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Detailed and realistic tree form generators have numerous applications in ecology and forestry. For example, the varying
morphology of trees contributes differently to formation of landscapes, natural habitats of species, and eco-physiological
characteristics of the biosphere. Here, we present an algorithm for generating morphological tree “clones” based on the
detailed reconstruction of the laser scanning data, statistical measure of similarity, and a plant growth model with simple
stochastic rules. The algorithm is designed to produce tree forms, i.e., morphological clones, similar (and not identical) in
respect to tree-level structure, but varying in fine-scale structural detail. Although we opted for certain choices in our
algorithm, individual parts may vary depending on the application, making it a general adaptable pipeline. Namely, we
showed that a specific multipurpose procedural stochastic growth model can be algorithmically adjusted to produce the
morphological clones replicated from the target experimentally measured tree. For this, we developed a statistical measure
of similarity (structural distance) between any given pair of trees, which allows for the comprehensive comparing of the
tree morphologies by means of empirical distributions describing the geometrical and topological features of a tree. Finally,
we developed a programmable interface to manipulate data required by the algorithm. Our algorithm can be used in a
variety of applications for exploration of the morphological potential of the growth models (both theoretical and
experimental), arising in all sectors of plant science research.

Keywords: quantitative structure tree model; morphological clone; stochastic data driven model; terrestrial laser scanning;
large scale data; empirical distributions

cially useful in research since it arises as fruitful collaboration
between specialists in different fields of studies: computer sci-
entists, mathematicians, and biologists [2].

Models for plant architecture attract significant attention due Modeling plant architecture is approached from many direc-
to their ability to assist empirical studies in ecology, plant bi- tions. Some progress has been achieved in synthesis of realis-
ology, forestry, and agronomy [1]. The modeling activity is espe- tic plant forms in the field of computer graphics [3-5]. These
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models, although based on heuristic rules of growth, produce re-
alistic tree representation in a fast and efficient manner, which
is usually dictated by the application of this approach, i.e., natu-
ral scenery in computer visualization. Heuristic growth rules of
the procedural models for graphics applications are not firmly
based on biological principles, but nevertheless elucidate some
algorithmic properties of the growth process (for example, the
recursive [6] vs self-organizing [3, 7] character of architecture
development).

However, the most promising plant architectural models are
so-called functional-structural plant models (FSPM) [8-10] be-
cause this type of models allows for a balanced description be-
tween morphological and functional/physiological properties of
a plant. It is capable of connecting the external abiotic factors
(e.g., radiation, temperature, and soil) and the most vital func-
tions of a plant organism (such as photosynthesis, respiration,
and water and salt uptake) with its structural characteristics
[1,2].

Nevertheless, biologically relevant architectural plant mod-
els rely on data in a form of empirically fitted functions and pa-
rameters that correspond to a particular species and/or certain
site conditions [11-14]. Thus, the change in these conditions re-
quires re-calibration of the models, which is done in a manual
fashion every time the model is simulated for the new condi-
tions. Strong dependence on data, where each simulation would
be calibrated automatically by data, is limited by both computa-
tion time and lack of the fast measurement and processing sys-
tems allowing for a detailed 3D morphological reconstruction of
the actual plant/tree.

The most recent advances in laser scanning techniques al-
low for fast and non-destructive measurement of trees with sub-
sequent reconstruction of various characteristics depending on
application (e.g., [15, 16]). Most of such studies dedicated to re-
construction of 3D point clouds obtained from laser scanning
measurements deal with overall characteristics, such as height,
width, and volume of stems/crowns, leaf index, biomass etc., re-
sembling traditional destructive methods of measurement [15,
17]. However, the detailed precise geometrical and topologi-
cal reconstruction of the tree architecture is never achieved
perfectly.

We use a fast, precise, automatic, and comprehensive re-
construction algorithm initially presented in Raumonen et al.
[18] and further developed and tested in Calders et al. [19]. The
algorithm reliably reconstructs a quantitative structure model
(QSM), which contains all geometrical and topological charac-
teristics of the object tree. Input for the method is the 3D point
cloud, sufficiently covering the tree, obtained from the terres-
trial laser scanning measurements (TLS). No additional allomet-
ric relations used for estimation of the branch proportions (as in
[20, 21]) are needed. Compared to other similar techniques (e.g.,
[20-22]), this method requires few parameters and no user inter-
action. It reconstructs the tree surface with subsequent cylin-
der (or any other geometrical primitive) approximation, which
is usually consistent with theoretical plant growth models. The
reconstruction algorithm has been validated in several studies
with several different tree species and different scanner instru-
ments [19, 23-26]. There are other published QSM reconstruction
methods from TLS data that can produce QSMs of at least similar
quality [23].

In this work, we utilize an inverse iterative procedure to op-
timize model parameters for matching the (empirical) distri-
bution of structural features of the simulated stochastic tree
models (FSPM, graphical, or other) to that of the tree recon-
structed from the laser scanning data. Meanwhile, we formu-
late a measure of similarity of the tree structures based on the

tomographic analysis of the structural distributions (e.g., Radon
transform) [27, 28]. Finally, the optimal parameter set produces
morphological “clone” trees with similar overall structure, but
varying fine-scale details.

Recently, we have reported a proof-of-concept study where
we used reconstruction of a pine tree and the corresponding
FSPM (named LIGNUM [13, 29]) to demonstrate the practical fea-
sibility of the approach [30]. Here, however, we develop a uni-
fying interface (in the form of a programmable toolbox) for our
procedure and use a general purpose fast procedural tree growth
model from Palubicki et al. [3]. This procedural model is eas-
ier to adapt for technical experimentation with the whole al-
gorithm. A similar algorithmic pipeline was reported in Stava
et al. [5] for procedural tree growth models in the context of
graphics synthesis. However, in our approach, we see the tree
growth as a random process and, consequently, apply corre-
sponding statistical methods for measuring the similarity be-
tween trees. Moreover, in our algorithm, we put emphasis on bi-
ologically and physically relevant descriptions, hence the care-
ful choice of the reconstruction algorithm. Another advantage
is a possibility to use FSPM to relate physiological parameters
to the morphogenetic processes in trees. Finally, we use no ex-
tra structures improving visual properties of trees that are not
supported by empirical observation (e.g., leaves). We note that
any other choices of parameters and feature descriptions can be
used in our approach, further facilitated with the programmable
interface.

Our approach is based upon 5 distinct parts:

1. The quantitative structure model (QSM) is a reconstruction
of a tree model from 3D point clouds obtained from terres-
trial laser scanning measurements (TLS). Here we use spe-
cific algorithm for such reconstruction reported in [18] and
[19] but other approaches could be used as well.

2. The stochastic structure model (SSM) is a tree growth model
that is selected depending on the application. There are no
limitations on the class of the model, except that it must
produce a measurable 3D branching structure.

3. The structural data set (U) is a collection of structural fea-
tures (empirical distributions) to be compared between QSM
and SSM. It is important that U be defined in the same way
by both the QSM and SSM.

4. The measure of structural dissimilarity, or structural dis-
tance Ds, is a measure of discrepancy between any two data
sets. In other words, Ds(U;, U,) returns a value quantifying
how much different the two data sets U; and U, are.

5. The optimization algorithm is a numerical routine capable
of finding a minimum of any given function by varying its ar-
guments. Examples include the Newton algorithm, genetic
algorithm, and simulated annealing.

The connection between these components is outlined in Fig. 1,
with an explanation in the text below.

The algorithm outline (Fig. 1):
Stage A: preparation

A1: build QSM from TLS.
A2: extract Uy from QSM.

Stage B: main cycle

B1: simulate SSM (with fixed random generator seed for repro-
ducibility) for the given parameters and extract Up,.
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Figure 1: The algorithm outline (see explanation in the text).

B2: compare Uy, and Uy, getting an estimation of the distance Dg
between them.

B3: change SSM parameters trying to decrease Ds, go to B1, or
stop and go to B4 (changing of the parameters and stopping
criteria depend on any particular realization of the optimiza-
tion routine).

B4: simulate SSM with the “best-fit” parameter values corre-
sponding to the smallest found Ds.

B5: generate morphological clones using the best-fit SSM with
different random number sequences.

At the preparation stage, the QSM is formed from the TLS point
cloud (A1). The detailed description of this process is reported
in [18, 19]. The resultant QSM contains all the geometrical and
topological features needed to form the empirical distributions
Ug (A2). The distributions can be formed from several tree indi-
viduals if they are close by shape to ensure the sample size of
the data sets (e.g., a tree has a single main stem/trunk; hence its
features are underrepresented).

At the main cycle of the algorithm, the empirical distribu-
tion Uy, is formed from the simulated SSM tree (B1). Next, Uy, is
compared against Uy using the measure of distance (B2). The op-
timization routine iteratively minimizes the distance value ev-
ery time, changing the parameter values of SSM (B3), simulating
SSM, and repeating the cycle from B1. After the stopping criteria
of the optimization routine (number of iterations, minimal al-
lowed distance, etc.) are met, the algorithm stops and produces
the best-fit SSM tree (B4). The best-fit SSM with different random
sequences produces different morphological clones (BS).

Below we describe general aspects of each of the main com-
ponents of the algorithm. The Methods section addresses fur-
ther the technical details.

Quantitative Structure Model
QSM is derived from the point cloud obtained by TLS. Essen-
tially, QSM is a surface reconstruction of the branches of the real

tree measured by TLS. The reconstruction itself is a stochastic
process, giving different architecture results for different runs.
Therefore, the reconstruction introduces internal errors in addi-
tion to the TLS measurement errors. Besides giving spatial loca-
tions of parts of the tree, QSM also reconstructs topological re-
lations between the tree branches. The branches of QSM consist
of elementary units, i.e., circular cylinders, but other geometrical
primitives can also be applicable [31]. Thus, any potential struc-
tural information about the original tree can be approximated
with high accuracy with QSM. The details of the reconstruction
algorithm are presented in [18, 19], while the validation of the
algorithm is demonstrated in [19, 23-25]).

In this work, we use the reconstructed QSM of a maple tree
(Fig. 2). The QSM was selected due to its non-trivial form and
obvious irregularities in the tree growth. This is needed to de-
termine whether the stochastic rules of SSM growth can ac-
count for this variability. In fact, the QSM growth irregulari-
ties might come from some deterministic sources, like constant
wind, shading from the neighbors, animal influences, etc. Thus,
our algorithm tries to compensate for the lack of knowledge of
the growth process with simple stochastic rules of SSM and op-
timization of the stochastic distance function.

Stochastic Structure Model

SSM is a simulated model, preferably based on analytical and/or
heuristic rules for the tree growth; however, any viable algorithm
for generating tree forms may be used. Importantly, the ultimate
output of the SSM simulation is a table containing data sets U
describing the tree structure.

Additionally, SSM may be supplied with stochastic variabil-
ity in its parameter values. Through our studies, we implement
simple stochastic variations in the form of normal and uniform
distributions added to the parameter values of SSM.

Finally, the elementary units, such as cylinders [31], forming
the SSM branches should be compatible with the units used in
the QSM reconstruction.
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Figure 2: The target QSM structure in 3 main 2D projections.

Table 1: Branch and segment features

Structural features, units

Description

B, degree Inclination angle of the branch, i.e., angle with its parent branch.

o, degree Azimuthal angle of the branch, i.e., angle around its parent branch (calculated from the fixed direction).

L, m Total length of the branch (calculated as the sum of the segment lengths constituting the branch).

Rf, m Initial radius of the branch, i.e,, radius of its first segment.

Ly, m Length of the parent branch from its beginning segment to the point where the current (child) branch emanates.
R, m Radius of the segment.

L, m Distance from the beginning of the branch to the segment.

y, degree Angle between horizontal projections of the segment and its parent segment.

¢, degree Angle between vertical projections of the segment and its parent segment.

The additional details of the data set representation are explained in the Methods.

Examples of SSM are LIGNUM [13], a functional-structural
plant model based on the physiological principles of growth
of pine trees, but also applicable to other tree forms [32]; self-
organizing tree model [3] based on the heuristic principles of
growth, capable of producing various tree shapes and used in
computer graphics; plastic trees [4], procedural growth models
used in computer graphics; AMAP/GreenLab (see e.g., [33, 34]),
a modeling approach to generate FSPM based upon empirical
rules of growth with some physiological processes taken into ac-
count.

In this work, we use the self-organizing tree model (SOT) with
a shadow propagation algorithm [3] as SSM adapted for compar-
ison with QSM. Note that more specialized tree growth models
designed for the species in question would be better for the mor-
phology optimization, and the usual choice is FSPMs (see e.g.,
[30]).

Structural data sets
Structural data sets for any given tree structure are empirical
collections of the physical dimensions and spatial orientation
measures of segments and branches that are composed of seg-
ments. These data sets must be similarly obtained for any pair
of {Up, Uy} in the calculation of the structural distance.
Quantities in the data sets may represent scalar character-
istics and/or relations between several covariates (e.g., radii,
lengths, angles, tapering function of a branch, etc.). On one
hand, one needs to exhaustively describe morphology of the tree
using various geometrical and topological features. On the other
hand, as the number of compared data sets {Uy, Ug} grows, the
efficiency of the optimization routine decreases since the num-
ber of distance measures to be minimized grows correspond-
ingly (one distance value for each pair {Upm, Ug}). In the case of

multiple data sets, we minimize the average value of the corre-
sponding distances.

Branch- and segment-related data are described in Table 1
(see also Methods). These features are not exhaustive and can
be augmented when needed. But we found this set sufficient for
obtaining realistic tree shapes. Throughout the manuscript, we
maintain the notations B¥ and S¥ for the branch- and segment-
related data sets of the (Gravelius) order w, respectively. The zero
order w is assigned to the trunk (a branch connecting a tree with
the ground). At the branching points, the lateral buds give rise
to branches with order w + 1, where w is the order of the parent
branch, while the apical buds continue the branch of the same
order.

Measure of structural distance

The distance Ds between any two data sets, or empirical dis-
tributions, measures the difference between the local densities
of points in U-space for these data sets, i.e., S and B tables of
morphological features. Here, it is constructed by measuring the
SSM vs QSM difference of the normalized cumulative distribu-
tions of the point densities projected onto a number of line direc-
tions in the coordinate space of the variables in U (see Methods).
The difference between the projected cumulative distributions
is further measured by the Kolmogorov-Smirnov statistic. The
resulting distance between the two data sets U is an average of
all statistics calculated from each of the lines.

In order to provide a reference to traditional measurement
systems, we also calculate three main tree characteristics that
are used for describing a tree shape [35], i.e., height (h), girth (g),
and crown spread (c). Finally, to compare SSM and QSM shapes, we
calculate relative error distances dy, dg, and d. for height, girth,
and crown spread, respectively. The classical distance d; shows
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Figure 3: The rosette-shape SSM resulting from adjustment of the low-order segment-related scatters. (A) The SSM tree. (B) The target QSM. (C) Some segment-related
(S%!) scatters used in the optimization. (D) Higher-order (w = 2) S-scatters (not used in optimization). (E) Higher-order (w = 2, 3) branch-related B-scatters (not used in

optimization). SSM/QSM scatters are shown in red/blue.

how large the difference is between entities i of the two trees in
proportion of the corresponding reference/QSM tree value.

The details of the distance calculations are further explained
in the Methods section.

Optimization routine

The measure of structural distance Ds(Un, Uz) is minimized
by adjusting the parameters v of SSM. With infinite sampling,
Ds = 0 for two trees that have exactly the same parameters v.
These trees are not copies of each other, but they are structurally
similar. The choice of U defined in Ds is not unique, but ideally U
should satisfy the following uniqueness condition for Ds to yield
an acceptable measure of distance. Let three trees be defined by
the corresponding parameters va, ug, and vc with the data sets
Ua, Ug, and Ug, respectively. Then, if Ds(Ua, Ug) < Ds(Ua, Uc), one
can update C<B; i.e., substitute tree C with tree B, find any new
vg for which the inequality holds, and repeat until Ds(Ua, Ug) —0
and vg—Va. In practice, this should be true in a large neighbor-
hood of va; however, in practice, Ds > 0 due to the finite sampling
and insufficient model.

Testing of the algorithm

First, we run the optimization within each of the parameter
groups [—V, representing different processes of growth (see the
Methods for details) to determine the basic values of the param-
eters. These basic values represent choices that generate a viable
tree structure similar to the target QSM. Each optimization run
takes the best parameters for the group optimized at the previ-
ous step. The target structural distributions U for these runs are
segment-related (S) features of the branches of topological order

w =0, 1,ie., S Note that this exercise serves as a basic explo-
ration of the model’s behavior, which can be (partially) replaced,
for example, by the expert guesses for the parameter values or
some calibration process.

Second, based on these preliminary results, we may want to
determine the most influential parameters for each of the group
and combine them in a single optimization setup. Changes in
these parameters cause the largest relative changes in the struc-
tural distance value. This step is required to reduce optimization
time, and it is not needed if one possesses large enough compu-
tational resources. Several independent optimization runs were
taken in order to determine the most influential parameters. For
example, we found that the angular properties vary the least
among these runs, whereas the apical dominance requires sub-
tler adjustments (as can be understood from the complex struc-
ture of the target QSM).

Low-order topological adjustment of the shape

After these initial manipulations, we obtained a model with 11
parameters and good fit of the trunk (w = 0) and first-order
branches (Fig. 3C) with classical metrics d,, = 0.05, dy = 0.42,
d. = 0.57. However, the overall form of the resulting minimal
score tree does not resemble the target QSM due to its rosette
shape (Fig. 3A and B). A closer look at the tree reveals that the
higher-order branches (w > 1) are mainly responsible for the
formation of the rosette-shape of the tree, i.e., the orders that
were not subject to the optimization (Fig. 3A and E). This exam-
ple demonstrates the contribution of the higher-order branches
to the overall tree shape, which suggests using the information
at w > 1 in further optimization steps. Moreover, the branch-
related (B) features, such as the angular properties of branches of
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Figure 4: Low- and high-order adjustment of the stochastic feature tables. The best-fit SSM is obtained through optimization against S®! and B>*>* merged feature data
sets. (A) The best-fit SSM tree. (B) The target QSM tree. (C) Some projection scatters from S. (D) S? projection scatters. (E) B> and B* projection scatters.

order w > 1, were not captured well (Fig. 3E), although similar or-
der segment-related S features show correct stochastic tenden-
cies (Fig. 3D) generated automatically by the growth algorithm
of the SSM. However, note that these features of w > 1 were not
subject to optimization.

Low- and high-order topological adjustment

The increase in number of the structural feature tables is cou-
pled with the increase in the number of distinct distance values;
i.e., each pair of tables (QSM vs SSM) produces a distance score to
be optimized. Although the optimization of the mean distance
value for all tables hinders the improvement for each table sep-
arately, the low-order and high-order branches need to be fitted
to the corresponding branches of the target QSM. To reduce the
number of distinct feature tables for the optimization, we fur-
ther utilize a set of merged data sets (see Methods) resulting in
two joint segment- (S) and branch-related (B) tables for all topo-
logical orders.

Thus, we opted for S%! and B>3* merged data sets in the next
run of optimization to account for the higher-order branch vari-
ability (dy = 0.08, dg = 0.20, d. = 0.68) (Fig. 4). We observe a signif-
icant improvement to the tree form due to the correct account
of the angular properties of the higher-order (w > 1) branches
(Fig. 4E). The poor convergence of the branch linear dimensions
(radii, lengths etc.) present in the branch-related tables might be
due to the parameter choice of the model. Namely, the small pro-
portion of branches with similar Ry values (Fig. 4E) is the result of
the fixed segment length we selected as a compromise between
realism and computational complexity. The QSM minimal seg-
ment length is close to 0, and the median is 0.06 m, whereas
that of SSM is fixed at 0.2 m. We note the similar span of the
curvature data points of SSM and QSM for w = 1, 2 (Fig. 4C and
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D). The w = 2 branch curvature was automatically generated by
SSM as a result of the correct proportions of the w = 1 branches,
which were obtained during the optimization. Additionally, due
to the lack of the orientation landmark in the feature data sets,
our best-fit SSM is fitted to the target QSM with accuracy of the
rotation around the z-axis.

Clonal nature of the best-fit SSM

Due to the highly discrete and stochastic nature of the tree
growth, the structural distance hyper-surface in the space of the
parameters is extremely variable (Fig. 5A). Hence, finding the
global minima of such a surface is not a trivial task. The classical
smooth function optimizers are not suitable in this case, while
stochastic discrete optimizers, like the genetic algorithm, seem
to be more appropriate. Moreover, the hyper-surface itself is a
stochastic entity changing every time the new sample of random
numbers is used for a particular SSM growth realization. There-
fore, any best-fit SSM is the best for a particular realization of
this stochastic process, and one needs to study variability of the
tree shapes (Fig. 5B). We call these many realizations of the SSM
growth morphological tree clones.

The structural distance profile depends not only on the pa-
rameters of the SSM, but the choice of the structural data sets.
For example, in Fig. 5B and C the median distance profile is de-
picted given U = {S%1, B234} (red line) and U = S%! (blue line). In
the given parameter range, the latter seems to be more flattened
and lifted compared to the former. The addition of the B>3#*
data set might be seen as a perturbation to the distance profile
changing the landscape properties (like minima). In our simula-
tions, we maintain the global parameter boundaries, which al-
lows for a search within the full available space. However, we se-
quentially improve the model characteristics by perturbing the
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growth iterations of 30 (A), 26 (B), and 18 (C). The height, girth, crown spread, and classical metrics distributions are shown in (D) for the clones in (A), (B), and (C) (the
total number of generated clones for each case is n = 100, only 6 are shown). The black horizontal line indicates the corresponding measure of the target QSM.

system, i.e., changing the parameters, their intervals, and the U
data sets to address problematic parts of the SSM (like rosette
shape, Fig. 3) such that at every next optimization run the ge-
netic algorithm is instructed to search around the previous best
point using the initial ranges (see the genetic algorithm in the
Methods).

Given the considerations above about the nature of the struc-
tural distance hyper-surface, further study of the morphological
clones is needed. Specifically, the variability and plausibility of
the clonal shapes need to be addressed. For example, the clones
must be further selected as to produce realistic tree shapes;
however, in our analysis we did not find any unrealistic tree sam-
pled from the best-fit SSM. Additionally, the variability of the
clones can be further calibrated, for instance, by the analysis of
the natural/QSM clonal individuals.

Morphological tree clones

The main objective of our work is the generation of the morpho-
logical clones. In our pipeline, this occupies the last stage (see
Fig. 1, BS). After the optimization is finished and the best-fit SSM
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is found, one can further randomize the outcome of SSM by let-
ting the random number generator produce different sequences
every time SSM is run. As a result, the different realizations of
SSM should constitute the morphological clone generator yield-
ing structural copies close to QSM and to each other and varying
in fine detail of organization of their branches. In other words,
the coarse-grain structure is repeated in each clone (and possibly
grasps that of the target QSM), whereas the fine-grain structure
varies.

We demonstrate visualization of 6 clones for 3 distinct mod-
els in Fig. 6 (clones from other best-fit SSMs are provided by the
Bayes Forest Toolbox [36]). One can see the fine-grain variation
in the structure in each panel of the figure, although the overall
(coarse-grain) structure is preserved and presumably captures
that of the target maple QSM from Fig. 2 (however, the models
have higher branch densities than the QSM due to the discretiza-
tion of the space using the voxels of finite size; see [3]). The
three models are the one found during the optimization process
(Fig. 6A), the one minimizing the sample median distance pro-
file for Dg(U = {S%1, B>**}), shown in Fig. 5B (Fig. 6B), and the one
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Figure 7: Computational complexity of the distance algorithm. CPU time (s) vs number of line projections (A), number of structural features (B), and number of samples
per structural feature (C). Specification: a single 2.9 GHz core is used; where fixed, the number of features is 20, the number of samples is 1000, the number of line

projections is 1000 (B) and 500 (C).

minimizing the sample median profile Ds(U = S%!), from Fig. 5C
(Fig. 6C).

Out of 100 simulated clones for each case, we can see that
the best-fit SSM obtained directly as the optimization outcome
(Fig. 6A) produces a larger proportion of individual trees exhibit-
ing the three standard allometric measures closer to those of
QSM (Fig. 6D). However, we argue that such simple description
of a tree, as using the allometric measures, cannot be exhaustive
enough to capture both the overall structure and its fine details.

The height statistics have the largest discrepancy amongst
the three models in Fig. 6, but by the visual inspection of the
drawn clones one can see that this variability does not exert sig-
nificant alterations of the z-axis span and the trees seem to have
even heights. Perhaps the way we calculate the height of a tree
produces such large deviations in each particular case, which
makes it a non-robust estimator for modeling quality. That is,
the overall branch density may not be affected if a single branch
protrudes higher than others; thus the overall outlook of a tree
is not affected, whereas its height is.

Note also that the model clones in Fig. 6A are the direct result
of the optimization, i.e., the best-fit SSM. The clones in Fig. 6B
and C are obtained by manually adjusting the growth parame-
ter to minimize the median distance profiles from Fig. 5B and C,
respectively. The growth iteration parameter directly affects the
tree height. Hence, the larger proportion of clones with heights
closer to the QSM height is achieved in case of the best-fit SSM
(Fig. 6D). Additionally, this indicates that the optimization im-
plicitly accounts for such simple allometric measure as height.

Similarly, the girth estimation, although being captured cor-
rectly, produces large errors d,, which seems to be a result of
variation in its linear dimensions (Fig. 6D). The girth dimension
spans a small proportion of the dimension of the whole tree:
from several to tens of centimeters compared to meters of the
whole tree. This makes the girth-specific error look gigantic (ex-
ceeding, in some cases, 100%) and thus non-robust as well.

The crown spread measure shows significant variation
(Fig. 6D). We believe that this takes place due to the environ-
ment of the real tree the QSM was reconstructed from, which
was not modeled appropriately in the SSM. Namely, the envi-
ronmental effects (positions relative to the sun as the tree grows
in the Northern country, animals, winds, neighboring trees, etc.)
might cause systematic influences exerted on the shape of the
QSM tree. These influences were not accounted for in the SSM,
which was allowed to grow in any direction, limited by the uni-
form light conditions, existing branches of the same tree, and
global boundaries of the available space. In addition to the en-
vironment influences, there are TLS measurement and QSM re-
construction errors, arising from the physical limitations of the

instrumental technique and stochasticity of the QSM formation,
respectively.

Finally, the true understanding of the variability of any mea-
sures of the morphological clones comes with the measure-
ments of the real clones, i.e., trees similar in shape and/or genet-
ics. Carrying out control experiments with QSM reconstructed
from the real clonal individuals can only assess the variabil-
ity. These real clone controlled experiments can further iden-
tify whether the obtained variability is large/small for the given
species/clones and lead to the adjustment of the optimization
parameters.

We have performed several tests on the performance of the al-
gorithm. The most computationally intensive parts of the algo-
rithm are the SSM simulation and optimization, which both de-
pend on a particular SSM implementation and the parameter
search space.

Computational time and data size scale linearly, i.e., O(N),
with the number of morphological features when extracted from
a tree growth model.

Next, we used surrogate data, namely standard normal dis-
tributions, for each of the features to assess the computational
complexity of the distance algorithm. The results of this numer-
ical assay are summarized in Fig. 7.

We developed a unified interface using Matlab (MATLAB,
RRID:SCR-001622) to facilitate exploration, drawing, optimiza-
tion, and simulation of SSM and QSM as well as to study the
morphological tree clones. Our interface allows for faster and
easier manipulation of the required data, models, and optimiza-
tion routines from the Matlab Optimization Toolbox, using only
the required elements of otherwise complex Matlab configura-
tion for the analysis.

The Bayes Forest Toolbox is freely available online [36, 37]
([36] is the version used in this study, while [37] is preferred for
contributions and contains the latest version of the package).
We also encourage the plant and computer scientists’ commu-
nity to expand their efforts using the toolbox with other species
and models. Such a systematic approach can further be useful in
tinkering the best options for creating QSM, SSM, and construc-
tion of the structural data sets.

In this work, we described an algorithmic pipeline aimed at pro-
ducing stochastic structural replicas, or morphological “clones,”
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Figure 8: Visual structure of a tree and its representation using the structural data sets U. (A) A sample tree. (B) Geometrical features of the branch- (B) and segment-

related (S) data sets. (C) Various projections of the U data sets.

of trees from a QSM tree (based on TLS data) and a complimen-
tary SSM tree. The pipeline is based on an iterative minimization
of a distance between morphological structures. The distance is
based on construction of the structural data sets of the tree mor-
phologies and subsequent measures of their discrepancy using
the ideas of the distribution tomography analysis. The resulting
best-fit morphological clones are statistically similar, which is
expressed in the overall similarity of their form and the differ-
ence in the fine details of their structural organization.

Here, we have shown the general logic behind the pipeline
for generation of the morphological clones. For this purpose, we
used a highly variable procedural tree model [3], which is more
difficult to optimize. As the pipeline consists of several elemen-
tary steps, each of which can be changed according to the ap-
plication and target analysis, we have proposed an initial setup
and basic configuration. We assume larger possibilities of ex-
ploration of the proposed configuration, let alone changing the
steps and individual algorithms within the pipeline, which could
be fulfilled by the community of plant science researchers.

The interest in building this pipeline was driven by biological
applications rather than visualization purposes. Thus, for exam-
ple, we use real TLS measurements and general purpose mea-
sures of the distance, while omitting visual effects (e.g., shades,
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leaves, etc.). We believe this pipeline can be useful in the rig-
orous analysis of the plant morphogenesis and corresponding
applications, which differ from similar studies done in the com-
puter graphics field (e.g., [5]).

Moreover, our algorithm makes use of the distance measure,
taking into account a significant portion of the data for at least 1
topological order. This allows for a more comprehensive analy-
sis of forms and their description, using empirical distributions
of morphological features rather than scalar allometric entities.
Due to this reason, we do not rely on the traditional metrics
comparison in this work as we found that similar values for the
height, girth, and crown distances may correspond to different
tree forms and, thus, be non-robust.

The use of several QSM trees can enhance the robustness
of the statistical analysis presented here. In this case, similar-
looking trees should be used, and the degree of similarity might
be established using our definition of the structural distance.
For example, the trunk features are more reliably reproduced in
the statistical sense, when several QSMs are used. It might be
stressed that other notions of “clone” can be used to establish
a relationship with morphology. Thus, the genetic clones might
be utilized to establish to what degree the morphology of a tree
is encoded into genes.



The subject tree was measured in leaf-off conditions, and our
system consisted of a phase-shift-based terrestrial laser scan-
ner, namely the Leica HDS6100 with a 650-690 nm wavelength.
The distance measurement accuracy and the point separation
angle of the scanner were about 2-3 mm and 0.036 degrees, re-
spectively. The horizontal distance of the scanner to the trunk
was about 7-12 m, giving an average point density on the sur-
face of the trunk (at the level of the scanner) for a single scan of
around 2-5 points per square centimeter. The QSM of the sub-
ject maple tree consists of 19 000 cylinders approximating 3078
branches.

In this work, we used SOT implemented in the LPFG simulator,
part of the Virtual Laboratory software suite [38], version 4.4.0-
2424 for 64-bit Mac OS (see [39]). This procedural tree model is
fast and able to generate variety of forms.

The total number of growth parameters of the model is 27:
23 are grouped, 4 are fixed. The values of the latter are dictated
both by suggestions of the authors in [3] and the compromise
between computation time and details of the morphological de-
scription. For example, the segment length is 0.2 m, the voxel
size is 0.2 m, and the model tree grows withina 12 x 12 x 12m
cube from the center of XY bottom plane of the cube (z-axis is
oriented upwards).

The grouped parameters are divided between 5 distinct
groups corresponding to different related processes:

Group I: the initial growth parameters, including limiting
values, and pipe model related parameters.

Group II: environmental effects such as sensitivity to the
neighborhood shading, vertical gradient distribution of the
light, tropism, etc.

Group III: apical dominance parameters.

Group IV: shadow propagation related constants (see [3]).
Group V: angular/branching properties.

One needs a more compact representation of the data since the
larger the number of data sets U is, the larger number of distance
values is and the more difficult the optimization becomes. One
solution is to use larger data sets with all application-specific
features. Therefore, we use tables including all measured fea-
tures; hence, one table represents a data set. However, it is not
possible to combine segment- and branch-related features into
a single table as these differ in dimension (usually one branch is
composed of many segments). Thus, we usually compare the ar-
ray of pairs {Un, Ug}, having as a result the array of distance val-
ues, but with such larger table representation, we have a smaller
size of these arrays. For example, one could form U; from incli-
nation angle g and U, from azimuthal angle « or, alternatively,
form a larger table U consisting of all branching features (8, o, Lt,
Rf, Ly from Table 1). The former distance would be formed from
D; and D, for U; and U,, respectively, whereas the latter case
would require a single distance to optimize.

Additionally, it is possible to merge the corresponding data
sets for several topological orders, which results at most in two
large data sets of branching and segment features, respectively.
While this simplifies the search of the distance minimum, this
technique must be used with care as in this case one heavily re-

lies upon the growth rules of SSM. If these rules are not based
on biologically motivated rules, SSM can produce highly unre-
alistic tree forms as the “best fit” since there is a possibility to
mix the features of different topological orders. For example, the
branches of higher order could be much thicker than those of the
lower order, which should not happen using biologically based
growth algorithms (e.g., pipe model).

In a simulated SSM structure, the extraction of topological
relations between branches is straightforward: the lateral buds
start the next order and apical buds continue the current order.
However, this is not the case with QSM since it is a time snapshot
of a tree form that does not retain the history of the tree growth.
Thus, the reconstruction algorithm requires other means for ex-
tracting the topology. Although the reconstruction algorithm de-
fines a complicated procedure that outlines the topology of a
tree, it can be roughly approximated by the following rule: at
branching points, the thickest branch is the continuation of the
same order w, while thinner branches are lateral expansions of
the order w + 1 [18]. For the species with weak apical domi-
nance (shrubby trees), we follow the rule when extracting topol-
ogy from SSM (for the species with strong apical dominance, the
rule gives the same result as the analytical procedure).

The structural distance is calculated measuring difference be-
tween the normalized cumulative distributions of two point
densities projected onto a number of line directions. The direc-
tions of lines are generated with a quasi-Monte Carlo method
using low-discrepancy (quasi-random) sequences, which cover
the given space more evenly than uniformly generated se-
quences.

The empirical probability density function p(U), U € R¥, can
be approximated by the series of 1D density functions pip(U, L),
where L is a line in RN. Each of these 1D functions is constructed
by projecting all the data points of U onto a line L (in this work,
we used 1000 lines), see Fig. 9A. Cumulative distributions P1p(Up,
L;) and P1p(Ug, Li) (Um and Ug being the two point densities, e.g.,
SSM vs QSM data sets) for each line direction L; are compared,
and for any given data set pair {Un, Ug}, the resultant distance
value is

1 n
Ds(Um.Us) = - > K[P1p(Un. Li). P1p(Ua. Li)].

i=1

where n is the number of lines and operator K[, -] returns the
Kolmogorov-Smirnov statistic for the given pair of 1D empirical
cumulative distributions.

Height (h) is calculated as the highest point of a tree. Girth
(9) is calculated as the diameter of the ground segment because
the diameter at breast height is not appropriate for the shrubby
trees. Crown spread (c) is calculated as follows. First, on the XY-
plane (top view, Fig. 9B), the set of spokes (red lines in Fig. 9B)
emanating from the center of a tree (the ground segment, green
circle) is built with 10 degrees azimuthal separation. Then the
length of each spoke is calculated as a distance from the tree
center to the most distant point of the crown in the direction of
the spoke (blue circles). The crown spread is twice the average
of all spokes of a tree.

Finally, when comparing two tree shapes with traditional
metrics, we calculate the distances as follows:

_tha—=hml ,  19a—Gml , _ Ica—Cm|
dh* hd ydg = 9a ydc = ca .

Downl oaded from https://academ c. oup. conl gi gasci ence/ articl e-abstract/6/10/ 1/ 4085312
by Tanpere University of Technol ogy Library user
on 21 Novenber 2017



(8)

> -2 0 2 4

uj X, m

Figure 9: Distribution tomography of the structural data sets (A) and classical metric for the crown spread (B). (A) Data points in U (projected here for simplicity onto
the (u;, uj) plane, i.e., in 2D) are used to construct the projection onto a line L. Cumulative empirical distribution is calculated along L (red). Only one line is shown.
(B) Top view of a tree: spokes (red) emanate from the ground segment (green), extending up to the most distant points (blue).

In this, hg, g4, and ¢, are the height, girth, and crown spread
of the QSM tree, respectively, whereas hy,, gm, and c¢,, are the cor-
responding attributes of the best-fit SSM tree.

Any algorithm from a standard optimization library (e.g., Mat-
lab Optimization Toolbox) that finds a minimum of an objective
function (Ds = F(v)) can be used. However, to facilitate global
minimum search and given the nature of the problem, we use
the genetic algorithm (implemented in Matlab, version R2015b).
Additionally, some parameters of SSM may take only integer val-
ues, so the genetic algorithm handles the integer parameters
correctly, unlike, for example, the classical steepest decent algo-
rithm. The genetic algorithm iteratively finds a minimum of Ds,
each iteration being called generation. Each generation is char-
acterized with a number of individuals, i.e., population; one in-
dividual is equivalent to one set of the parameter values. The
variation is controlled by the crossover rate (rate of recombina-
tion of the population parameters) and mutation rate (rate of in-
troduction of the new variability into the population). The for-
mer is fixed to 80% in the Matlab Optimization Toolbox, whereas
the latter is controlled by our configuration (19% in the rosette-
shaped example, Fig. 3, and 15% in the best-fit SSM from Fig. 4).
The user controls values’ ranges of the parameters. There are
two types of ranges: global lower and upper boundaries for each
of the parameter values and initial range, from which the algo-
rithm tries to construct the initial population. The latter impacts
the convergence rate: if it is too broad, poor convergence is at-
tained. Finally, the algorithm stops when it reaches a fixed num-
ber of generations without improving the distance.

Thus, the objective function takes the input parameters v,
simulates SSM with v, calculates and returns structural data
sets Uy. Subsequently, the objective function calculates Ds(Upm,
U,) and returns it to the optimization routine. The SSM, being
a stochastic model, must have a fixed random generator seed
during optimization, i.e., the same input parameter set must
produce the same structural output. This is needed for conver-
gence of the optimization. After obtaining the final best-fit form
of SSM, one can further explore the variability coming from dif-

ferent random number sequences used in the SSM simulations.
Such a random best-fit SSM is capable of producing the clonal
morphologies.

Project name: BayesForest

Project home page: https://github.com/inuritdino/BayesFore
st/wiki

Operating system: platform independent

Programming language: Matlab

Other requirements: VLAB software suite, version > 4.4.0-
2424

License: MIT

All data needed to reproduce the results of this study, some ad-
ditional materials, and the Bayes Forest Toolbox are available
online [36, 37] ([36] is the version used in this study, while [37]
is preferred for contributions and contains the latest version of
the package). Tutorials on how to run the tests using the Matlab
toolbox are available in the BayesForest Wiki [40], and snapshots
are also available in the GigaScience repository, GigaDB [41].

FSPM: functional-structural plant model; QSM: quantitative
structure model; SOT: self-organizing tree model; SSM: stochas-
tic structure model; TLS: terrestrial laser scanning.
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