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Abstract. Optimal utilization of complex processes
involves real-time operational optimization and schedul-
ing, especially in cases where the production line con-
sists of both continuous and batch operated unit pro-
cesses. This kind of real-time optimization requires pro-
cess models which can be computed significantly faster
than real-time. Iterative balance calculation is typically
far too slow for these cases. This paper presents a meth-
od for converting an iterative balance model to a directly
calculating model suitable for on-line process optimiza-
tion. The approach is demonstrated with the first unit
process in the copper smelting line, the flash smelting
furnace (FSF). The method consisted of formulating an
equation group based on the constrained FSF HSC-Sim
model and solving the unknown parameters and static
states with use of a symbolic calculation software. The
solution was implemented as a function whose calcula-
tion time fulfilled the requirements for scheduling use.

Introduction

The general digitalization of society and advances in
computational power have brought on a pronounced
digitalization wave in process industry. Utilization of the
advantages of digitalization can improve efficiency and
the ability to stay competitive in increasing global com-
petition in many conventional industrial processes. The
design of industrial processes is often based on long term
empirical and theoretical knowledge which has been
incorporated into thoroughly built mathematical models.

These models often include iterative balance calcu-
lations to fulfill empirical and physical process con-
straints. These models are well suited for steady state
process design and often used when offering, planning
and constructing new process lines, however, they are
often computationally too cumbersome for use in real-
time solutions demanding short execution time.

Optimal utilization of processes should ideally in-
clude real-time operational optimization and scheduling
where results can be presented to operators and/or pro-
cess control quickly. Due to the time requirements and
computational complexity of the optimization schemes,
the underlying process models must be capable of pro-
ducing results significantly faster than real-time. Thus,
models requiring iterative calculations are typically too
cumbersome to incorporate into the optimization. The
high demand on execution time can often be compen-
sated by lowering demands on model precision for the
real-time operational optimization. Examples of de-
manding real-time optimization utilized in process de-
sign can be found in [1,2,3,4].

Good examples of thoroughly built steady state
models can be found in metallurgy. Most metallurgical
processes are old and have large societal impact which
has allowed extensive development work to model pro-
cess behavior over many decades. These processes
comprise complex physical and chemical reactions and
modelling has been both theoretical and empirical. To
fulfill the basic requirement of mass and energy conser-
vation and empirical observations iterative calculation is
often employed. Lately also dynamic models purely
based on fundamental physical laws have been success-
fully derived, e.g. [5] for the melting process in electric
arc furnace.
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These types of models are built on differential equa-
tions and needs careful parameter determination. They
are normally solved with integration algorithms which,
depending on model complexity, can be too slow for
real-time operational optimization and scheduling.

The incentive for this study is the need for opera-
tional optimization of a copper smelting line. Optimal
operation of a copper smelting line is challenging for
the operators as the operation is divided into many
complex individual sub processes. Plant wide optimiza-
tion is required to maximize production and resource
efficiency. Additionally, more challenging ores have to
be used to retain economic competitiveness worldwide
which increases the need for process optimization. Im-
proved operation of copper smelting can provide im-
proved utilization of different input materials and recy-
clants. Copper smelters present a challenging optimiza-
tion problem where the harsh environment can prevent
obtaining mineral and operational information, data is
highly uncertain or measurements may be severely
delayed. A full scale optimization of the complete pro-
cess line will include a considerable amount of variables
and require the consideration of large time horizons.
Further, many of the underlying models are nonlinear.
Thus, sub processes and the related models should be
relatively lightweight in terms of their computational
requirements. In principle, the development of optimiza-
tion for a copper smelting line operation consists of
modelling of unit processes and designing of optimiza-
tion / scheduling for the combined unit process models.

Static input-output process models can be derived
with use of mass and energy balances supplemented
with sometimes uncertain process reaction knowledge
completed with empirical knowledge. In principle, this
empirical knowledge can be written as constraints in
equation form. These equations can be completed with
mass and energy balances to form a complete equation
group determining process reactions. By solving the
equation group, the unknown parameters and thereby
the static process state can be solved under the given
constraints. In practice this approach is challenging as
the equations are often complex and manual solutions
may be error prone and exceptionally time consuming.

Development of aids for this challenge started in the
beginning of the 1970s under the scientific area of sym-
bolic computation. Software programs for manual com-
putation are called computer algebra systems (CAS) and
are at present highly developed and even implemented
in hand held calculators.
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These systems include Mathematica [6] and Maple
[7], the latter has been implemented in Matlab [8] as the
Symbolic Math Toolbox. In later Matlab versions, the
toolbox is based on the MuPAD symbolic engine origi-
nally developed at the University of Paderborn. Matlab
offers a convenient way of shifting from symbolic cal-
culus to numerical computation.

Utilization of symbolic computation for solving un-
known variables of restricted mass balance equations
seems to be a rare approach or rarely reported. A similar
method was used in [9,10] in the same research group
but the authors have not found similar work by others.
Symbolic computation is, however, commonly utilized
when forming first principle models [11,12,13]. Its use
is especially convenient for model design with e.g.
Lagrangian mechanics [14].

For optimization of the operation of the copper
smelting line computationally lightweight models of all
unit processes are required. This paper presents a meth-
od for converting an iterative balance model to a direct-
ly calculated model suitable for process operation opti-
mization. The method is demonstrated with the first unit
process in the copper smelting line, the flash smelting
furnace (FSF).

1 Examples of Industrial
Process Optiomization and
Scheduling

Process optimization in general can be viewed as requir-
ing predictive models capable of evaluating the evolu-
tion of the process under different process variables and
operational schemes. In many cases linear models or
finite response models are used to facilitate the fast
calculation of predictions. Optimization determines the
variables which minimize or maximize some objective
function while fulfilling process constraints. The sim-
plest objective is often the maximization of throughput.
More advanced objectives may include considerations
of energy use or different quality variables. When more
exact predictions are required or linearization is not
applicable for some other reason, nonlinear process
models are used. Solutions will then require complicat-
ed optimization algorithms for the determination of
optimal process variables and operation. In general,
these algorithms require iterative calculation to find
optimal values.
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Scheduling problems determine which process units
are used when and for which process tasks. Almost all
scheduling problems consider batch processes and thus
require integer variables introducing additional com-
plexity to the optimization problem. Further complexity
is introduced when the processes, such as copper pro-
duction, include the combination of batch and continu-
ous sub processes. Scheduling problem formulations
can be roughly divided into discrete time or continuous
time problems. In either implementation the number of
variables is often in the hundreds and even multiple
thousands of constraints are required. The most com-
mon method is to define the scheduling problem as a
mixed integer linear program (MILP) which can typical-
ly be solved in seconds. In addition to production rates
and task timings logistical concerns related to transfer of
materials and maintenance are often incorporated into
the formulation.

Scheduling has been in common use in many indus-
trial applications, especially related to chemical pro-
cesses, for decades. Some implementations of industrial
scheduling and optimization include the scheduling of a
pulp and paper machine reported in [15]. Here an opti-
mal production schedule was defined and energy pro-
duction and prices were considered in the objective.
Steel production has often been considered in schedul-
ing problems. One implementation was reported in [16]
where the production of different product recipes was
considered and the problem solved with decomposition.
The optimization and scheduling of copper production
has seldom been reported. One implementation was
introduced in [17] where throughput is maximized while
also enabling the consideration of different maintenance
tasks. More recently, [18] reported an implementation
of a greedy algorithm to plan the production of a copper
plant. The authors introduced a nonlinear optimization
of copper production in [19] where a simulation based
approach was used.

Different optimization algorithms are available in
many commercial products. MILP solvers are included
in most computational software. In [17], the problem
included 750 variables, of which 84 were binary integer
variables, and 984 constraints with a solution time of
under one second. MILP solvers roughly work by relax-
ing the integer constraints, find an optimal solution and
if this does not fulfill the integer constraints perform a
branch-and-bounding of the problem and find new op-
timal solutions for the new problems. Nonlinear solvers
also require iterative search methods.

For example, Matlab includes the interior point and
sequential quadratic programming algorithms for use
with constrained nonlinear problems. In [19], an itera-
tive simulation was used to predict the evolution of the
process. Solutions were produced in about 60 seconds.
Required iteration amounts are in the hundreds or thou-
sands. This illustrates the need for lightweight models to
enable real-time optimization.

2 Copper Production Line

Copper smelting plants convert the input materials,
concentrates, which consist of mainly copper and iron
sulphides, to almost pure copper through multiple oxidi-
zation stages. This begins from the mixing of a suitable
concentrate mix with a copper content of 20-30 %
which, after drying, is fed to the FSF. The mix reacts
with the oxygen-enriched air feed and separates to matte
(~60-65 % Cu) and slag. Silica flux is added to the FSF
feed during operation to achieve suitable conditions for
separation of matte and slag. The oxidization reactions
generate heat though in some cases additional heating
may be required.

Matte and slag are removed intermittently from the
FSF, matte is moved to the converters, and slag is pro-
cessed further in the slag treatment plant. After treat-
ment, both FSF and converter slag can be recycled back
to the FSF. Pierce-Smith converters (PSC) use a sub-
merged feed of oxygen enriched air. Converters are
operated in batches where first, in multiple slag-making
stages, FSF matte is added between air blows. Here,
most of the iron compounds will react and move to slag.
Second, after removal of slag, in one longer copper-
making stage the remaining sulphur is removed from
copper compounds. Temperature is controlled with the
addition of recycled material, e.g. scrap metal. The
ensuing blister copper (~99 % Cu) is moved to anode
furnaces where oxygen is removed from the blister
copper and the copper is cast to anodes and finally
transported to refinery for electrolytic purification to
cathode copper. Figure 1 shows a full copper production
line including both smelting and refining. A detailed
description of the smelting process can be found for
example in [20].

The FSF matte copper content can be viewed as one
of the main decision variables in smelting as the higher
copper content in matte (matte grade) is, the higher the
copper content in the slag both in FSF and PSC and less
blowing time in PSC.
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Figure 1:Flow sheet of copper process at Boliden Harjavalta [22].

Additionally, in FSF modelling matte grade is often
used as a variable in distribution of other valuable met-
als, such as silver (Ag), cadmium (Cd), cobalt (Co),
nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn), to both
matte and slag. Production bottlenecks include the pro-
duction rate of FSF and the required converter tasks and
availability of converters. Transportation of material
from the FSF to converters is handled with cranes and
may present limits for production rates. SO2 gases are
produced in all production stages and the capacity of the
gas treatment plant must be considered when determin-
ing the production rates and timings of different produc-
tion tasks.

3 Model Conversion

The method for converting an iterative balance model to
a directly calculating model is here demonstrated with a
model of the flash smelting furnace, modelled in HSC-
Sim [21]. HSC-Sim is a calculation module of HSC
Chemistry software developed by Outotec. The name
refers to the automatically utilized thermochemical
database which contains enthalpy (H), entropy (S) and
heat capacity (Cp) data for an extensive amount of
chemical compounds.
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The HSC-Sim module enables application of HSC
Chemistry to a whole process made up of process units
and streams. The HSC-Sim module consists of a graph-
ical flowsheet and spreadsheet type process unit models.
The custom-made variable list enables creation of dif-
ferent types of process models in chemistry, metallurgy,
mineralogy, economics, etc. Each process unit is actual-
ly one Excel file. In the Distribution units the com-
pounds are divided into elements and calculation is done
with element distribution coefficients. Based on process
knowledge some coefficients are defined as fixed. Coef-
ficients for assisting elements in compound formation
are calculated based on molar need and supply and
called float. Surplus elements are divided with coeffi-
cients called rest. Units can be used together or sepa-
rately and the calculations can be Excel- or DLL-based.

HSC Sim pyro models are mathematical process
models based on mass- and energy balances and empiri-
cal knowledge controlling the equilibrium state. These
models are successfully used in strategic planning of
metal processing. The drawback of these models is the
iterative calculation needed for reaching the equilibrium
state. This iterative calculation is too slow for use in on-
line process optimization of the whole smelter line.
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3.1 Legacy model

The flash smelting furnace process has been modelled in
HSC-Sim as a static division process with empirical
knowledge controlling parts of the division coefficients.
The implementation is a spreadsheet-like division calcu-
lation with iterative calculation to fulfill constraints
derived from empirical and physical knowledge.

The model consists of three main spreadsheets; In-
put, Distributions and Output, each containing between
146 and 424 rows and 68 columns. The Input sheet is
sparsely filled with element mass flows and describes
how input compounds in different streams are broken up
to elements according to chemical molar consistency.
The Distributions sheet is sparsely filled with distribu-
tion coefficients dividing element mass flow into com-
pounds for different output streams partly according to
chemical reactions. The Output sheet is filled with cor-
responding element mass flows that build up the output
compounds in different output streams. In addition to
the three main spread sheets, a Controls sheet includes
27 empirical process observations that must be fulfilled
in the stationary state.

In principle, the distribution from input compounds
to output compound is built up around how the main
elements copper (Cu) and iron (Fe) is distributed be-
tween compounds in the output streams. The chemical
reactions require assisting element as oxygen (O) and
silicon (Si) which are brought in as floating elements.
Sulphur (S) is partly handled as a main element and
partly as an assisting element. As a result, the model
consists of some fixed distribution coefficients, many
coefficients which are iteratively adjusted to fulfill the
empirical observations and numerous coefficients calcu-
lated as float according to corresponding chemical reac-
tions or as rest for surplus elements. The model is thus a
system of four spread-sheets with a large number of
interconnected cells. An iterative routine is used to solve
the distribution coefficients and thereby the element and
compound streams in the stationary state.

The calculation is very useful for off-line strategic
planning of metal processing. The calculation is, how-
ever, too slow for real-time process optimization.

3.2 Method for derivation of fast

calculating model
In general, the objective for the study was to find a
method for converting iterative output controlled bal-
ance models to directly calculating models suitable for
process scheduling. The basic idea was to form a sym-

bolic equation group based on the flash smelting furnace
HSC-Sim model and to solve this group analytically
with symbolic computation to achieve causal outputs as
direct functions of inputs. The solution is possible due
to empirical knowledge included in the Controls sheet
of the FSF HSC-Sim model.

Thus, the task was to write a fully parametrized
equation group based on the FSF HSC-Sim model
where the equations are based on the equations of em-
pirical knowledge in the Controls sheet. The model is in
this analytic approach simplified. The input elements
include only the main elements; copper (Cu), iron (Fe),
nitrogen (N), oxygen (O), sulphur (S), silicon (Si) and
other content (Ot). The distribution of the elements
between the output streams, which are settler gas, settler
fume, settler dust, slag and matte, is fully in line with
the FSF HSC-Sim model. The eight equations determin-
ing empirical knowledge regarding the main elements
was chosen as base for the equations. To enable an ana-
lytic solution with the symbolic software the equation
group has to be exactly determined.

The equation group formulation starts with defining
all basic variables as symbolic variables. This example
included 7 element mass flows, 23 distribution coeffi-
cients for element distribution to output streams and 41
distribution coefficients for element distribution into
compounds in the different output streams. The main
formulation work is to define the relationship between
these variables with emphasis on the formulation of the
float and rest variables. Here, this part required about 75
definitions. After these definitions, the output com-
pounds can be formulated. Afterwards, the final equa-
tions based on the empirical knowledge in the Controls
sheets can be written. To ease the derivation of the ana-
lytic solution of the software the nonlinearities in the
empirical knowledge were linearized. The same varia-
bles as the manipulated variables in the iterative solu-
tion of HSC-Sim model were chosen as variables for the
calculation to solve. They were; distribution coefficient
for Fe to matte, distribution coefficient for Fe in slag to
FeS, distribution coefficient for Cu to slag, distribution
coefficient for Fe in matte to Fe304, Ot to matte, Si
input stream, O input stream and distribution coefficient
for Fe in slag to Fe304.

This study utilizes the Symbolic Math Toolbox in
the Matlab software. With the relationships concerning
use of oxygen still undefined, the solver managed to
achieve a fully symbolical solution in around five
minutes with a laptop.
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When oxygen is taken into account, the solver has
been forced to settle for a numeric approximation,
which still includes all the variables in an appropriate
manner. The length of the analytic solutions is over
25000 characters. The solutions are at this stage provid-
ed with the values of the fixed variables. The last task of
the program is to produce usable functions of the long
analytic solutions.

4 Model Validation and
Discussion

Model validation is performed to ensure usability of the
model in real-time process optimization and scheduling.
As copper content in matte is a good measure of the
process state, the validation is performed at varying
matte copper percentage.

4.1 Similarity to legacy model

Figure 2 shows a comparison between the analytical
direct solution results, with the blue line, and iteratively
calculated HSC-Sim results, red line, as function of
matte copper percentage.

The cause for the differences is the fact that the ana-
lytically solved model is a simplified model of the pro-
cess including only the main elements. E.g. both silicon
and oxygen is consumed by other minor compounds
which are not included in the model. The difference is
mainly a shift of magnitude which can easily be com-
pensated by a term proportional to the total concentrate
flow. With this compensation the analytically solved
model is adequate for the on-line utilization.

4.2 Calculation time

As the optimization and scheduling algorithm calls the
model hundreds of times per second the calculation time
has to be short. A test function call from Matlab showed
that the execution time is only some milliseconds for
calls of two to eight variables, which is sufficient for the
on-line utilization. The calculation time for the iterative
solution of the HSC-Sim model is a few seconds.

5 Model Utilization

The directly calculating model of the flash smelting
furnace process will be utilized in scheduling of a cop-
per production line to optimize production and costs.
When solving the equation group, the solvable variables
can be freely chosen. There are two evident ways of
model formulation that can be utilized.
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Figure 2: A comparison between analytical solution results with blue line and iteratively calculated

HSC-Sim results with red line.
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Figure 3: Direct input output model utilized in
scheduling.

5.1 Direct input output

A natural solution would be to form a direct input out-
put model to mimic the real smelting process. Figure 3
represents a scheduling structure that utilizes the input
output model. As scheduling is a high level task whose
interests are in production rate and oxidation level in
first stage smelting, a lower level control structure has
to deal with the unit control of the flash smelting fur-
nace. This is shown as feedback control of the open
loop model. In practice, this could be a sub optimization
task for the scheduling routine.

5.2 Closed analytic solution

To enhance the direct scheduling interests, the required
control variables can directly be chosen as solvable
variables in the equation group. The static model allows
us to utilize a closed analytic solution whose scheduling
structure is clear and shown in Figure 4. This direct
solution will not need the sub optimization. Feedback
from the off-line measurements compensates for model
inaccuracy.

5.3 Model based schedule calculation

To demonstrate the usage of the directly calculating
model an example schedule is derived where special
attention is paid to the calculation time.

A similar routine will be called at high frequency
when the model is utilized in the real-time operational
and scheduling optimization. The routine is called at the
moment when the nonlinear optimization algorithm
executes a new iterative schedule. The example is in
line with the utilization of the closed analytic solution
presented in Figure 4.
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Oxygen » Real -
Silica FSF [ -
Off-line
Measurements
asg, asf, gsd, gs, am, gsg_SO2
Cu_m
gSi Modelled
q0 FSF -
Concentrate (qCu, gFe, gS, qOt)
Cu_m setpoint
Production setpoint | CuSmelting Line | o
Scheduling «Down Stream Information
Down Stream Scheduling >

Figure 4: Closed analytic solution utilized in scheduling

The flash smelting furnace is here regarded as a static
smelting process feeding parts of the formed com-
pounds to matte. Matte volume in the bottom of the
furnace is assumed to be fully mixed i.e. we have a
static material distribution process followed by a fully
mixed stock. The example comprises variable time
moments which can be chosen by the optimization algo-
rithm and where the algorithm can suggest changes in
production rate and copper content of feed to matte.
Additionally, the algorithm schedules tapping of matte
for further delivery to Pierce-Smith converters. The
example routine utilizes the closed analytic solution and
simply track element flows to matte and respective
stock situations starting from an initial state. As the
stock is assumed to be fully mixed the copper percent-
age can be directly calculated as copper mass of total
mass in storage. Figure 5 shows a plausible schedule of
an optimization algorithm including two steps in con-
centrate feed rate, one step in copper content of feed to
matte and one matte tapping.
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Figure 5: A plausible schedule of an optimization
algorithm.

When changing the concentrate feed rate, the internal
element mix has been kept constant. Figure 6 shows the
outcome of the example routine. First the routine has
directly calculated the required silica and oxygen for the
different static smelting process steps according to the
closed analytic solution. Second the routine has calcu-
lated the stepwise changing element streams to matte
and kept track of the total mass in matte and the copper
amount in matte to be able to track the copper percent-
age in matte. The copper matte percentage is exact in
the figure at the time moments. In reality the change
between the time moments in copper matte percentage
is similar to a first order step response due to the inte-
grator effect of the matte volume in the bottom of the
furnace. Due to the immediate tapping the total matte
mass is not exact in the period before the tapping mo-
ment. This inexactness in plotted figures is not a prob-
lem as the optimization algorithm only need the values
at the algorithm chosen moments. The necessity of
including the matte volume in the schedule calculation
is revealed when comparing the copper content of feed
to matte to the actual copper matte percentage in the
matte volume i.e. the copper matte percentage of the
tapped copper delivered to the next unit process in the
smelter line.
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Figure 6: Outcome of example routine including both
needed process feeds and matte state.

The calculation time for the example routine executed in
Matlab is about 15 ms in a laptop computer. The routine
included two function calls which prolonged the execu-
tion time but these function calls can be integrated to
one when optimizing speed. The execution time is esti-
mated to be short enough for real-time operational and
scheduling optimization. FSF models with execution
time in few seconds are earlier implemented successful-
ly in controlling the FSF unit process [23], but the exe-
cution time demand changes significantly when the
whole smelter line operation is to be optimized.

6 Conclusions

The objective of this study was to develop a method for
converting iterative output controlled balance models to
directly calculating models for process optimization and
scheduling.
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This method was used in the case of a flash smelting
furnace, previously modelled in HSC-Sim. The fast
calculating model is to be used in optimization of the
total production line operation.

The method consisted of formulating an equation group
based on the constrained FSF HSC-Sim model and
solving the unknown parameters and static states with
use of a symbolic calculation software. The study was
successful even if it requires careful formulation work
and the solution matched the solution of the original
model. The equation group should be fully determined
to enable a solution. The solution was implemented as a
direct calculation function whose calculation time ful-
filled the requirements for scheduling use.

The advantage with the approach is that even though the
length of the generated functions disables model
maintenance in function form, functions can easily be
recalculated after updates in the HSC-Sim model are
done. The modelling method has shown to be a power-
ful general way of converting complex iteratively solv-
able models to fast directly calculating models for utili-
zation in real-time operational and scheduling optimiza-
tion.

The presented demonstration model did not include an
energy balance and thereby the amount of nitrogen (N)
feed is kept constant even if the nitrogen feed is in prac-
tice the means to affect process temperature. The legacy
model is built on the assumption that temperature is on
normal level which enables a mass balance without
temperature dependency. The energy balance will be
included in future work.

This paper is an extended version of a paper presented
at the 9th EUROSIM Congress on Modelling and Simu-
lation [24].
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