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Abstract

Applicability of Feynman path integral approach to numerical simulations of

quantum dynamics in real time domain is examined. Coherent quantum dy-

namics is demonstrated with one dimensional test cases (quantum dot models)

and performance of the Trotter kernel as compared with the exact kernels is

tested. Also, a novel approach for finding the ground state and other stationary

sates is presented. This is based on the incoherent propagation in real time. For

both approaches the Monte Carlo grid and sampling are tested and compared

with regular grids and sampling. We asses the numerical prerequisites for all of

the above.

Keywords: Path integral, real time domain, quantum dynamics, incoherent

propagation, stationary states (71.15.-m, 31.15.X-, 73.21.-b)

1. Introduction

Feynman path integral (PI) approach offers an intuitively welcome descrip-

tion of nonrelativistic quantum mechanics [1, 2], where classical mechanics

emerges transparently from disappearing wave nature of particles along with

vanishing Planck constant. In PI approach the presentation of the quantum dy-

namics with a propagator also in stationary quantum states is transparent, in

contrast with the conventional approaches, where time evolution is seen in the
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phase factor, only. However, working out analytical or computational solutions

to practical problems becomes more demanding with PI [3, 4], and obviously,

this is one of the main reasons for path integrals not being a popular choice for

considering quantum dynamics, not to mention the stationary quantum states.

For the above reasons the dynamical phenomena in nonrelativistic quantum

mechanics are conventionally considered by searching or simulating solutions to

the time dependent Schrödinger equation. This is almost trivial for a single

particle, but becomes laborious and needs a number of approximations with

growing complexity in a many-body system. In contrast, with PI the many-body

interactions are included transparently and exactly within numerical accuracy.

Nevertheless, the PI approach is rarely used outside quantum field theory or

without Monte Carlo (MC) technique as the working horse.

However, it is worth mentioning that PIMC has proven to be very successful

in simulations of periodic imaginary time propagation of many-particle systems,

which leads to the finite temperature equilibrium statistical physics description

of the many-particle system in terms of mixed state density matrix [5, 6]. By

treating all particles with the same PIMC approach it is possible to evaluate the

finite temperature electronic structure with exact account of many-body effects

and beyond Born–Oppenheimer approximation as demonstrated, already [7, 8].

PIMC is also robust enough to be used in various applications in nanoscience

[9, 10].

Beyond the analytical solutions to stationary states or quantum dynamics,

which are very few [3, 4, 11, 12], numerical simulation of coherent real time

propagation faces substantial challenges related to the interference of paths: how

to choose or sample the relevant paths in a balanced way, i.e. weighting the ones

with most contribution through constructive interference and avoiding waste of

efforts to those with negligible contribution due to destructive interference. In

practice, time evolution of the complex many-body wave function in a space

with high number of dimensions leads to even higher dimensional path integrals,

which obviously can be sampled efficiently with the Monte Carlo technique, only.

There, the interference related slow convergence has been called as ”numerical
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sign problem” [11, 12] or phase (sign) problem. Sophisticated ”stationary phase

weighting” methods have been developed to overcome this without Monte Carlo

technique [13, 14].

There are still no preferable solutions to these problems, although many

approaches and approximations for certain types of systems have been found

[15, 16]. Basically these methods rely on effective propagators [17] with desired

properties. They are relatively well behaving and use the advantageous features

of the PI formalism, e.g., reduction of the total system into two parts: the lower

dimensional system of interest and the effect of an environment modeled with

an influence functional [1]. Often, the effect of the environment can be ap-

proximated classically, leaving only a lower dimensional system to be inspected

quantum mechanically. Such methods have been shown to be successful in eval-

uation of the time evolution of a quantum–classical many-body systems [18] for

heavier particles than electrons.

Since there is no perfect method for solving dynamical full quantum many-

body problems in practice, it is useful to look at different methods, how they

can be used, what are their strengths and weaknesses and what is needed in

implementation of those methods.

In this paper, we deal with real time quantum dynamics with both coher-

ent and incoherent propagation. Next, we present the basic theory and the

approximative Trotter kernel, and in sec. 3, the numerical approach to evalua-

tion of propagation and expectation values. In sec. 4 we define one dimensional

electron-in-quantum-dot models chosen for testing. In sec. 5 we analyze results

for coherent quantum dynamics and in sec. 6 we finally present a novel approach

to search for stationary quantum states and the ground state, in particular. The

last section presents our conclusions.

2. Path integral and propagators

Consider non-relativistic particle propagation in one, two or three dimen-

sional space Ω from xa to xb in time interval from ta to tb along all possible
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paths x(t). The path integral over all paths defines the propagator

K(b, a) =

∫ b

a

exp

[
i

h̄
Sx[b, a]

]
Dx(t), (1)

where Sx[b, a] =
∫ b
a
Lxdt is the action of the path x(t) from a = (xa, ta) to

b = (xb, tb) and Lx is the corresponding Lagrangian [1, 2]. Time evolution of

the probability amplitude, i.e., the wave function ψ(x, t) in space Ω can now be

written as

ψ(xb, tb) =

∫
Ω

K(xb, tb;xa, ta)ψ(xa, ta)dxa, (2)

where ta < tb. From this relation the time dependent Schrödinger equation

can be derived [1], or alternatively, the time dependent wave function ψ(x, t)

can be directly evaluated from the initial state ψ(xa, ta), in case the kernel

K(x, t;xa, ta) is known.

However, general explicit forms of the propagator are known for simple cases,

only, such as the particle with mass m in the one dimensional constant linear

potential V (x) = −fx,

K(xb, xa; t) =
[ m

2πih̄t

]1/2
exp

[
i

h̄
(
m

2t
(xb − xa)2 − t

2
(V (xa) + V (xb))−

t3f2

24m

]
, (3)

which reduces to the free particle propagator with f = 0 [1]. For the one

dimensional forced harmonic oscillator

V (x, t) =
mω2

2
x2 − f(t)x (4)

the exact explicit propagator takes the form [1]

K(xb, xa; t) =

[
mω

2πih̄ sin(ωt)

]1/2

exp

[
i

h̄
Scl

]
, (5)

where Scl is the classical action. For f ≡ 0 this is

Scl =
mω

2 sin(ωt)

[
(x2
b + x2

a) cos(ωt)− 2xbxa
]
. (6)

For numerical approaches robust approximations are needed. It is advan-

tageous that also in nontrivial forms of potential the propagation is straight-

forward to evaluate and with increasing numerical accuracy the propagator ap-

proaches the exact limit. With this in mind we discretize the time t = tb − ta
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to a number of short steps ∆t. This is straightforward, because

K(b, a) =

∫
Ω

K(b, c)K(c, a)dxc, (7)

for ta < tc < tb. This follows from additivity of action S[b, a] = S[b, c] + S[c, a]

for any path [1].

Now, with a small ∆t the quantum paths can be expected to give the main

contribution close to the classical path, for which ∆x = xb−xa is also small. This

follows from the canceling kinetic energy T contributions due to the destructive

interference of paths in long path propagation. This presumes, of course, smooth

enough potential V , for which also the commutator [T, V ] is small.

Furthermore, for numerical approaches it is essential that the chosen dis-

cretization also converges to the exact formalism at the limit ∆t → 0, and the

faster the better for practical purposes. Also, it is preferable that computational

efforts are not wasted for computation of almost canceling contributions more

than needed for the chosen target accuracy.

Now, Eq. (3) gives numerically useful approximation, which can be further

simplified by neglecting the last term, cubic in ∆t, for short enough time steps.

Thus, we arrive at the symmetrized Trotter kernel [11, 12]

K(xb, xa; ∆t) ≈
[ m

2πih̄∆t

]D/2
exp

[
i

h̄
(
m

2∆t
(xb − xa)2 − ∆t

2
(V (xa) + V (xb))

]
, (8)

where D is the dimensionality of space.

This propagator can also be found from the hamiltonian formulation [4]. For

a time independent hamiltonian H = T +V , where T and V are the kinetic and

potential energies, the propagator can be written as [4]

K(xb, xa; ∆t) = 〈xb| exp[− i

h̄
H∆t]|xa〉 = 〈xb| exp[− i

h̄
(T + V )∆t]|xa〉, (9)

where ∆t = tb − ta. Now, by using the Zassenhaus formula [4, 21]

exp[− i

h̄
(T + V )∆t] = exp

[
− i∆t

h̄
T

]
exp

[
− i∆t

h̄
V

]
×

× exp
{( i∆t

h̄

)2
[T, V ]

2

}
O
{

1 +

(
i∆t

h̄

)3 } (10)
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and by neglecting factors which approach one in the second order or higher

in ∆t, as ∆t → 0, and using the path integral formulation, we arrive at the

approximation (8). Thus, this approximation is accurate almost to the second

order in ∆t for a smooth potential with [T, V ] → 0 as ∆x → 0 or ∆t → 0. In

fact, this is what the kernel in Eq. (3) also suggests.

Clearly, in numerical approaches it is the kinetic energy part, which brings

in the challenges as ∆t → 0, but as pointed out above, already, the resulting

large momentum – short wave length oscillations of the propagator interfere

destructively and should be damped out without wasting computational efforts.

The potential energy part behaves the opposite way with respect to the time

step, and becomes laborious only in case of large potential gradient at possible

singularities in the potential function.

We consider and test the Trotter kernel Eq. (8) against the exact kernels

Eqs. (3) and (5) in numerical simulations of one-dimensional harmonic oscillator

(ODHO) and quantum well (QW), both in stationary eigenstates and wave

packet propagation.

3. Numerical evaluation of propagation and expectation values

Numerical evaluation of the integral Eq. (2) is the core problem, here. For

that, we span grids ga = {xai}Na
i=1 and gb = {xbj}Nb

j=1 for wave functions at a

and b. It is practical to define the grid density profiles or distribution functions

ga(x) and gb(x), as (possibly normalized) inverse average grid spacing. With

small enough time step ∆t we can assume the same restricted space Ω for both

ψa and ψb, and for simple cases, also the same grid g = ga = gb with the same

size N = Na = Nb.

The simplest equally spaced regular grid, i.e., with g constant, between end

points may generate fake constructive diffraction patterns. This is the diffraction

grating effect, which can be removed out by increasing the grid size N . Usually,

a better choice is some other regular distribution of g, like gaussian or some

other, related to the probability density or (the absolute value of) the wave
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function, itself.

Of course, Monte Carlo grids with given distributions g serve well, if smooth

and sizable enough. There are methods for the analysis of ”smoothness” of the

distribution, such as Kolmogorov–Smirnov test [20]. In fact, with the increas-

ing number of dimensions Monte Carlo grids may remain as the only practical

choice. Further smoothing and averaging out accumulative errors is attained

with a continuous random change of the MC grids, within the predefined density

profiles. For restricted range of dynamics, it may be practical to use identical

distributions, i.e., ga(x) = gb(x), but ga 6= gb.

Ongoing random evolution of {xi}Ni
i=1 also means sampling of continuous

space, instead of a discrete grid. This evolution can be adapted to follow the

time evolution of the wave function or some related distributions like the ab-

solute value or the probability distribution of the wave function, i.e., g(x, t) ∝

|ψ(x, t)|n, n = 1 or 2, for example.

The distribution function g(x) appears as an inbuilt weight factor in the

integration of Eq. (2). In the one-dimensional space it is straightforward to write

g(x) = dG(x)/dx, in terms of the cumulative distribution function G. Thus,

Eq. (2) becomes in form ψ(b) =
∫ 1

0
K(b, a)ψ(a) g−1

a (a) dGa. For propagation

over the time interval ∆t = tb − ta with ta = 0, numerical calculation can be

carried out as

ψ(xj ,∆t) =

∫ 1

0

K(xj ,∆t;xi, 0)
ψ(xi, 0)

ga(xi)
dGa(xi)

≈
Na∑
i=1

K(xj , xi; ∆t)ψ(xi, 0)

ga(xi)
.

(11)

Hence, it seems obvious that ψ(a) should decay faster than ga in order to

avoid numerical instabilities. For real ψ(a) or for its absolute value this can

be easily established, whereas for the two parts of complex ψ(a) this can be

expected to be more tricky. The phase factor of calculated ψ(b) relates to the

”local total energy”, and therefore, it serves as a good indicator of numerical

stability. Therefore, it seems possible to find phase factor based algorithms for

stabilization of propagation and for removing numerical errors.
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In principle, the distribution ga(x) needs not to be known analytically, if

ga(xi) can be evaluated from the wave function, for example. Furthermore,

negative sign can be assigned to ga(x) at some range of x, if relevant for some

reason.

Monte Carlo evaluation of expectation values of local operators, like the

multiplicative potential V (x), at time ta, can be done with

〈V 〉 =

∫ 1

0

ψ?(xi, t)V (xi)ψ(xi, t)

g(xi)
dG(xi) ≈

N∑
i=1

V (xi)|ψ(xi, t)|2

g(xi)
, (12)

where the operator can be time dependent, too.

Similarly, we calculate the total energy from

〈E〉 ≈
N∑
i=1

EL(xi)|ψ(xi, t)|2

g(xi)
, (13)

where the local energy is evaluated from the increase in wave function phase

−∆φ(x) within a time step ∆t as EL(x) = −∆φ(x)h̄/∆t. Then, the kinetic

energy 〈T 〉 can be evaluated from 〈E〉 = 〈T 〉+ 〈V 〉.

4. One-dimensional harmonic oscillator and quantum well

We first consider the one-dimensional harmonic oscillator (ODHO), i.e., a

particle in the potential of Eq. (4) with f(t) ≡ 0. Thus, we have the time-

independent potential

V (x) =
1

2
mω2x2. (14)

We choose the parameters describing an electron in an atom size ”quantum

dot” to maximize the quantum effects and challenge for simulation of dynamics.

We use atomic units, where h̄ = 4πε0 = e = m = a0 = 1, the last three

being the charge, mass and Bohr radius of the electron. This leads to the

atomic unit energy of Hartree, Ha = h̄2/(ma2
0) ≈ 27.211384 eV, which also

defines the unit of the potential in Eq. (14). The atomic time unit becomes as

t0 = (ma2
0)/h̄ ≈ 24.18884× 10−18 s ≈ 24 as.

Now, by substituting m = 1 and ω = 0.1 (= h̄ω), we have the corresponding

eigenenergies Eν with equal contributions from kinetic and potential energies
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and eigenstates ψν(x) = (2ν ν!/σ0)−1/2π−1/4Hν(x/σ0) exp(−x2/2σ2
0), where Hν

are Hermite polynomials and σ0 =
√
h̄/mω ≈ 3.16. For the ground state we

have ψ0(x) = π−1/4σ
−1/2
0 exp(−x2/2σ2

0) and E0 = 0.050. Thus, E1 = 0.150.

The one-dimensional quantum well (QW) or ”particle in a box”

V (x) =

0 for|x| < L/2

∞ otherwise,

and (15)

with L = 20 is also used as a test case, where relevant. Here, we have the free

particle eigenstates with energies Eν = 1
2k

2, where k = 2π/λ and νλ/2 = L.

Thus, E1 = 1
2 (π/L)2 ≈ 0.01234 and E2 = 2(π/L)2 ≈ 0.04935.

5. Coherent dynamics

5.1. Stationary states

First, we searched for numerical parameters, which keep the eigenstates sta-

tionary with an acceptable accuracy. The three lowest eigenstates of ODHO

(h̄ω = 0.1), Eq. (14), turn out to remain stable in a simulation with an even

spaced grid of size N = 103 in the domain −12 < x < 12 with the time step

∆t = 1. The potential energy expectation value (12) fluctuates around the time

average 〈V0〉 = 0.02503 with a standard deviation σ ≈ 3 × 10−5, and corre-

spondingly, the total energy (13) becomes as 〈E0〉 = 0.05002 with σ ≈ 4×10−9.

Thus, a small grid related error remains.

We find that the time step should be small enough (∆tmax ≈ 4) to justify the

Trotter approximation, Eq. (8), for ODHO. Shortening the time step calls for

more accurate grid due to increasing kinetic energy, i.e., oscillatory nature of the

exponential in Eq. (8). The potential energy contribution to phase oscillations

is roughly two orders of magnitude less. In general, we found the maximum time

step and even grid size proportion to be related roughly as ∆tmax × N ≥ 103

for the Trotter kernel, Eq. (8).

The exact kernel Eqs. (5–6) of ODHO, however, allows unlimited time step

and the accuracy depends on the grid, only. Even so, the time steps of a multiple
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of half oscillation period can not be used, because sin(ωt) in the denominator

causes divergence of both (5) and (6). With other time steps 1 ≤ ∆t ≤ 500 and

N = 103 the potential energy keeps correct in 5 digits. The total energy 〈E0〉

becomes evaluated with same accuracy.

For the QW with constant potential the Trotter kernel is nearly exact [4].

However, numerical accuracy suffers from inaccurate description of discontinu-

ities of the potential function Eq. (15) at |x| = L/2. Thus, the accuracy is

limited by the grid spacing ∆x. Obviously for this reason, we found the time

propagation to be somewhat unpredictable.

For this case, we found that the Monte Carlo grid with a constant dis-

tribution function to solves the problem. Time evolution of the grid, with

g(x) = constant, samples the space continuously. We found the grid size

N = 103 sufficient for a stable simulation of the ground state in a QW L = 20

with the total energy 〈E0〉 accurate in a few digits, for a few steps, already. Ob-

viously, other non divergent but adapted distributions g(x) will perform even

better.

5.2. Wave packet propagation

Next, we consider real time evolution of gaussian wave packet oscillation in

the harmonic potential (ODHO), above. As a test case we use the Glauber state,

also called coherent or quasi-classical state, because of classical like oscillation re-

taining the wave packet shape rigid. In fact, the width of the Glauber state gaus-

sian is that of the ground state, in the present case ψ(x) = π−1/4σ
−1/2
0 exp(−x2/2σ2

0).

The oscillation frequency is, of course, ω = 0.1 and period T = 2π/ω ≈ 62.83,

for any oscillation amplitude A.

With the Trotter kernel and grid size N = 104 the time step dependence is

small. With A =
√

20 and starting from rest, the total energy is that of the first

excited state, see Fig. 1. Both ∆t = 2π/60 and ∆t = 2π/200, and wave packet

propagation of one period leads to potential energy error of −0.0027, only. With

the exact kernel, Eqs. (5–6), arbitrarily long time steps can be taken, except

those, for which sin(ω∆t) ≈ 0, as pointed out above.
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Figure 1: The ODHO potential and the starting Glauber state (full curves). Dashed curves

show the two other extreme phases of oscillation. Horizontal lines indicate the ground and

the first excited state energies.

6. Incoherent dynamics

6.1. Stationary state search

With the path-integral approach, simulation of stationary eigenstates is no

more trivial than that of explicitly time dependent wave functions. In both cases

full propagation in the whole space needs to be similarly considered within each

time interval. This points to the inherent nonlocality of the wave function and

quantum phenomena, in general.

An arbitrary pure quantum state can be expanded as a superposition of

stationary eigenstates as Ψ =
∑
k ckψk and its time evolution in ∆t is ∆Ψ =∑

k exp(−iEk∆t)ckψk =
∑
k[cos(Ek∆t)− i sin(Ek∆t)]ckψk. By using the small

angle approximation for short enough ∆t, this can be written as ∆Ψ ≈
∑
k[1−

(Ek∆t)2/2− i(Ek∆t)]ckψk.

11



Consider now stepwise decoherence of the wave function in each time step,

that is driven by removal of the small imaginary part. Such incoherent time

evolution,

∆Ψ(∆t) =
∑
k

[1− (Ek∆t)2/2)]ckψk, (16)

converges to quantum Zeno propagation at the limit ∆t → 0, if the eigenstate

is real. However, with a finite but short enough ∆t it increases the contribution

of the eigenstate with smallest absolute eigenvalue with respect to the chosen

reference energy, if Ek∆t << 1 for all k. At the end, this state dominates and

contributions from the other states die out.

This is what we call incoherent propagation, here, and demonstrate the

respective time evolution in ODHO with the Trotter propagator in evenly spaced

grid, see Fig. 2. Incoherent evolution depends on the initial state as shown. In

case where the ground state ψ0 contribution is initially considerable, c0 6= 0,

the convergence is fast. However, in case where initially c0 = 0, lowest of the

states contributing to the initial wave function is found. The ground state is

found only after a small seed of ψ0 has been sown from numerical errors in

propagation.

6.2. Ground state evaluation

Finally, we consider accurate evaluation of the ground state, or another

stationary state, after first finding it by the ”stationary state search” described

in the previous section. With the incoherent propagation in ODHO by using the

Trotter propagator we found accuracy of about five digits for the ground state

energetics, independent of the grid size (N = 103 to 3 × 104) and accidentally

with the time step ∆t ≈ 0.3. Obviously, there remains a systematic error due

to the grid and propagator.

Therefore, we again employ the Monte Carlo grid to sample the continuous

space. We also simplify the propagation, Eq. (11), to increase accuracy in the

spirit of diffusion Monte Carlo (DMC) approach, where it is the distribution of

walkers, which is the target ground state wave function. This allows comparison
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Figure 2: Incoherent evolution of the superposition states to the ground state. Dashed line

starts from the superposition of the ground and 3rd excited state, whereas the dash dotted line

starts from the superposition of the 1st and 2nd excited states. Solid lines show the potential

energies of the ground and 1st excited states.

of our approach to DMC, which is known as a robust and accurate method for

finding and evaluation of properties of the ground state.

Close enough the ground state we set g(x) = ψ(x) ≈ ψ0(x), and conse-

quently, approximate Eq. (2) and (11) for numerical Monte Carlo evaluation

as

ψ(xj ,∆t) =

∫
K(xj ,∆t;xi, 0)g(xi)dxi

=

∫ 1

0

K(xj ,∆t;xi, 0)dG(xi) ≈
Na∑
i=1

K(xj , xi; ∆t),

(17)

and therefore, {xi}Na
i=1 are random numbers from distribution g(x) with the

cumulative distribution function G(x), as discussed above. Thus, in practice we
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run incoherent propagation

ψ(xb,∆t) =

∫
K(xb,∆t;xa, 0)ψ(xa, 0)dxa, (18)

without an explicit starting amplitude ψ(xa, 0), but hidden in the walker distri-

bution, and assuming good convergence of the distribution to the ground state

wave function. To sample continuous space, Metropolis Monte Carlo (MMC)

can be used to carry out evolution of the walker distribution g(x), and if needed,

stability can be increased by using the ”time average” g(x) from a longer sim-

ulation and partly overlapping grids ga = {xai}Na
i=1 and gb = {xj}Nb

j=1, with

Na = Nb = N .

It is worth noting that in a simulation, as described above, we have the

ground state wave function at each step both in the walker distribution g(x) =

ψ(a) and evaluated from propagation as ψ(b). Though the latter is guiding the

evolution of the former through MMC, g(x) can be kept stable by settings of the

MMC parameters, whereas the stability of the evaluated amplitude ψ(b) depends

primarily on the propagation parameters: grid size and time step length. As

a test case we present evaluation of the potential energy from Eq. (12), which

depends on both distributions.

To maximize variance (standard deviation) in this test, we use fully random

and non overlapping grids ga and gb from exact gaussian distribution to assess

the statistical performance of the Trotter kernel for evaluation of the ground

state energetics of ODHO. The obtained data from incoherent propagation is

Table 1: Incoherent propagation in MC grid of the ODHO ground state with Trotter kernel.

N is the grid size, ∆t the time step, ∆V the deviations of expectation values of the potential

energy from its exact value 0.025000 and σ the standard deviation from long simulations.

N ∆t ∆V/10−6 σ/10−6

104 0.3 160 540

104 1 60 530

104 3 40 470

3× 104 1 30 320
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Figure 3: Incoherent propagation in MC grid of the ODHO ground state with Trotter kernel.

Deviations of expectation values of the potential energy from its exact value 0.025 (dots) and

standard deviations (bars) shown (in au ×10−6) from long simulations, with time steps 0.3,

1 and 3, and grid sizes 104 (black fullsquare) and 3 × 104 (blue fullcircle).

shown in Table 1 and Fig. 3.

We find that accuracy of the achieved ground state energetics (∆V ) and

distribution depends on the grid size and the time step. Note, that the ”error

bars” (σ) do not describe accuracy. Grid size dependence is as expected: larger

grid increases accuracy. Time step dependence, however, is weak and longer step

leads to higher accuracy. Overall, this what one can expect from the Trotter

kernel.

The ”error bars” in Fig. 3 describe simulation length independent standard

deviation σ arising from Monte Carlo sampling. It can be used to estimate

the statistical accuracy (precision) of evaluated expectation values in form of

standard error of mean, SEM = σ/
√
NMC, where NMC is the number of un-
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correlated Monte Carlo steps. Usually, 2 × SEM limits ( 95% ) are assumed

as a statistical error estimate. In our long simulations here, we found the real

accuracy to be clearly worse than the statistical accuracy, due to the systematic

error from Trotter approximation and such small test grid sizes.

7. Conclusions

We have demonstrated the path integral approach to the time domain co-

herent quantum dynamics with numerical simulations of simple one dimensional

test cases, relevant as quantum dot models. Generally, we find the PI approach

more laborious as compared to the conventional evaluation of the solution from

the time dependent Schrödinger equation, as expected [1, 2].

With PI approach a regular periodic grid may give rise to diffraction patterns

on the evaluated amplitude, while Monte Carlo grids are free from such artifact.

Also as usual, with Monte Carlo technique for path sampling, the PI approach

becomes more attractive in case of complex geometry or increasing number of

spatial dimensions.

The cases where the exact kernel is known are special. There, the time

step length is not limited, even in practice, which offers a huge advantage over

the conventional simulation of single particle quantum dynamics. On the other

hand, the straightforward incorporation of many-body correlations presumes

short time steps. Therefore, the Trotter kernel, which becomes exact at the

zero step length limit, becomes accurate enough with practical time step lengths.

However, shorter time steps require more dense grids, as discussed above.

With the incoherent real time dynamics we have demonstrated a novel ap-

proach for searching the stationary states and the ground state, in particular.

Monte Carlo sampling of the continuous space turns out to increase accuracy

as compared to the use of a regular discrete grid. The Monte Carlo version has

further advantages, similar to the conventional ”high accuracy” diffusion Monte

Carlo method. Here, we have carried out the first tests of the convergence and

accuracy of the new method, which seems promising with its novel features.
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