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Indoor Location Based Services Challenges, Requirents and Usability of
Current Solutions

Abstract—Indoor Location Based Services (LBS), such as indo navigation and tracking, still have to deal withboth technical
and non-technical challenges. For this reason, thdyave not yet found a prominent position in peoples everyday lives. Reliability
and availability of indoor positioning technologies the availability of up-to-date indoor maps, and pivacy concerns associated with
location data are some of the biggest challenges tteir development. If these challenges were solvedr at least minimized, there
would be more penetration into the user market. Trs paper studies the requirements of LBS applicatia through a survey
conducted by the authors, identifies the current chllenges of indoor LBS, and reviews the availableofutions that address the most
important challenge, that of providing seamless indor/outdoor positioning. The paper also looks at th potential of emerging
solutions and the technologies that may help to halfe this challenge.
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|. INTRODUCTION

Location Based Services (LBS), such as navigatiopation Based Social Networking (LBSN), asset ifigdand tracking,
are used by many people widely around the worldb(B@aal. 2015), (Bent-ley et al. 2015). About thepearters (74%) of
smartphone device owners are active users of LEBS (Research 2013). However, when used indoorsjcagiphs have
difficultly providing the same level of positioningccuracy, continuity and reliability as outdook$aghdid et al. 2016).
Global Navigation Satellite Systems (GNSS) arentfost widely used positioning technology for outdase (GSA, 2015).
However their signals can be easily blocked, aaésdi or reflected (Kjeergaard at al. 2010). This esathem unreliable
indoors, making it impossible to seamlessly usentlier positioning across outdoor and indoor envinents. Many life-
saving services, such as for emergencies and seaould be improved hugely if indoor LBS coulddagiss this challenge.
In addition, although people spend most of theiretiinside, indoor LBS generates less than 25% taf tevenue (ABI
research 2015). If LBS could overcome these chgdélenits market will develop and more users wilatteacted. This paper
identifies these challenges using a survey of #test research and the results of a survey cordilgtehe authors. The
paper also evaluates current solutions and usssatfalysis to identify the most suitable solutionoag those currently
available.

Research into the challenges presented by LBS-igoorg (Maghdid et al. 2016), (Niu et al., 2015)y#gi and Sreenath
2015), (Wang et al. 2016). This paper considers flmelings, in addition to a comprehensive surtasgeting ordinary LBS
users, application developers, component providetscompanies, market analysts and content previdéis synthesizes
both the technical and non-technical challengesriea study. The most important challenge identifigdthis paper is
providing Quality of Positioning Services (QoPS}he functional and non-functional parameters thatuide accuracy,
availability, and cost (both to the user and fdrastructure deployment) including the availabiliepntinuity, and accuracy
of positioning services for indoor use. Other majoallenges are identified as concerns over prieasypciated with location
data and the overall cost of services.

Some of these challenges, including accuracy atidbilty, are directly linked to the effectiveness positioning
technologies while others, such as cost and privamy closely related to them. However, there amesissues that are
independent, such as the business model used arsbdtial acceptability of an application. The latiave been reviewed
elsewhere (Basiri et al., 2016a).

This paper reviews the technologies which are atirebeing used as solutions to these challengéso, Adased on the
results of a survey, a literature review and arnglgs the available systems, this paper compilesehuirements of current
LBS applications. By comparing the technologicajuieements of LBS applications and the availabletgms, the paper
assesses the usability of the current technoldgidsve application categories.

In addition, an analytical tool is described toleate the usability and fitness-to-purpose of eaasitioning technology for
specific applications. The application requiremeanight differ slightly from the general categoryfatls into. This tool uses
the Analytic Hierarchy Process (AHP) (Saaty, 198®)select the most appropriate technology amongethmurrently
available according to the positional requiremdatsthe application. AHP is a powerful tool for symatic multi-criteria
decision-making. The developed tool is sufficiertgxible that it can assess new LBS applicatiomsich are currently
emerging very frequently.



In section two, the structure of the survey and pghecess of the identification of LBS challengesl aaquirements are
explained. Section three studies the current swiatio the identified challenges and a usabilitglysis tool is introduced
and used.

II. IDENTIFICATION OFINDOORLBS REQUIREMENTS ANDCHALLENGES

Although some of the challenges in the developmémiBS are shared by a wide range of applicatitmsir impact can
vary from one application to another. For examtiie, availability and the accuracy of indoor positiy services is one of
the major obstacles for indoor applications. Thennmsitioning technology, Global Navigation SatellSystems (GNSS)
such as GPS, is not usually available. A lack auaate positioning is a major issue for trackingl aavigation services.
However, in advertising and social networking aggiiions, a hundred-meter locational error might dagisfactory.
Therefore, if we separate LBS applications intoegaties, we can identify the shared issues witlsiche This section
describes the process of identifying each appbo&irequirements, its categorization based on #rid the implementation
challenges. This is based on a literature reviesvtha results of a survey.

A. Survey Sructure and Participants

The web-based survey, conducted in May 2015 faetimonths, had 245 participants (212 valid resgnaged between
18 and 73 years, with 164 male and 48 female refpun. The distribution of 212 participants andrtheel of expertise in
LBS are shown in table 1.

Participants Group Percentage

LBS ordinary users (use LBS applications, 54.72%
devices and/or services in daily life)

LBS application developer: (design, develop, o 9.43%
deploy LBS applications and services)

LBS content providers (provide content and/or  1.89%
information, such as map, points of interest and
advertisements, to be delivered through LBS
applications and/or servicegnd components
companies (produce LBS components, such |as
antennas, receivers and transmitters)

LBS researcher and LBS market analyst] 26.42%
(study LBS and related technologies, applicatipns
and markets)

Other 7.55%

TABLE 1.THE CATEGORIES OF THE PARTICIPANTS IN THE SURVEY

The frequency of using LBS applications and the Ipeimof devices owned with positioning capabilitiesied among the
different participant groups. However, across almmimum of 52.63% of the users have three or fdavices with
positioning capabilities, such as mobile phonediicle satellite navigation, fitness devices, iWatdhod, iPad), and a
minimum of 44.44% on average use their locatioretadevices at least twice a day. The frequency sifiguLBS
applications by the largest participant group (L@8inary users) is shown in figure 1.
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Fig. 1. The frequency of use of the location-enabled devjteft) and applications (right) by ordinary usef4 BS.

B. LBSapplication segmentation

The participants were asked about the frequenaysefof several applications, including navigatimacking, emergency
and safety, local news, location-based social nedwg, travel guidance, elderly assisted livingd gret/asset finding. The
participants were asked about the important featafeéhese that they would consider when buyingyrdoading or in use.
For each application, the participants were askedabk the features by importance to them, inclgdime cost of first
purchase, update fees, battery consumption, uiserdiimess of the interface, size and weight (af ttevice), location
accuracy, continuity of service (seamlessly indmatdoor), delay in providing service, and privaegtiires. The participants
were also asked about their minimum (and maximueguirements for each of these features that woubdige an
“acceptable” quality of service.

The Random Forest method (Gromping, 2009) was tsaduster applications based on the answers fiwmvarious
groups and identify the requirements of each cated@ble 2). Random Forest method classifies (avide with a
regression trees) each node (input data). Each isogjgit using the best split among all varialpesameters, here such as
privacy, power consumption, etc. In a random foreath node is split using the best among a swabgeedictors randomly
chosen at that node. Random Forest is very usardliy in the sense that it has only two paramétbesnumber of variables
in the random subset at each node and the nhumhteeesf in the forest), and is usually not very Rivesto their values.
Based on this method, the five application categgoof indoor LBS were classified as:

» Indoor navigation and tracking (such as pedestrangation, indoor tracking),

» Marketing (shopping advertisements, proximity-bagedcher sharing),

» Entertainment (location-based social networking fmdsharing, location-based gaming),

» Location-based information retrieval (such as itiegg tours, underground real-time information),
» Emergency and security applications (such as arhbgsisted living, E112 response).

These results were within two STD when measuredsignificance and compatibility in responses. Téagisfies the
required Quality of Service (QoS) identified by etlstudies (Ghai and Agarwal 2013), (Harle 2018pb@as 2015), (Torres
et al 2014), (Wirola et al. 2010). They mainly idnpositional accuracy and availability, priva@gst, power consumption,
reliability and continuity of service, plus the pesse time.

LBS Category Applications Examples Quality of Senge Requirement

Navigation and « Pedestrian Navigation - Response in near-real-time

Tracking « Path Finding And Routing| - Accuracy within a few meters
« Tracking - Seamless availability (indoors and outdoors)
« Asset Finding - Good reliability and continuity of service

- Low-medium power consumption
- Reasonable or cheap price
- Strong privacy preservation

Marketing « LB (Social) Marketing - Medium to low availability
« Advertisement - Response in few minutes
« Proximity-Based Voucher/ - Accuracy in the order of hundreds of meters
Offers/ Rewards - Medium reliability and continuity

LB Social Reward Sharind - Very low power consumption




« Location Based Dealing - Free or very inexpensive
- Medium to strong privacy preservation

Entertainment « LB Social Networking - Medium to high availability (seamless indoors and

+ LB Gaming outdoors)

« LB Fun Sharing - Response in real-time or a few seconds

« Find Your Friend - Accuracy in the order of tens of meters

« LB Chatting - High reliability and continuity

« LB Dating - Low power consumption

- Reasonable or cheap price
- Medium privacy preservation

Location-Based « Location-Based Q&A - Medium availability
Information (Query) - Response in real-time or a few seconds
Retrieval « Proximity Searching - Accuracy from a few meters (e.g. for tourist guid
« Tourist Guide and proximity search) to hundreds of meters
« Transportation Info. - High reliability and continuity

- Low power consumption
- Reasonable or cheap price
- Medium privacy preservation (depending on the

application)
Safety and Security | « Emergency Services -Very high availability (seamless indoors and
« Emergency Alert Services outdoors)
« Ambient Assisted Living | - Response in real-time or few seconds
« Security Surveillance - Accuracy of tens of meters or lower

-Very high reliability and continuity

- Low power consumption

- Reasonable or cheap price

- Medium or low privacy preservation

TABLE 2.LBS APPLICATION SEGMENTS AND THE IDENTIFIED REQUIREDEFATURES USING THERANDOM FOREST METHOD

In addition to having a better understanding of réguirements of each application category, thaltegive the pairwise
comparison ratio for the AHP analysis to find thestypositioning technology, among those currentgjilable.

C. ldentification of current LBS challenges

The answers to these questions also indicate otfeahost important challenges of the developmé&hB& markets — a
lack of mutual understanding among the value ch@me of the best examples of this is the underasitom of the users’
concerns regarding privacy by developers (Basial ¢t2016a). Ordinary users prioritized privacyoag the most important
features, except in emergency, safety and seawliéiyed services, while developers believe thatagy is less important
than cost and a well-designed user interface. Tiseatéso a need for technological development idger the gap between
what developers need and what content and techyplayiders can deliver.

In another question, participants were asked toenamd rank the important criteria for LBS applioat to become
successful. Predictably, the answers to this questry between different participant groups. Banaple, availability of an
API for developers was voted as one of the mosbitapt features (figure 2) while it was not evennti@ed by ordinary
users or technology providers.
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Fig. 2. The ranking of the features contributing to thecess of an LBS application from the developerspextive.

Based on this analysis, weighted by the number thadrole of participants, and clustered using tlEd®m Forest
method, the top three biggest challenges for LB@licgtions were identified as (1) Quality of positing service, (2)
Privacy concerns, (3) Availability of the content.

Privacy concerns refer to the (perception of) issoencerning the mis/re-use and/or inference oftipnal data by the
service provider or a third party. Availability abntent refers to the possibility of having accesshe data, services and
information essentially required to provide thevgss. This includes up-to-date maps, APIs, contalxtiata, and so on.
These three challenges to the development of LB® baen identified in market reports and literatteeiews. Knowing
these requirements, the current solutions can pkesd and evaluated to see if they are being addckand, if not, where
are the deficiencies and how they can be bridged.

Ill.  INDOORLBS CHALLENGES AND THEPOTENTIAL SOLUTIONS

A. Positioning Requirements and Solutions

Reliable, inexpensive indoor positioning is needed many LBS applications. It needs to be able doalize users
accurately and work seamlessly with outdoor pasitig technologies (Mautz 2012). In this subsective review
positioning technologies from a quality-of-servipaint of view to give a clearer picture of whatli® biggest challenge to
achieving this.

In general, localization technologies can be caiegd into three main groups: Beacon-based positiptechnologies,
Dead-Reckoning (DR), and Device Free. Some teclgieddblend more than one of these, so can be fidabsito a fourth
group Multisensory positioning. Each will now besdebed.

1) Beacon-based positioning systems

GNSS, the most widely used outdoor positioning nebtbgy, uses Radio-Frequency (RF) signals. Howeber signals
can be easily attenuated, reflected and/or blot¢keduildings, walls and roofs (Kjeergaard at al. @0IThere have been
attempts to use GNSS signals inside buildings ugigind-based PseudolLites (PL) (Kuusniemi et al.22@nimicking
satellite signals or high-sensitivity GNSS (HSGNS$&geivers. However, despite being technologicptigsible, neither
could become a ubiquitous solution for “indoor GR88e to the high costs involved.

PL requires installation of many stations, thugsinot a low-cost solution and must be carefullgnpled so as not to
interfere with GNSS. Effective HSGNSS receivers tanexpensive, up to hundred euros depending orietitares the
module offers (Pinchin et al. 2013). Moreover, $ignals indoors are so weak that it is very diffica acquire a dynamic
position easily. Television broadcast and cellsignals penetrate buildings better than GNSS (FeBdis et al. 2013). The
positioning accuracy that can be achieved withehsignals is not accurate, often greater than SDeng et al. 2013),
(Samama 2012), (Bonenberg at al. 2014), (Bonendteay 2013), (Bonenberg at al. 2012).

In addition to these technologies, there are soimer anethods that can be applied for GNSS-baseitigrurg in partially



denied areas. These include shadow matching (Gr@2d%). Digital Video Broadcasting — TerrestriBMB-T) relies on
orthogonal frequency-division multiplexing (OFDMyhich can provide fine information regarding theachel state.
Besides that, the emitters' locations are usualigwn, which also offers a great advantage overcther technologies.
However, one of the main challenges is the low nemd$ emitters. In addiiton, the receiver has teniify and match the
incoming signal to a specific emitter. This posegiastion on how accurate and reliable this caddoe, increasing the risk
of errors in the position estimation (Huang e28l13).

Wireless Local Area Networks (WLAN) technologies aertainly one the most popular positioning tedbgies provided
based on the RF-based technologies, which hadeest Heveloped initially for positioning purposeEE802.11 is one of
the most popular standards for WLAN. This protdeat made its way to almost every electronic de\Bogce most recent
IEEE 802.11 protocols rely on OFDM signals, theigmals pose a new opportunity for positioning. Dadts ubiquitous
availability in urban environments, residential azmmmercial, it can be used for indoor positionimigh an acceptable
availability. For positioning these networks haweeb used mostly under fingerprinting solutionseniffy a relatively good
performance, 5 to 10 meters, in densely covereaksgi®hrestha at al. 2013), (Nurminen et al. 2013).

These signals report on the channel state, whiohbeaexploited in a positioning context to obtaange measurements.
This metric is more reliable than the Received 8ligstrength Indicator (RSSI) but it also requiresuaate environment
models. However, these models are difficult to dyusince most channel effects are difficult to maxteunderstand how to
properly model them. Therefore a training phasddalso be necessary (Xiao et al. 2013).

There are many existing Wi-Fi access points. Sigti@ngth and flight time are usually the wantetiilattes. 802.11v
consists also of positioning protocol. (Ciuranaaét 2011) assesses the 802.11v standard for TimAra§al (ToA)
positioning. Furthermore (Sendra et al. 2011) caegpthe coverage and interference of the diffepenitocols in the 802.11
families. In (Hao 2013) Wi-Fi access point signaksgths were collected for fingerprinting. Theesgth was represented
according to the Wi-Fi Access Point MAC addres¢egjc et al. 2014) used Wi-Fi with GNSS received daMU. Moving
from indoor to outdoor environment is challengingcause the GNSS requires time to achieve the fikstThus it is
necessary to identify these transition region attarastics between the technologies used. Theaésswork going on with
the next-generation 802.11az amendment, which sggded for new positioning applications designeduio on wireless
networks.

Ultra-wideband (UWB) characteristics offer advamtmdor coping with multipath. Particularly its impe radio short
pulses make it easier to detect the multipath comapts. Repeatability is a strong advantage for ute-wideband
approach. This means that the positioning resalisstonsistent over a time period (Meng et al. 200%/B tag was placed
on shoe and helmet in (Zampella et al. 2012). Bgemieasurements on the shoe had much more owtlierso non-line-of-
sight conditions. Although high time resolutionldfVB signals makes it easier to distinguish betwesginal and multipath
signals, the non-line-of-sight condition is stiltkallenge.

Bluetooth is another wireless technology standardekchanging data over short distances (Hossaah. &007), which
has increasingly become popular since the releb®cstandard Bluetooth 4.0 protocol. Bluetoot lenergy (BLE) is a
version of Bluetooth meant for low power applicaspwhich allows some of applications to operata gontinuous manner
for extended periods of several months. Due tpdwer efficiency and low cost, BLE can be deployedeveral tags or
beacons throughout the environment, in order tercodf more accurate indoor positioning solutionvsiét al., 2015). A
shorter operation range allows for the proximitgdsh positioning, providing a better performancearding the estimated
position error. The specification does not set ppeu limit for the BLE range of operation, but espents show that over
20 meters the RSS become very low, making theiposig practically impossible.

RFID system consists of RFID readers and transceivetags. In the active approach, the user cathie reader and scans
the tags in the environment. In the passive aprotie user carries the tag and the environmentrdéeders set up for
positioning. The passive RFID detection range ig/\&hort (2m) and in practice, a stand-alone passiistem would be
costly to set up. Privacy is of concern especiallpassive RFID tag systems where the computatigralaility of the tag
cannot support necessary cryptographic data protedRFID is implemented generally as a proximitsitioning system
(Fujimoto et al. 2011), (Seco at al. 2010), (Pstedt al. 2011), (Hasani at al. 2015).

Cameras can also be used for positioning in sevemgs. The user can carry the camera and the in@gebe matched
against available geo-referenced photos (Basai.e2016b). Basiri et al. (2014) used markers/sqaaced at landmarks and
a mobile phone camera was used to identify unigaekens and look up the corresponding position database. Kivimaki
et al. (2014) lists infrared sensor technologieswelver, micro-bolometer and Golay cell-based iftlacameras are very
expensive and may not be applicable for many ind®8 applications. Thermopiles and pyroelectricsees, although less
accurate, are very affordable. These can be effedti low lighting conditions where conventionalage processing is
impossible.

Compressible media, such as sound and ultrasamiaelsitravel through a medium like air and the iresgk strength or the



time of travel can help to calculate the positidrthe receivers. Signal strength, form recognitéord travel time are the
common methods used to derive the location. Hodlire al. (2014) used signal amplitude envelopedtiein on received
chirp-form signals. Rishabh et al. (2012) used tiofiearrival (ToA) to calculate the position. Thentng was based on
detecting specific sound signals by comparing tiéth the reference signals at base stations. Téerded signal detection
was carried out by cross-correlation with the refiee signals. The sound source can be carriedelystér or multiple sound
sources can be located within the environment as bitions. Multipath, echoes and ambient noiieeienvironment make
sound-based localisation system design challenging.

2) Dead-Reckoning (DR) positioning systems

Dead-reckoning positioning systems can be claskifito two groups; plain Inertial Navigation SystefpINS) and Step
and Heading Systems (SHS). With arrival of Micra@le Mechanical System (MEMS) INS found wide usma&phones
with inertial sensors, such as accelerometers gnosgopes, allow us to use them as input deviced&ulestrian Dead
Reckoning (PDR). The increased interest in the MESdBsor utilization is related to their small sfzecm order) and low
cost due to the silicon fabrication process. Inrttest common configurations, MEMS inertial unitsngise accelerometers
that provide the user position by double integiatime specific force along its sensitive axis; MEg\Boscopes, measuring
the body rotational motion across each sensitive avth respect to the body sensor frame and B-axes accelerometers
and gyroscopes along with the magnetometers megstiie heading of the vehicle. In many cases omsizbntal
positioning is of great interest, a standalonetmosifrom the dead-reckoning MEMS sensor can beigeal from the use of
two gyroscopes and one accelerometer. (Racko et2@l6) used smartphone sensors, including low-¢nsttial
Measurement Unit (IMU), for PDR and compared witbrenprecise and expensive Xsens IMU. The accur&déyeotial
sensors has increased in the past few years, butstill cannot alone provide proper accuracy bseaaf many negative
effects, such as heading drift due to gyroscops {Racko et al., 2016). Among the pINSs, the tattizade IMU have a
drift of a few meters in a minute (Boll at al., 2Q,Lbut they are quite expensive and bulky for maB% applications. On
the other hand, the low-cost MEMS inertial measueiunits require additional external featureshsas zero velocity
updates, map matching or external sensor aid, ieewae similar accuracy (Harle 2013), (Hide et &11@), (Pinchin et al.
2014), (Hide et al. 2012). Skog et al (2010) eatdd zero-velocity detectors for foot-mounted INSait style, step size
estimation and attitude determination are the lemameters in Step and Heading Systems. Map matthatigiques aided
inertial navigation (Pinchin et al. 2013), bring low-cost MEMS INS accuracy closer to that reglifie indoor LBS. Also,
cold atom interferometry and chip-scale atomic kéoare still under development (Groves 2014). Dea#toning systems
are not generally considered as stand-alone posiesystems as they have to rely on the calitmatioexternal positioning
technologies such as GNSS and Wi-Fi due to théir @nrift of position is the challenge in inertidiead reckoning, and the
double integration of acceleration data into posgi information is hard to stabilize. Another dbage is the initialization
of the IMU parameters. If the starting position dr@hding are slightly wrong these errors will acalate over time. Pinchin
et al. (2012) uses the cardinal directions of thiét lenvironments as a map-matching technique josadhe user track and
position. A comprehensive literature review on fiarpositioning systems has been published byéH€2013). Step and
Heading Systems (SHS) use estimates of step leagihheading. Peak-detection, zero crossing, temptetching and
spectral frequency analysis are some of the appesato detect steps. Skog et al (2010) compared sigp detection
algorithms: acceleration moving variance, magnifuadegular energy rate detection and a likelihoodhioe that combined
all three. Slippery ground, shuffling and use @&waltors are all challenges for estimating the st position. These make
it difficult to detect zero velocity thresholds zgro angular velocity. Alternative and even mormplex ways for getting the
inertial navigation solution are for example byngsiearning methods like statistical model comparss of learnt IMU
records, artificial neural networks and regresdimmests (Nguyen et al, 2010). In summary, the iabkgystems as dead
reckoning systems are not sufficiently accuratdérfdoor positioning by themselves.

3) Device-free positioning

Tactile sensors, such as piezoelectric, capaditiveh surfaces, levers and buttons can recogneerésence of a user at
a certain location. Tactile localization is basedtioe deployment of sensors or probes being ircdpiysical contact with a
surface or an obstruction. Similarly, an odomegedirect and continuous (Kivimaki et al. 2014, Mi&tdn et al. 2009).
Localization using tactile sensors is relativelsagthtforward and accurate. However, identificatiorpublic environments
may need additional information, such as a canmmaeme, to identify and deliver the correct locatfonthe targeted user.
Identity for odometry, on the other hand, is eaki@mplement but it requires the user to carrygéesor.

Cameras, such as CCTVs, also can be used for grosili the user (feature or marker) can be detebied camera
network covering the environment (Torres-Solis let2810). Using visual odometry, location can becked using image
flow by comparing patterns in sequential imagesstAreovision setup can also be applied for morarrate camera
movement estimation or three-dimensional positignin



Barometers are relatively easy to use for measwiingressure, particularly indoors, and this makésasible to use it for
detecting changes in height or altitude. Floor leves successfully distinguished by Bai et al. @0RAs weather conditions
can change, affecting the reference pressure, mezhfquressure and the temperature, calculating theea height is
challenging in a real time application.

As mentioned before, magnetic-based positioningrtelogies determine location based on the magitid value
assigned to each point. However, the existencéBeofnetallic objects or radio devices often make Wery difficult with
magnetometers. Zampella et al. (2012) measuredttide magnetic field while stationary. If thereswany angular rate
detected during the stance this was used to cahiegtaw drift and gyroscope bias. Fuzzy InfereBgstem (FI1Z) (Afzal et
al. 2011) uses four magnetic field parameters teaievhether the magnetic field was disturbed msicuilding (Hao at al.
2010). As practical experiments and requiremenédyais have shown, a single positioning technolcggynot be the answer
to the requirements of many applications of inde&S. Multi-sensor positioning can solve some protgdefor some
applications. Improvements in the sensitivity acdusacy of current sensors, upcoming technologiet ss BLE, Galileo
with its higher signal penetration, a change inigyoknd legislation regarding the use of some teldgies such as
pseudolites can help to improve the quality of imdpositioning services.

Table 3 summarizes the important characteristicgiofeillance positioning systems. They includephbssibility of being
used stand-alone, the achievable accuracy, casea$ensor and components on the user’s deviceptaaplementations
and the deployment of the infrastructure for awitie application, privacy (system security measuagainst location
information hacking categorised into three catezpdf (a) high (the positioning signal is broadeddtom the terminal and
device receive and calculated location with a mimimcommunication over network, e.g. GNSS is highhwacy
preserving), (b) medium (device can receive andutale the location but it needs communicationsr angwork and the
device is potentially identifiable by the transmifte.g. Wi-Fi based positioning), and (c) low (wéhé¢he location are not
calculated on the device and a third party can eahd back the location to the user, e.g. positgpnsing CCTV cameras),
power consumption (on the user device), coveradgkeopositional signals, and required data rate.

Positioning Stand- Data Accuracy Coverage Cost for users Cost of the Computational Privacy
technology aloneness (output) (range of the Infrastructure load/Battery
rate positioning consumption
signals)
GNSS Stand-alone| ~1Hz 4m—7m Generally £1-£100 (e.g. u-| Billions of Pounds (but | 150mW- 1.5W High
available blox LEASH already existing)
outdoors ~£50)
Pseudolite Stand-alone| ~1Hz 3m-7m ~50km Locata receiver~£100000 per transmitter ~1W transmit power High
~£5000/ IFEN
NavX
Mobile Stand-alone| 1Hz-a 1m-a few ~ A few km >£10(OMAP) Millions of Pounds (bui ~1W(TI OMAP) Medium
networks few Hz hundreds of already existing)
meters
WiFi RSS Stand-alone| 0.25Hz, | 2m—4m 10cm-50m HP Ipaq £77 20£-(more than £50) pe1W, 700mW (for Medium
3Hz, Access Point WSNB802GX),
0.2Hz >500mW for transmit

and 200mW for
receivers

WiFi Stand-alone| 1-10Hz 1.7m-10m ~25m >£5 >£50 (ABeBJi >1W/ 100mw Medium
ToF/AoA
UWB ToF Stand-alone| ~25Hz, | 15cm-1m | ~5m-175m £60 (for Expensive laboratory >1W/ (500mwW Medium
>10Hz 1.5m-3m ubisense tag equipment transceiver)/ ~300mwW
(for UWB IP63 slim)- receiver and 600mw
RSS £1000 transmitter)
Proximity/ (laboratory
Scene equipment)
Analysis
RFID active Stand-alone| 0.5Hz, 1m-3m/ 30 —100m ~£300 (I-Card | >£10 per tag ~250mwW Medium
0.2Hz Il interrogator),
>£500 M220
reader
RFID passive | Stand-alone| 20Hz, 15¢cm- ~2m >£10 per tag ~£200 >£1000 per reafer <50mwatpand Low

80Hz 50cm 300mW for reader
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Bluetooth RSS | Stand-alone| 0.2Hz, | 2m-5m Modifiable (1- | ~£5 receiver £5-£30 per tag 25mwW- 50mw High
2Hz, 25m, 150m in
1Hz, open fields)
30Hz
Barometer Assistive ~2Hz 33cm-0.2m  Ubiquitously ~£10 Nopkgable ~5mwW High
Sound Stand-alone| 1Hz-teng lcm-1m ~3m-10m/ £10-~£300 £10-£100 per node 200V Medium
of Hz
Infrared (IR) Stand-alone| ~50Hz 10cm- ~6m (depends | ~£1 (marker)- £1 (marker)-£10 <50mW (for markers)-| Low (for
marker or 6m(for on tag ~£10(camera) | (camera) 165mW (for camera)+| environm
reflective active placement) processing ent)/ high
element Badges consumption (for user
with the
camera)
Infrared (IR) Stand-alone| ~20Hz 0.2-0.8m ~6m- 10m ~£1 ~£1 per thermopile- <50mW (thermopile) Low (for
Light (thermopile) €8000 microbolometer environm
Image feature camera ent)/ high
matching (for user
with the
camera
Magnetometer | Stand-alone | 5Hz- 1mm for 1m magnetic £2-£10 >£2*n <50mw High for
(needs 75Hz permanent | fingerprint map sensor
magnetic magnet- but low
maps) 20cm for for user if
fingerprinti carrying
ng a magne
Electromagnet | Stand-alone| 1Hz 1% of the | ~5m-20m >£1000 ~£16 per mm~2 >1W Low
ic system range
Light Image Stand-alone | 5Hz- 1mm-30cm | ~6m (resolution ~£10- £500 >£10 for marker amounjt ~ 200mw- ~2W High
marker and 30Hz dependent) user
Assistive carries
(for the
snapshots or camera)
odometry)

Light Stand-alone| 5Hz- ~10cm (1% | ~6m (resolution | ~£1 for ~£10-£100 per camera 50mW for odometer| High
Image feature 30Hz drift for dependent) odometer- £100 and up to 1W for (odomete
matching odometer) for camera cameras ry and

modules user
carrying
Tactile Assistive 50- Ubiquitously Very low High
On user 500Hz
device
Tactile Stand-alone| 22Hz- 4cm-40cm Ubiquitously Low ~£100 (per 3x2m"2 are¢a) Low
Environment 60Hz
Tactile Assistive 4 pulse Ubiquitously Low ~150mwW High
Odometer per
rotation

TABLE 3. POSITIONINGTECHNOLOGIESSPECIFICATIONSAND FEATURES

This paper applies a usability analysis to seleetrhost suitable positioning technology, among ehalseady available,

for each LBS application segment. To do so, AHPho@blogy (Saaty, 1980) is used to make the compasisf objectives
and alternatives in a pairwise manner. Analyticrbtiehy Process (AHP) is one of the Multi-Criteri@dsion Making

(MCDM) processes, which derives ratio scales frainga comparisons between criteria and factorstyS&880). AHP can

systematically help decision makers to select betwahoices based on criteria and factors, whichrepresent priorities and
preferences. One of the most valuable aspects oP Adthe flexibility to consider both quantitatied qualitative

parameters and factors to prioritise the choicemt{ 1980). This enables decision makers to imchidhost any kind of
criterion, from wide range of natures, allowing AittPbe practically applied in many real-world démismaking problems.
In addition, AHP can accept human inconsistengiggsidgments. AHP is based on pairwise comparisioies|ly done by

experts.

The AHP has been applied to a wide range of prolsi¢éumations, however, one of the most widely uggalieations of AHP

is selecting among competing alternatives in a irollective environment. It is based on the welligied mathematical
structure of consistent matrices and their assediaight-Eigen vector's ability to generate trueapproximate weights
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(Saaty, 1980). To do so, AHP methodology includesmarisons of objectives and alternatives in awis& manner. The
AHP converts individual preferences into ratio-scakights that are combined into linear additivéghts for the associated
alternatives. These resultant weights are usedrtk the alternatives and, thus, assist the decisigker (DM) in making a
choice or forecasting an outcome. In order to $elee most suitable positioning technology, theestibn criteria are first
set. As discussed in section 2.2, the participahtee survey gave a score to each feature of Ligflications. These scores
are used for the pair-wisely comparison of featuttestt is finding the ratio/value showing whichtig® has priority over the
others (Basiri et al., 2015). For example, for ¢ineup covering navigation and tracking, accordioghe criteria pairwise
comparison matrix (with consistency ratio of 1.5%d aeigenvalue of 5.067) the weight of quality featuof sorted as
follow: coverage/range (38.3%), cost to the usé&.1%), power consumption (15.8%), accuracy (14.p%)acy (5.9%),
and cost of the infrastructure (5.4%).

As a second level comparison, the pair-wise corsparfrom the criteria point of view, the resultstloé experiments and
literature review summarized in tables 3 and 4,used. This means, for example, regarding accutheypriority of GNSS
over WLAN is determined based on the ratio of theusgacy of GNSS positioning (4m-7m) with respectiie WLAN's
(2m-4m). For qualitative parameters some valuesaasigned to the scores. For example, for privéaghnologies are
weighted as GNSS (and HSGNSS, Pseudolite, baror@8S, INS+GNSS) (33.8%), UWB (12.5%), BLE (12.5%),
Ultrasound (11.2%), WLAN (11.3%), RFID active (8.1%actile floor (5.1%) and RFID passive (4.2%)daamera (1.1%).
The results have a consistency ratio of 1.5% aimgtipal eigenvalue of 8.142.

At this stage, the positioning technologies, whigmnot be used as a stand-alone technology, suahbasometer, are
either excluded or the combination of them with taeo technology is considered as one single altemaBased on the
calculated priority and weights of positioning taotogies and also quality features of each LBS iaafbn group, it is
possible to prioritize each technology for eachliagfion.

Priority of each technology = summation of (importance of each quality feature* priority of the technology
from quality feature perspective)

For example for the application group of informatitrieval, the GNSS and WLAN are the most suégtbsitioning
technologies with values of 16.2% and 16.5%, redgalg. This can be done for all the applicatioroigps and the most
suitable positioning technology for each applicatiwoup is shown in table 4.

Indoor LBS The Top3 Most Suitable Positioning

Category Technology already available

Indoor Navigation 1. Bluetooth Low Energy (BLE-17.27%

and Tracking 2. Wireless Local Area Networks (WLAN)
13.75%

3. (GNSS+INS)-13.3%

Marketing 1. Wireless Local Area Networks (WLAI-

12.65%

2. Bluetooth Low Energy (BLE)-10.25%
3. Mobile Network-8.47%

Wireless Local Area Networks (WLAI-
17.45%

Camera-16.98%

[

Entertainment

Mobile Network -10.43%

RFID-10.43%
Bluetooth Low Energy (BLE)-9.67%

Wireless Local Area Networks (WLAN)
9.65%

Location-Based
Information Retrieval

w N RPwN

=

Safety and Security (GNSS+INS-10.43%

2. Wireless Local Area Networks (WLAN)
8.74%

3. The rest are almost equally unsuitable

(suitability less than 5%)

TABLE 4.POSITIONING TECHNOLOGIES SUITABILITY FOR EACH.BS APPLICATION CATEGORY
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B. Privacy concerns

Personalization is one of the key features of ligiht, context-aware, adaptive LBS. However, tbiguires the storage of
personal preferences, activity history, currentitam and previous movements (Toch et al., 201Bg fhreats associated
with the violation of location privacy can dramaitily limit the development, adoption and growthL&S applications. LBS
require the user to disclose their location to émglersonalization. Service providers can potdgtitore, use (or misuse,
reuse), and sell location data. Such potentialatsrean discourage users (Chin et al.,, 2012). lthutesl access to
information about an individual’s location couldtentially lead to harmful encounters.

In addition, an individual’s location history cantpntially disclose activities, preferences, hedidockground and history
and other (even more) private aspects of life. antipular, if the locations are accompanied by terapinformation, the
trajectory of movement, then more can be reveawe( et al., 2013). De Montjoye et al. (2013) ustterd that only four
anonymous spatio-temporal points are enough tauehiqdentify 95% of the individuals within the evd.

In addition to these potential threats, lack of wemass regarding issues of location privacy amaxinary users may
introduce an even big threat to LBS markets: thagipumay overestimate the threat (Shokri, 2015}ifCet al., 2012). This
might be partially due to the fact that the necesgaards to protect location privacy do not needé¢ the same for all
applications and services. The level of accurdey,potential of unauthorized access and/or inferefihigher-level private
information, and the impact of any privacy violatiom each application can be different (Puttasw@9y4). The level of
privacy for each application category identifiedhin the survey is illustrated in table 1.

In order to access location-based services, moisiies have to disclose their location to the serpioviders. However,
such information can be simply reused by the samatter sectors without the user’'s permission.order to protect the
privacy of the LBS users, there are several appremand mechanisms which we can categorize intogimups; regulatory,
privacy policies, anonymity, and obfuscation.

Regulatory approaches to privacy develop and defites to manage the privacy of individuals andphbblic. Although
these are being developed by governments and ddgeslsectors and are, in general, strictly enfabbbe they have faced
several challenges. In addition, due to the timesoming and complicated process involved, the nunabeprivacy
regulations is still relatively small for this fagtowing technology and they are far behind thedsead demands.

While regulatory approaches target global or grbaped safeguards, privacy policies provide mopatile and adaptive
protection mechanisms for individuals (Myles et 2D03), (Gorlach, 2004). Location privacy poligisach as the Internet
Engineering Task Force (IETF) GeoPrive, the Worldd&/Web Consortium’s privacy preferences projec3RPand
Personal Digital Rights Management (PDRM) are aurpeotection approaches. The nature of LBS apfpdioa introduces a
big challenge to these privacy policies. The rapatianging, highly innovative and fast growing estsm of LBS makes it
difficult to update, issue or adapt the policieptotect emerging applications and technologies.

Anonymity-based approaches, such as K-Anonymitye@wey, 2002), disassociate location informatiomftbe user’s
identity and minimizes the possibility of inferenaed traceability the other information. Althoudtey are technically easy
to implement, they can be a barrier to the perszatadn of LBS, which are becoming more common d&md many
applications essential (Xu et al., 2011). A possibblution for this can be pseudonym-based appesaels they allow
partially some levels of personalization by keepiing individual anonymous while giving a persistelgntity (an alias or
pseudonym). The pseudonym can be linked to théiraentity when using higher safeguards. Howglomation patterns
may lead to identification if this data is combingith other data as well. Sweeney (2002) shows&fi&b of people can be
uniquely identified by combining otherwise anonyra@itributes, such as their postcode, age and gende

Obfuscation lowers the positional quality of theawled user location to protect it from misuse bgrdding the quality of
locational information through the addition of ikacacy, imprecision and vagueness (Duckham, 2086)t mainly deals
with the quality of positional data, table 2 sumines aspects of quality-of-service provided bydbexmon LBS positioning
technologies.

It can be the case that for many scenarios more dha privacy protection approach is required. @d&bkummarizes the
challenges and disadvantages of each four categoi@mtified. Despite the need for these multigdpreaches to protect
user privacy, in many situations (location) dat@sloot need protection. Due to their spatial ant¥orporal inaccuracy,
there are some datasets that may not be worttkitgpand therefore (extra) protection may no longerequired. However,
one application's public data can be consideraedatwifor another, and vice versa. Also, socialdseand public perception
of the concept of privacy is fluid.

vacy Protection Category Disadvantages And Challenges
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Regulatory « The possibility of having different interpretatioasd implementations of the very same
rule and regulation.

» The small number of rules and regulations due ¢otithe-consuming and complicated
process of their development, particularly for fgsiwing, innovative and rapidl
changing technologies and applications.

« The regulations, on their own, cannot guarantegven prevent the invasion of privacy
and they only act after the privacy violation hagpenec

Policy » The rapidly changing, highly innovative and fasbwing ecosystem of LBS makes|it
difficult to update, issue or adapt privacy policie

» The privacy policies need to rely on the availaelgulation to be practically applicable
and the liability relies on supporting regulati@ms rules.

Anonymity » Anonymity can be viewed as a barrier to the perésatéion features of LBS, which are
becoming more and more popular and, for many agidics, essential.
« The pattern of anonymised data may lead to ideatifin of the individual if combined
with other data.

Obfuscation » Obfuscation can compromise the quality of LBS resgs that depend on the quality|of
positional data.

« It needs user authentication.

» Obfuscation assumes that users are able to chobae imformation to reveal to a
service provider, which may not always be the case.

TABLE 5.PRIVACY PROTECTION APPROACHES

C. Availability of Content

LBS is supposed to provide tailored informatiorugers with satisfy their requests, needs, situataod preferences. This
requires the availability of relevant informatiam lte filtered based on the query and contextuakinétion. Among all the
relevant data sources, maps and other spatialadatase essential for the functionality of many L&plications. These
include transport networks for routing and navigatiand locational maps of points-of-interest. Hogrethis content,
particularly for indoors, raises issues of privacy legal concerns. In addition, the often limitetess makes it is difficult
to assure the quality of indoor data such as litghiéty and its spatial, temporal and thematica@cy (Basiri et al., 2016d).

Google is one of the major providers of indoor LB®eir product tells customers what floor they arein a building.
Google’s indoor mapping concentrates mainly on irtgyd well-frequented buildings such as major aitfdDetailed floor
plans automatically appear when the user is viewhiegmap and the map is zoomed to buildings whetedr map data is
available. But even for this newest release, madgar areas are not available and, even when pretms not provide full
navigational instructions. For example, stairs lestwfloors are not included. Overall, indoor mapecage and resolution is
not comparable with that for outdoors.

The poor coverage of indoor maps is not mainlycaneal issue (Lorenz et al., 2013). It is more thuthe privacy issues
associated with privately-owned properties and dfs® lack of suitable policies and technical stadslafor privacy
protection this data.

One of the solutions, which has already shown rigetcality and growing popularity, is crowd-soungiand volunteer-
based mapping (Sui et al., 2012). Collaborativepirapthrough crowd-sourcing is one method of getimegaspatial content.
It involves contributions from a large, disparateup of individuals. These methods, part of Weh B<® applications that
allow people to upload information easily and allmany others to view and react to this informa{(Basiri et al., 2016c).

There are several tools available which allow usersreate and edit web content, including taggoals, wiki software
and web-based spatial data editors. This methathtaf collection and generation uses citizens igelacale data collection,
sometimes also with the participation of comparged is referred to as volunteered geographic indtion (VGI). This
approach could be very suitable for indoor mappifitge popularity of VGI is growing. Table 6 showstihe number of
contributors in 2016 has been six times that in12@id more than 3.5 billion nodes and 450 millicaysv(links) have been
stored, a three-times increase.

These approaches can be partially used by mappemngcaées and data gathering institutions. Desp#egthpularity and the
involvement of citizens with the collection of gpasial data, there is still only poor mapping caggr for indoor spaces.
VGI projects, such as OpenStreetMap (OSM), areritriing to the increasing interest in indoor maygpbut there is still a
long way to go. Standardization of data formatslescmetadata and privacy policies are still nee@dbal coverage of
indoor mapping is likely to find obstacles in tharrh of cultural and political opposition. Many diase who openly
contribute to VGI projects for outdoor public eroiments will nhot want to publish maps of privatédor property. In
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addition, if they do contribute this data to a i@bject, these maps cannot be edited by otheribairs since they may

not have access. This simple example highlightsiracy, reliability, and precision as some of thg keticisms regarding
VGI data.

Year Percentage of active Number of Registered Number of ways Number of nodes
contributors Contributors
2011 3.5% 501465 116196873 1280961903
2012 2.8% 1100215 159811148 1680385760
2013 1.50% 1824599 207118018 2108992829
2014 1.20% 1882817 262569075 2629122837
2015 1.00% 2371829 318959062 3126436219
2016 0.85% 3106987 445110741 3551080106

TABLE 6. STATISTICS FOR THE NUMBER OF REGISTERED CONTRIBUTORSID THE STORED WAYS AND NODES IN THEDSM DATABASE.

The best option to improve coverage of indoor mapght be changing policies and legislation whereessary to
encourage more contributions to crowd-sourced datavacy is an on-going issue that needs to beudwz in these.
However, there are many public places, such aspshgpnalls, airports and universities, which alneadovide their map
online via their own web pages. These types oftiona can be good targets to start the expansiamlobr maps.

Considering these issues (positioning, map coveeagk privacy) it appears that indoor applicationsprise quite a
challenging segment of LBS. In addition, theresome other challenges such as their complexitynfdeling and analysis,

contextual information inference, data storage stnédaming, which need a further level of custonnzafor current LBS
services.

IV. DISCUSSION

Indoor LBS has not yet found its position in therked, despite the fact that people spend most eif ttime inside
buildings, e.g. offices and apartments. Indoor fB&s several technical and non-technical chalkeragel this paper has
studied the three most important ones, accordirg $arvey conducted, including indoor positioniagailability of indoor
maps, and location privacy.

In terms of positioning technologies, the usabibityalysis of current solutions for different segtseaf indoor LBS
market shows that there is a gap between the yudljtositioning services and the requirementshdbor LBS applications.
This becomes particularly concerning when it coreesafety and security applications, which are piddy life-saving
such as emergency services. Multi-sensor positipeiuld provide a solution for indoor positioningtht is subject to
miniaturisation of more devices to be embeddedsiza of a mobile phone, as the most widely usetitddor using indoor
LBS. There are also some promising results baseteantechnologies, such as quantum technologieshwkquires more
tests and more importantly mass market (with logegest) productions.

For indoor content, particularly maps as the esseype of contents for indoor LBS, there arel stiime long ways to go.
Storing indoor maps are somehow associated withhting biggest challenge of indoor LBS, i.e. priya®hat this paper
finds a relatively smoother start to improve thegerage of indoor maps, is crowd-sourcing the indoaps of public places.
Crowd-sourced maps can hugely improve the covevdgadoor places, as the biggest issue for indoapsrunavailability
rather than quality. Also, it seems that in the @raocial media networking, particularly new geatem can have milder
privacy concerns and so this can help the develapmiindoor LBS. In addition, new/updated legiglas and policies
regarding location privacy can make a big diffeenc

V. CONCLUSION

Indoor LBS is not commonly implemented in mobilevéees due to the many technical challenges thatie. This paper
has analysed the requirements and challenges wilprg indoor LBS by reviewing the available litewee and conducting a
survey. The main requirements of indoor LBS appiices were determined and challenges were idedtifispects related
to quality of service (including availability, acacy, and cost) were identified as the major chagks. The development of
multi-sensor positioning services and new techrielbguch as BLE give potential solutions. The patsy highlighted the
most suitable existing solutions using an Analydierarchy Process on the LBS application categofiég results of this
analysis shows that in some applications, suchnasrgency and security, there is actually no gootionpfor indoor
positioning. WLAN is the technology that comes las mnost suitable over all application categoriesweler, its relatively
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low suitability value in specific areas indicatbe heed for improvement or the development of shimgtsuperior.
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