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An energy-based approach for anisotropic modeling of stress-dependent magnetization curves in electrical steel sheets is presented.
The model is based on an orthotropic extension of an existing isotropic thermodynamic model and coupling to the Jiles-Atherton model
of hysteresis. The model fits well to experimental results under uniaxial excitation, and it is numerically tested under rotational fields.
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I. INTRODUCTION

AGNETIC behavior of electrical steel sheets under
mechanical stress is a rather complicated problem due to

its intrinsic three-dimensionality, but its accurate and effective
representation is indispensable for the design of electro-
mechanic energy transducers, such as rotating electrical
machines. Mechanical stress is inherent in processed parts
from processing and manufacturing as well as induced by the
operation of the machine, e.g., centrifugal force or magnetic
forces. This interacts with the material heterogeneity and the
crystallographic orientation of the individual grains. As a
result of this multi-scale interaction the stress-dependent
magnetization behavior is heavily dependent on the direction
of the magnetic field with respect to the grain orientations [1].

The magneto-mechanical coupling is the result of intricate
mechanisms at different spatial scales [2] and can be modelled
using micro-magnetic or multi-scale approaches [2]. Inherent
to these approaches are prohibitive computation times, making
these unsuitable for an implementation into numerical tools.
For this reason, simplified models were developed that either
treat the multiaxial problem in uniaxial models starting from
the definition of an equivalent stress [3] or simplify the multi-
scale problem through the neglection of hysteresis or
treatment of the polycrystal as a fictitious single crystal [4],
[5]. Thermodynamic approaches base on a magneto-
mechanical definition of a free energy density, and were
recently extended to the hysteretic case [6]. These emerging
approaches allow accurately accounting for arbitrary
orientations between the magnetic field and the stress, but so
far only isotropic or anhysteretic models have been presented.

In this paper, the thermodynamic approach by means of a
field- and stress-dependent free energy density is extended for
modeling stress-dependent magnetization curves considering
hysteresis and orthotropic anisotropy. Comparisons to
measured quasi-static magnetization curves and hysteresis
loops are discussed.

II. METHODS

A. Measurements
Experiments were performed on a uniaxial single sheet

tester (SST) at the IEM. The samples are 600 mm × 100 mm
in size, cut by water jet from two different 0.5-mm fully-
processed non-oriented 2.4 % Si-Fe grades. The two materials
have similar alloy content, but different magnetic texture and
grain size. They are termed as Material 1 and Material 2. The
samples were not annealed in order to better meet the
conditions of the final application, such as an electrical
machine. The setup is equipped with a tensile and
compression hydraulic loading unit and enables the
application of uniaxial mechanical stress collinear to the
magnetic flux up to a maximum force of 5 kN, see Fig. 1.

Fig. 1. Single sheet tester with hydraulic loading unit (IEM RWTH)

The SST is incorporated into a computer-aided setup
according to the international standard IEC 60404–3 and the
magnetic flux is controlled to be sinusoidal in time with a
form factor deviation of less than 1 % from 8ο . In order to
minimize the effect of induced eddy currents, that is having a
uniformly distributed B, the magnetizing frequency is
restricted to 3 Hz. For given values of mechanical stress σ and
controlled B the magnetic field H was measured, which allows
constructing a uniform grid (H, σ). Experiments are performed
in different angles relative to the rolling direction, i.e., 0°
(rolling direction (RD)) and 90° (transversal direction (TD)).

B. Anhysteretic Isotropic Constitutive Law
An isotropic magneto-elastic model is derived first. We are

looking for a thermodynamic free energy density ϕme as  a
function of the magnetic field strength vector H and stress
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tensor σ, from which we can derive the magnetization vector
M and magnetostriction tensor λ as

∋ ( ∋ ( T
me ,

,
ε∝∑ ⌡

<  
∝ 

H σ
M H σ

H
(1)

∋ ( ∋ (me ,
,

ε∝
<

∝
H σ

λ H σ
σ

. (2)

In an isotropic case the energy density can only depend on
invariants (see [6] and references therein)
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invariants I4–I6 become
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making one of the invariants dependent on the other two.
Thus, when identifying the model from unidirectional data, we
can eliminate one of the invariants. In this case, we eliminate
I6. All three invariants can be considered if measured data are
available for magnetization curves under other stress states,
which affect I6, e.g. shear stress.

The problem has now been reduced to finding ϕme(I4, I5).
Analytical derivation of a suitable expression for this function
from physical principles is extremely challenging. We thus
aim to replace the function by direct interpolation from the
measurement data. However, with uniformly distributed H and
σ, invariants I4 and I5 are non-uniformly distributed, which
complicates the interpolation. It is therefore simpler to express
the energy as ϕme(u, v) using two auxiliary variables
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which, in the unidirectional case, reduce to
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which are uniform. Equation (6) can also be straightforwardly
applied in the case of multiaxial fields (the case I4 = 0 is trivial
and leads to M = 0). Equation (1) now becomes
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where ϕme,u and ϕme,v mean the partial derivatives of ϕme(u, v).
In the unidirectional case ∂v/∂H = ∂σ/∂H = 0, and ϕme,u equals
the measured unidirectional magnetization M. Without
measurements of the magnetostriction, we cannot directly
obtain ϕme,v from the unidirectional measurements. However,
since the magnetoelastic free energy density ϕme should not
yield any magnetostriction in the absence of H, it cannot
contain any terms depending only on σ or v. We can thus
obtain ϕme,v as

∋ ( ∋ (me, me,, ,v uu v u v du
v

ε ε
∝

<
∝ 〉 . (9)

This integration is done by approximating the measured
ϕme,u(u, v) with a bi-polynomial B-spline which has a quadratic
dependency on u and cubic dependency on v, and then
integrating and differentiating the spline analytically. The
integration yields the energy ϕme as a bi-cubic spline
expression of u and v lying  in  the  rectangle  (m, n) of the
uniform grid: (u, v) ⊆ [um-1, um] × [vn-1, vn]. The magnetization
(8) in rectangle (m, n) is obtained by differentiating the spline
with respect to H:
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where pmn,ij are the spline coefficients in this rectangle.

C. Hysteresis
The hysteretic magnetization behavior is modeled with the

vector Jiles-Atherton (JA) model. The stress-independent
model has been comprehensively described in [7]. The model
can be summarized with the following five equations:
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in which Heff is the effective field strength experienced by the
domains, and Man and Mirr are the anhysteretic and irreversible
components of the total magnetization. α and c are fitting
parameters. The stress-dependency is included in the model
through (12), in which the anhysteretic constitutive law,
derived in the previous section, is used. The tensor parameter
k describes the magnitude of domain-wall pinning and is also
made stress-dependent in order to describe the change of the
hysteresis losses with stress. Since hydrostatic pressure is
known not to affect magnetic properties [4], k becomes a
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function of the deviatoric part s. The tensorial integrity basis
for a second-order tensor in 3-D space is {I, s, s2}, and thus
k(s) can be expressed as

∋ ( ∋ (2
0k a b< ∗ ∗k s I s s , (16)

in which the parameters k0, a and b can depend only on the
scalar invariants tr(s2) and det(s).  In  this  paper,  they  are
constant and treated as fitting parameters.

D. Extension for Orthotropic Anisotropy
The isotropic model can be extended to an orthotropic case

by replacing the scalar coefficients pmn,ij in (10) with tensors
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where El = el ℘ el and pl,mn,ij, l = 1, 2, 3, respectively, are the
structural tensors corresponding to the orthotropic symmetry
group and the coefficients of their linear combination. Vectors
el are mutually orthogonal unit vectors and ℘ designates the
tensor product. In orthotropic case, E1 + E2 + E3 = I. We place
the RD in the x-direction and TD in the y-direction, and
assume all the magnetic fields to lie in the x-y plane. Thus
only px,mn,ij and py,mn,ij need to be identified.

Following the idea of [7], the JA-model parameters α, c, k0,
a, and b are also replaced by the corresponding tensors α, c,
k0, a, and b. The scalar 1 in (15) is replaced by I. Also in this
case, only the xx and yy components of the tensor parameters
need to be identified from measurements.

III. APPLICATION AND RESULTS

A. Identification of the Model
The spline coefficients px,mn,ij and py,mn,ij are identified by

integrating the bi-cubic energy-density spline separately from
the unidirectional measurement data for the RD and TD. For
Material 1, B(H) curves measured at nine compressive (-) and
tensile (+) stresses ranging from -8.2 to 100 MPa are
considered in the identification. For Material 2, nine tensile
stresses ranging from 0 to 94 MPa are considered. Single-
valued curves are extracted from the measurements by
averaging the hysteresis loops in the H direction. Fig. 2 shows
that the B(H) curves obtained from the anhysteretic
constitutive law correspond well to the measured ones for
Material 1. Similar correspondence is obtained for Material 2.

The JA model parameters are fitted separately for the RD
and TD using a nonlinear least-squares minimization
algorithm. The obtained parameters are shown in Table I. Fig.
3 compares the modeled and measured hysteresis loops at the
chosen stresses for Material 1. Largest differences are
obtained close the knee points, which is rather typical for the
Jiles-Atherton model. The hysteresis losses for both materials
are compared in Fig. 4. Due to the chosen quadratic
dependency of k on s in (16) the model doesn’t account for the
very steep change in the losses around zero stress in Material
1. However, the non-monotonous trend in the hysteresis loss
versus stress is still visible. In Material 2, the losses in the RD
are  almost  constant,  while  the  losses  in  the  TD  decrease
monotonically under tension.

B. Behavior under Rotational Fields
The model is numerically tested for Material 1 under

rotational flux-density and uniaxial stresses in the RD. Even
under tensile stress, the rotation of the field makes it necessary
to utilize also the compressive measurement data in the
interpolation of ϕme,u and ϕme,v. For example, if the uniaxial
stress in the x direction is σ, the deviatoric stress components
are sxx =  2σ/3 and syy = szz =  -σ/3. Thus I5 = Hxsxx + Hysyy

becomes negative when the angle of the magnetic field is
between arctan(-sxx/syy) = arctan(2) ≈ 63.4° and 90°.

We first consider an isotropic version of the model, in
which only the RD parameters are used. Fig. 5 (a) shows the
field strength loci under a rotating flux density vector with
amplitude of 1.0 T. It is seen that larger field strengths are
required in the directions perpendicular to tension and parallel
to compression. When the field strength in (3) points
perpendicular to the uniaxial stress, I5 equals -0.5 times the
value obtained when the field is parallel to the stress. Thus the
10 MPa tension applied in the x direction acts as a 5 MPa
compression in the y direction. Compression reduces the
permeability much more drastically than tension, and thus a
higher field strength is needed in the y direction. This effect is
also observed in the measurements of [8]. When the field
strength points 63.4° from the uniaxial stress, I5 becomes zero
and the stress has no effect on the anhysteretic magnetization.

Fig. 5 (b) shows the corresponding field-strength loci when
the anisotropy is considered. It is apparent that higher field
strength is required in the TD than in Fig. 5 (a). Similarly to
the results in Fig. 7 (e) of [8], the field strength decreases
parallel to tension and perpendicular to compression, and
increases vice versa. However, measurements under rotational

Fig. 2.  Comparison of measured and modeled single-valued B(H) curves of
Material 1 in the RD and TD. The measured curves have been obtained by
averaging the major hysteresis loop in the H-direction.

TABLE I
HYSTERESIS MODEL PARAMETERS FOR THE MATERIALS IN RD AND TD

RD Material TD Material Unit
1 2 1 2

cxx 0.221 0.353 cyy 0.284 0.300 -
αxx 9.13 7.44 αyy 12.4 11.1 10-5

k0xx 78.0 78.6 k0yy 108 94.4 A/m
axx -322 -181 ayy 74.6 -672 (GPa)-1

bxx 7950 3770 byy 3290 7460 (GPa)-2
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fields and multiaxial stress on the studied material would be
needed to accurately check the validity of the curves.

It is noteworthy that the consideration of hysteresis causes
the loci not to be symmetric with respect to the RD and TD
axes. When the angle of H with respect to the unidirectional
stress is 45°, the angle of M with respect to the stress is < 45°,
since it lags the field strength. However, when the angle of H
is 135°, meaning again 45° from the unidirectional stress, the
angle of M with respect to the stress is > 45°.

IV. DISCUSSION AND CONCLUSIONS

A magnetic material model accounting for anisotropy and
stress-dependent hysteresis was proposed and fitted for two
different materials. The model combines a reversible
thermodynamic constitutive law to the vector Jiles-Atherton
model for hysteresis. Extrapolation of the cubic spline free
energy expression to field strengths (or values of u) higher
than the measured ones can be done, for example, by fitting
analytical models for the single-valued B(H) curves at
constant stresses. However, extrapolation to higher stresses (or
values of v) is very difficult, since such analytical models are
not available. The model is thus guaranteed to work only in
the range of measured v values.

Under rotational flux density excitation, the field strength
loci predicted by the model are very sensitive to the
smoothness of the interpolation of the energy density with
respect to variable v in (6). As discussed above, a rotating field
and uniaxial stress σ, cause v to obtain values in the range
from -σ/3  to  2σ/3. In order to obtain smooth and physically
reasonable field strength loci, the measured data should be as
smooth as possible over the whole stress range.
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Fig. 3.  Comparison of measured and modeled hysteresis loops of Material 1
in the RD and TD. The curves at stresses greater than -8.2 MPa have been
shifted from the origin for clarity. The peak value of flux density is the same
for all the curves. The dashed lines show the B = 0 level for each curve.

Fig. 4.  Comparison of measured and modeled energy loss densities under
uniaxial stress and a parallel magnetic field in the RD and TD for the two
materials. The measured losses have been obtained at 3 Hz.

(a) (b)

Fig. 5.  Field strength loci under different in-plane stress tensors (in notation
[σxx σyy σxy]) and circular flux density of 1.0 T in Material 1. (a) Isotropic case
(only RD parameters used) and (b) anisotropic case.


