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On optimisation of structures under stability constraints -
a simple example
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Summary. In this paper some basic questions on optimisation of structures prone to instability
behaviour are addressed by using a simple example consisting only one state variable. A multi-
criteria optimisation problem, where both the material cost and imperfection sensitivity are
minimized, is formulated.
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Introduction

It is well known that optimisation of structures where instability phenomena are present
can result in severe imperfection sensitivity [9, 10]. Classical examples are the simple
Augusti model and stiffened plates [2, 4]. In both examples, the imperfection sensitivity
is due to the interaction of two buckling modes. If the critical loads corresponding to
the two buckling modes are well separated, the post-buckling paths are stable, however,
when these loads approach to each other, secondary bifurcations occur on the primary
post-buckling paths rendering the secondary post-buckling path highly unstable.

Description of the structural model

A simple cantilever beam with a solid square cross-section and having a constant length
L and loaded by a compressive dead-weight load P is modelled as a rigid bar and a non-
linear rotational spring, see Fig. 1a, resulting in a discrete one degree-of-freedom (dof)
model. It is also assumed that the material is fixed, but the grade of it is left free. This
implies that the Young’s modulus can be assumed to be a constant whereas the yield
strength is apt for optimisation.

The basic optimisation problem is to design the beam such that the cost function

C = σyAL, (1)
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where σy is the yield strength and A the area of the cross-section, is minimised under the
following conditions: (i) the load carrying capacity has to be larger than the design load
Pd and (ii) the structure can have an imperfection of a certain prescribed amount. How
to incorporate the imperfection into the model and in the optimisation problem setting
will be discussed later in this paper.

The minimisation problem has thus two design variables: the yield strength of the
material σy and the area of the cross-section, or in this case simply the side length of the
cross-section b. By introducing the non-dimensional ratios

η = σy/E, and ξ = b/L, (2)

the cost function can be written as

C = ηξ2EL3. (3)

The elastic buckling load of the perfect structure is

PE =
k

L
=

3EI

L2
=

1

4
ξ4EL2, (4)

where it has been assumed that the spring stiffness has the value k = 3EI/L. The plastic
limit load due to normal force for the perfect structure is

Np = σyA = ηξ2EL2. (5)

Simple optimisation approach

A naive optimisation strategy in which the stability limit is only taken into account by
the linearized buckling eigenvalue problem, could be formulated by requiring the design
load to be smaller than the plastic normal force and the elastic buckling load:

Np ≥ Pd, and PE ≥ Pd. (6)

Giving the design load in the form Pd = βEL2, the constraints (6) result in

ηξ2 ≥ β, and ξ4 ≥ 4β. (7)

If the design, buckling, and plastic capacity loads coincide, it results in the relation
η = ξ2/4, thus

ξ = 4
√

4β and η = 1
2

√
β. (8)

Results for certain values of the design loads β are shown in Table 1.
Defining the non-dimensional load parameter as

λ = P/Pd, (9)

the elastic post-buckling path is simply

λ =
ξ4

4β

θ

sin θ
, (10)

which at the optimum point (8) simplifies to λ = θ/ sin θ, indicating that the form of the
post-buckling path does not depend on the design variables. The post-buckling curves for
the elastic and plastic solutions differ significantly, see Fig. 1b.
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Table 1. Results from the naive optimisation.

β = Pd/EL
2 η−1 = E/σy ξ−1 = L/b

1.5625 · 10−6 1600 20
4.9383 · 10−6 900 15

25 · 10−6 400 10

Effect of the plastic moment

For a more realistic model the effect of normal force N = −P cos θ has to be taken into
account in the fully plastic moment, which results in

Mp = Mp0

[
1−

(
N

Np

)2
]
, (11)

where Mp0 is the fully plastic moment in pure bending Mp0 = σyb
3/4. The following

load-deflection relation in the post-buckling regime is then obtained

λ2 + 4ηξβ−1 cos−1 θ tan θλ− η2ξ4β−2 cos−2 θ = 0, (12)

which at the optimum point (8) results in relation

λ =

√
(2/
√
β)(tan θ/ cos θ)2 + cos−2 θ − (

√
2/ 4
√
β) tan θ cos−1 θ. (13)

The post-buckling paths are shown in Fig. 1b. It can be seen from the figure that the
slender solutions, i.e. small design load, results in higher reduction of load carrying
capacity in the post-buckling regime or in other words higher imperfection sensitivity
than the solutions with stockier cross-sections.

Non-linear spring - imperfection sensitivity analysis

To imitate elastic-perfectly-plastic behaviour of the material, a non-linear elastic be-
haviour of the spring is adopted. The moment M and the rotation θ relationship chosen
is

M(θ) = Mp tanhαθ, (14)

where Mp is the fully plastic moment and the non-dimensional coefficient is α = k/Mp,
where k is the initial spring stiffness. However, it should be noted that since only loading
of the spring is considered, there is no principal difference between the behaviours of
a non-linear elastic and similar elasto-plastic models. For the initial spring stiffness, the
value k = 3EI/L has been chosen, where EI is the elastic bending stiffness of the column.
It is also assumed that the unloaded position of the column is tilted by an angle θ0, which
plays role as an imperfection parameter.

The equilibrium equation can be written as

PL sin θ = M(θ) = Mp tanhα(θ − θ0). (15)
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Figure 1. (a) The model and (b) post-buckling paths for purely elastic and rigid-plastic spring at the
optimum point where P = Pd = PE = Np. The design loads and design variables have the same values
as in Table 1.

If the effect of normal force to the fully plastic capacity is taken into account, the fully
plastic moment has the expression

Mp =
1

4
σyb

3

[
1−

(
−P cos θ

σyb2

)2
]

=
1

4
ηξ3
(

1− β2 cos2 θ

η2ξ4
λ2
)
EL3. (16)

The equilibrium equation can be written in terms of the non-dimensional variables as(
κ
β2

4ξη
tanhα(θ − θ0) cos2 θ

)
λ2 + (β sin θ)λ− 1

4
ξ3η tanhα(θ − θ0) = 0, (17)

where the load parameter λ is defined in (9) and κ indicates whether the effect of normal
force to the fully plastic moment is taken into account (κ = 1) or not (κ = 0). If the
effect of normal force to the fully plastic capacity is neglected, the equilibrium curve in
the load-rotation space has the simple form

λ =
ηξ3

4β

tanhα(θ − θ0)
sin θ

. (18)

As it can be seen from Fig. 2a the effect of the normal force to the behaviour is significant
and therefore the difference between the solutions (17) and (18) is non-negligible.

Although the numerical solution of the non-linear equilibrium equation (17) can be
easily performed, an asymptotic expansion in the form

λ =
ξ4

4β

(
a0 − a2θ2 − a−1

θ0
θ

)
, (19)

where higher order terms consistent with assumptions θ � 1 and |θ0/θ| � 1 are neglected,
is very useful. Expanding the coefficients of the polynomial (17) in λ and the second power
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of λ in power series with θ gives

tanhα(θ − θ0) cos2 θ ≈ αθ

[
1− θ0

θ
− (1 + 1

3
α2)θ2

]
, (20)

λ2 ≈ ξ8

16β2

(
a20 − 2a0a2θ

2 − 2a0a−1
θ0
θ

)
, (21)

and substituting these expressions into (17), results after some simple manipulations, the
coefficients in the asymptotic expansion (19) as

a0 =
2

1 +

√
1 + κ

ξ4

4η2

, (22)

a2 =

1

3

(
ξ2

η2
− 1

2
a0

)
− κ

16

(
1 +

ξ2

3η2

)
ξ4

η2
a20

1 +
κ

8

ξ4

η2
a0

, (23)

a−1 =

1− κ

16

ξ4

η2
a20

1 +
κ

8

ξ4

η2
a0

. (24)

The equilibrium path has a maximum limit load at

θ = 3

√
a−1θ0
2a2

, (25)

if the term a2 is positive. Substituting this value back to the expression (19) gives the
maximum load carrying capacity i.e. the load value at the limit point in terms of the
imperfection magnitude. Such a relationship is also known as the imperfection sensitivity
diagram

λmax =
ξ4a0
4β

[
1− 3

a2
a0

(
a−1θ0
2a2

)2/3
]

= λbif

(
1− Sθ2/30

)
, (26)

where the term

S(ξ, η, κ) =
3

22/3
a0(ξ, η, κ)−1a2(ξ, η, κ)1/3a−1(ξ, η, κ)2/3 (27)

is the imperfection sensitivity coefficient, the greater it is the more harmful are the struc-
tural imperfections to the maximum load carrying capacity. It is interesting to notice that
the effect of inclusion of the normal force to the fully plastic moment to the bifurcation
load of the perfect structure λbif = ξ4a0/(4β) is solely due to the a0-term. The asymptotic
expansion of the imperfection sensitivity relation (26) is in accordance with the famous
2/3-power law of Koiter [3, 6, 5, 7, 8]; characteristic for structures exhibiting symmetric
unstable bifurcational behaviour.

Taking expressions (22)–(24) into account in (27), it can be seen that the imperfection
sensitivity coefficient behaves as

S ∝
(
ξ

η

)2

. (28)
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Figure 2. (a): Equilibrium paths, Eq. (17) (the effect of normal force is taken into account) is shown by
solid lines, Eq. (18) shown by dashed lines. The design loads and design variables have the same values
as in Table 1. (b): Comparison of the exact solution (solid lines) to the asymptotic solution (dashed
lines) for the smallest design load in Table 1. Two upper curves correspond to κ = 0 and the lower ones
to κ = 1. In both figures the imperfection has been θ0 = 10−4.

Especially, if the effect of normal force to the fully plastic moment is neglected (κ = 0),
the imperfection sensitivity coefficient has the value

S = 2−2/3

[(
ξ

η

)2

− 1

]
, (29)

which shows that the imperfection sensitivity coefficient is positive for all practically
relevant designs ξ > η, at least for metal structures. At the naive optimum point η = ξ2/4
the imperfection sensitivity (29) has the expression

S = 2−2/3

(
16

ξ2
− 1

)
, (30)

and the imperfection sensitivity is minimised by increasing the cross-section dimensions.

Optimisation problem

A multi-criteria optimisation problem, where both the material cost and the imperfection
sensitivity are minimised, can be stated asminC/EL3 = min ηξ2

minS(ξ, η, κ) = min
3

22/3
a2(ξ, η, κ)1/3a−1(ξ, η, κ)2/3a0(ξ, η, κ)−1

, (31)

with the constraint

Pmax ≥ Pd, or ξ4a0(ξ, η, κ)
[
1− S(ξ, η, κ)θ

2/3
0

]
≥ 4β. (32)

Having only two design variables, the optimisation problem can be illustrated by using
the graphical method [1]. Using weight factors for the objective functions, the problem
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Figure 3. Contour lines of the objective function and the feasible region Ω, (a) w1 = 0.1 and w2 = 0.9,
(b) w1 = 0.9 and w2 = 0.1. Design load and imperfection are β = 3 · 10−6, θ0 = 0.005. Optimum is
denoted with x? and the symbol 0 refers to the constraint (32).

(a) (b)

Figure 4. Pareto-optimal solution set in design space and in objective space (β = 3 · 10−6, θ0 = 0.005).

can be re-written as

min

(
w1fηξ

2 + w2

a
1/3
2 a

2/3
−1

a0

)
(33)

in which the sum of the weight factors w1 and w2 is unity, and the scaling factor f is
chosen so that the values of both objective functions are of the same order in the whole
region of interest (f = 5 · 105).

The behaviour of the objective and constraint functions for a typical design with a
small imperfection is depicted in Fig. 3 together with the different weight combinations.
In Fig. 4 the Pareto-optimal set is shown.

As seen from Figs 3 and 4, in the optimal design the value of design variable η hits
always its lower bound, i.e. the strength of the material is as low as possible. When the
design load is increased, the Pareto front is reduced to a single optimal point as depicted
in fig 5.
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Figure 5. Contour functions of the objective function and the feasible region Ω, (a) w1 = 0.1 and w2 = 0.9,
(b) w1 = 0.9 and w2 = 0.1. Design load and imperfection are β = 3 · 10−5, θ0 = 0.005. Optimum is
denoted with x?.

Concluding remarks

In the present work, a preliminary study on optimisation of a simple compressed column
under stability constraints is performed. The column is modelled as a rigid bar with a
non-linear elastic spring, representing elastic-plastic behaviour of the moment-curvature
relation, resulting in a single degree of freedom discrete model. A multi-criteria optimi-
sation problem is formulated where the cost and imperfection sensitivity are minimized.
The material grade, i.e. the yield stress and the cross-section width are the two design
variables and the cost is assumed to be linear in the yield stress. The coefficient of the
imperfection sensitivity is derived by using the initial post-buckling theory of Koiter. In-
creasing the yield strength also increases the imperfection sensitivity. The main result
of the optimisation process is to use as low grade material as possible resulting in the
stockiest design.
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