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Abstract—In this article we develop an image based rendering technique based on light field reconstruction from a limited set of

perspective views acquired by cameras. Our approach utilizes sparse representation of epipolar-plane images (EPI) in shearlet

transform domain. The shearlet transform has been specifically modified to handle the straight lines characteristic for EPI. The devised

iterative regularization algorithm based on adaptive thresholding provides high-quality reconstruction results for relatively big disparities

between neighboring views. The generated densely sampled light field of a given 3D scene is thus suitable for all applications which

require light field reconstruction. The proposed algorithm compares favorably against state of the art depth image based rendering

techniques and shows superior performance specifically in reconstructing scenes containing semi-transparent objects.

Index Terms—Image-based rendering, light field reconstruction, shearlets, frames, view synthesis.
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1 INTRODUCTION

S YNTHESIS of intermediate views from a given set of
captured views of a 3D visual scene is usually referred

to as image-based rendering (IBR) [1]. The scene is typically
captured by a limited number of cameras which form a
rather coarse set of multiview images. However, denser set
of images (i.e. intermediate views) is required in immersive
visual applications such as free viewpoint television (FVT)
and virtual reality (VR) aimed at creating the perception of
continuous parallax.

Modern view synthesis methods are based on two,
fundamentally different, approaches. The first approach is
based on the estimation of the scene depth and synthe-
sis of novel views based on the estimated depth and the
given images, where the depth information works as corre-
spondence map for view reprojection. A number of depth
estimation methods have been developed specifically for
stereo images [2], and for multiview images as well [3],
[4], [5], [6], [7], [8], [9]. In all cases, the quality of depth
estimation is very much content (scene) dependent. This is a
substantial problem since small deviations in the estimated
depth map might introduce visually annoying artifacts in
the rendered (synthesized) views. The second approach is
based on the concept of plenoptic function and its light
field (LF) approximation [10], [11]. The scene capture and
intermediate view synthesis problem can be formulated as
sampling and consecutive reconstruction (interpolation) of
the underlying plenoptic function. LF based methods do not
use the depth information as an auxiliary mapping. Instead,
they consider each pixel of the given views as a sample of a
multidimensional LF function, thus the unknown views are
function values that can be determined after its reconstruc-
tion from samples. In [12], different interpolation kernels
utilizing available geometrical information are discussed.
As shown there, established interpolation algorithms such
as linear interpolation require a substantial number of sam-
ples (images) in order to obtain synthesized views with
good quality.

The required bounds for sampling the LF of a scene
have been defined in [13]. In order to generate novel views

without ghosting effects by using linear interpolation, one
needs to sample the LF such that the disparity between
neighboring views is less than one pixel [13]. Hereafter,
we will refer to such sampling as dense sampling and to
the correspondingly sampled LF as densely sampled LF. In
order to capture a densely sampled LF, the required distance
between neighboring camera positions can be estimated
based on the minimal scene depth (zmin) and the camera
resolution. Furthermore, camera resolution should provide
enough samples to properly capture highest spatial texture
frequency in the scene [14].

Densely sampled LF is an attractive representation of
scene visual content, particularly for applications, such
as refocused image generation [15], dense depth estima-
tion [16], object segmentation [17], novel view generation for
FVT [18], and holographic stereography [19]. However, in
many practical cases one is not able to sample a real-world
scene with sufficient number of cameras to directly obtain
a densely sampled LF. Therefore, the required number of
views has to be generated from the given sparse set of
images by using IBR.

An approach for LF reconstruction from undersampled
LFs has been presented in [20]. It combines a band-limited
filtering with wide-aperture reconstruction which is essen-
tially a directional edge-preserving filtering. The problem
of upsampling camera arrays has been cast as a direc-
tional super-resolution in 4D space with no use of depth
information [21]. The generation of the desired perspective
views is performed through patch matching and the effect of
sampling patterns has been studied. In [22], convolutional
neural networks have been utilized to predict depth from LF
data. The method learns an end-to-end mapping between
the LF and a representation of the corresponding 4D depth
field in terms of 2D hyperplane orientations. The obtained
prediction is then further refined in a post processing step
by applying a higher-order regularization. In [23], view
synthesis technique has been presented based on learning-
based approach using two convolutional neural networks
for disparity and color estimation. Four corner views from
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the light fields are used to synthesise an intermediate view.
This method has been aimed at increasing angular resolu-
tion of the light field captured by Lytro Illum camera.

The work [14] has discussed the effective use of the
depth limits (zmin, zmax) in order to reconstruct desired
views from a limited number of given views using appropri-
ate interpolation filters. Use has been made of the so-called
epipolar-plane image (EPI) and its Fourier domain proper-
ties [24]. Further benefits in terms of improved rendering
quality has been achieved by using depth layering [4], [14].
More recently, another approach to LF reconstruction has
been proposed [25]. It considers the LF sampled by a small
number of 1D viewpoint trajectories and employs sparsity
in continuous Fourier domain in order to reconstruct the
remaining full-parallax views.

The problem of reconstructing a piecewise-smooth func-
tion using its given incomplete measurements has been
addressed in the context of natural images through sparse
approximation provided by some appropriately constructed
transforms [26], [27], [28]. The general aim has been to
design frames or other over-complete image representations
and to study their performance by the asymptotic decay
speed of the approximation error obtained using only N
largest coefficients of the decomposition. Within this con-
text, wavelets have been found less efficient for representing
images and other systems have been designed with better
approximation properties. The sought transforms have tar-
geted good directional sensitivity in order to tackle singular-
ities in images, which are usually distributed over smooth
curves being borders between smooth image regions. Ex-
amples include adaptive triangle based approximation [29],
tight curvelet frames [27], contourlets [30], and shearlets
[31]. Among the designed transforms, shearlets have been
shown to be optimally sparse and getting very close to the
ideal adaptive image decomposition [31], [32].

In this article, we advance the concepts of LF sparsifica-
tion and depth layering with the aim to develop an effective
reconstruction of the LF represented by EPIs. The recon-
struction seeks to utilize an appropriate transform providing
sparse representation of the EPI. We assume that a good
sparse transform should incorporate scene representation
with depth layers, which are expected to be sparse. Based
on the observation that the anisotropic property of the
EPI is caused by a shear transform, we favor the shearlet
transform as the sought sparsifying transform and develop
an inpainting technique working on EPI, in a fashion similar
to how shearlets have been applied for seismic data recon-
struction [33].

Preliminary results of novel view synthesis by using
shearlet transform have been presented in [34]. In this paper,
we extend the ideas presented in [34] by including the un-
derlying analysis, describing in detail the construction of the
used shearlet transform and the corresponding view syn-
thesis algorithm for the cases of horizontal and full parallax
and evaluating the efficiency of the proposed algorithm on
various datasets. Furthermore, we present experiments for
the cases of non-equidistant camera positions and recon-
struction of scenes containing semi-transparent objects.

The outline of this paper is as follows. The LF and EPI
concepts are presented in Section 2. The same section dis-
cusses the shearlet transform, its properties and construction

for the given case. The reconstruction algorithm is presented
in Section 3. The algorithm evaluation for different datasets
and a comparison with the state of the art is presented in
Section 4. Finally, the work is concluded in Section 5.

2 LIGHT FIELD FORMALIZATION AND REPRESEN-

TATION

2.1 Light Field Representation

The propagation of light in space in terms of rays is
fully described by the 7D continuous plenoptic function
R(θ1, θ2, ω, ϑ, Vx, Vy, Vz), where (Vx, Vy, Vz) is a location in
the 3D space, (θ1, θ2) are propagation angles, ω is wave-
length, and ϑ is time [10]. In more practical considerations,
the plenoptic function is simplified to its 4D version, termed
as 4D LF or simply LF. It quantifies the intensity of static and
monochromatic light rays propagating in half space. In this
representation, the LF ray positions are indexed either by
their Cartesian coordinates on two parallel planes, the so-
called two-plane parameterization L(u, v, s, t), or by their
one plane and direction coordinates L(u, v, θ1, θ2) [35].

Consider a pinhole camera, with image plane (u, v) and
focal length f , moving along the (s, t) plane. This is an im-
portant practical consideration, which associates the param-
eterizing planes with LF acquisition and multiview imagery
and relates LF sampling with discrete camera positions and
a discrete camera sensor. The case is illustrated in Fig. 1 (a)
where the z axis represents the scene depth and the plane
axes s and u are considered perpendicular to the figure
and omitted for simplicity. Constraining the vertical camera
motion by fixing s = s0 and moving the camera along
the t-axis, leads to so-called horizontal parallax only (HPO)
multiview acquisition. Images captured by successive cam-
era positions t1, t2, . . . can be stacked together which is
equivalent to placing the t-axis perpendicular to the (u, v)
plane. The corresponding LF L(u, v, s0, t) is illustrated in
Fig. 1 (b).

2.2 EPI Representation and Sampling Requirements

The LF data organization as in Fig. 1 (b) leads to the
concept of EPIs pioneered by Bolles et al. in [24]. Assume an
ideal horizontal camera motion (or, equivalently, perfectly
rectified perspective images). Gathering image rows for
fixed u = u0 along all image positions forms an LF slice
E(v, t) = L(u0, v, s0, t). Such LF slice is referred to as
EPI and is given in Fig. 1 (c). In the EPI, relative motion
between the camera and object points manifests as lines with
depth depending slopes. Thus, EPIs can be regarded as an
implicit representation of the scene geometry. In comparison
with regular photo images, an EPI has a very well defined
structure. Any visible scene point appears in one of the
EPIs as a line whose slope depends on the distance of the
point from the capture position and the measured intensity
over the line reflects the intensity of emanated light from
that scene point. The Lambertian reflectance model (any
point in the scene emanates light in different direction with
same intensity) leads to an EPI with even more definitive
structure – each line in the EPI has a constant intensity
proportional to the intensity of the point. For a scene point
at depth z0 measured from the capture plane (s0, t), the
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Fig. 1. Epipolar-plane image (EPI) formation and its frequency domain properties. (a) Capturing setup and EPI formation, a scene point is observed
by two pinhole cameras positioned at t1, t2 at image coordinates v1 and v2 respectively; (b) Stack of captured images; an epipolar plane is
highlighted for fixed vertical image coordinate u; (c) Example of EPI; red line represents a scene point in different cameras; (d) Frequency support
of a densely sampled EPI; green area represents the baseband bounded by min and max depth; yellow line corresponds to a depth layer, the
slope determines the depth value; (e) Frequency domain structure of an EPI being insufficiently sampled over t-axis, the overlapping regions
represent aliasing; (f) Desirable frequency domain separation based on depth layering; (g) Frequency domain separation based on dyadic scaling;
(h) Composite directional and scaling based frequency domain separation for EPI sparse representation.

disparity in the image plane (u0, v) between two cameras
positioned at t1 and t2 is [14]

∆v = v2 − v1 =
f

z0
(t2 − t1) =

f

z0
∆t,

where f is the camera focal length. This is illustrated by
the red lines in Fig. 1 (a), which show a point projected on
cameras at t1 and t2. The same point appears as the red line
in Fig. 1 (c).

By assuming a horizontal sampling interval ∆v satis-
fying the Nyquist sampling criterion for scene’s highest
texture frequency, one can relate the required camera motion
step (sampling interval) with the scene depth. For given
zmin the sampling interval ∆t should be such that

∆t ≤ zmin
f

∆v (1)

in order to ensure maximum 1 pixel (px) disparity between
nearby views [13], [14]. Fig. 1 (d) shows the frequency
domain support of a densely sampled EPI, which is of
bow-tie shape. The baseband (in green) is limited by the
minimum and maximum depth and its replicas are caused
by the sampling intervals ∆v and ∆t. In Fourier domain,
the frequency support of a depth layer (i.e. all scene points
at a certain depth z0, which in EPI appear as lines with
same slope) is confined to a line. An example is given by the

yellow line in Fig. 1 (d). By selecting equality for ∆t in (1),
which is denoted in Fig. 1 as ∆td, we effectively place the
zmin line at 45 degrees in the frequency domain plane. This
maximizes the baseband support, which helps in designing
linear reconstruction filters.

2.3 Motivation

Our problem in hand is to reconstruct densely sampled EPIs
(and thus the whole LF) from their decimated and aliased
versions produced by a coarser camera grid determined by
a higher interval ∆t. The problem is illustrated in Fig. 1 (e).
The figure shows a case, where a densely sampled EPI
has been decimated by a factor of 4, which means that
every 4th row has been retained while the others have
been zeroed. As seen in the figure, aliased replicas (gray)
and the baseband (green) overlap, hence a band-limited
reconstruction is infeasible with a classical filtering method.
Therefore, the work [14] has specified requirements for the
LF sampling density for given zmin and zmax in order to
allow a band-limited reconstruction. Reconstruction of more
complex scenes (e.g. piecewise-planar or tilted-plane) would
require additional information about scene depth and depth
layering [4], [14]. For real scenes it is natural to assume that
objects are distributed at a finite, rather small number of
depths. In our approach, we aim at implicitly determining
those sparse depth layers by analyzing the given aliased
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Fig. 2. (a) Frequency plane tilting by shearlet transform. Cψ ,C
ψ̃

are

cone-like regions and Cφ is low-frequency region. (b) Desirable fre-
quency domain tilting by proposed reconstruction algorithm. Gray color
region includes transform elements used for reconstruction; other trans-
form elements are not associated with valid shear values (disparities) in
EPI. (c) Ψ̂d corresponding to constructed shearlet transform for J = 2.
(d) Frequency domain support of shearlet transform elements used in
reconstruction algorithm corresponding to gray color region in (b). Green
contour regions in (d) represent significant parts of transform elements
support in frequency domain.

EPIs in frequency domain using depth guided filters. This
is equivalent to applying a proper frequency plane tiling.
The case in Fig. 1 (e) is further analyzed in Fig. 1 (f), which
highlights a frequency plane tiling by 4 depth layers, with
1px disparity range in each layer. If those depth layers are
given, they are sufficient to guide the interpolation of EPIs
without aliasing artifacts. Furthermore, by an additional
dyadic separation of the frequency plane, i.e. a multireso-
lution analysis, one can process each region differently and
utilize a more efficient analysis tool. Fig. 1 (g) illustrates
a wavelet based separation of the frequency plane for the
same aliased EPI. It is easy to notice that the L1 region
does not contain any aliasing. Therefore by applying a low-
pass filter corresponding to the L1 region on the aliased
EPI will reconstruct the desirable densely sampled EPIs
frequencies in that region. In other words, the procedure of
low-pass filtering followed by decimation can be interpreted
as increasing the pixel size, which directly decreases the
disparity between the given rows. In this manner, fewer
depth layering directions will have to be distinguished from
each other in order to efficiently reconstruct the full EPI.
Based on the above discussion, the desirable frequency
plane tiling with elemental filters for the case of densely
sampled EPI reconstruction from its 4th row subsampled
version is given in Fig. 1 (h). The construction of such set of
filters is closely related to the construction of shearlet frames
as presented in the next section.

2.4 Shearlet Transform

The shearlet system is our main tool for EPI sparsifi-
cation. We establish the following general notations. We
deal with two-dimensional functions f(x) ∈ L2(R2), x =
(x1, x2). The corresponding Fourier transform is denoted

by f̂(ξ), ξ = (ξ1, ξ2). The discretized version of f(x) is
denoted by fd(m),m ∈ Z

2,m = (m1,m2). In frequency
domain, discrete sequences generate trigonometric polyno-
mials, which, for brevity, are also denoted by the ˆ sign. The
conjugate of a function f is denoted by f̄ . While processing
EPIs, the spatial axes (x1, x2) correspond to (v, t) param-
eters of the plenoptic function, and the frequency domain
variables (ξ1, ξ2) correspond to the frequency axes (Ωv,Ωt).

We are specifically interested in the so-called cone-
adapted shearlet system, which can generate the directed
multi-scale frequency bands as conceptualized in Fig. 1 (h)
[28], [36]. Consider two cone-like regions Cψ , Cψ̃ comple-
mented by a low-pass region Cφ as highlighted in Fig. 2 (a).
For their effective tiling, one needs shearlet system elements
(atoms) generated by a scaling function φ ∈ L2(R2) and two
shearlets ψ, ψ̃ ∈ L2(R2).

The shearlet system is generated by the translation of the
scaling function and translation, shearing and scaling of the
shearlet transform

SH(c;φ, ψ, ψ̃) =











φm = φ(· − c1m),m ∈ Z
2,

ψj,k,m = 2(j+⌊j/2⌋)/2jψ(SkA2j · −Mcm),

ψ̃j,k,m = 2
j+⌊j/2⌋

2 jψ̃(STk Ã2j · −M̃cm),

where Sk =

(

1 k
0 1

)

is a shear matrix, Mc =

(

c1 0
0 c2

)

,

M̃c =

(

c2 0
0 c1

)

, c = (c1, c2) are sampling densities of the

translation grid andA2j and Ã2j are scaling matrices, which
for the case of EPI take the form

A2j =

(

2j 0
0 2−1

)

, Ã2j =

(

2−1 0
0 2j

)

.

This particular form of the scaling matrices supports
the desirable number of shears in each scale and provides
scaling only by one axis, therefore it is well suited for
representing the EPI singularities distributed over straight
lines. It can be considered as a special case of a more general
shearlet transform called universal shearlet [28], [36].

The transform maps f ∈ L2(R2) to the sequence of
coefficients

f → 〈f, τ〉, τ ∈ SH(c;φ, ψ, ψ̃).

The properties of the shearlet transform highly depend
on the design of the generator functions φ, ψ, ψ̃. A specific
design of compactly supported scaling function and shear-
lets is discussed in Appendix A.

In order to handle discrete data by the continuous shear-
let transform, we assume that the given samples fdJ (n), n ∈
Z
2 correspond to samples of the continuous function, for

some sufficiently large J ∈ N

f(x) =
∑

n∈Z2

fdJ (n)2
Jφ(2Jx− n).
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The particular choice of J depends on the given input
data and will be discussed in Section 3.1.

For the efficient implementation of the transform, one
needs its representation in the form of digital filters ψdj,k,m
corresponding to ψj,k,m. The discretization is not trivial and
technical details are provided in Appendix B.

As the frame elements are not orthogonal, one needs also
the dual frame elements. They can be constructed based on
the shift invariance properties of the shearlet frame. First,
we set

Ψ̂d = |φ̂d|2 +
∑

j=0,...,J−1

∑

|k|≤2j+1

(|ψ̂dj,k|2 + | ˆ̃ψdj,k|2).

Then, the dual shearlet filters are defined in Fourier
domain, as follows:

ϕ̂d =
φ̂d

Ψ̂d
, γ̂dj,k =

ψ̂dj,k

Ψ̂d
, ˆ̃γdj,k =

ˆ̃ψdj,k

Ψ̂d
.

The constructed frame guarantees stable reconstruction,

if A ≤ Ψ̂d ≤ B is satisfied for some finite bounds 0 <
A,B <∞ [37]. An illustration of the obtained Ψ̂d for J = 2
is presented in Fig. 2 (c). In this case, the upper and lower

bounds are numerically found to be 0.03 < Ψ̂d < 1.03.
Since we are going to use shearlet transform for process-

ing EPIs, we are interested only in shear operation with a
positive sign, i.e. 0 ≤ k ≤ 2j + 1. The corresponding frame
elements cover the frequency plane region highlighted by
gray in Fig. 2 (d). The resulting direct transform S for dis-
crete values fdJ and j = 0, ..., J− 1, k = 0, ..., 2j+1,m ∈ Z

2

is

S(fdJ ) =
{

sj,k(m) = (fdJ ∗ ψ̄dj,k)(m), s0(m) = (fdJ ∗ φ̄d)(m)
}

.

The corresponding inverse transform is then

S∗ ({sj,k, s0}) =
∑

j=0,...,J−1
k=0,...,2j+1

(sj,k ∗ γdj,k)(m) + (s0 ∗ φd)(m).

The frequency-domain support of the elements selected
from the frame in Fig. 2 (c) is shown in Fig. 2 (d).

3 RECONSTRUCTION ALGORITHM

In this section we present the developed LF reconstruction
algorithm, which utilizes EPI sparse representation in shear-
let domain. We first present the main features for the case
of horizontal parallax only and then discuss the specifics of
the full parallax implementation.

3.1 Horizontal Parallax

Usually, a setup of uniformly distributed, parallel posi-
tioned and rectified cameras is used for capturing a 3D
scene. The horizontal parallax between views limits the
motion associated with the depth of the objects in horizontal
axis only. This allows us to perform intermediate view
generation over EPI independently. In order to formulate the
reconstruction algorithm in discrete domain we assume that
the starting coarse set of views are downsampled version
of the unknown densely sampled LF we try to reconstruct.
The uniformly distributed cameras imply the possibility of
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Fig. 3. The given 4 views with maximal disparity 16px between consecu-
tive views are interpreted as every 16th view in the target densely sam-
pled LF. (a) EPI for coarsely sampled LF over t-axis; (b) corresponding
partially defined densely sampled EPI; (c) ground truth densely sampled
EPI. Three different points from given input images forming traces are
highlighted in the coarsely (a) and densely (c) sampled EPIs. Only in (c)
they are revealed as a straight lines.

estimating a common upper bound dmax for disparities
between nearby views. Thus, the given coarse set of views
are regarded as taken at each dmax = ⌈dmax⌉-th view of a
densely sampled LF. Thus, in every densely sampled EPI,
all unknown rows should be reconstructed assuming given
every dmax-th row. An example is presented in Fig.3 (a),
where EPI representation of four views with 16px disparity
is given. Therefore, the targeted densely sampled EPI is to
be constructed in such a way that the available data will
appear in rows with 16px distance (Fig.3 (b)). Fig.3 (c) shows
the same rows with respect to the fully reconstructed EPI,
where successive rows appear at disparity less than or equal
to 1px. EPI lines are not distinguishable in Fig.3 (a). The
lines start to form when the views are properly arranged, as
in Fig.3 (b), and they get fully reconstructed in the densely
sampled EPI. A set of non-equidistant cameras implying
non-uniform down-sampling of densely sampled LF can be
handled likewise, as far as the given views are arranged
properly with respect to the global dmax.

Without loss of generality we assume that the densely

sampled EPI is a square image denoted by y∗ ∈ R
N2

, where
N = (K − 1)dmax + 1 and K is the number of available

views. The samples y ∈ R
N2

of y∗ are obtained by

y(i, j) = H(i, j)y∗(i, j), (2)

where H ∈ R
N2

is a measuring matrix, such that
H(kdmax, ·) = 1, k = 1, . . . ,K and 0 elsewhere. The
measurements y form an incomplete EPI where only rows
from the available images are presented, while everywhere
else EPI values are 0. Eq. (2) can be rewritten in the form
y = Hy∗ by lexicographically reordering the variables
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y, y∗ ∈ R
N2

, H ∈ R
N2×N2

. The shearlet analysis and

synthesis transforms are defined as S : RN
2 → R

N2×η, S∗ :

R
N2×η → R

N2

, where η is the number of all translation
invariant transform elements.

The reconstruction of y∗ given the sampling matrix
H and the measurements y can be cast as an inpainting
problem, with constraint to have solution which is sparse in
the shearlet transform domain, i.e.

x∗ = argmin
x∈RN2

‖S(x)‖1, subject to y = Hx. (3)

We make use of the iterative procedure within the mor-
phological component analysis approach, which has been
originally proposed for decomposing images into piecewise-
smooth and texture parts [38], [39]. In particular, we aim
at reconstructing the EPI y∗ by performing regularization
in the shearlet transform domain. Solution is sought in the
form of the following iterative thresholding algorithm

xn+1 = S∗ (Tλn(S(xn + αn(y −Hxn)))) , (4)

where (Tλx)(k) =

{

x(k), |x(k)| ≥ λ
0, |x(n)| < λ

is a hard threshold-

ing operator applied on transform domain coefficients and
αn is an acceleration parameter. The thresholding level λn
decreases with the iteration number linearly in the range
[λmax, λmin]. After sufficient number of iterations, xn → x∗

reaches a satisfying solution of the problem (3). The diagram
of the reconstruction method is given in Fig. 4.

The rate of convergence is controlled by the parameter
αn. For αn = 1 the convergence is slow and can be accel-
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Fig. 5. Example of reconstruction performance dependence on choice
of acceleration coefficients αn. For constant value for all iterations
αn = α, increasing α brings accelerating convergence. After some
value, reconstruction starts to diverge (α = 20).

erated by selecting αn > 1. However, selecting alpha too
high can cause instability. The case is illustrated in Fig. 5
where the convergence speed benefits from fixing a higher
value αn = α up to some value where the algorithm starts
to diverge. Best values for fixed α are different for different
EPIs. This motivates us to apply an iteration-adaptive se-
lection of the parameter αn, which can be applied to all
EPIs. We devise the adaptation procedure in the way as
proposed in [40]. Let us define Γn as the support of S(xn).
The adaptive selection of the acceleration parameter is

αn =
‖βn‖22

‖HS∗(βn)‖22
,

where βn = SΓn(y−Hxn) and SΓn is the shearlet transform
decomposition only for coefficients from Γn. The conver-
gence rate for the adaptive selection of the acceleration
parameter is illustrated in Fig. 5. As can be seen in the figure,
the adaptation provides high convergence speed and stable
reconstruction.

The initial estimate f0 can be chosen either 0 everywhere
or as the result of a low-pass filtering of the input y using
the central separable filter φd only.

As discussed previously we are not obliged to use all
general shearlet transform atoms. We favor the use of atoms
which are associated with valid directions in EPI, i.e. only
those having support in frequency domain enclosed in the
region highlighted in Fig. 1 (d). An example of such subset is
presented in Fig. 1 (h). The scales of the shearlet transform
are constructed in dyadic manner, therefore we can select
the number of scales as follows

J = ⌈log2 dmax⌉. (5)

For every scale we select 2j+1 +1 shears (j = 0, . . . , J −
1) to cover the region presented in Fig. 1 (g) associated with
sk = k

2j+1 , k = 0, . . . , 2j+1 shears (i.e. disparities). The role
of J is two-side. Selecting higher J will guarantee better
refinement however for the price of more computations.
Related with this, dmax has to be specified rather correctly in
order to avoid unnecessary computations. Choosing lower
value for J than the one suggested by (5) will drastically
decrease the reconstruction quality because of the lack of
shearing atoms.

The parameter dmax itself has to be fixed at the stage of
sampling (multiview acquisition) or can be estimated from
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Fig. 6. Array of 17× 17 views considered for reconstruction using 5× 5
views highlighted with black color. (a) Direct reconstruction method. (b)
Hierarchic order of reconstruction (HR).

an already captured imagery by some fast sparse feature-
based or coarse-to-fine disparity estimation methods. In our
implementation, we have used the method developed in
[41], which was modified for the case of multi-view images.

3.2 Full Parallax

The method for reconstruction of HPO LFs can be general-
ized for the case of full parallax in a straightforward manner
by directly reconstructing the vertical parallax views after
all horizontal parallax views have been reconstructed. We
illustrate this direct approach by Fig. 6 (a). The figure
represents an array of 17 × 17 full parallax views to be
reconstructed out of 5 × 5 views marked in black. The
views marked in blue are the views reconstructed first (in
the horizontal parallax reconstruction step) and the views
marked in green represent the views reconstructed in the
second (vertical parallax) reconstruction step.

The direct full parallax reconstruction is computationally
demanding. Therefore, as a second approach we propose
performing the reconstruction in a specific order that, from
iteration to iteration, gradually reduces the maximum dis-
parity between input views. This, in turn, reduces the num-
ber of scales in the shearlet transform and thereby speeds
up the algorithm. We refer to this algorithm as hierarchical
reconstruction (HR). We illustrate it by means of the same
example, where we aim at reconstructing 17× 17 views out
of 5 × 5 given views. Let us assume that the maximum
disparity is 12. We perform the reconstruction in 3 steps,
as illustrated in Fig. 6 (b).

1) Views in rows 1, 5, 9, 13, 17 are reconstructed first
using (4) and shearlet transform with four num-
ber of scales (ST (4)), since the assumed maximal
disparity is 12, hence, ⌈log2(12)⌉ = 4. This step
reconstructs views marked in blue in Fig. 6(b).

2) Views in columns 1, 3, 5, . . . , 17 are reconstructed,
again using ST (4) since the disparity is the same
as in Step 1. This step reconstructs views marked in
green in Fig. 6(b).

3) Missing views in rows 2, 3, 4, 6, 7, 8, . . . , 18 are re-
constructed. Since there are more vertical views
available than in the initial set, the disparity in this

reconstruction step has been reduced to 6. There-
fore, one can use ST (3).

For other cases where more intermediate views have to
be reconstructed, one can further alternate between recon-
structing horizontal and vertical views. At each step, the
disparity reduces by two, thus gradually decreasing the
required number of scales of shearlet transform.

4 EVALUATION

In this section we provide details about the implementation
of the proposed algorithm and evaluate its performance
using wide range of datasets. As evident from Section 2.4 the
direct and inverse shearlet transforms involve a good num-
ber of digital filtering operations applied at each iteration of
the reconstruction algorithm. We opt for implementing them
by circular convolution in Fourier domain as presented in
the diagram in Fig. 4. In this implementation, one should
consider reasonable padding with zeros for the input signal
such that the border artifacts are tackled. Increasing the
padding region increase the size of the convolved signals
with an effect on computation time. We have used GPU
implementation of the proposed reconstruction algorithm
and the experiments presented in this paper were executed
on a GeForce GTX Titan X. The computation time mainly
depends on the time for computing 2D FFT for large-size
arrays. The reconstruction of an LF might vary from few
minutes to a couple of hours depending on the number
of scales, the desirable number of iterations and the given
resolution of images in the dataset.

We quantify the reconstruction performance for different
test sets using leave N out tests. The experimental setup
considers downsampled versions of a number of given
multiview test sets, where every (N + 1)-th view is kept
and the others are dropped. The downsampled versions
are used as input to the algorithm, which is supposed to
reconstruct all dropped views.The reconstruction quality is
assessed by calculating the PSNR between the original and
the reconstructed views. Along with figures and tables in the
article, we present supplementary videos at the journal web
site, illustrating the performance of the proposed method.

4.1 Evaluation of Sparsifying Transforms

First, we demonstrate the performance of the reconstruction
algorithm with respect to different sparsifying transforms
[36], [42]. We compare Haar wavelets, the compactly sup-
ported shearlets as constructed in [36] and the fast finite
shearlet transform [42]. The ground truth densely sampled
EPI (Fig. 7(d)) has been obtained using properly generated
views of a synthetic scene. Every 16-th row has been used
as input for the reconstruction algorithm as in Fig. 7 (a),
and interpreted in similar fashion as presented in Fig. 3.
The obtained reconstruction results using the algorithm in
Section 3.1 are presented in Fig. 7. The reconstruction using
Haar wavelet transform is not properly revealing straight
lines and the performance is poor. Directional sensitive
transforms are showing better reconstruction performance,
while the proposed shearlet transform outperforms the
others. The proposed transform combines two properties,
compact support in horizontal direction in spatial domain
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(a) (b) (c)

(d) (e) (f)

Fig. 7. (a) Input for reconstructing densely sampled EPI where only
every 16-th row is available. (d) Densely sampled ground truth EPI.
Reconstruction results using different transform are shown as follows
(b) Haar 18.83dB, (c) Shearlab [36] 29.27dB, (e) FFST [42] 37.27dB, (f)
Proposed modified shearlet 40.75dB.

and tight distribution of transform elements near the low-
pass region of the Fourier plane which affect the reconstruc-
tion performance. The shearlet transform as developed in
Section 2.4 can handle the reconstruction of EPIs from highly
decimated versions. The proposed construction provides an
optimal size of atoms compared to the other methods and
at same time preserves the desirable Fourier plane tiling.

4.2 Multiview Datasets

We compare our approach against established depth based
approaches. These include the reference methods and soft-
ware used by the MPEG community for the development
of new multiview video compression methods, namely
DERS (depth estimation reference software) [46] and VSRS
(view synthesis reference software) [47], and a state of the
art method for disparity estimation employing semi-global
stereo matching (SGBM) [6]. DERS is applied for every three
consecutive views in order to estimate the disparity map
collocated with the middle view. Using a stack of given
images with corresponding estimated disparity maps, the
desired intermediate views are generated using VSRS. In
the case of SGBM, we obtain disparity maps for every pair
of consecutive views in the given stack and warp the views
by linear interpolation to obtain the intermediate views.

We have used a number of publicly available multiview
datasets, as presented in Table 1. The table summarizes
also some specifications of the sequences such as spatial
resolution, number of views of the provided dataset, pro-
cessing color space. For some of the datasets (Couch, Teddy,
Cones) we also applied shearing on input views by dmin
in order to compensate the minimum disparity dmin such
that the maximum disparity in the sheared datasets can
be considered as drange = dmax − dmin. In all test cases,
our algorithm is applied independently on every EPI to
reconstruct the missing intermediate views. The adaptive
acceleration parameter, as described in Section 3.1, has been
applied. Typically, 100 iterations is used with λ thresholding

TABLE 1
Multiview Data Sets Details

Dataset Resolution
Number
of views

Leave
N out

drange

Couch [3] 2768×4020 51 1 12(RGB)

Pantomime1 [43] 640× 480 73 7 24(Y),16(UV)

Pantomime2 [43] 640× 480 77 3 28(Y),16(UV)

Teddy [44] 450× 375 9 1 20(RGB)

Cones [44] 450× 375 9 1 20(RGB)

Truck [45] 384× 512 17× 17 1, 3 6,12(RGB)

Bunny [45] 512× 512 17× 17 1, 3 6,12(RGB)

value linearly decreasing in the range of [5, 0.02] per EPI in
each dataset to obtain the presented results.

Fig. 8 presents the comparative results for two
Pantomime and Coach sequences. As seen in the figures,
for the Pantomime sequences we used shearlet transform
with 5 and 6 number of scales, denoted as ST (5) and
ST (6), with ST (6), in average, outperforming other com-
peting algorithms. In the case of the Couch sequence, the
performance of all algorithms is similar. For this particular
test sequence, we also compare the results with the method
presented in [3], referred to as Disney in Fig. 8(c). It should
be pointed out that in [3] the disparity maps are estimated
using the full set of images, not only the downsampled one.
Thus, the depth maps are expected to be of higher quality
than the one that can be achieved if only the downsampled
views are given. Surprisingly enough, the results of the
method by Disney and SGBM are identical, while the latter
is more general in the sense that it requires only stereo
pairs from the decimated views as an input. This motivates
us to further use SGBM as depth-based reference method.
The comparison reveals that our algorithm reconstructs
views with competitive quality without the need of any
disparity / depth estimation. It is interesting to observe that
in some sequences, there are views that were problematic
for all algorithms, e.g. view 20 in Pantomime2. For this
particular case, the cause is that the input data contains
hardly pronounced EPI structures, which are insufficient for
generating the particular view.

For the datasets Teddy and Cones containing originally
9 views we consider every second view as input, or 5 views
in overall. The obtained disparity range is estimated to be
20px for both datasets. As seen in Fig. 9, the proposed
method with shearlet transform using 5 number of scales
(ST (5)) is in par with SGBM. However, when using 6
number of scales (ST (6)), which corresponds to 64 depth
layers, the proposed method consistently performs better
than the methods using SGBM or DERS. These results show
that using higher number of scales is beneficial in the case
of complex scenes. For the Teddy dataset, we also compare
the proposed method with the one presented in [4] which is
an IBR method utilizing depth layering. For the purpose of
comparison, we average the performance of the proposed
method over all four reconstructed views. The average
reported in [4] shows 33.25dB, while our method gives
35.29dB in the case where dmin has not been compensated
and the reconstruction has been applied assuming dmin = 0.

Reconstruction results for the multiview datasets are
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Fig. 8. Reconstruction results for different multiview datasets, error shown in PSNR for reconstructed views.
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Fig. 9. Reconstruction quality for datasets (a) Teddy and (b) Cones.
Evaluation has been performed for proposed methods ST (5), ST (6),
DERS+VSRS, SGBM. Average PSNR of all reconstructed views pre-
sented in legend of the figures.

illustrated in Fig. 15.

4.3 Semi-Transparent Objects

Next, we demonstrate the superiority of our algorithm for
the case of scenes with semi-transparent objects. These con-
stitute a particular case of non-Lambertian scenes containing
semitransparent materials that are positioned at different
depths. For such scenes, textures of different depth layers
are fused in the captured views. Reconstruction methods
based on depth estimation (such as [6]) fail on such scenes
since a point in the scene (or in a particular view) on a
semitransparent object cannot be associated with a unique
depth value and therefore a reliable depth map cannot be
estimated. On the contrary, the proposed reconstruction
method is based on regularization in a linear space of
functions, thus one can expect a good reconstruction quality
for a scene consisting of depths layers not only occluding
each other, but also being fused in the captured views, as in
the case of semitransparent materials.

For the evaluation of the proposed method for scenes
containing semitransparent objects we created two synthetic
scenes made in Blender [48]. The corresponding two densely
sampled LFs, both with dmax = 32px, have been generated:
the first scene is purely Lambertian and contains no semi-
transparent objects, while the second scene is the same as
the first one with the addition of a semi-transparent plane

in front. One view from each scene, as rendered in blender,
is shown in Fig. 10(a). This figure also shows the perfor-
mance of the proposed method versus SGBM. For the first
scene, the differences between the reconstructed views are
negligible, while for the second scene, the proposed method
generates better results. The same trend can also be noticed
in the EPI images. An example is given in Fig. 10(b). As seen,
the proposed method preserves better the semitransparent
property of overlapping EPI lines.

4.4 Required Number of Scales

In (5) we gave the relation between the number of scales J
and the maximal disparity dmax. In this section we analyze
the behavior of the reconstruction algorithm for varying
decimation factors and varying number of transform scales.
The evaluation has been done for the same synthetic scenes
as in Section 4.3. Fig. 11 summarizes the obtained results.
It is important to mention that the performance of the
reconstruction shows a direct correlation between the dec-
imation factor and the number of scales of the shearlet
transform. The relation confirms the importance of selecting
J ≥ ⌈log2 dmax⌉ number of scales. Choosing higher number
of scales improves the reconstruction results, in some cases
only marginally. The same trend can be observed for the
scene with semi-transparent object (Fig. 11 (b)). However, in
this case the proposed method returns significantly better
performance for high decimation factor.

4.5 Nonuniform Sampling

All so-far experimental settings assumed equidistant camera
and uniformly downsampled number of views. However,
as commented earlier, the proposed method is not limited to
such sampling strategy. Indeed, it can process nonuniformly
sampled LFs by properly interpreting the corresponding EPI
slices as being on sampling positions of a densely sampled
LF with the maximum disparity between all adjacent views
being less than or equal to dmax. While uniform sampling
has to be favoured because it provides the least number of
capturing positions for a given fixed dmax, the non-uniform
sampling case might arise in some capture settings and
therefore is worth discussing it.

Again the scene with the semi-transparent front object as
in Fig. 10 has been used. Two different experimental setups
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Fig. 10. (a) Considered scenes with and without semi-transparent plane in front. Reconstruction results are presented using the proposed method
(ST (5)) and (SGBM ). (b) Example of EPI of the scene and corresponding reconstructions.
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Fig. 11. Evaluation of the proposed method (ST) with different numbers of scaling and reference method using depth estimation [6] (SGBM).
Average reconstruction quality of the methods for different decimation levels for the synthetic Lambertian scene (a) and semi-transparent object (b).

are studied and summarized in Fig. 12. In the first setup,
the scene has been sampled at 5 equidistant positions (see
Fig. 12(a)), which leads to dmax = 32. In the second experi-
ment, namely a nonuniform sampling, we used 8 views po-
sitioned at camera positions (1, 31, 47, 60, 80, 97, 101, 129).
The distances between adjacent views are different, with
dmax ≤ 32. In order to reconstruct such input datasets
one has to replace the uniform positions of input rows in
the masking matrix H in (2) by the provided nonuniform
sampling positions. Following the same approach as in
Section 3 we reconstruct all intermediate views. As shown in
Fig. 12(a) the reconstruction quality decreases depending on
the distance between the reconstructed view and available
input views.

In the second setup, the scene has been sampled at 3
equidistant points (see Fig. 12(b)) which leads to dmax = 64.
Reconstruction using ST (5) performs poor due to insuffi-
cient number of scales in the shearlet transform. We need to
use ST (6) instead. In overall, the experiments show that the
method can handle non-uniform setups well.

4.6 Full Parallax

The last tests deal with full parallax imagery. The proposed
method is compared with two state of the art methods.
The first one is the learning-based view synthesis method
(LBVS) proposed in [23]. The second one is the LF recon-
struction method presented in [25], which utilizes sparsity



11

1 33 65 97 129

35

40

45
ST 5 lvl 39.78dB
ST 6 lvl 40.89dB
SGBM 36.17dB

1 31 47 60 80 97 101 129

35

40

45

ST 5 lvl 42.67dB
ST 6 lvl 43.01dB
SGBM 38.15dB

1 65 129

25

30

35

40

45 ST 5 lvl 30.70dB
ST 6 lvl 34.55dB
SGBM 32.29dB

1 44 77 129

30

35

40

45 ST 5 lvl 36.31dB
ST 6 lvl 39.04dB
SGBM 34.01dB

P
S

N
R

(d
B

)
P

S
N

R
(d

B
)

P
S

N
R

(d
B

)
P

S
N

R
(d

B
)

(a) (b)

N
o

n
u

n
if

o
rm

U
n

if
o

rm

dmax ≤ 32 dmax ≤ 64

View Index

View Index

View Index

View Index

Fig. 12. Comparison of densely sampled LF reconstruction using the proposed method (ST (5), ST (6)) with SGBM for scene with semi-transparent
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Fig. 13. Sampling pattern where every rectangle represents one view
from the LF consisting of 17 × 17 views. (a) box and two diagonals
pattern consisting of 93 views used for method [25]. (b), (c) uniformly
decimated setup consisting of 5× 5 and 9× 9 views respectively.

of full parallax LF in continuous Fourier domain. The
method is claimed useful for the reconstruction of both
Lambertian and non-Lambertian scenes. It requires a set
of views obtained from a set of 1D viewpoint trajectories
[25]. We compared reconstruction results for the dataset
Bunny and Truck [45] consisting of 17 × 17 views, which
are representing Lambertian scenes, thus suitable for the
proposed method and the method in [25]. In addition we
used dataset of a synthetic scene for evaluating both meth-
ods in the case of non-Lambertian reflection generated by
a semi-transparent plane. Two experiments with different
number of input views have been considered for every
dataset, one with 25 views and one with 81 views out of 289
for processing with the proposed method. In the case of 25
input views the direct processing and the HR processing as
presented in Section 3.2 have been employed. The method
in [25] uses 93 views as input. The view patterns used as
inputs for different methods are illustrated in Fig. 13. The
average PSNR for reconstructed views is presented in Ta-
ble 2. In the table, computation times per one view for all
experiments are presented. For the proposed method these
are based on the GPU setting described in the beginning of
Section 4. As seen in the table, the proposed HR approach
decreases the computation time by about 15% compared to
the direct computation for the price of a rather small loss
of average reconstruction quality. For the method SFFT [25]
and LBVS [23], the computations have been employed on
CPU using parallelization with 36 cores. Reconstruction

TABLE 2
Full parallax LF reconstruction quality is presented by average PSNR in

dB and speed is given in seconds per view (in parentheses)

Datasets Truck Bunny Helicopter

SFFT [25] 35.45 (87.2) 38.56 (87.2) 40.87 (87.2)
LBVS 9× 9 [23] 37.65 (8) 38.16 (10) 38.39 (10)
LBVS 5× 5 [23] 35.31 (8) 36.45 (10) 36.12 (10)
ST 9× 9 40.93 (5) 41.29 (5.3) 46.43 (5.3)
ST 5× 5 40.69 (9.2) 39.97 (10) 44.24 (10)
ST (HR) 5× 5 40.46 (7.6) 39.57 (8.6) 44.03 (8.6)

using SFFT takes considerably longer time, e.g. the dataset
Bunny was processed overall for about 7 hours to obtain all
intermediate 17 × 17 views. The method presented in [23]
considers processing every 4 adjacent views from the in-
put datasets to synthesis intermediate views. An available
implementation of the method with already trained neural
networks was used in order to obtain results for the datasets
with 9 × 9 and 5 × 5 views. Examples of reconstructed
views with difference maps with respect to ground truth are
shown in Fig. 16. While the method from [25] shows capa-
bility of reconstructing intermediate views of the scene with
semi-transparent objects, our proposed approach seems to
perform better also for this case.

One of the applications of full parallax LF is to construct
digitally refocused images in post-processing. Fig. 14 shows
digitally refocused images corresponding to the central
view for differently sampled LFs. As expected, the lack of
available views results in strong artifacts in the synthesized
refocused image Fig. 14 (a) where only 5 × 5 subset of
views is used, while for the up-sampled (reconstructed) LF
consisting of 49 × 49 views, small disparity between the
reconstructed views causes smooth blurring in the refocused
image areas. Fig. 14 (c) presents the result of similar refocus-
ing for the original dataset Fig. 14 (b).

5 CONCLUSIONS

We have presented a method for reconstructing densely
sampled LF from a small number of rectified multiview
images taken with a wide baseline. The reconstructed LF
bears the property that the disparity between adjacent views
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(a) (b) (c)

Fig. 14. Example of refocused images generated from differently sampled dataset Truck [45] using linear interpolation for shearing operation.
(a) Refocused image generated for central view using 5 × 5 views from original dataset, every 4-th view has been chosen. (b) Refocused image
generated using all 17× 17 views. (c) Refocused image generated from reconstructed LF (49× 49 views) based on decimated LF (5× 5 views).

is 1px at most while the input views can be with quite
high disparity. The method utilizes a sparse representation
of the underlying EPIs in shearlet domain and employs an
iterative regularized reconstruction. We have constructed
a shearlet frame specifically for the case of EPIs and pro-
posed an adaptive tuning for the parameter controlling the
convergence in the iterative procedure. Experiments with
various datasets compare our method favorably against the
MPEG’s DERS+VSRS, the state of the art SGBM and the
state of the art in IBR for full parallax reconstruction. The
method is particularly successful when dealing with non-
Lambertian scenes consisting of semi-transparent objects.
The method reconstructs all LF views and therefore can be
used in applications which require densely sampled views
such as refocusing, wide field of view LF displays and
digital holographic printing.

As the regularization constraints are limited within the
viewing frustum, the frame elements are also spatially
concentrated there. Therefore, the LF reconstruction offers
only some limited extrapolation due to the elements found
near the frustum border. The extrapolation problem can
be further addressed by analyzing the parameters of the
frame elements near the borders in terms of their scale
and directional indexes and generating similar elements by
proper translation. This is a topic of future research.

Although the implementation of the algorithm reported
in this paper is limited to scenes with Lambertian properties
or non-Lambertian scenes generated by semi-transparent
objects, it is possible to extend the algorithm such that it
will be able to reconstruct reflective non-Lambertian scenes
as well. This will, primarily, requires modification of the
bases used in reconstruction since different parts of the
frequency domain have to be covered, in comparison to the
Lambertian case. Also, the regularization procedure has to
be tuned to better handle the case of conflicting directions,
which might arise from reflective non-Lambertian scenes.
This extension is a topic of future research.

APPENDIX A

CONSTRUCTION OF COMPACTLY SUPPORTED

SHEARLET SYSTEM

The construction of compactly supported shearlet frame
elements starts with defining a 1-D multi-resolution analysis

with scaling and wavelet functions φ1, ψ1 ∈ L2(R)

φ1(x1) =
∑

n1∈Z

h(n1)
√
2φ1(2x1 − n1)

ψ1(x1) =
∑

n1∈Z

g(n1)
√
2φ1(2x1 − n1),

where h(n1) and g(n1) are appropriately-designed half-
band filters. The 2-D generator scaling function φ is con-
structed in a separable manner as

φ(x1, x2) = φ1(x1)φ1(x2). (6)

However, constructing the shearlet generator ψ(x1, x2) in
a separable manner is not efficient as it would generate an
over-redundant frame with poor directional selectivity [49].
A better approach is to utilize a non-separable directional
filter [32]. Then, the non separable shearlet generator is
defined in Fourier domain as

ψ̂(ξ1, ξ2) = P (ξ1/2, ξ2)ψ̂1(ξ1)φ̂1(ξ2),

where the trigonometric polynomial P represents a 2D
directional fan filter [30] which is used to approximate the
2D non-separable filter with essential support in frequency
domain bounded within the region shown in Fig. 17 (a).

APPENDIX B

DISCRETE IMPLEMENTATION

Assume the continuous function f(x), x ∈ R
2 to be recon-

structed, is represented by its samples fdJ (n), n ∈ Z
2 at the

finest (sufficiently large) scale J ∈ N, i.e.

f(x) =
∑

n∈Z2

fdJ (n)2
Jφ(2Jx− n),

where φ(x) is defined as in (6).
The shearlet system consists of the functions

ψj,k,m, |k| ≤ 2j+1, j = 0, . . . , J − 1,

where

ψj,k,m(x) = 2j/2ψ
(

SkA2jx−Mcjm
)

, (7)
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Fig. 15. Examples of the reconstructed views for several different multiview datasets, particularly view number 34 is presented for dataset Couch, 18
for Pantomime1, 51 for Pantomime2 and 4 for Teddy and Cones. In the first column are presented ground truth of corresponding reconstructed
view. In the following columns are presented proposed and SGBM based reconstruction results together with scaled difference maps. Zoomed in
regions from different reconstructed images are presented in the last column.

and cj = (cj1, c
j
2) are sampling constants for translation.

Easy to notice

ψj,k,m(x) = ψj,0,m
(

S k

2j+1
x
)

. (8)

Following the same methodology as in [36], it can be
shown that the digital filter corresponding to ψj,0,m has the
form

ψdj,0(m) = (pj ∗ (gJ−j ⊗ hJ+1)) (m), (9)

where ⊗ denote tensor product such that
(gJ−j ⊗ hJ+1) (m) = gJ−j(m1)hJ+1(m2), {pj(n)}n∈Z

are the Fourier coefficients of the trigonometric polynomial
P (2J−j−1ξ1, 2

J+1ξ2), {hj(n)}n∈Z and {gj(n)}n∈Z are
the Fourier coefficients of the respective trigonometric
polynomials

ĥj(ξ) =
∏

k=0,...,j−1

ĥ(2kξ),

ĝj(ξ) = ĝ(2j−1ξ)ĥj−1(ξ)

and ĥ0 ≡ 1. Fig. 17 (b) illustrates the frequency responses of
the digital filters hj , gj for j = 1, . . . , 4.

The shear transform Sk2−j , j ∈ N, k ∈ Z does not
preserve the regular grid Z

2, therefore its digitalization is
not trivial. The solution of the problem presented in [49],
is to refine the Z

2 grid along the x1-axis by a factor 2j. In
that case, the grid 2−jZ × Z is invariant under the Sk2−j

transform. Thus, for an arbitrary r ∈ l2(Z2), the shear
transform Sk2−j can be implemented as a digital filter

Sdk2−j (r) =
(

(2jr↑2j ∗1 τj)(Sk·) ∗1 τ̄j
)

↓2j
, (10)

where τj represents a digital low-pass filter with normalized
cutoff frequency at 2−j , ∗1 is 1D convolution along x1 axis
and ↑ 2j, ↓ 2j are upsampling and downsampling operators
corresponding to 2j factor.

Using (7), (9), (10) the discrete filter ψdj,k corresponding
to ψj,k,m takes the form

ψdj,k = (Sdk2−(j+1) (pj ∗ gJ−j ⊗ hJ+1))(m).

The digital filter φd corresponding to the scaling function φ,
is constructed in a separable manner φd = (hJ ⊗ hJ)(m).
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Fig. 16. Reconstruction results for full parallax datasets. Obtained results are presented with difference maps for the methods SSFT [25], LBVS [23]
and the proposed method using direct and hierarchic processing order.
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Fig. 17. (a) Shearlet support in Fourier domain; (b) Frequency re-
sponses of the scaling and wavelet filters hj , gj , j = 1, , 4.
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