This problem has been solved very recently [35].

We also experimented with the method on the self-
synchronizing alternating bit protocol. Significant sav-
ings were obtained both in the number of constructed
states and in the running time.

Acknowledgements. We thank Henri Hansen and the re-
viewers of the conference and journal version for their
comments.

20

References

1. Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson,
and Konstantinos F. Sagonas. Optimal dynamic par-
tial order reduction. In Suresh Jagannathan and Pe-
ter Sewell, editors, The 41st Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’14, San Diego, CA, USA, January 20-21,
2014, pages 373–384. ACM, 2014.

2. Keith A. Bartlett, Roger A. Scantlebury, and Peter T.
Wilkinson. A note on reliable full-duplex transmission
over half-duplex links. Commun. ACM, 12(5):260–261,
1969.

3. Edmund M. Clarke, Orna Grumberg, and Doron A.
Peled. Model checking. MIT Press, 1999.

4. Javier Esparza and Keijo Heljanko. Unfoldings - A
Partial-Order Approach to Model Checking. Monographs
in Theoretical Computer Science. An EATCS Series.
Springer, 2008.

5. Sami Evangelista and Christophe Pajault. Solving the
ignoring problem for partial order reduction. STTT,
12(2):155–170, 2010.

6. J. Eve and Reino Kurki-Suonio. On computing the tran-
sitive closure of a relation. Acta Inf., 8:303–314, 1977.

7. Cormac Flanagan and Patrice Godefroid. Dynamic
partial-order reduction for model checking software. In
Jens Palsberg and Mart́ın Abadi, editors, Proceedings of
the 32nd ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL 2005, Long
Beach, California, USA, January 12-14, 2005, pages
110–121. ACM, 2005.

8. Harold N. Gabow. Path-based depth-first search for
strong and biconnected components. Inf. Process. Lett.,
74(3-4):107–114, 2000.

9. Rob Gerth, Ruurd Kuiper, Doron A. Peled, and Woj-
ciech Penczek. A partial order approach to branching
time logic model checking. In Third Israel Symposium
on Theory of Computing and Systems, ISTCS 1995, Tel
Aviv, Israel, January 4-6, 1995, Proceedings, pages 130–
139. IEEE Computer Society, 1995.

10. Patrice Godefroid. Using partial orders to improve au-
tomatic verification methods. In Edmund M. Clarke
and Robert P. Kurshan, editors, Computer-Aided Ver-
ification, Proceedings of a DIMACS Workshop 1990,
New Brunswick, New Jersey, USA, June 18-21, 1990,
volume 3 of DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, pages 321–340. DI-
MACS/AMS, 1990.

11. Patrice Godefroid. Partial-Order Methods for the Ver-
ification of Concurrent Systems - An Approach to the
State-Explosion Problem, volume 1032 of Lecture Notes
in Computer Science. Springer, 1996.

12. Harmen Kastenberg and Arend Rensink. Dynamic par-
tial order reduction using probe sets. In Franck van
Breugel and Marsha Chechik, editors, CONCUR 2008
- Concurrency Theory, 19th International Conference,
CONCUR 2008, Toronto, Canada, August 19-22, 2008.
Proceedings, volume 5201 of Lecture Notes in Computer
Science, pages 233–247. Springer, 2008.

13. Alfons Laarman, Elwin Pater, Jaco van de Pol, and Henri
Hansen. Guard-based partial-order reduction. STTT,
18(4):427–448, 2016.

14. Steven Lauterburg, Rajesh K. Karmani, Darko Marinov,
and Gul Agha. Evaluating ordering heuristics for dy-
namic partial-order reduction techniques. In David S.
Rosenblum and Gabriele Taentzer, editors, Fundamental
Approaches to Software Engineering, 13th International
Conference, FASE 2010, Held as Part of the Joint Eu-
ropean Conferences on Theory and Practice of Software,
ETAPS 2010, Paphos, Cyprus, March 20-28, 2010. Pro-
ceedings, volume 6013 of Lecture Notes in Computer Sci-
ence, pages 308–322. Springer, 2010.

15. Zohar Manna and Amir Pnueli. The temporal logic of
reactive and concurrent systems - specification. Springer,
1992.

16. Antoni W. Mazurkiewicz. Trace theory. In Wilfried
Brauer, Wolfgang Reisig, and Grzegorz Rozenberg, edi-
tors, Petri Nets: Applications and Relationships to Other
Models of Concurrency, Advances in Petri Nets 1986,
Part II, Proceedings of an Advanced Course, Bad Hon-
nef, 8.-19. September 1986, volume 255 of Lecture Notes
in Computer Science, pages 279–324. Springer, 1986.

17. Kenneth L. McMillan. Using unfoldings to avoid the
state explosion problem in the verification of asyn-
chronous circuits. In Gregor von Bochmann and
David K. Probst, editors, Computer Aided Verifica-
tion, Fourth International Workshop, CAV ’92, Mon-
treal, Canada, June 29 - July 1, 1992, Proceedings, vol-
ume 663 of Lecture Notes in Computer Science, pages
164–177. Springer, 1992.

18. Robin Milner. Communication and concurrency. PHI
Series in computer science. Prentice Hall, 1989.

19. Doron A. Peled. All from one, one for all: on model check-
ing using representatives. In Costas Courcoubetis, editor,
Computer Aided Verification, 5th International Confer-
ence, CAV ’93, Elounda, Greece, June 28 - July 1, 1993,
Proceedings, volume 697 of Lecture Notes in Computer
Science, pages 409–423. Springer, 1993.

20. Doron A. Peled. Partial order reduction: Linear and
branching temporal logics and process algebras. In
Doron A. Peled, Vaughan R. Pratt, and Gerard J. Holz-
mann, editors, Partial Order Methods in Verification,
Proceedings of a DIMACS Workshop, Princeton, New
Jersey, USA, July 24-26, 1996, volume 29 of DIMACS
Series in Discrete Mathematics and Theoretical Com-
puter Science, pages 233–258. DIMACS/AMS, 1996.

21. Arend Rensink and Walter Vogler. Fair testing. Inf.
Comput., 205(2):125–198, 2007.

22. César Rodŕıguez, Marcelo Sousa, Subodh Sharma, and
Daniel Kroening. Unfolding-based partial order reduc-
tion. In Luca Aceto and David de Frutos-Escrig, editors,
26th International Conference on Concurrency Theory,
CONCUR 2015, Madrid, Spain, September 1.4, 2015,
volume 42 of LIPIcs, pages 456–469. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2015.

23. A. W. Roscoe. Understanding Concurrent Systems.
Texts in Computer Science. Springer, 2010.

24. Robert Endre Tarjan. Depth-first search and linear graph
algorithms. SIAM J. Comput., 1(2):146–160, 1972.

25. Antti Valmari. Error detection by reduced reachabil-
ity graph generation. In Proceedings of the 9th Euro-
pean Workshop on Application and Theory of Petri Nets,
pages 95–122, 1988.

21

26. Antti Valmari. State space generation: Efficiency and
practicality. Tampere University of Technology Publica-
tions 55, 1988. Dr. Techn. Thesis.

27. Antti Valmari. Alleviating state explosion during verifi-
cation of behavioural equivalence. Technical report, De-
partment of Computer Science, University of Helsinki,
Helsinki, Finland, 1992. Report A-1992-4.

28. Antti Valmari. The state explosion problem. In Wolf-
gang Reisig and Grzegorz Rozenberg, editors, Lectures
on Petri Nets I: Basic Models, Advances in Petri Nets,
the volumes are based on the Advanced Course on Petri
Nets, held in Dagstuhl, September 1996, volume 1491
of Lecture Notes in Computer Science, pages 429–528.
Springer, 1996.

29. Antti Valmari. Stubborn set methods for process alge-
bras. In Doron A. Peled, Vaughan R. Pratt, and Ger-
ard J. Holzmann, editors, Partial Order Methods in Ver-
ification, Proceedings of a DIMACS Workshop, Prince-
ton, New Jersey, USA, July 24-26, 1996, volume 29 of
DIMACS Series in Discrete Mathematics and Theoret-
ical Computer Science, pages 213–232. DIMACS/AMS,
1996.

30. Antti Valmari. On constructibility and unconstructibil-
ity of LTS operators from other LTS operators. Acta
Inf., 52(2-3):207–234, 2015.

31. Antti Valmari. A state space tool for concurrent sys-
tem models expressed in C++. In Jyrki Nummenmaa,
Outi Sievi-Korte, and Erkki Mäkinen, editors, Proceed-
ings of the 14th Symposium on Programming Languages
and Software Tools (SPLST’15), Tampere, Finland, Oc-
tober 9-10, 2015., volume 1525 of CEUR Workshop Pro-
ceedings, pages 91–105. CEUR-WS.org, 2015.

32. Antti Valmari. The congruences below fair testing with
initial stability. In Jörg Desel and Alex Yakovlev, editors,
16th International Conference on Application of Concur-
rency to System Design, ACSD 2016, Torun, Poland,
June 19-24, 2016, pages 25–34. IEEE Computer Society,
2016.

33. Antti Valmari. More stubborn set methods for pro-
cess algebras. In Thomas Gibson-Robinson, Philippa J.
Hopcroft, and Ranko Lazic, editors, Concurrency, Secu-
rity, and Puzzles - Essays Dedicated to Andrew William
Roscoe on the Occasion of His 60th Birthday, volume
10160 of Lecture Notes in Computer Science, pages 246–
271. Springer, 2017.

34. Antti Valmari. Stop it, and be stubborn! ACM Trans.
Embedded Comput. Syst., 16(2):46:1–46:26, 2017.

35. Antti Valmari. Stubborn sets with frozen actions. In
Matthew Hague and Igor Potapov, editors, Reachability
Problems, 11th International Workshop, RP 2017, vol-
ume 10506 of Lecture Notes in Computer Science, pages
160–175, 2017.

36. Antti Valmari and Henri Hansen. Can stubborn sets be
optimal? Fundam. Inform., 113(3-4):377–397, 2011.

37. Antti Valmari and Henri Hansen. Stubborn set intuition
explained. In Lawrence Cabac, Lars Michael Kristensen,
and Heiko Rölke, editors, Proceedings of the Interna-
tional Workshop on Petri Nets and Software Engineering
2016, including the International Workshop on Biologi-
cal Processes & Petri Nets 2016 co-located with the 37th
International Conference on Application and Theory of
Petri Nets and Concurrency Petri Nets 2016 and the 16th

International Conference on Application of Concurrency
to System Design ACSD 2016, Toruń, Poland, June 20-
21, 2016., volume 1591 of CEUR Workshop Proceedings,
pages 213–232. CEUR-WS.org, 2016.

38. Antti Valmari, Konsta Karsisto, and Manu Setälä. Vi-
sualisation of reduced abstracted behaviour as a design
tool. In 4th Euromicro Workshop on Parallel and Dis-
tributed Processing (PDP ’96), January 24-26, 1996,
Portugal, pages 187–195. IEEE Computer Society, 1996.

39. Antti Valmari and Walter Vogler. Fair testing and stub-
born sets. In Dragan Bosnacki and Anton Wijs, editors,
Model Checking Software - 23rd International Sympo-
sium, SPIN 2016, Co-located with ETAPS 2016, Eind-
hoven, The Netherlands, April 7-8, 2016, Proceedings,
volume 9641 of Lecture Notes in Computer Science, pages
225–243. Springer, 2016.

40. Walter Vogler. Modular Construction and Partial Order
Semantics of Petri Nets, volume 625 of Lecture Notes in
Computer Science. Springer, 1992.

22

