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1 I. INTRODUCTION

Over the last decades positioning techniques have
received extensive attention, because they have
become the backbones of an increasing number of
position�aware applications in commercial, public
service, and military networks [1, 2]. Those applica�
tions include vehicle navigation, intelligent transport
systems, inventory tracking, vehicle tracking, fleet
management, resource management, environment
monitoring, emergency services (E911 in North
America, E112 in Europe), medical services (e.g.
patient and equipment surveillance in hospitals), and
rescue operations (e.g. locating fire fighters in burning
buildings). For smart phone users applications include
location identification, local search, suggesting local
points of interest, geo�tagging of photos and videos,
location sensitive billing, and targeted advertising [2–
8]. Because many of these applications have to run on
small mobile devices, the positioning algorithms have
strict limits on allowed energy, memory, bandwidth,
and computational resources.

In outdoor environments positioning techniques
mainly rely on Global Navigation Satellite System
(GNSS) signals. Because nowadays almost all new
smart phones are equipped with a GNSS receiver pre�
cise positioning of the mobile user equipment (UE)
outdoors is continuously possible. However, GNSS
receivers use significant amounts of energy. Further�
more, indoors and also under forest canopies and in
certain urban settings, such as urban canyons, poor

1 The article is published in the original.

signal penetration by GNSS generally results in
unavailable or unreliable location information. There�
fore, positioning in those environments must rely on
other measurements, e.g. from an inertial measure�
ment unit (IMU) or from radio signals such as cellular
networks, Bluetooth, wireless local area networks
(WLAN), or ultra�wideband (UWB). 

Depending on the used algorithm, positioning
using cellular telephone measurements can be simple,
economic and can be implemented without upgrading
UEs or network equipment [3, 9, 10]. Although the
cellular network was not originally designed with posi�
tioning in mind,2 it provides in most environments
sufficient accuracy (around 100 m indoors and in
urban areas possible, around 200 m in suburban areas)
for applications such as local search or weather fore�
cast [12]. Since WLANs are ubiquitous in urban areas
and the coverage areas of WLAN access points (APs)
are much smaller than cellular network cells, WLAN�
based positioning techniques have come to be pre�
ferred over cellular as alternatives to GNSS [13] when
higher accuracy positioning is desired. Like cellular
networks, WLANs were not originally designed for
positioning. Also WLAN�based positioning uses the
already existing infrastructure, and WLAN APs and
receivers in UEs are widely available. In the remainder
we focus on WLANs although many of the concepts
apply also to cellular networks.

2 An exception is the Long Term Evolution (LTE) standard,
which specifies in release 9 the positioning reference signal
(PRS), which makes a positioning accuracy on the order of 10 m
possible [11]. 
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Most WLAN�based positioning algorithms exploit
the correlation between the received signal strength
(RSS) and the UE’s location (see e.g. [14, p. 47]).
Because modeling signal propagation, especially in
indoor environments, is rather complex, nonparamet�
ric location fingerprinting methods are widely applied
for positioning [15]. Those methods estimate the
user’s position by comparing the list of current AP
received signal strength indicator (RSSI) or RSS mea�
surements to a database (called a radio map) of infor�
mation (called fingerprints) on APs and their corre�
sponding signal strength values for known positions.

Parametric methods include various approaches.
In contrast to the nonparametric methods, they only
store some parameters (e.g. the parameters of a signal
propagation model) in the radio map that summarize
the fingerprints (also known as allocation reports,
reception reports, or observations) in a certain way,
reducing the radio map’s size significantly. The user’s
position can be estimated using parametric methods,
for example, by computing distance estimates between
the user and the APs using the received RSS/RSSI
measurements in a signal propagation model. Within
this paper we present an overview of these parametric
methods, and compare them with each other and a
widely�used nonparametric method.

The main contribution of our paper is to give an
overview about recent developments in the field of
parametric fingerprint�positioning methods, and
analyses their strengths and weaknesses. For nonpara�
metric fingerprinting methods overviews can be found,
for example, in [15, 16].

The results of the field tests have been already pub�
lished in [17]. However, in this paper we provide a
more detailed analysis of the results and the paramet�
ric methods that were compared. Furthermore, we
analyze additional parametric methods, which have
not been considered in [17], and compare them with
those considered in [17].

The outline of this paper is as follow. We discuss
similarities and differences of nonparametric and
parametric fingerprinting methods as well as methods
used for fingerprint collection and related issues in
Section II. The parametric methods presented use
Bayes’ rule and Bayesian filtering, thus we briefly sum�
marize the idea of positioning using Bayes’ rule and
Bayesian filtering in Section III. In Section IV we look
at parametric FP approaches that use rather simple
models for describing the area that an AP covers, i.e. in
which it can be heard. Those methods reduce the radio
map’s size tremendously while providing sufficient
accuracy for many applications in the positioning
phase. Section V is dedicated to signal propagation
path loss models, which are calibrated from FP data.
In Section VI we present an overview of approaches
that rely (partly) on parametric fingerprinting tech�
niques, and use mixtures of distributions for modeling
position estimates etc. These techniques are useful for
nonlinear and/or non�Gaussian systems for which
traditional approaches such as Kalman filter (KF) and

extended KF (EKF) perform poorly. The performance
of a selection of different parametric FP techniques,
with and without filtering, is compared in Section VII
using benchmark tests using real�world WLAN mea�
surements in indoor environments. Section VIII sum�
marizes and concludes.

Notation: Scalar variables are italic, x denotes col�
umn vectors, and H denotes a matrix.

LIST OF USED ABBREVIATIONS

AP—access point
AP�ID—access point identifier
AS—adaptive splitting
CA—coverage area
CN—communication node
EGMF—efficient Gaussian mixture filter
EKF—extended Kalman filter
EM—expectation maximisation
FP—fingerprint
GGM—generalised Gaussian mixture
GGMF—generalised Gaussian mixture filter
GM—Gaussian mixture
GMA—Gaussian mixture allowing negative

weight
GMB�REM—Gaussian mixture Bayes’ with regu�

larised expectation maximisation
GMEM—signal strength estimation model from

[44]
GMF—Gaussian mixture filter
GNSS—global navigation satellite system
ID—identifier
IMU—inertial measurement unit
IRLS—iterative reweighted least squares
KF—Kalman filter
KNN—k�nearest neighbour
LS—least squares
MAC—media access point
ML—maximum likelihood
MMSE—minimum mean square error
NN—nearest neighbour
non�LOS—non�line of sight
PL—path loss
RSS—received signal strength
RSSI—received signal strength indicator
SPGMF—sigma point Gaussian mixture filter
SSM—state space model
TP—test point
UE—user equipment
UKF—unscented Kalman filter
UWB—ultra�wideband
WKNN—weighted k�nearest neighbour
WLAN—wireless local area network
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II. WHAT ARE PARAMETRIC 
AND NONPARAMETRIC APPROACHES?

In this section we define what we mean by non�
parametric and parametric fingerprinting positioning
methods, what they have in common and how they
differ. Furthermore, we will discuss issues and possible
solutions related to fingerprinting.

The aim of both parametric and nonparametric
positioning methods is to determine the nx�dimen�

sional state xk  given the ny�dimensional mea�

surements in vector yk . The fingerprinting posi�
tioning methods have an offline and an online phase.
In the offline phase the state xk denotes a vector of
parameters, while in the online phase the state xk

denotes the UE position at time tk and possibly addi�
tional information such as the UE velocity.

The measurements in the offline are so�called fin�
gerprints (FPs) collected at known locations. There�
fore, they are sometimes also called location FPs. For
WLAN�based indoor localization, FPs are generally
collected in grid points with one grid point per square
meter [18]. The FP data for one of these points con�
sists of identifiers (IDs) of APs from which signals are
received by the UE in that specific grid point together
with the corresponding signal strength values. From
the collected FPs a radio map is generated. The radio
map generation of various parametric and nonpara�
metric methods is explained in the remainder of this
paper.

In the online phase, measurements in form of a FP
are collected in the UE’s unknown location. The FP’s
data depends on the UE location. This dependency
between UE position xk and measurements yk is used
for estimating the UE position, and the estimation
process uses the radio map entries. In the remainder of
this paper several methods for determining position
estimates are explained and analyzed.

A. Parametric vs. Nonparametric Fingerprinting 

Nonparametric fingerprinting methods use radio
maps in which FPs yk are stored. For a WLAN the
radio map contains, in general, location coordinates,
IDs of APs from which signals were received in this
location and corresponding signal strength values. In
the positioning phase the UE’s measurement (AP�IDs
and corresponding RSS values) are compared with the
radio map entries to infer a position estimate. The
simplest approach is the nearest neighbor (NN)
method. It returns the location of the FP from the
radio map whose measurement is most similar to the
UE’s measurement as position estimate. This FP is
called the nearest neighbor and is found by optimizing
a given cost function [19].

A more advanced, widely applied version of the
NN is the weighted k�nearest neighbor (WKNN)
method. Here, the position estimate is the weighted
mean of k locations whose FPs are most similar to the

n
∈� x

n
∈� y

UE’s measurement [15]. According to Liu et al. [7] the
WKNN combines medium complexity and medium
cost with a good robustness and accuracy. Therefore,
we use it in Section VII for comparison with paramet�
ric localization methods. For overviews on nonpara�
metric location fingerprinting methods we refer the
reader to [15, 20] and references therein.

Parametric fingerprinting methods use radio maps
in which parameters xk are stored that summarize the
FP data yk. Instead of having one FP per grid point,
the radio map contains a set of parameters for each AP
observed in the FP data. For positioning various meth�
ods, dependent on the parameters used in the radio
map, can be used. In the following sections we will dis�
cuss those methods further.

Nonparametric fingerprinting methods have the
advantage that modeling the signal propagation is not
needed. These algorithms have been shown to be rea�
sonably precise and reliable in indoor environments
(see e.g. [15, 21]), where non�line of sight (non�LOS)
situations are very common. Many parametric finger�
printing methods require modeling the signal propa�
gation, which causes problems in challenging indoor
environments. In the latter sections of this paper we
will consider this topic in more detail.

A major difference between parametric and non�
parametric methods is that the radio map’s size
depends for nonparametric methods on the number of
FPs (i.e. grid points), while for parametric methods it
depends on the number of APs and number of param�
eters stored per AP. This means, if more FP data is col�
lected to improve the radio map quality the map’s size
increases for nonparametric methods while for para�
metric methods it stays the same, provided that no
additional APs are detected.

To get a better understanding on what kind of sizes
we are talking it should be noted that for each grid
point around 100 samples have to be collected [18] to
obtain a reliably FP for the radio map. Since nonpara�
metric FP positioning works directly with the FP data,
the size of this data can be a critical issue when FP�
based positioning is offered as a large�scale service for
mobile devices. Wirola et al. [12] point out that a radio
map of just 0.1% of the earth’s surface (approximately
130000 km2 or the size of Greece or Louisiana, USA),
with an average density of one FP per m2, and at least
one 6�byte AP Media Access Point (MAC) address per
point, needs at least 780 GB. For indoor environments
often signals from more than 5 APs can be received. In
addition, signal strength values are stored besides the
APs’ MAC addresses.

One approach for shrinking the radio map for non�
parametric method is the usage of data�compression
techniques [22, 23]. A more fundamental way to
address the issue is to use parametric (model�based)
FP methods. Since an AP’s signal is generally receiv�
able in many grid points the radio map for parametric
methods is in general significantly smaller [17].
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Before moving on to the discussion of various para�
metric methods let us consider how FPs are collected
and some of the issues plus solutions related to it.

B. Fingerprinting and Related Issues 

For location fingerprinting the fingerprints are col�
lected in an offline phase by site survey, war�driving or
crowd�sourcing. In addition to the UE’s current posi�
tion, each fingerprint contains radio characteristic
records. In WLANs those records, in general, contain
at least AP�IDs and corresponding RSS or RSSI val�
ues. Site survey means that the FPs are collected at
various locations for generating a fingerprint database.
Most often the location has to be entered by hand.
This is a significant difference to war�driving, where
the location generally is a GNSS�based estimate. As
the name suggests war�driving is the act of collecting
measurements in a moving vehicle. A disadvantage of
both site survey and war�driving is that the data col�
lecting is tedious and expensive. Thus, crowd�sourcing
is preferred. In this form of data collection several per�
sons (for example the users of the FP�based localiza�
tion method) are collecting the FPs. In practice a
combination of those methods can be used.

In outdoor environments FP data can be collected
via crowd�sourcing or war�driving, making radio map
updating less laborious. However, due to the absence
of GNSS signals this technique cannot be used
indoors and more complicated alternatives have to be
employed. Note that it is, nevertheless, possible to use
FPs without GNSS�based position (so called unlo�
cated FPs) but then the position accuracy decreases
[24].

An important issue in fingerprint positioning is
maintaining the radio map. Since network topography
(APs can be added, removed, moved or modified) and
radio environment change constantly, constant
updates of the FP radio map are required to prevent
performance deterioration [15, 25]. Already small
environment changes can have tremendous influence
on the measured RSS values. If the FPs were, e.g., col�
lected while the building was empty, and positioning is
done in the same building while crowded with people,
the RSS values in a certain position will differ signifi�
cantly due to body shadowing [18]. The influence of
the user’s body on RSS has been analyzed, e.g., by
Kaemarungsi and Krishnamurthy [26].

Device heterogeneity is another problem that has
to be considered. It describes the fact that received sig�
nal strength values measured by different devices at the
same location and time can vary significantly [13, 21,
27–29]. The heterogeneity includes, for example, the
fact that many devices show only unitless RSSI values
rather than RSS values, which are always in dBm. Dif�
ferent chipset providers use different RSSI scales with
different limits and granularity, which hinders com�
parison of RSS measurements from different devices
[27, 29–31]. To circumvent the problem of RSS heter�
ogeneity some authors use either rankings of RSS val�

ues in a FP [21, 32] or RSS ratios [31] or RSS differ�
ences [33] instead of the measured RSS values. In the
following we will distinguish between RSS and RSSI,
depending on which values were used by the cited
authors or are needed for the specific task.

To resolve the RSSI scaling problem, calibration
methods within the devices could be used; see [28] for
a brief overview. Earlier proposed techniques use man�
ual calibration, meaning that users collect measure�
ments at known locations in order to calibrate their
device. These methods generally use least�square fit�
ted linear calibration functions [27, 30]. Park et al.
[13] argue that calibrating the signal strength levels is
insufficient and that differences in signal strength dis�
persion between devices is also important, and they
describe a kernel estimation method for device cali�
bration. Approaches for automatic calibration, which
enable simultaneous calibration and positioning, and
eliminate the requirement of taking measurements at
known reference locations, are proposed, for example,
in [28] and [29]. In [29] Koski et al. suggest to con�
struct a RSSI histogram from values collected over a
long period. By assuming that distributions of RSSI
values for all devices are the same up to translation and
scale, these device�specific parameters can be fitted
from the histogram. Laoudias et al. [28] make a more
thorough study of the histogram approach. They show
that assuming that the true RSS value distribution is
the same for all users, the parameters for a linear map�
ping of RSS between devices can be estimated from
the histogram. In contrast to Park et al. [13], they find
that the device heterogeneity effect is sufficiently
reduced by a linear mapping, and that even a simple
origin�shift suffices. They describe a method to con�
tinually update the calibration on�line while position�
ing, and find that positioning with this method is as
accurate as with a manual calibration except at the
beginning of the learning phase.

III. POSITIONING AND BAYESIAN 
FILTERING

All of the parametric methods presented in this
paper use Bayes’ rule, for determining parameters and
static positioning. For filtered positioning problems
Bayesian filtering is used. Thus, we now summarize
the Bayesian approaches for both static and filtered
positioning problems.

For the static case the state of the system xk is esti�
mated as follows. The measurements in vector yk are
used to determine the posterior probability density
function (pdf) of the state by applying Bayes’ rule 

(1)

where  can be an uninformative prior pdf, i.e.
constant. 

The filtered positioning problem is formulated as a
Bayesian filtering problem for a discrete�time state
space model (SSM). Within this section we consider

∝( ) ( ) ( ),k k k k kp p px y y x x

( )kp x
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the general discrete�time SSM, namely the nonlinear
non�Gaussian additive noise system 

(2a)

(2b)
where the errors wk – 1 and vk are assumed to be white,
mutually independent and independent of the initial
state x0. The possibly nonlinear functions fk – 1(.) and
hk(.) are assumed to be known. In the following the
pdf’s of wk and vk are denoted p(wk) and p(vk), respec�
tively. The aim of filtering is to find the conditional
probability density function (posterior) 

p(xk|y1 : k),

where  The posterior can be deter�
mined recursively according to the following relations
[34].
Prediction (prior): 

(3)

Update (posterior): 

(4)

where the transition pdf is  =
 and the likelihood is 

(5)
The initial condition for the recursion is given by the
pdf of the initial state  Point esti�
mates can be computed from the posterior distribu�
tion, e.g. posterior mean.

In general and in the cases analyzed in this paper,
the conditional probability density function cannot be
determined analytically. Because of this, there are
many approximative methods to compute the poste�
rior mean (see e.g. [35]). Besides the posterior mean
these methods generally yield also a posterior covari�
ance matrix. In case the true state is known we can
check whether the posterior is consistent with respect
to a consistency test, such as the Gaussian consistency
test [36, p. 235 ff.]. The idea of those tests is to assess
the accuracy of the state estimate’s covariance matrix.
For example, in the Gaussian consistency test, for a
risk level of 5%, the posterior is said to be consistent if
the posterior covariance matrix Pk and the posterior

mean  fulfill the inequality

 = 5.9915, where xk is the
true state. 

IV. COVERAGE AREA MODELS

A. Coverage Area Estimation 

A computationally light method for parametric fin�
gerprinting is proposed in [20, 29]. In order to reduce
the size of the FP radio map the authors represent the
coverage area (CA; aka reception region) of any com�

− − −
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munication node (CN; called AP in WLANs or base
station in cellular radio networks) by an elliptical
probability distribution, for which the distribution’s
parameters and the location estimates are solvable in
closed form. The probability distribution represents
only the region in which a signal from the AP can be
received; other than an implied reception strength
threshold, it gives no information about the RSS.
Although real CAs are often irregularly shaped, mod�
eling them with simple shapes makes it possible to
keep the database for storing CAs compact while pro�
viding acceptable accuracy. Thus, it enables fast trans�
mission to a UE [20, 29] and fast computation of the
UE’s position, since any ellipse can be represented by
five parameters: three parameters for the origin�cen�
tred ellipse (2�by�2 symmetric positive definite
matrix), and two more parameters to specify the loca�
tion of the ellipse centre [37]. Koski et al. [29] and
Piché [37] point out that also other shapes, such as cir�
cles (three parameters) or polygons (at least six param�
eters) for modeling CAs of CNs could be used. Fur�
thermore, the 3GPP TS 23.032 standard supports the
use of geometrical shapes such as ellipses, polygons
and ellipsoids [4, p. 98].

The coverage area is modeled in [20, 29] by a pos�
terior distribution for the ellipse parameters θ given
the FP locations z = {z1, z2, …, zn} where the CN was
heard. The distribution is given by Bayes’ rule 

(6)

where the likelihood and prior pdf are Gaussian. In
other words, the CA is modeled by fitting the mean
and covariance of a multivariate Gaussian to the data.
Figure 1 shows the FP locations z as well as the mean
and covariance of a fitted multivariate Gaussian,
whose parameters are contained in θ (for the mean
and for the symmetric covariance matrix). The ellipse

∝( ) ( ) ( ),p p pz zθ θ θ

Fingerprint location
Mean
40% covariance ellipse

Fig. 1. Fingerprint locations z in which an AP’s signal is
received and the mean and covariance of a fitted bivariate
Gaussian. 
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contains approximately 40% of the bivariate Gauss�
ian’s probability.

Using a Bayesian formulation of the regression
problem has two advantages. Firstly, the use of the
Bayesian prior pdf p(θ) allows one to exploit informa�
tion about “typical” coverage areas, which is crucial
when only a few FPs are available [20, 29]. Such infor�
mation is available through experimental studies. For
example, the typical reception range for WLAN in
indoor environments is 20–50 m [6, p. 9]. According
to Trevisani and Vitaletti [3] and Molisch [14, p. 17 ff.]
the size of a CA in a cellular network depends strongly
on the cell type; it may range from 1 m for nanocells to
30 km for macrocells. Furthermore, Trevisani and
Vitaletti [3] point out that the size is influenced by a
variety of factors, such as interferences, local expected
traffic and sensitivity of the UE’s antenna. This vari�
ability can be also modeled within the Bayesian prior
pdf, by using a distribution with a larger variance.

Secondly, using Bayes’ rule with the independence
assumptions given for the SSM (2) for finding the
ellipse’s parameters allows recursive estimation and
updating of estimates [29]. Updating the posterior
p(θ|z) as new FPs become available can be done by
either using Bayes’ rule [38, p. 14 ff.] or by computing
it as time series [38, p. 29 ff.]. Koski [38] points out
that the latter approach enables one to take into
account that the parameters can change in time. Such
changes are common and can be caused, for example,
by constructing new buildings, changing floor plans,
or modifying radio network topologies [4, 6, 14, 37,
38].

One possible point of criticism for the method
above is the assumption that [20, 29] model location
reports having a Gaussian (Normal) distribution. It is
common knowledge that the Normal regression
model lacks robustness, in the sense that outliers can
cause CAs being estimated too large (see e.g. [39]).
Reasons for outlier location reports include unusual
reception conditions, software or hardware malfunc�
tions in GNSS (when using it for determining the
coordinates of the location reports) or radio signal
reception [37]. Piché [37] argues that, while gross out�
liers can easily be detected by heuristics, “moderate”
outliers are hard to discover, especially if the list of FPs
used for CA determination contains a large amount of
them. Thus, he recommends to rather model location
reports as having Student�t distribution so that outliers
are automatically accommodated by the distribution’s
heavier tails. In [37] he shows how the Student regres�
sion can be computed by Gibbs sampling [40] or
Expectation Maximization (EM) algorithm [41]. For
both algorithms it is shown in [37] that it is also for
Student�t distributed location reports possible to
include information on “typical” CAs via an informa�
tive prior pdf, as in the case of Gaussian distributed
location reports. Introducing such a prior pdf requires
only minor changes in EM or Gibbs sampler algo�
rithm. 

The methods considered above ignore completely
the RSS/RSSI values corresponding to IDs of heard
CNs. Hence they are less sensitive to changes in the
radio environment than fingerprinting methods that
use these values. This gain in robustness, however,
comes generally at the cost of lower accuracy com�
pared with nonparametric fingerprinting methods
(e.g. WKNN), which besides FP locations and IDs of
CNs observed in each FP often also store correspond�
ing RSS or RSSI values. The RSS values, and there�
fore also the RSSI values, depend on the distance
between CN (emitter aka transmitter) and UE
(receiver) and are commonly modeled as function of
this distance using path loss (PL) models, which will
be discussed in section V.

A coverage area method that uses RSS information
is proposed in [20, 39]. Instead of storing only one CA
per CN in the database, several CAs per CN are
stored, which are modeled from FP data that is
grouped according to RSS. In [39] the authors exam�
ine the use of one, two and three CAs per CN assum�
ing both Gaussian and Student�t distribution for loca�
tion reports. FPs are grouped based on their RSS val�
ues and different CAs are generated using only
location reports of their corresponding group. Three
different grouping rules are considered: RSS�level, n
strongest CNs of each FP and x% strongest CNs of
each FP.

B. Positioning Using Coverage Areas

A position estimate for a UE using coverage areas
[20, 29, 39] can be obtained by applying Bayes’ rule.
The position estimate and an uncertainty measure of
the estimate can be extracted from a Gaussian poste�
rior probability density function p(x|c) of the UE posi�
tion x given a list c = (c1, c2, …, cN) of CNs observed by
the UE in the current position. For the conjugate (i.e.
Gaussian) prior pdf of this position, a suitable mean
and covariance, which represent prior knowledge on
UE’s position, should be chosen. In case such infor�
mation is unavailable, setting the covariance very large
is justified [20]. For computing the likelihood p(c|x)
[20, 29, 39] it is assumed that prior probabilities of
observing cn are equal for all n = 1, …, N and that
observations are conditionally independent given x.

The latter assumption is a weakness of the model
[20]. For neighboring CNs ci and cj, for example, the
independence assumption is often violated. If ci is
observed in x then this clearly affects the probability of
cj being observed, since CAs generally overlap, mean�
ing that both CNs can be observed in the same area.
Koski et al. [20] speculate that using information on
CNs not being observed in x might improve position�
ing accuracy significantly. However, because closed�
form solutions are unavailable for such data, such an
approach could not compete with the proposed algo�
rithm in terms of computational complexity.
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Koski et al. [29] point out that WLAN APs (i.e.
CNs) are often hearable in an entire building, which
results in their coverage areas being useless for posi�
tioning. Therefore, eliminating some CNs in both
learning and positioning phase may actually increase
position accuracy [29], [42, p. 71 f.]. A variety of tech�
niques have been examined for selecting CNs to be
pruned, including forward selection and backward
elimination, weighting CNs using Generalized Cross
Validation, selection of CNs based on information
gain, divergence measures or discrimination score.
Readers are referred to [43] for a more extensive over�
view.

In [29] and [44] the authors suggest usage of a sig�
nal strength threshold value for reducing the number
of observations. CNs heard with an RSSI below this
threshold are eliminated from the FP, i.e. are not used
for CA determination or positioning. To ensure com�
parability of RSSI values from different devices the
authors in [29] apply the RSSI histogram approach
mentioned in Section I. For the positioning using
WLAN measurements, positioning mean errors and
root mean square errors were reduced significantly by
applying this technique. Instead of the histogram
approach other calibration methods, which were
explained earlier, could be used. However, when using
signal strength based elimination, it has to be ensured
that CN elimination does not decrease consistency of
position estimates and/or overpruning, in which
(almost) all CNs are eliminated from the observation
list. The latter problem might occur, for example, in
outdoor environments for WLAN measurements,
where signal strength values and their dynamics are
considerably weaker than in indoor environments
since the signals generally must pass through thick
walls.

This behavior might also explain why using multi�
ple CAs per CN for WLAN�based positioning in out�
door environments provides only small improvements
compared with using one CA per CN [39], whereas in
indoor environments it yields significantly better
accuracy [20, 39]. Alternatively, overpruning might be
avoided by using the n strongest rule or the x% stron�
gest rule, neither of which require RSS calibration.

V. PATH LOSS MODELS

Path loss (PL) models refer to models of the signal
power loss LP or the received signal strength PRSS along
a radio link, averaged over large�scale and small�scale
fading [14, p. 127]. In the simplest models the PL
depends only on the transmit power and the distance d
a radio wave travels; more complex models take fur�
ther factors into account. For an overview of propaga�
tion mechanisms and PL models we refer the reader
to [6, 14, 45] and references therein.

The relation between the RSS and the radio wave’s
traveled distance can be used for positioning. From
RSS measurements and PL models the distances
between a set of reference nodes and the target node

are estimated, which then enables estimation of the
target node’s position. However, the position estimate
is sensitive to signal noise and PL model parameter
uncertainties because the distance�power gradient is
relatively small [1]. Consequently, these estimates are
generally less accurate than radio�signal based esti�
mates that are derived using AOA (angle�of�arrival) or
time delay measurements. However, Patwari et al. [46]
show that for sufficiently high CN�density positioning
algorithms relying on PL models (and thus on RSS)
can achieve similar performance as time delay based
algorithms.

A. Parameter Estimation for PL Models 

Earlier studies assumed the parameters of the PL
model to be known a�priori, which is an oversimplifi�
cation for several real�world applications and there�
fore ill�suited [47]. Thus, the model’s parameters
should be estimated based on FP data consisting of
CN�IDs and corresponding RSS values.

There are various approaches on how to estimate
the model parameter(s). Some methods first estimate
the CN’s position or assume it to be known, and then
estimate the parameter(s) using the CN position (e.g.
[48, 49]); others estimate the CN’s position and the
PL model parameter(s) simultaneously (e.g. [47, 50]).

In [48] a statistical modeling approach is intro�
duced, in which the UE’s position is estimated using a
statistical signal power model, and the CN position is
assumed to be known. The parameters of the model
are estimated using the EM algorithm [41] to find their
maximum likelihood values. The authors point out
that the main difference of their algorithm, compared
with the geometric approach, is that it infers the signal
properties from the location. However, often the posi�
tions of CNs are unknown and have to be estimated as
well. Li [47] found that estimating the CN location
alone for fixed PL model parameters can result in large
errors when the values for the parameters are chosen
inaccurately, and he recommends simultaneous esti�
mation. Furthermore, he points out that joint estima�
tion removes the necessity of extensive channel mea�
surements.

In [47] Li estimates CN position and the PL expo�
nent n (aka distance�power gradient) of the classic
narrowband radio propagation PL model3

(7)

where  is the signal power loss in dB at a distance
of d meters from the CN. The zero�mean Gaussian

random variable w with variance  is used for model�
ing the shadow fading (aka slow fading). The approxi�

3 Roos et al. [48] use a more complex PL model that includes a
parameter for the transmission direction. Since their focus is on
cellular networks in which the CNs (aka base stations), in gen�
eral, have directional antennas this should provide more accu�
rate PL estimates. For isotropic WLAN APs, as used by Li [47],
the PL should (theoretically) be the same in all directions. 

= + +P P 10( ) (1) 10 log ( ) ,L d L n d w

P( )L d

σ
2
w
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mately lognormal distribution of shadow fading,
which implies Gaussian distribution of w in (7), has
been empirically observed, for example, in [51–54].
For the estimation Li [47] applies the Levenberg�Mar�
quardt method, a modified Gauss�Newton (GN)
algorithm, on a system of nonlinear equations.

Nurminen et al. [50] go a step further and estimate
in addition the apparent transmission power

 for a version of the log�distance model,
namely 

(8)
using the Iterative Reweighted Least Squares (IRLS)
method, which is also a GN algorithm. According to
Dil and Havinga [55] (8) can be used for describing
PRSS dependency of distance d in any indoor environ�
ment. The Bayesian approach used in [50] further�
more lends itself well to update the estimate of CN
position and PL model parameters as new fingerprint
data becomes available.

The algorithm uses uninformative Gaussian prior
pdf. Given enough fingerprints, according to Nur�
minen et al. [50], one can choose the valid prior mean
values for the PL model parameters arbitrarily, since
for large numbers of FPs the posterior distribution is
typically unimodal. This is supported by Li’s [47] find�
ing that the effect of an inaccurate prior for the PL
exponent n on the estimation results is negligibly
small. However, he stresses that, especially for cases
with limited data, a well�chosen informative prior
would be beneficial. Various studies yielded values for
the PL exponent for different environments and net�
works (e.g. [45, 56]); for the apparent transmission
power fewer studies are available (e.g. [56]).

For the prior CN position more care should be
taken in order to prevent IRLS placing the CN in an
area of weak RSS values [50]. Nevertheless, even with
such measures it cannot be guaranteed that the algo�
rithms find the correct CN position. For example, the
RSS map might contain several peaks or the true CN
position could be outside the RSS map or it may be
that too few measurements are available for determin�
ing a clear peak [50]. Both the (Bayesian) IRLS
method in [50] and the Levenberg�Marquardt method
in [47] give the user a tool to distinguish between reli�
able and unreliable position estimates and PL models
in the form of a covariance matrix. For the latter
approach the covariance can be computed once the
optimal estimates are found, in the former it is auto�
matically available as posterior covariance matrix.
Furthermore, the approach in [50] accounts for corre�
lation in measurement errors by adding a small con�
stant diagonal matrix for the CN position’s covariance
matrix (Li [47] assumes all observations to be statisti�
cally independent). The cross�correlation between
CN position and PL model parameters is, however,
neglected, mainly to limit the number of parameters.

One possible point of criticism of the methods in
[47, 50] is that the authors assume the standard devia�
tion σw of the shadow fading component to be fixed,

= RSS(1)A P

= − +RSS 10( ) 10 log ( ) ,P d A n d w

although [47, 50] stress that it is highly dependent on
the propagation environment, which is confirmed,
e.g., by Ghassemzadeh et al. for UWB networks [54].
Typical values vary between 1 dB and 6 dB [56, 57] for
WLAN. Larger values have been observed, especially
in larger buildings (see e.g. [57, p. 139 ff.] for more val�
ues). In cellular networks values between 5 dB and
16 dB have been observed [52, 56]. Nurminen et al.
[50] use fixed σw = 6 dB, whereas Li [47] studies the
influence of varying values that are fixed during the
estimation on the errors in CN position estimates. His
tests show that the value of σw can influence the bias
and the efficiency of location estimators significantly
depending on the used estimation method. 

In [18] Han et al. ignore the shadow fading compo�
nent’s standard deviation, and compute point esti�
mates for the parameters of their PL model. However,
their approach is worth consideration because it allows
generating a radio map using significantly less FP data.
Furthermore, their PL model, which is an extension of
Seidel’s model [58], takes into account the angles
between signal path and obstacles. This means, the
modeled PL depends on the angle in which the signal
hits the obstacle. For example, if the signal hits a wall
in a 90 degree angle the distance it travels through the
wall is significantly shorter than if it hits the same wall
in a 60 degree angle. The PL model in [18] accounts
for this.

For generating the radio map, the authors collect
FP data only for a small fraction of the area that should
be covered by the radio map. Those FPs are then used
to establish a linear equation that can be solved using a
least�squares method to obtain the estimates for the
PL model parameters. They then use the PL model to
generate FPs for those locations in which no measure�
ments were taken. However, this second step will be
unnecessary if parametric methods are used for posi�
tioning, as will be seen in the next subsection. In their
paper Han et al. show that it suffices to collect FPs
from 20% of the grid points for which FPs will be avail�
able in the radio map. In their test the radio map using
those points and their method for generating FPs for
the other 80% grid points has a similar cumulative dis�
tribution function (cdf) for the predicting error as the
radio map for which in all grid points FPs were col�
lected.

Shrestha et al. [19] use deconvolution�based meth�
ods to reduce the radio map size by a factor of ten
compared with the map for nonparametric
approaches. Besides PL model (8), they study also a
multi�slope PL model, which takes different values for
n depending on the distance between transmitter and
receiver. Furthermore, the authors extend both mod�
els with an additive floor loss parameter, and consider
3�dimensional positions.

The parameters of the PL models are estimated in
[19] as follows. For each FP measurement parameter
estimates are computed using either least square (LS),
weighted LS or minimum mean square error (MMSE)
assuming the FP’s location as AP location. Then the
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expected RSS values in that location given the current
parameter estimates is computed. The FP’s location
for which the mean square error (MSE) of measured
and expected RSS values is smallest is used as AP posi�
tion estimate. Alternatively, the average of k FPs that
give lowest MSE could be chosen. In this case, the PL
model parameters have to be recomputed using the
new AP position estimate.

B. Positioning Using PL Models

Once the parameters of the PL model and the posi�
tions for all CNs are estimated, range estimates can be
derived using the PL model and measured RSS values.
For computing the UE position estimate subsequently
trilateration or some other nonlinear estimation tech�
nique can be used.

Nurminen et al. [50] test three different methods
that use the PL model (8) with real WLAN data in an
indoor office environment: a grid method where
Monte Carlo integration is used for computing the
likelihood in each point of a spatial grid, the Metrop�
olis�Hastings algorithm, and the IRLS. For compari�
son the authors apply the CA method presented in [20,
29], filtered using standard Kalman filter, and WKNN
with k = 3 and unfiltered measurements. Within the
tests the floor is assumed to be known. Furthermore,
grid method, Metropolis�Hastings algorithm and
IRLS are analyzed using both point estimates and
Gaussian distributions for the PL model parameter
values.

When using extensive FP data for estimation of CN
position and parameter estimates, WKNN provides
the best accuracy, followed by grid method, Metropo�
lis�Hastings algorithm and IRLS, which all provide
similar accuracy. The CA method performs worst.
However, when the FP data for some of the CNs is
limited, WKNN drops to the same accuracy level as
grid method, Metropolis�Hastings algorithm and
IRLS. This is in accordance with earlier findings. For
example, Dil and Havinga [59] find that in the case of
limited FP data nonparametric FP positioning algo�
rithms, such as WKNN, are outperformed by range�
based algorithms.

The tests in [50] show that assuming Gaussian dis�
tributions for the parameters rather than point esti�
mates is, in general, beneficial; the advantage of using
a distribution becomes clearer in the tests with limited
FP data. These results do not come as a surprise, since
the PL model contains approximation errors [60]. If
less FP data is available for estimating the PL model
those errors, in general, are larger. Therefore, in such
situations it should be beneficial, from a theoretical
point of view, to assume more uncertainty in the
parameter estimates.

Another possible explanation why assuming a dis�
tribution for the PL exponent gives better results than
assuming point estimates is that the PL exponent n can
be assumed constant only for a limited time in an envi�
ronment [47]. However, even if the value changes it

should still be close to the previous value, as long as the
environment stays the same. This can be captured to
some extent by assuming some uncertainty in the PL
exponent estimate. In addition, storing the uncertain�
ties also enables updating the parameters recursively
and using time evolution models when new FPs
become available.

In terms of computational demand, the grid
method and the Metropolis�Hastings algorithm have
no edge compared with the WKNN, whereas the
IRLS is significantly faster and achieves running times
close to those of the CA method.

As mentioned in the previous subsection, Han et al.
[18] use their PL model and some FP data for gener�
ating the full radio map of a certain environment. For
positioning they then use the (non�parametric)
WKNN. Their test shows that positioning accuracy of
their approach is slightly worse, but generating the
radio map is significantly faster. It could be even faster
if the authors would simply store the parameters of
their PL model for each CN in their radio map and
derive in the positioning phase ranging estimates from
the PL model and the RSS values, and then use some
nonlinear estimation technique to obtain a UE posi�
tion estimate.

Shrestha et al. [19] go the same way as Han et al.
[18], generating a full radio map from the PL parame�
ters in the positioning phase. Their idea is to create an
artificial grid and compute for each grid point signal
strength differences between the UE’s measured and
the expected RSS values in that grid point. The posi�
tion estimate can then obtained by using a version of
the NN method. In their paper the authors use the
KNN with k = 4. For three of four test buildings the
4NN using the full radio map (i.e. original FP data
stored in radio map) outperforms the 4NN using arti�
ficial radio map generated from the radio map con�
taining only PL model parameters, but differences are
rather small. The best option for computing PL model
parameter estimates in the offline�stage is the MMSE,
according to the tests. Furthermore, PL model (8)
gives the best trade�off between positioning accuracy
and computational complexity. 

Again, it would be worth to skip the radio map
reconstruction step and simply use the PL parameters
and measured RSS values to compute range estimates
and then apply some nonlinear estimation technique.
However, when using the multi�slope PL model using
the correct estimate for the PL exponent could be
tricky. 

Accuracy levels of PL model�based positioning
could be improved further by replacing the isotropic
PL models that were considered so far with anisotropic
PL models. It is well known that channel characteris�
tics in different directions from the CN differ even for
omni�directional antennas due to varying environ�
ments (e.g., a WLAN AP mounted in corner of a
room). Furthermore, in practice directional antennas
are widely used since they decrease interference with
other systems [14], and allow significantly higher data
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throughput and range extension [61]. Thus, using dif�
ferent PL model parameters for different directions
might be beneficial in terms of accuracy. However,
once more this comes at the cost of a larger database.
Storing PL model parameters for two directions
already doubles the size of the radio map. In addition,
it complicates the positioning phase since one either
has to decide which of the parameters to use or has to
compute an (weighted) average of the parameters.

VI. GAUSSIAN MIXTURES AND RELATED 
APPROACHES

A known disadvantage of the CA approach dis�
cussed in Section IV is that most of the probability
mass is located near the center of the ellipse that is
used for describing a CN’s coverage area. However, for
weak signals the UE is more likely to be close to the
edge of the CA. Therefore, CAs yield in such cases
rather poor estimates in the positioning phase [20]. In
the previous section we looked at approaches that
address such issues by taking into account the RSS in
addition to the CN�ID by using PL models. Alterna�
tively, we could apply Gaussian mixture (GM) models
(aka Gaussian sum models).

A Gaussian mixture is a convex combination of
Gaussian density functions {N}  namely

(9)

where weights ωn are nonnegative and sum to one. The
main motivation behind GM and filters based on it is
that any density function can be approximated, except
at discontinuities, by a convex combination of Gauss�
ian densities arbitrarily closely [62–64]. That is, as the
number of Gaussian components within the GM
increases and the norm of all covariance matrices
approaches zero the approximative density function
converges uniformly towards the desired density func�
tion ([62], Lo (1969) and Alspach (1970) cf. [65]).
Unlike other approximation techniques such as
Gram�Charlier and Edgeworth expansions, a GM is a
valid density function itself [62, 65].

Sorenson and Alspach [62] point out that the
approximation quality depends not only on the num�
ber of components in the GM but also on their place�
ment. Furthermore, they stress that there is no obvious
way to choose the parameters of the components due
to the GM’s lack of orthogonalizability. Thus, they
suggest choosing them so that either the Lk�norm of
the approximation error is minimized or the GM
approximation matches some of the moments of the
true density exactly. In addition, they point out that
assigning the same covariance to all components eases
the computational demand significantly. However, for
many cases the latter idea yields poor approximations.

( ; , ),N x μ Σ

{N}
1

( ) ( ; , ),
N

n n n

n

p
=

= ω∑x x μ Σ

A. Representing FP Data Using GMs 

For reducing the size of the FP radio map a more
sophisticated method than the single Gaussian cover�
age area approach presented in [20, 29] that uses signal
strength values is proposed by Kaji and Kawaguchi
[44]. They suggest representing a CN’s RSS distribu�
tion as a GM model. Although this approach generally
will require more data to be stored in the radio map
than the CA approach of Section IV, it should still
require considerably less storage compared with tradi�
tional FP databases.

In their algorithm the collected FP data is first
transformed into a point distribution, where the point
density depends on the signal strength received in a FP
(the higher the RSS or RSSI value the higher the point
density). Then the parameters of the GM model,

namely mean values  covariance matrices

 and component weights  are optimized
by EM [41]. Kaji and Kawaguchi point out that their
approach allows updating the GM models as new FP
data becomes available. They do not provide an equa�
tion or rule for determining the number of compo�
nents N. In our tests in Section VII we use

 where K is the number of FPs in
which the specific CN is heard.

A different approach, developed for robot localiza�
tion, is introduced by Koshizen [66]. The approach is
called GM Bayes’ with regularized expectation maxi�
mization (GMB�REM). In the offline phase of this
algorithm fingerprints containing measurements from
sensors are collected at various positions within a grid.
Then for each position x in the grid the conditional
density function of sensor measurements y given x is
computed as a regularized GM model. The parame�
ters of the components are chosen such that they max�
imize the log�likelihood function given the (offline)
training data using EM. In the positioning phase
the likelihood of each position x is multiplied with the
prior pdf and then renormalized in order to obtain the
posterior. In [66–68] the authors introduce further
techniques for sensor selection and a new sensor
fusion system for the GMB�REM. However, the algo�
rithm suffers from the common drawbacks of FP data�
bases, and its application on large scale is unpractical.

B. Positioning Using GM Models 

In positioning tasks the system (2) is often non�
Gaussian and/or significantly nonlinear (see e.g. [69]
for a criterion for significant nonlinearity). Therefore
the Bayesian recursion is generally unsolvable in
closed form [62]. Applying an EKF to solve such gen�
erally multimodal systems has the disadvantage that it
follows a single peak of the pdf, meaning that it gives
rather a maximum likelihood estimate than a mini�
mum variance estimator [65]. Besides computation�
ally demanding methods such as the particle filter (see
e.g. [70]), also GM�based filters can be used to achieve

=1{ } ,N
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=
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excellent performance for significantly nonlinear
and/or non�Gaussian systems.

In [65] it is stated that already in 1965 Aoki sug�
gested to approximate the posterior as GM. Ali�Löytty
[71] introduces such an approximation that he calls
efficient GM filter (EGMF). His method uses parallel
planes to split the state space into pieces and then
approximates the posterior in every piece by one
Gaussian. Ali�Löytty shows that, unlike most other
GM filters, the EGMF yields optimal results in the
sense of mean and covariance in the linear case. Fur�
thermore, he finds that the EGMF provides better
accuracy than traditional Kalman�type filters (e.g.
EKF, UKF) and the sigma point GMF (SPGMF)
[72], while requiring fewer components than the
SPGMF. If the prior pdf follows a Gaussian distribu�
tion, then the EGMF’s number of components is
equal to the dimension of state variable x. One disad�
vantage of the SPGMF is its need for analytical differ�
entiation. In order to avoid such differentiation, Rai�
toharju and Ali�Löytty [73] propose the adaptive split�
ting (AS) method. This method first finds the
direction of maximal nonlinearity within a Gaussian
prior pdf. If the measurement’s nonlinearity is signifi�
cant with respect to the criterion proposed by Ali�
Löytty and Sirola [72], then the Gaussian component
describing the measurement is split into a mixture of
two Gaussians. The splitting is repeated until none of
the components shows a significant nonlinearity any�
more. The results in [73] suggest that the proposed
method requires fewer components than SPGMF
while providing better approximation of the reference
pdf.

A further important fact is that assuming Gaussian
distribution of the prior pdf is not always feasible. It is
obvious that, when looking into filtering, for a poste�
rior at time k that is described by a GM, the prior pdf
at time k + 1 should be also a GM. In general, if the
initial state is not Gaussian and/or in highly nonlinear
situations we should apply a bank of Gaussian filters,
namely a GM filter (GMF), for solving the problem
[72]. Anderson and Moore [74, p. 212] and Ali�Löytty
[75] show that if the GM approximation of the prior
pdf converges towards the true prior pdf as the number
of components increases while their covariances
decrease, then the GM approximation of the posterior
converges towards the true posterior as well. Lo [64]
presents an application of GMs for filtering a system
with linear dynamics and arbitrarily distributed prior
pdf and some examples, which provide an excellent
introduction to the concept.

Care has to be taken to limit the number of compo�
nents in the GM; this has been mentioned already
when GM was introduced [62, 65]. Sorenson and
Alspach [62] suggest to either merge components with
approximately equal means and covariances or drop
components with sufficiently small weights on the GM
(called forgetting). Alternative methods are intro�
duced, for example, in [69, 76, 77]. For a more
detailed and broader overview on component reduc�

tion methods we refer the reader to [78, 79] and refer�
ences therein.

In addition to reducing the number of Gaussian
components it would be beneficial to already keep the
number of components small in the approximation
phase. In [80] Müller et al. therefore propose a gener�
alized version of GM (GGM) that relaxes the non�
negativity restriction on component weights, and call
it Gaussian mixture allowing negative weights (GMA).
For the isotropic ranging model, which is considered
in [80], the measurement likelihood has a ring�shaped
pattern as shown in the left plot of Fig. 2. While a tra�
ditional GM would require a large number of compo�
nents, due to the infinite number of peaks of the like�
lihood, the GGM yields a satisfying approximation
with only two components (see Fig. 2 in the right plot),
one having positive and one having negative weight.
Special care has to be taken when assigning the weights
of the components to ensure that the resulting likeli�
hood is everywhere nonnegative and thus a valid like�
lihood. In the filter based on GGM the authors col�
lapse the GM posterior at each time step using
moment matching, since the reduction methods men�
tioned previously generally are only suitable for GMs
with nonnegative component weights.

Müller et al. apply the GGM in [80] for positioning
in cellular networks, and their results indicate that the
GGM outperforms both single time�step EKF and the
Gaussian CA approach [20, 29] in terms of accuracy
and consistency. The filtered version of the GGM
(GGMF) also outperforms the EKF and the CA�
based filtered approach. In [81]) those findings are
confirmed for positioning in an UWB network.

Ali�Löytty and Sirola [69] perform extensive simu�
lations of GM using both cellular measurements and
measurements from a Global Navigation Satellite Sys�
tem (GNSS), i.e. hybrid positioning. Their results
suggest that only multimodal likelihoods should be
approximated by a GM.

1 2 3 4 5 6
×10–5

Fig. 2. Normalized exact likelihood (left side) for measure�
ment of an isotropic CN (magenta asterisk inside the ring)
and its approximation yielded by GGM (right side).
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C. Alternatives to Gaussian Mixtures 

All the methods considered in this section so far
could be significantly degraded by the previously men�
tioned sensitivity of Gaussian regression to outliers.
Bishop and Svensen [82] point out that this sensitivity
might result in an overestimation of the number of
required Gaussian components. They propose a Baye�
sian approach for mixture modeling based on Student�
t distributions, which is more robust to non�Gaussian�
ity in the data (McLachlan and Peel [83] make the
same proposition). The major drawback of using Stu�
dent�t distributed components is that, contrary to
using Gaussian distributed components, no closed�
form solution for the likelihood maximization exists
[82, 83]. However, as [37, 82] show, any Student�t dis�
tribution can be represented as an infinite mixture of
scaled Gaussians. Therefore, EM can be used to find
the maximum likelihood, while the computational
load of the proposed algorithm [82] is only slightly
larger than using the ML technique for finding param�

eters of GM models. However, t�mixtures have so far
not been used in FP positioning.

VII. COMPARATIVE TESTING

In this section we compare the performance of sev�
eral parametric fingerprinting and positioning meth�
ods described in the previous sections. We evaluated
these methods by analyzing their WLAN based posi�
tioning accuracy for six test tracks located within two
buildings of Tampere University of Technology. Build�
ing 1 has an area of approximately 10000 m2 and
building 2 has an area of approximately 6600 m2; both
buildings are three�story. The total number of detected
APs within both buildings is 506. For two of the tracks
measurements were collected several months later
than for the other four tracks, which were collected at
the same time as the data used for generating the radio
maps. Some of the test tracks had floor changes, which
were assumed to be known. The radio maps were built
separately for each floor. Table 1 shows for each floor
of the two buildings the number of detected APs, the
number of FPs, and the number of test points (TP) for
the four tracks collected at the same time as the data
used for the radio maps. TPs are points on the test
tracks that we positioned in our evaluation.

For comparison we implemented CA�based posi�
tioning with single CA [29] and 2�level CAs with
limit ⎯70 dBm [39], PL model [50], GGM approxi�
mation of the PL model [80] and the signal strength
estimation model from [44] (denoted GMEM). In
addition to these parametric methods we used a
weighted k�nearest neighbors method (WKNN) with
k = 5 as a reference. Figure 3 shows how much data
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Fig. 3. Data storage requirements for radio maps for tested methods in our two test buildings.

Table 1. Data set sizes. Some APs could be heard on several
floors and/or in both buildings

Building Floor APs FPs TPs

1 1 200 889 19

1 2 289 243 47

1 3 212 160 22

2 1 154 1530 168

2 2 186 1582 33

2 3 148 333 19
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storage each method requires for its radio map. The
WKNN method does not summarize the FPs in any
way and therefore requires the largest radio maps in
both buildings. In our tests the parametric methods
reduce the radio map size between 30% and 90%.
However, because the size of the radio map used by
WKNN depends on the number of FPs and the size of
the radio map used by the other methods depend on
the number of APs these numbers cannot be general�
ized.

Figure 4 shows the contour curves containing 50%
of probability mass for all tested approaches (1�level
CA is same as the 2�level model with measurement
⎯75 dBm), except WKNN. For computing the proba�
bilities from likelihoods we used a rectangular uniform
prior pdf that covers the whole building. The FPs are
similarly divided into groups likely and unlikely with

likely FPs containing 50% of the probability mass. The
standard deviation for RSS based methods is set to
6 dB. By visual inspection the shapes of contours are
quite different except for PL and GGMF, but if we
consider the numbers of likely FPs inside the contours
they are similar, except for the GMEM with weak sig�
nal strength.

In Figure 5 for all APs the PL exponents estimated
by Nurminen’s approach [50] as a function of the
number of FPs in which the specific AP was observed
are displayed. The figure shows that for small numbers
of FPs the PL exponents often take values less than 2
(68% of all APs that were received in fewer than
100 FPs have n < 2 but only 27% of all APs that were
heard in more than 100 FPs have n < 2). A PL expo�
nent of 2 means that the signal propagates in free
space; values smaller than 2 in our tests can be

–65 dBm –75 dBm
CA

PL

GGM

GMEM

25 m
Likely FPs

Unlikely FPs
50% contour of model

Fig. 4. Likelihoods for different models and different RSS values. Each likely FP has a higher probability mass than any
unlikely FP.
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explained by the fact that the corridors in which the
FPs were collected acted as waveguides [14, p. 66].

The true routes for all six test tracks were measured
by clicking a map plot on a touch screen while walking
and interpolating between the clicks, and were esti�
mated for both static case and time series (i.e. filtered
case). For the filtering we considered the state vector
xk containing location and velocity of the UE. Both
CA�models and GGMF were updated using a plain
Kalman filter. In addition, we collapsed the GGMF to
a single component after 5 measurements and after
each time step. The GMEM used a grid for static posi�
tion estimation and a particle filter with 300 particles
for the time series estimation; the PL model method
used Gauss�Newton for static positioning and a GM
filter [73] for time series. In time series the effect of
parameter uncertainties varied depending on the loca�
tion, and therefore was computed in the prior mean of
the estimate. The WKNN was given a standard devia�
tion of 10 meters for filtering with a Kalman filter.

For filtering we chose a linear state transition equa�
tion (2a) with additive zero�mean noise, i.e.

 with 

(10)

where Δt is the measurement interval in seconds, and
 with 
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The measurement equation (2b) depended on the
used positioning approach. For the static WKNN yk

contained AP�IDs and corresponding RSS values.
The k strongest AP�IDs were picked and the weighted
average of their locations was used as position esti�
mate. In filtering the weighted average was used as
posterior mean for the Kalman filter and the posterior
covariance matrix was set to 102m2I.

For the CA approaches, the jth measurement yk, j

was modeled as yk, j =  + ∈, where  is the

mean of the CA for the AP with identifier IDk, j and ∈
is zero�mean Gaussian with the same covariance as
the AP’s CA model. 

In the PL method yk contained RSS measure�
ments. The RSS for the AP IDk, j was modeled as 

(12)

where ||.|| is the Euclidean distance between UE at xk

and AP IDk, j located at  This measurement
model was used for both static and filtered positioning. 

For the GGM approach the PL model (8) was used
to derive the covariance matrices of the Gaussian
components. Each measured RSS value was modeled
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Fig. 5. PL exponent as function of FPs used in learning.
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by a GGM with two components. The GMEM mod�
eled the likelihood of the j measurement as 

(13)

where  is the pdf of {N}  evalu�
ated at  Function  yields the RSS and is
defined as 

(14)

{N}
2

, ,( ) ( ( ) ,6 ),k j k k k jp y p f y=x x
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2

,( ( ) ,6 )k k jp f yx 2
,( ,6 )k jN y

( ).kf x ( )kf x

ID {N} ID ID dBm
, , ,, , ,( ) ( , ) 90 ,

k j k j k jk n k n n

n

f p= ω −∑x x μ Σ

where  and  are the mean and the covari�
ance matrix of the nth Gaussian component of the
GM for the AP with identifier  and  is the
component weight. 

The methods were tested in four different scenar�
ios: 

• Fig. 6: full data
• Fig. 7: only the APs with five strongest signals

were used for positioning
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• Fig. 8: 90% of APs were dropped pseudoran�
domly to check how the methods perform in situations
with low AP density

• Fig. 9: data for generating the radio maps and
data for positioning where collected with a time gap of
several months to evaluate the methods’ performance
degradation over time 

In Figs. 6–9 we present quantiles with box plots for
the positioning errors, absolute time for one position
estimate, and consistency values that can be used to

evaluate the accuracy of the estimated position’s cova�
riance matrix that is reported by a method. The boxes
show the 5%, 25%, 50% (median), 75%, and 95%
quantiles of the 2D position errors. For the n�cons
(normal consistency [36, p. 235 ff.]) values we
assumed Gaussian distributed positioning errors, and
computed how often the errors were within the 50%
ellipse, i.e. 

(15)−
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where  is the estimated UE position,  its covari�
ance matrix and xu the true UE position. This measure
may be used for checking the error estimate in both
ways (if it is too small or large) as long as the distribu�
tion is close to the normal distribution. In g�cons
(general consistency [84]) we computed how often the
errors were within 50% for any distribution using the
modified Chebyshev inequality, namely 

(16)

When using all of the data all parametric methods
were inconsistent, with n�cons values far from the
desirable 50% and g�cons values far from the 50% that
can be interpreted as minimum requirement (a g�cons
of 60% is not necessarily better/worse than 55%), and
there are no significant differences between the accu�

ˆ ux −1
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−
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T
u u u u ux x P x x

racies of the different methods, except for filtered
GMEM. The computation time for static GMEM is
higher than for filtered GMEM because it is computed
on a grid, whereas the filtered GMEM uses a particle
filter. The results suggest that the 300 particles pro�
posed in [44] was too few. Using only the five strongest
measurements improved the consistency and reduced

the relative computing time4 for all methods. Since the
GGM’s computational demand depends exponen�
tially on the number of measurements [81] the reduc�
tion in computation time for static and filtered GGM
could be expected, although in our tests the depen�
dence is not exponential due to collapsing a GGM

4 The large time value for static PL can be explained by the facts that
in two (of 308) points the convergence was extremely slow and that
our implementation did not restrict the number of iterations.

 
Table 2. Summary of parametric fingerprint methods analyzed in this paper

Method Radio map entries per CN Radio map 
generation method Positioning method

Coverage area (Gaussian) 
(1�level) [20, 29]

1 bivariate Gaussian 
(2 parameters for mean, 
3 for covariance)

Bayes’ rule using locations 
where CN’s signal is received

Bayes’ rule using CA�centres 
of observed CNs

Coverage area (Gaussian) 
(2�level) [39]

2 bivariate Gaussians 
(4 parameters for means, 
6 for covariances)

Bayes’ rule using locations 
where CN’s signal is received

Bayes’ rule using CA�centres 
of observed CNs

Coverage area (Student�t) 
(1�level) [37]

1 bivariate Student�t 
(2 parameters for mean, 
3 for shape, 1 for dof)

EM (for MAP) or Gibbs Sam�
pler (posterior) using locations 
where CN’s signal is received

Bayes’ rule using CA�centres 
of observed CNs

Coverage area (Student�t) 
(2�level) [39]

2 bivariate Student�t:s 
(4 parameters for mean, 
6 for shape, 2 for dof)

EM (for MAP) or Gibbs Sam�
pler (posterior) using locations 
where CN’s signal is received

Bayes’ rule using CA�centres 
of observed CNs

Path loss model 
Nurminen et al. [50] 

2 bivariate Gaussians 
(1 for CN position, 
1 for PLM parameters) 

Iterative Reweighted Least 
Squares (IRLS) 

Grid method using standard 
Monte Carlo, Metropolis�
Hastings or IRLS

Path loss model 
Han et al. [18] 

8 parameters 
(2 for CN position, 
6 for PL model ) 

Solving linear equation using 
least�squares method 

Recreate full FP radio map 
and WKNN 

Path loss model 
Shrestha et al. [19] 

3 parameters for CN 
position (3�dim.) plus 
(i) 2 for PL model (8) 
(ii) 3 for PL model (8) 
with floor parameter 
(iii) M for Mth order 
multi�slope PL model 
(iv) M + 1 for multi�slope 
with floor parameter

MSE minimisation with 
(a) least�square or 
(b) weighted least�square or
(c) Minimum Mean Square 
Error 

Recreate full FP radio map 
and KNN (k = 4) 

Generalised Gaussian 
Mixture [80, 81] 

5 parameters 
(2 for CN, 2 for PL model 
plus 1 additional) 

Iterative Reweighted Least 
Squares (IRLS) 

Bayes’ rule using CA�centres 
of observed CNs and RSS 
values 

Gaussian Mixture 
by Kaji & Kawaguchi [44] 

N bivariate Gaussians 
for GM components 

FP data transformation, 
parameters GM components 
fitted by EM 

Static problem: grid 
approach filtering problem: 
particle filter 

GMB�REM 
[66–68] 

1 regularised GM 
for each grid point 

EM for finding maximum log�
likelihood of FP data 

Multiply likelihood of each 
grid point with prior pdf to 
get posterior pdf
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after five measurements to a single Gaussian. At the
same time the positing accuracy degraded significantly
only for WKNN and the CA 1�level approach. This is
evidence for dependency of the measurements. In the
test building there were some MIMO (Multiple Input
Multiple Output) APs that produced dependent mea�
surements.

Figure 8 reveals that the more sophisticated
approaches (PL, GGM and WKNN) perform worse
or similar than the relatively simple CA methods for
scenarios with low AP density. The same holds for the
scenario in which the radio map was outdated (com�
pare Fig. 9).

One possible reason for the static and the filtered
GGM’s poor performance in all four scenarios (com�
pared with their performance in [80] and in [81])
might be that we used a different approach for deter�
mining the covariance matrices of the GGM’s two
Gaussian components, since our tests where carried
out in a WLAN rather than in a cellular network. A
deeper analysis of the GGM can be found in [81].

VIII. CONCLUSION

In this paper we considered different parametric
fingerprinting and positioning methods, analyzing
weaknesses and strengths. We tested several of those
methods with real WLAN data for different test tracks
and scenarios; we furthermore compared their posi�
tioning accuracy and consistency with each other and
a WKNN (as an example of a nonparametric FP
method).

Table 2 summarizes the considered parametric
methods; what parameters are stored in the radio map
instead of FP data, how these parameters are obtained
and how they are used for positioning.

All the proposed methods help to significantly
reduce the size of the radio map used in the position�
ing phase, compared with nonparametric methods. In
addition, it is possible to update the radio maps used
by the CA, PL model, GGM and GMEM approaches
we tested as new FPs become available.

Our tests show that all parametric methods, except
the CA 1�level and the filtered GMEM method, pro�
vide similar positioning accuracy than the nonpara�
metric WKNN in case of a high CN density and when
using all available measurements. However, this comes
at the cost of significantly higher computation time for
the PL model, GGM and GMEM methods. When
using only the five strongest measurements their com�
putation time drops significantly. Furthermore, all
parametric methods still show similar positioning per�
formances, while the WKNN’s performance degrades
considerably. This means that the parametric methods
need fewer observable CNs than the nonparametric
method to achieve satisfying positioning accuracy.
When the CN density is low or the mapping data is
outdated then the simpler CA 2�level technique
achieves at least similar positioning accuracy than the
more sophisticated parametric techniques and the

WKNN. Thus, the CA technique gives the best trade�
off between accuracy and computational demand. The
other parametric methods are, like the WKNN, more
vulnerable to harsh environments. However, we
believe, and studies presented in this paper have
shown, that both PL model and GGM approach can
outperform the CA methods when thoroughly trained
for their specific application, which we excluded from
our tests.

It is important to notice that the achieved position�
ing accuracy of all methods is sufficient for many real�
world applications (e.g. weather forecast, advertising),
but insufficient for navigation. To improve the meth�
ods’ performances map information and additional
measurements (e.g. from an IMU, AOA or time delay
measurements) could be used. We believe that using
floor maps would improve their positioning accuracy
since, for example, crossing walls could be prohibited.
For example, Nurminen et al. [85] show that using the
floor map improves their particle filter’s positioning
accuracy significantly. However, how to combine them
with some of the other methods presented in this paper
is still an open question. Furthermore, map informa�
tion can also be used in the offline phase to generate a
more accurate radio map.
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