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Abstract—The knowledge of orientation of an object with
respect to earth-fixed reference coordinate system is crucial in
many applications. For instance, in oil mining it is very crucial to
accurately know the orientation of the drilling equipment under
the earth surface to drill through desired path. In this context
we propose a compact inertial sensor system that estimates the
instantaneous orientation of the system using accelerometer and
gyroscope-derived tilt and azimuth angles. To keep the system
size small, we use two-axis accelerometer and one-axis gyroscope.
In addition, to avoid high sensor cost, the sensor biases are
removed using indexing method. The proposed system estimates
the orientation of the compact system in almost all of the
orientations and additionally it also provides the measurement
accuracy and integrity values that help in ascertaining the validity
of the orientation estimate.

Index Terms—MEMS Accelerometer, Optical fiber gyroscope
sensor, Azimuth, Least square approximations, Sonde, North
Seeking.

I. I NTRODUCTION

SENSOR systems combining accelerometers-based tilt and
magnetometer-based azimuth are typically used in instan-

taneous orientation estimation when the size and cost of the
system is limited. Such systems are inherently capable of
estimating orientation w.r.t magnetic north and will require
corrections to align with true north, and presence of ferro-
magnetic materials in the vicinity of such systems can corrupt
the solution. To overcome problems related to magnetic field
sensing, other types of sensors, such as Sun sensors [1], and
gyroscopes sensors [2], [3] have been proposed to be used
in the system. These systems are built to be self-contained
systems, i.e, they do not require initial attitude information as
input. Instead these systems estimates the attitude information
discontinuously, on demand basis and under stationary condi-
tions, unlike [4], [5] where in, knowledge of the initial attitude
is essential in order to track the orientation continuouslyw.r.t
initial attitude and are non-stationary in nature. In thesenorth
finding systems, preferably, gyroscopes capable of sensing
the Earth’s rotation rate are often used, as they provide
more self-contained measurements. The Earth’s rotation rate
is only about 15◦/hr and measuring of this rate accurately
and directly would require large and costly sensor assembly,
such as navigation grade inertial navigation system [6]. To
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reduce the requirements for such gyro accuracy, sensor rotation
techniques have been proposed through the decades [2], [7],
[8]. Recent studies show that indeed the small sized fiber
optic gyros [3] or MEMS gyros [9] can be used for this
purpose, but with apparently limited tilt angles. This is due
to the fact that only uni-axial rotation is applied. A motoring
system that could rotate the sensors around many axes would
be complex and bulky for many purposes. In [10] North
seeking system with uni-axial fiber optic gyro (FOG) and a
uni-axial accelerometer is presented. This method estimates
the tilt angles by modeling mathematical equations in which
the components of residual errors are eliminated. The azimuth
accuracy shown in their experiments was at sub-degree level,
but with reported tilt angles below 5 degrees.

The limitations of most of the above proposed methods are
that, for a roll or pitch angles higher than about 5 degrees,
the accuracy of azimuth estimate deteriorates proportionally to
the roll and pitch angles. This is because those algorithms are
designed to be used only when the rate gyro sensor is strapped
down and sensing axis is perpendicular to the horizontal
plane rather than in an arbitrary angle. In this context, we
propose a compact system capable of estimating orientation
for almost all the tilt angles. The system is compact, based
on the single 2-axis MEMS accelerometer and a single 1-
axis FOG rate sensor. In this publication temperature and
vibration effects to the sensors is considered to be minimal
as the measurement and estimation time in the proposed
method is under 2 minutes and under stationary conditions.
In real system implementations, such externally influencing
factors would be handled appropriately by the manufacturers
and additionally during the field applications. In our method,
indexing is performed with uni-axial motor system using
sequence of 90 degree turns to eliminate sensor biases and
errors. The paper is organized as follows. In section II, we
elaborate the basics and the implementation of the whole
system, and in section III we discuss about the experimental
setup, results and discuss briefly about the results. Section IV
concludes the paper with the contributions and results of our
research work.

II. ORIENTATION ESTIMATION

The proposed method relies on the output measurements
of both gyroscope and accelerometer. Measurements of gyro-
scope and accelerometer can be be modeled as

ω̂ =Mωω
B
IB + ǫω (1)

â =Maa
B
sf + ǫa (2)
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whereMω and Ma are the cross-coupling and scale factor
error matrix of gyroscope and accelerometer respectively,
ωB
IB is the measured angular rate vector[mwx,mwy,mwz]

T ,
aBsf is the measured specific force vector[max,may,maz]

T .
()B indicates that the measurements are measured with respect
to sensor body frame and()IB indicates that the measure-
ments are in sensor body coordinate frame relative to inertial
frame. Additive measurement errorǫ typically includes slowly
varying bias and uncorrelated (white) noise. Assuming ideal
sensors the measurements from stationary (Earth-fixed) unit
would be

ωB
IB = CB

L ω
L
IE (3)

aBsf = −CB
L g

L
p (4)

whereωL
IE is the vector of local rotation rate of Earth, given

as

ωL
IE =





Ω cos(λ)
0

Ω sin(λ)



 , (5)

andgLp is the local plumb-bob gravity [6] vector, given as

gLp =





0
0
−g



 , (6)

whereg is the gravity,Ω is the magnitude of Earth rotation
rate, andλ is the latitude. The problem in orientation es-
timation is to find the direction cosine matrix (DCM)CB

L ,
that transforms vectors from local level frame to body frame.
In this form the problem to be solved would be traditional
Wahba’s problem [11], which can be easily solved using
singular value decomposition, for example [12]. Under sta-
tionary and ideal conditions, with 3D accelerometer, and 3D
gyroscope measurements in the absence of any kind of noise,
using normalized (3), (4), (5), and (6) we can deduce as in
[13] or [14], the required DCM as

CB
L =







m̄wx−(m̄axsin(λ))
cos(λ)

m̄wy−(m̄aysin(λ))
cos(λ)

m̄wz−(m̄azsin(λ))
cos(λ)

(m̄aym̄wz−m̄azm̄wy)
cos(λ)

−(m̄axm̄wz−m̄azm̄wx)
cos(λ)

(m̄axm̄wy−m̄aym̄wx)
cos(λ)

m̄ax m̄ay m̄az






, (7)

where[m̄ax, m̄ay, m̄az]
T is the normalized vector ofaBsf , and

[m̄wx, m̄wy, m̄wz]
T is the normalized vector ofωB

IB .
However DCM in (7) does not not produce valid DCM

with real noisy sensor measurements. But we will later in
section II-B, enlighten the usefulness of this DCM in con-
structing appropriate DCM with the Euler angles estimated
by the proposed algorithm. More over, to limit the cost and
size of the unit we use a 2D MEMS accelerometer and a 1D
fiber optic gyroscope, both having significant bias errors inthe
measurements. To mitigate the effect of biases as explained
in sub section D, we add indexing motor that can rotate the
sensor axes along fixed body-frame axis. Thus, theCB

L has to
be solved for the following equations of our proposed method.

ω̂y = [0 1 0]CBn
B CB

L ω
L
IE + ǫωy (8)

[âx ây]
T = [1 1 0]CBn

B CB
L (−gLp ) + [ǫax

ǫay
]T (9)

whereCBn
B is the coordinate transformation resulting from

indexing motor, forn = 0, 1, 2, 3 positions. Sensor noise

terms ǫωy, ǫax
, ǫay

contain constant bias part that can be
many orders of magnitude larger than required orientation
accuracy would permit. It is well known that at least two
linearly independent reference vectors are required to deter-
mine attitude uniquely [12]. Thus, the role of indexing motor
that generatesCBn

B is twofold; the constant biases must be
mitigated (canceled) and to generate sufficient number of
observations.

A. Euler Angle Observations

Our approach to solveCB
L in ( 8) and ( 9), is usingCBn

B ,
and based on estimation of Euler angles. We define local frame
axes asx→ North, y →West, z → Up and Local to Body
frame DCM for known Euler anglesφ, θ, ψ is defined as [15]:

CB
L =





cos(ψ) cos(θ) cos(θ) sin(ψ) − sin(θ)
cos(ψ) sin(φ) sin(θ)− cos(φ) sin(ψ) cos(φ) cos(ψ) + sin(φ) sin(ψ) sin(θ) cos(θ) sin(φ)
sin(φ) sin(ψ) + cos(φ) cos(ψ) sin(θ) cos(φ) sin(ψ) sin(θ)− cos(ψ) sin(φ) cos(φ) cos(θ)



 .

(10)
Using ( 10) accelerometer observations are then

aB =





−g sin(θ)
g cos(θ) sin(φ)
g cos(φ) cos(θ)



 (11)

and gyro observations

ωB =





Ω cos(λ) cos(ψ) cos(θ)− Ω sin(λ) sin(θ)
Ω cos(θ) sin(λ) sin(φ)− Ω cos(λ) (cos(φ) sin(ψ)− cos(ψ) sin(φ) sin(θ))
Ω cos(λ) (sin(φ) sin(ψ) + cos(φ) cos(ψ) sin(θ)) + Ω cos(φ) cos(θ) sin(λ)



 . (12)

In addition, indexing is performed by rotating positive 90
degree rotations along the body z-axis,

CB1
B =





0 −1 0
1 0 0
0 0 1



 (13)

CB2
B =





−1 0 0
0 −1 0
0 0 1



 (14)

CB3
B =





0 1 0
−1 0 0
0 0 1



 (15)

yielding indexed accelerometer measurements:

aB1 =





−g cos(θ) sin(φ)
−g sin(θ)

g cos(φ) cos(θ)



 (16)

aB2 =





g sin(θ)
−g cos(θ) sin(φ)
g cos(φ) cos(θ)



 (17)

aB3 =





g cos(θ) sin(φ)
g sin(θ)

g cos(φ) cos(θ)



 (18)

and indexed gyro measurements:

ωB1 =





Ω cos(λ) (cos(φ) sin(ψ)− sin(φ) cos(ψ) sin(θ))− Ω cos(θ) sin(λ) sin(φ)
Ω cos(λ) cos(ψ) cos(θ)− Ω sin(λ) sin(θ)

Ω cos(λ) (sin(φ) sin(ψ) + cos(φ) cos(ψ) sin(θ)) + Ω cos(φ) cos(θ) sin(λ)



 (19)

ωB2 =





Ω sin(λ) sin(θ)− Ω cos(λ) cos(θ) cos(ψ)
Ω cos(λ) (cos(φ) sin(ψ)− sin(φ) cos(ψ) sin(θ))− Ω cos(θ) sin(λ) sin(φ)
Ω cos(λ) (sin(φ) sin(ψ) + cos(φ) cos(ψ) sin(θ)) + Ω cos(φ) cos(θ) sin(λ)



 (20)
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ωB3 =





Ω cos(θ) sin(λ) sin(φ)− Ω cos(λ) (cos(φ) sin(ψ)− cos(ψ) sin(φ) sin(θ))
Ω sin(λ) sin(θ)− Ω cos(λ) cos(θ) cos(ψ)

Ω cos(λ) (sin(φ) sin(ψ) + cos(φ) cos(ψ) sin(θ)) + Ω cos(φ) cos(θ) sin(λ)



 . (21)

We later in section II-D, enlighten the role ofCBn
B in removal

of the constant bias effects. The other task of indexing for
obtaining sufficient number of independent vectors is not
directly fulfilled as longitudinal (body z-axis) measurements
are not available. Due to this, solution to some orientations
needs to be addressed by additional logical conditioning, as
detailed in following section.

B. Algorithm

We use Gauss-Newton method in our algorithm, which aims
to solve and estimate unknownsx = θ, φ, ψ the Euler angles
iteratively. The method uses current estimatex̂ = θ̂, φ̂, ψ̂

to computeh(x̂): the predicted measurements. Hereh(x) is
defined ash(x) = [h1h2h3h4]

T where

h1 = (−g sin(θ)) , (22)

h2 = (g cos(θ) sin(φ)) , (23)

h3 = (Ω cos(λ) cos(ψ) cos(θ)− Ω sin(λ) sin(θ)) , (24)

h4 = (Ω cos(θ) sin(λ) sin(φ)− Ω cos(λ) (cos(φ) sin(ψ)− cos(ψ) sin(φ) sin(θ))) . (25)

Each iteration of the algorithm is performed after the data from
all index positions (0,1,2,3) is available.For each iteration,
assuming that the current estimatex̂ is correct, the method tries
to fit this predicted measurements to the actual measurements.

Jacobian matrixJh of h(x) with respect to each unknowns
φ, θ, ψ is thenJh = [Jh1 Jh2 Jh3 Jh4]

T , where

Jh1 =
(

−g cos(θ) 0 0
)

, (26)

Jh2 =
(

−g sin(φ) sin(θ) g cos(φ) cos(θ) 0
)

, (27)

Jh3 =





−Ω cos(θ) sin(λ)− Ω cos(λ) cos(ψ) sin(θ)
0

−Ω cos(λ) cos(θ) sin(ψ)





T

, (28)

Jh4 =





Ω cos(λ) cos(ψ) cos(θ) sin(φ)− Ω sin(λ) sin(φ) sin(θ)
Ω cos(λ) (sin(φ) sin(ψ) + cos(φ) cos(ψ) sin(θ)) + Ω cos(φ) cos(θ) sin(λ)

−Ω cos(λ) (cos(φ) cos(ψ) + sin(φ) sin(ψ) sin(θ))





T

. (29)

We definemωn, maxn
and mayn

as the average of ob-
served gyro measurement data, the average of observed x and
y accelerometer measurement data respectively at indexing
motor positionsn = 0, 1, 2, 3. Current residual vector in an
iteration of the least squares method is denoted asy, and
defined as the fitted value (h(x̂)) minus the observations itself.
With four indexing positions the input vector has 12 elements,
y1, y2, ..., y12 . For each iteration, these are evaluated for

accelerometer and gyroscope as
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h1 +may1

h1 +max2
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h2 −max1

h2 +may2

h2 +max3

h3 +mω1

h3 −mω3

h4 −mω0

h4 +mω2









































. (30)

Using these equations we can relate 12 observations to 3
unknowns (4 positions, 2 accelerometer observations and 1
gyro for each position).

For each iteration step, the shift vectordx of the unknowns
x is computed as

dx = (JTΣ−1J)−1JTΣ−1y, (31)

whereJ is extended fromJh as

J = (Jh1 Jh1 Jh1 Jh1 Jh2 Jh2 Jh2 Jh2 Jh3 Jh3 Jh4 Jh4)
T , (32)

andΣ is a diagonal matrix related to error variance of gyro-
scope and accelerometer measurements, defined in following
section, and the estimate of Euler angles is updated as

x̂+ = x̂− dx. (33)

Using thus estimated Euler angles the DCM (10) can be
constructed. But in our method of solving the DCM we
are missing the information about the z-axis along the body
frame of the instrument we used, because of which the DCM
constructed using the estimated Euler angles is only one of the
solution out of two possible solutions. This is because when
we try to estimate the missing third axis information, using
the self inner products ofwB

IB andaBsf , we get

maz = ±

√

m2
ax +m2

ay − g2, and (34)

mwz = ±

√

m2
wx +m2

wy − Ω2,
(35)

leaving us with four solutions using (7), out of which only
two solutions are valid, one with bothmaz andmwz to be
positive, and another with both to be negative values. The
other two possible solutions with opposite signs ofmaz and
mwz are not possible, as dictated by the inter inner product
of wB

IB andaBsf .
Now with this information we can construct the second

possible DCM by simply negating the terms in the DCM
constructed using the estimated Euler angles, where ever the
maz andmwz terms appear as in DCM (7). Since we now have
two DCM to choose from, we need a logic to find the correct
one for a certain orientation estimated by the algorithm. We
have found that the term DCM(3,3) in (10), can be evaluated
directly using the average of observed measurementsmωn,
maxn

, mayn
and solving equations (22) and (23). In our

experiments we have used the directly evaluated DCM(3,3)
term in (10) and compared with the two of the constructed
DCM(3,3) terms. We chose the constructed DCM that has
this term to be matching, this worked out very well in our
simulation, and as well as real data tests.

C. Error Analysis

The diagonal matrixΣ is used to balance the errors in sensor
types. For example, assuming accelerometer measurements
are more accurate than gyroscope measurements, the first 8
diagonal elements ofΣ can be a higher value of about106

and remaining elements to be of small value of about 4. These
values should be adjusted based on the noise properties of the
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sensors being used and indexing time. If linearization errors
are neglected, the variance of errors in resulting Euler angles
is [16, (29.70)]

V (x̂) = (JTΣ−1J)−1. (36)

Further check for additional errors (unexpected vibration, non-
linearity, sensor failure) can be obtained from residualsv =
−(Jdx − y), after bias estimates have been removed. E.g.
v = y − ŷbias if the minimum is found (dx very small). In
the absence of additional errors and with the Gaussian input
noise, quadratic from of the residuals(vTΣ−1v) is distributed
as

s = vTΣ−1v ∼ χ2(9). (37)

Thus a threshold for repeating the measurement can be ob-
tained, for example, limits >= 22 would require remeasuring
one per cent of the trial but would protect from outliers. Our
experimental results show that with largers values, the results
would be incorrect.

D. Automatic Bias Removal and Tackling of Singular Points

To verify that any constant term has no effect in solution, we
defineb, the bias input for both accelerometer and gyroscope
as

b =
(

maxb −mayb −maxb mayb mayb maxb −mayb −maxb −mωb mωb mωb −mωb

)T
, (38)

here the± signs appear in the bias terms due to theCBn
B

indexed rotations applied to the instrument body z-axis. The
JacobianJ from (32) is of the form

J =





α α α α β β β β w w d d

0 0 0 0 γ γ γ γ 0 0 e e

0 0 0 0 0 0 0 0 v v f f





T

, (39)

whereα, β, γ, w, v, d, e, f are the terms appearing in J matrix
in their respective column and row positions as,

α = −g cos(θ) , β = −g sin(φ) sin(θ) , γ = g cos(φ) cos(θ) ,

w = −Ω cos(θ) sin(λ)− Ω cos(λ) cos(ψ) sin(θ) , v = −Ω cos(λ) cos(θ) sin(ψ) ,

d = Ω cos(λ) cos(ψ) cos(θ) sin(φ)− Ω sin(λ) sin(φ) sin(θ) ,

e = Ω cos(λ) (sin(φ) sin(ψ) + cos(φ) cos(ψ) sin(θ)) + Ω cos(φ) cos(θ) sin(λ) ,

f = −Ω cos(λ) (cos(φ) cos(ψ) + sin(φ) sin(ψ) sin(θ)) .

All the sensor measurements related biases can be considered
to be constants, as the total time period to collect one complete
set of measurements, in order to estimate the Euler angles, is
just under 2 minutes. While computingJTΣ−1y part of the
equation (31), It can be observed thaty is composed of the
constant terms related to sensor measurement biases (38), and
J as in (39), one can mathematically verify, that any constant
terms such as bias will cancel out.

At few tilt angles such as close to 90 degree tilts, the
proposed algorithm is faced with the problem of singular
points, as the computations involve solving a linear system
of equations as can be seen in (31). And this problem can be
tackled by evaluating and detecting the possibility of singular

point occurrence in the future iterations of the algorithm
loop. If such a condition is detected, the iteration loop of
the algorithm can simply be exited by outputting the current
estimate ofx as in (33) and validating the output result
with any known prior information. This prior information,
for example can be previous output Euler angle estimate,
and probable current estimate during the drilling process.To
formulate a computationally efficient equation that can detect
such a condition, we need to consider the pseudo inverse of
the Jacobian matrix given by

J† = (JTJ)−1JT . (40)

This above equation can be re-factored as

J† = (t1)
−1[K1T K2T K3T ]

T (41)

where

t1 =
d2 v2 γ2 − 2 d e v2 β γ − 2 d f v w γ2

+e2 v2 α2 + e2 v2 β2 + 2 e f v w β γ
+f2 w2 γ2 + 2 f2 α2 γ2 + 2 v2 α2 γ2.

(42)

Here we need only the termt1, the most important and
useful term of all the four re-factored terms. The remaining
three termsK1T ,K2T ,K3T are given in section V for readers
reference. The termt1 can be easily computed, by using the
already computed elements of Jacobian matrix. This computed
value can than be checked to be greater than a threshold
value such as 1e-6, to avoid the algorithmic computations at
neighborhoods of singular points. A careful programming of
the software to avoid such singular point neighborhoods is
left to the implementer of this system, for example one could
follow [17, (3.10)].

III. E XPERIMENTAL RESULTS ANDDISCUSSIONS

To test our proposed algorithm, we have used sonde, an
instrument used in borehole drilling process. This sonde in-
cludes a sensor board with one axis FOG rate sensor and two
axis MEMS accelerometer sensor, and a motor arrangement
that turns this sensor board around 360 degrees about the
longitudinal axis of the sonde body. The sensor board can
be turned and locked at every 90 degree turn, which enabled
us to lock at 0, 90, 180 and 270 the indexed positions
and take measurements. The sensor board was proprietary
assembly of Geovista company, and was built in to the sonde
instrument. The noise characteristics of the sensors used in
our experiments were empirically evaluated using the sensor
measurements.The estimated deviation (Standard deviation be-
tween 20sec averages) for the FOG sensor was 0.5◦/hour and
the accelerometer sensor was 30µg . The sonde instrument is
shown in left part of Fig. 1.

To compare experimental results of the proposed algorithm
with one of the recently published algorithm that follows
similar indexed positional measurement data usage, we imple-
mented the algorithm from [10]. This was straight forward to
implement, using [10, Eq. 13] for tilt estimation and [10, Eq.
26] to evaluate azimuth angle, which appear to be closed from
equations derived in [10, Eq. 13]. Where as our approach to
solve the orientation problem is to estimate the Euler angles
of the device with respect to the local horizontal plane, by
applying Gauss-Newton least-square approximation method.
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Fig. 1: Sonde instrument on the left and on the right is the jig
that were used in obtaining sensor data for experiments.

In our experimental setup, a specialized ’jig’ stand shown
in right part of Fig. 1 was used to orient the sonde in
different orientations and test the algorithms performance in
estimating tilt and azimuth angles. This ’jig’ has an accuracy
of ± 1 degree in orienting the sonde, this inaccuracy was
not compensated for, while computing the error estimates of
our proposed algorithm. Instead we assumed that the jig is
perfect and can orient the sonde perfectly to required tilts
and turn angles for the sake of evaluation. The sonde was
tilted to a known angle about x axis and turned (rotated about
vertical axis of ’jig’) to face the azimuth at a start angle of
0 degree offset. At this stationary orientation, measurements
were captured for 20 secs in each of the four indexed positions,
positioned by rotating the sensor board and locking it at those
indexes. These 20 sec measurements data was averaged out
for each indexed position and used to evaluate the current
orientation of the sonde. At the same orientation 3 rounds
of measurement and estimation were performed and reported.
Then keeping the tilt angle same, we incremented the turn
angles by a fixed offset steps such as 15◦ or 30◦ turns to
complete a 360◦ turn. At each of the offset turn angles
3 rounds of measurement and estimation were performed
and reported. This whole procedure, we considered as a full
cycle of a single test case. This kind of turning the sonde
at fixed offset steps, will eliminate the need to have prior
knowledge of the precise azimuth direction to use in the error
estimation of the algorithm output. The resulting outputs in
each test case should also follow the same turn offset angles
as originally applied to the sonde orientation. And if thereis
any offset between the assumed and output azimuths, it should
be constant through out the test case, and it would be the offset
to the actual true north direction. We repeated such test cases
by changing the tilt angles and following the above mentioned
procedure. The different orientations of the sonde in each test
case using the actual sonde at 53.26 deg latitude in UK, are
depicted in Fig. 2.

Using thus collected measurement data, we have tested
both proposed least-square algorithm and algorithm from

[10, Eq. 13] and obtained the azimuth and tilt estimates
w.r.t horizontal plane as shown in Figs. 3, 4, 5, and 6.
Figs. 3(a), 4(a), 5(a), and 6(a) shows azimuth solution in upper
half part and azimuth estimate error in the bottom half parts.
From these figures, it can be clearly seen that our proposed
algorithm estimates azimuth very well. Left half parts of
Figs. 3(b), 4(b), 5(b), and 6(b), shows the tilt estimate errors
of both the algorithms, and the right half parts show the results
of our proposed algorithm alone along with the measurement
reliability indicator values, evaluated as mentioned in (37).
Couple of outliers in the tilt estimate errors can be observed
from the tilt estimate error figures. The corresponding large
s values of these outliers indicate that the measurement data
is unreliable and calls for re-measurement of those particular
sample measurement instances.

We have performed additional tests on the proposed algo-
rithm by simulating the test cases for different orientations
and latitudes, as it was practically not possible to test with
the actual sonde at all different locations on earth. In these
simulations, measurement data was obtained for different
orientations and at different latitudes and with the same noise
characteristics as of the real sonde sensors. By applying the
logic of thresholding thet1 (42) in our implementations, we
could avoid all the possible calculations at the neighborhoods
of singular points, and found out from our simulation re-
sults, that our proposed algorithm works for almost all the
orientations at all the latitudes with just one exception. The
exception exists at the precise latitudes of±90◦, as can be
clearly observed from the algorithmic equations and also at
these latitudes, is the earths axis of rotation and the true north
coincides with Z axis of the horizontal plane itself. Normally
there would not be a need to estimate the Euler angles at these
precise latitudes. Another issue we noticed at 90◦ tilt angles
at any given latitude was that, choosing correct one out of the
two possible DCMs is difficult, as the numerical calculations
of DCM(3,3) approach zero. In this case we always had one of
the DCM solution as the correct one. So this case would need
further investigation which is left for our future work. The
results of simulation tests compared to [10], are provided in
Table I, it includes zero degree and 4 degree tilt cases where
[10] algorithm is seen to be working at its best.

The Azimuth RMS error of these tests was a max 2.6
degrees with a tilt RMS error of 0.6 degrees with all the
test cases performed with our proposed algorithm, where as
algorithm from [10, Eq. 13] fails when the angle of tilts are
greater than 5 degrees. As this was one of the many algorithms
that were possibly meant to be used when the instruments
sensitive axis is strapped down in perpendicular orientation
w.r.t horizontal plane rather than at an arbitrary angle. The
results of the proposed algorithm can be improved further
by analyzing the FOG characteristics more closely, for exam-
ple, some of the FOG noise characteristic analysis methods
presented in [18] could be used to analyze and optimize the
sampling time and improve the accuracy of azimuth estimate
further. But in real time systems where the azimuth should be
estimated in matter of shortest possible time, tradeoff between
accuracy and time to azimuth fix should be made. There are
other important error sources that contribute to the azimuth
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Fig. 2: Different orientations of the sonde instrument during the measurements. Sonde facing with azimuth starts at 0 deg
and incremented at 15/30 degrees to make one round of 360 degrees. The + marks in the middle of the sonde indicates the
approximate location of the sensor board and correspondingX, Y axis.
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Fig. 3: Comparison between the proposed algorithm and [10] with 10 deg tilt about Y axis. (a) Azimuth estimate top and
estimate error bottom and (b) Error in tilt estimate, both algorithms on left and proposed algorithm along with value of
measurement reliability indicatorS on the right.



IEEE SENSORS JOURNAL 7

0 10 20 30 40 50 60 70 80
0

50

100

150

200

250

300

350

A
zi

m
ut

h 
in

 d
eg

re
es

 

 

Truth
Proposed algorithm
Algorithm from [10]

0 10 20 30 40 50 60 70 80
−200

−150

−100

−50

0

50

100

150

200

E
st

im
at

io
n 

er
ro

r 
in

 d
eg

re
es

 

 

Proposed algorithm
Algorithm from [10]

(a) Azimuth estimate top and estimate error bottom

0 10 20 30 40 50 60 70
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

T
ilt

 e
st

im
at

e 
er

ro
r 

in
 d

eg
re

es

 

 

X axis, proposed algorithm
X axis, algorithm from [10]
Y axis, proposed algorithm
Y axis, algorithm from [10]

10 20 30 40 50 60 70

0

0.5

1

1.5

2

2.5

3

3.5

4

 

 

X axis, proposed algorithm
Y axis, proposed algorithm
S value evaluated according to eq(29)

(b) Error in tilt estimate, both algorithms on left and proposed algorithm along
with value of measurement reliability indicatorS on the right

Fig. 4: Comparison between the proposed algorithm and [10] with 50 deg tilt about Y axis.
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Fig. 5: Comparison between the proposed algorithm and [10] with 80 deg tilt about Y axis.
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TABLE I: Experiment Results with Simulated Measurement Data at 60.5◦Latitude.
All units are in degrees.

True Orientation Estimation Error of Proposed Algorithm Estimation Error of [10]
Azimuth Roll/Tilt1 Pitch/Tilt2 Azimuth Roll/Tilt1 Pitch/Tilt2 Meas.Rel ’S’ Azimuth Roll/Tilt1 Pitch/Tilt2

0 0 0 -2.2419 6.5135e-06 2.8574e-06 4.1324 -2.2416 -3.1081e-05 1.0718e-05
30 0 0 1.5603 4.3562e-05 2.4615e-05 6.6876 1.5603 0.0002222 5.2856e-05
60 0 0 -0.7294 9.4943e-05 6.8265e-05 7.5515 -0.7292 0.0001412 0.0001603
90 0 0 0.0871 7.4497e-05 -0.0001005 6.7578 0.0870 0.0001449 -3.1338e-05

120 0 0 -2.0852 2.7409e-05 4.3059e-05 4.4622 -2.0852 2.7338e-05 9.7869e-05
150 0 0 -2.8262 -6.5587e-05 7.7639e-05 3.2442 -2.8262 -4.3061e-05 2.1923e-05
180 0 0 0.8234 -1.3132e-05 3.6996e-05 6.1216 0.8236 1.4234e-06 4.8226e-06
210 0 0 1.8452 -4.2683e-05 6.6364e-05 4.6476 1.8453 -7.5048e-07 0.0001754
240 0 0 -2.6937 5.4557e-05 -1.4757e-06 4.0023 -2.6935 1.3175e-05 -7.6701e-05
270 0 0 -0.9897 -6.6461e-06 5.2205e-05 3.0918 -0.9897 3.2492e-05 -2.1222e-05
300 0 0 0.3133 -5.3306e-05 9.5496e-07 3.3843 0.3135 -2.7965e-05 1.7729e-05
330 0 0 0.7973 6.6273e-05 0.0001308 1.5632 0.7973 4.8899e-05 0.0001439

0 4 0 -0.3079 7.1357e-05 7.6276e-05 2.2842 -0.3543 0.0002 6.9228e-05
30 4 0 -0.8906 -2.0648e-05 -0.9403e-05 7.4073 -4.9733 -0.0001 4.6142e-05
60 4 0 -1.4108 -8.9556e-05 2.8552e-05 3.3591 -8.3423 -0.0001 3.9290e-05
90 4 0 -1.3241 2.2140e-05 2.0888e-05 4.8748 -9.2816 -3.6107e-05 3.4907e-05

120 4 0 0.3459 -1.8640e-05 5.2456e-05 4.9107 -5.5267 1.0872e-05 -0.0001
150 4 0 0.0247 -2.9805e-05 1.2839e-05 2.3191 -3.1669 -1.3887e-05 0.0001
180 4 0 -0.2862 1.6880e-05 6.3853e-05 6.3010 -0.2537 1.5954e-05 2.4349e-05
210 4 0 0.4822 7.8378e-06 2.9041e-05 2.4946 3.6190 -0.0001 1.3303e-05
240 4 0 -0.8927 3.1241e-05 -2.8380e-05 4.2681 5.3932 -3.2187e-05 6.3404e-05
270 4 0 -1.6420 -8.0813e-05 7.0152e-05 6.5392 5.7581 1.3400e-05 8.8615e-05
300 4 0 -1.5996 7.4185e-05 7.1517e-05 3.6179 4.3924 3.1925e-05 4.5624e-05
330 4 0 -2.1553 -3.3062e-06 -4.1540e-05 4.9186 1.8530 2.4348e-05 -3.9768e-05

and tilt estimates, for example [19] et al. have studied and
presented error analysis report for gyro North seeking systems
using DCM. They have found that plumb errors of spindle
axis, angular rate accuracy of gyro, measurement accuracy of
angles, and latitude, all have influence on final measurement
accuracy of azimuth estimation. In addition, few important
steps such as, setting correct latitude, verifying strength of
local gravity in new location and allowing some minutes for
the device to warm up, should be taken care before using the
system. Scale factor of the gyroscope should also be calibrated,
as scale factor errors lead to azimuth bias.

IV. CONCLUSIONS

In this article, we have proposed a novel algorithm to find
the orientation of an object strapped down to earth, with
respect to true North and earth’s horizontal plane. It requires
only one single-axis FOG rate sensor and one two-axes MEMS
accelerometer. The algorithm was tested for its capabilityto
estimate the azimuth and tilts, with the equipment tilted in
almost all the angles ranging from 0◦ to ±90◦ about the local
vertical. The accuracy of the proposed algorithm was evaluated
to be 2.6◦max RMS azimuth error and 0.6◦of max RMS tilt
error with the sensors that we used. This could further be
improved by additional methods mentioned in this publication.
The proposed algorithm is applicable for situations where
knowing the true North and inclination is important, such
as mining industries, petroleum industries, borehole surveying
and environmental research work.

V. A PPENDIX: REFACTOREDPSEUDOINVERSE OFJ

The re-factored pseudoinverse ofJ† was given in (41), and
the remaining three termsK1T ,K2T ,K3T are given as:
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and
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where

Q = d2 v2
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and
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where
R = v

(

d2 γ2
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)

.

REFERENCES

[1] J. Barnes, L. Cheng, and K. Ariyur, “A hemispherical sun sensor for
orientation and geolocation,”Sensors Journal, IEEE, vol. 14, no. 12,
pp. 4423–4433, Dec 2014.

[2] I. P. Prikhodko, S. A. Zotov, A. A. Trusov, and A. M. Shkel,“What
is mems gyrocompassing? Comparative analysis of maytagging and
carouseling,”Microelectromechanical Systems, vol. 22, no. 6, pp. 1257–
1266, Dec 2013.

[3] S. Jun, M. Lingjuan, G. Weixi, and S. Jing, “Design and realization
of low-cost, fast and high-precision fog north finder,” inElectrical and
Control Engineering (ICECE), 2010 International Conference on, June
2010, pp. 695–698.

[4] R. Mahony, T. Hamel, and J.-M. Pflimlin, “Nonlinear complementary
filters on the special orthogonal group,”Automatic Control, IEEE
Transactions on, vol. 53, no. 5, pp. 1203–1218, June 2008.

[5] S. Madgwick, A. Harrison, and R. Vaidyanathan, “Estimation of IMU
and MARG orientation using a gradient descent algorithm,” inReha-
bilitation Robotics (ICORR), 2011 IEEE International Conference on,
June 2011, pp. 1–7.

[6] P. Savage, “Strapdown inertial navigation integrationalgorithm design,”
Journal of Guidance, Control and Dynamics, vol. 21, no. 1-2, 1998.

[7] W. S. Watson, “Improved north seeking gyro,” inPosition Location
and Navigation Symposium, 1992. Record. 500 Years After Columbus -
Navigation Challenges of Tomorrow, 1992, pp. 121–125.

[8] T. Tomohiro, I. Yuichi, N. Makoto, and Y. Toshihiko, “Automatic north
sensor using a fiber-optic gyroscope,”Appl. Opt., vol. 33, no. 1, pp.
120–123, Jan 1994.

[9] L. I. Iozan, M. Kirkko-Jaakkola, J. Collin, J. Takala, and C. Rusu, “Using
a mems gyroscope to measure the earths rotation for gyrocompassing
applications,”Measurement Science and Technology, vol. 23, no. 2, p.
025005, 2012.

[10] S. Hua, Z. Fang, and L. Haojun, “Design and implementationof fiber
optic gyro north-seeker,” inMechatronics and Automation (ICMA), 2010
International Conference on, Aug 2010, pp. 1058–1062.

[11] G. Wahba, “A least squares estimate of spacecraft attitude,” SIAM
Review, vol. 7, no. 3, p. 409, July 1965.

[12] F. L. Markley, “Attitude determination using vector observations and
the singular value decomposition,”The Journal of the Astronautical
Sciences, vol. 36, no. 3, pp. 245–258, 1988.

[13] A. Saxena, G. Gupta, V. Gerasimov, and S. Ourselin, “In use parameter
estimation of inertial sensors by detecting multilevel quasi-static states,”
in Knowledge-Based Intelligent Information and Engineering Systems,
ser. Lecture Notes in Computer Science, R. Khosla, R. Howlett, and
L. Jain, Eds. Springer Berlin Heidelberg, 2005, vol. 3684, pp. 595–
601.

[14] Y. F. Jiang, “Error analysis of analytic coarse alignment methods,”
Aerospace and Electronic Systems, IEEE Transactions on, vol. 34, no. 1,
pp. 334–337, Jan 1998.

[15] D. H. Titterton and J. L. Weston,Strapdown Inertial Navigation Tech-
nology, 2nd ed., ser. American Institute of Aeronautics, Reston, VA,
P. Z, Ed. Strapdown Associates, Inc., 2004, vol. 207.

[16] A. Stuart and K. Ord,Kendall’s Advanced Theory of Statistics, ser.
Kendall’s Advanced Theory of Statistics. Wiley, 2009, vol.1: Dis-
tribution Theory, no. v. 1; v. 1994.

[17] Radhakrishna,Linear Models: Least Squares and Alternatives. Second
Edition, ser. Springer Series in Statistics. Springer Publishing,1999.

[18] H. Changhong, Y. Chuanchuan, W. Xinyue, and W. Ziyu, “Enhanced
multiposition method to suppress the north finding error caused by bias
drift with fiber optic gyroscopes,”Appl. Opt., vol. 52, no. 21, pp. 5303–
5311, Jul 2013.

[19] R. Shunqing, Z. Zhenhao, and C. Yan, “Error analysis forthe gyro north
seeking system,” inSystems and Control in Aerospace and Astronautics,
2006. ISSCAA 2006. 1st International Symposium on, Jan 2006, pp. 4–
786.

Jayaprasad Bojja received Bachelors of Engineer-
ing in Computer Science and Engineering from Os-
mania University, Hyderabad, India in 1998. Since
then he has been working in Software Industry in
different roles, the last role before moving on to
higher studies in 2009 was, Team lead at Wipro
Technologies and Ext-Technical Consultant at Nokia
Finland.

During the period of higher studies, he has worked
as researcher at Tampere University of Technology
(TUT), Tampere, Finland. He has received the de-

gree of M.Sc. in Multimedia Signal Processing in 2011 with Honours, from
TUT. He is finalizing his Ph.D. studies and currently workingwith Space
Systems Finland.

His professional interests include, software engineering, algorithms, artifi-
cial Intelligence, positioning and navigation, and applications involving any of
the methods and techniques such as statistics, multimedia signal processing,
sensors signal processing, pattern recognition.

Jussi Collin (M’11) received the M.Sc. and Dr.Tech.
degrees from the Tampere University of Technology,
Tampere, Finland, in 2001 and 2006, respectively,
specializing in sensor-aided personal navigation.

He is currently Senior Research Fellow and Ad-
junct Professor at Department of Pervasive Systems,
Tampere University of Technology.

His research interests include statistical signal
processing and novel sensor-based navigation appli-
cations.

PLACE
PHOTO
HERE

Martin Payne is with Geovista Ltd, Glan Convy,
UK.

PLACE
PHOTO
HERE

Ryan Grifths is with Geovista Ltd, Glan Convy,
UK.



IEEE SENSORS JOURNAL 10

Martti Kirkko-Jaakkola received his M.Sc.(tech.)
and D.Sc.(tech.) degrees from Tampere University
of Technology, Tampere, Finland, in 2008 and 2013,
respectively.

From 2006 to 2013 he was with the Department of
Pervasive Computing, Tampere University of Tech-
nology. Currently, he is a Senior Research Scientist
at the Finnish Geospatial Research Institute, Na-
tional Land Survey of Finland, in Kirkkonummi,
Finland. His research interests include low-cost in-
ertial sensors and precise satellite positioning.

Jarmo Takala received his M.Sc. (hons) degree
in Electrical Engineering and Dr.Tech. degree in
Information Technology from Tampere University of
Technology, Tampere, Finland (TUT) in 1987 and
1999, respectively.

From 1992 to 1995, he was a Research Scientist at
VTT-Automation, Tampere, Finland. Between 1995
and 1996, he was a Senior Research Engineer at
Nokia Research Center, Tampere, Finland. From
1996 to 1999, he was a Researcher at TUT. Since
2000, he has been Professor in Computer Engineer-

ing at TUT and currently Dean of the Faculty of Computing and Electrical
Engineering of TUT. Dr. Takala is Co-Editor-in-Chief for Springer Journal on
Signal Processing Systems. During 2007-2011 he was Associate Editor and
Area Editor for IEEE Transactions on Signal Processing and in 2012-2013 he
was the Chair of IEEE Signal Processing Society’s Design andImplementation
of Signal Processing Systems Technical Committee. His research interests
include circuit techniques, parallel architectures, and design methodologies
for digital signal processing systems.


