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Baseband functions like channel estimation and symbol detection of sophisticated telecommunications systems require matrix
operations, which apply highly nonlinear operations like division or square root. In this paper, a scalable low-complexity
approximation method of the inverse square root is developed and applied in Cholesky and QR decompositions. Computation is
derived by exploiting the binary representation of the fixedpoint numbers and by substituting the highly nonlinear inverse square
root operation with a more implementation appropriate function. Low complexity is obtained since the proposed method does not
use large multipliers or look-up tables (LUT). Due to the scalability, the approximation accuracy can be adjusted according to the
targeted application. The method is applied also as an accelerating unit of an application-specific instruction-set processor (ASIP)
and as a software routine of a conventional DSP. As a result, the method can accelerate any fixed-point system where cost-efficiency
and low power consumption are of high importance, and coarse approximation of inverse square root operation is required.

1. Introduction

Ever higher data rates require sophisticated transmission
techniques but, on the other hand, the latest technologies
allow use of advanced and more complex receiver algorithms.
Such algorithms apply matrix operations which require
highly nonlinear division by square root operation. For
example, linear minimum mean square error (LMMSE)
estimation has been proposed for the receivers of the current
3G, Universal Mobile Telecommunications System [1], and
Cholesky decomposition can be used for the inevitable
matrix inversion or for solving linear systems. In the upcom-
ing 3G Long-Term Evolution (LTE) systems, multiple-input
multiple-output (MIMO) receivers require demanding sym-
bol detection methods like list sphere detector (LSD), which
applies QR decomposition of a complex-valued channel
matrix. When compared to matrix computation studies
targeted for processing large matrices with highly parallel

resources [2, 3], there are four notable differences in the
baseband processing in the telecommunications field:

(i) the matrices are relatively small,

(ii) fixed-point number system is preferred,

(iii) there are real-time limits,

(iv) low complexity and low power consumption are of
high importance.

In this paper, a low-complexity inverse square root
approximation method is proposed for baseband matrix
operations. The method relies on binary presentation of
the fixed-point number system and it avoids large LUTs,
large multipliers, and floating-point arithmetic units. The
principal idea of the method is to substitute the highly
nonlinear inverse square root function with a less nonlinear
function with appropriate pre- and postprocessing. The
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accuracy and complexity of the method can be adjusted with
one design parameter. Thus, the method lends itself to
lower-complexity applications where coarse approximations
and fixed-point computations are preferred. In addition to
comparison of hardware implementations of inverse square
root methods, we show how the proposed method can be
applied as a software routine or as an accelerating unit of an
ASIP. The implementations are applied for Cholesky and QR
decompositions required by 3G and 3G LTE receivers.

2. Previous Work

There are several methods to compute the inverse square
root function. One of the basic approaches is to use lookup
tables (LUT) for obtaining an initial value for iterations,
which refine the value to higher accuracy [4, 5]. The main
differences among these kinds of methods are in the size and
content of LUT and the used iteration algorithm. In [5], a
large multiplier was used since it was available in the targeted
general purpose processor. In [6], savings were obtained by
using a m × n multiplier, m ≤ n, and utilizing the fact that
less significant bits of intermediate result do not contribute
to the accuracy of the final result. A software implementation
using LUT initialization followed by iterations was presented
in [7]. Another software approximation in [8] relied heavily
on the binary representation of floating-point numbers.

LUTs using low-order polynomial approximation were
applied in [9]. Polynomial approximation was also used in
[10] where a second-degree minimax polynomial approx-
imation was followed by modified Goldschmidt iteration.
A comparison considering area costs was also given. Digit
recurrence methods were proposed in [11, 12]. The main
disadvantage of using digit recurrence when compared to
iterative algorithms is their linear convergence. Approxima-
tion based on LUT followed by multiplication with operand
modification was proposed in [13, 14] and used also in
[15]. Argument reduction followed by series expansion was
applied in [16]. Another approach is to work in logarithmic
domain [17, 18] where the computation of the inverse square
root is straightforward [19, 20].

For shorter word lengths (WLs) and for using fixed-
point numbers, table addition methods have been proposed.
These methods consist of parallel LUTs and multioperand
additions. As a benefit, no multipliers are required. In [21], a
symmetric table addition method (STAM) was developed as
an extension to a simpler bipartite method. Selecting appro-
priate multipartite method, that is, design space exploration,
was considered in [22]. The STAM enhanced with an error
correction term and internal presentation in exponent and
mantissa form was used in [23].

When compared to the previously mentioned methods,
the proposed method in this paper is novel, that is, it is
not a derivative of any of the existing methods. The area
costs are kept at low as large LUTs and large multipliers are
avoided. The proposed method lends itself also to software
implementation. Furthermore, the proposed method can be
adjusted to work only in subunitary range, which is sufficient
for, for example, Cholesky decomposition, and the accuracy

of the method can be adjusted along with the complexity up
to a certain level while maintaining high area efficiency.

3. Targeted Matrix Decompositions in
Baseband Processing

In this section, we describe where the targeted low-comp-
lexity inverse square root operations have been applied.

3.1. Baseband Processing with Fixed-Point Number System.
As the baseband functions are applied in receivers of,
for example, handheld telecommunications devices, low
complexity is important for decreasing the area costs and
power consumption. Therefore, fixed-point number system
is preferred, that is, limited accuracy is applied. In this study,
the targeted fractional word length (FWL) is 11 bits and
integer word length (IWL) is 5 bits, that is, 16-bit words are
assumed.

Targeted matrix operations are illustrative examples of
baseband functions for two reasons. Firstly, the compu-
tations consist mainly of massive repetitions of a single
operation, which is multiply and accumulate in this case.
Secondly, an efficient mapping of computations to custom
hardware or DSP is prevented by one less frequently used, but
demanding, operation, which is inverse square root, 1/

√
x, in

this case. Thus, there is a realistic need for low-complexity,
limited accuracy implementations of 1/

√
x function.

3.2. Cholesky Decomposition for LMMSE. The LMMSE esti-
mation of transmitted data vector applies typically the

Cholesky decomposition. Basically, the LMMSE estimate, ̂d,
can be expressed as a function of received data, y, channel
matrix, M, and power of noise, σ2:

̂d =
(

MHM + σ2I
)−1

MHy, (1)

where it is assumed that autocorrelation E(ddH) = I. The
estimation in (1) can be derived into a form, which can be
presented as a linear system with positive definite real-valued
matrix. With Cholesky decomposition A = LTL, such a linear
system, Ax = b, can be solved with the aid of two triangular
systems, that is, LTz = b and Lx = z.

Diagonal elements, lii, of Cholesky factor L are defined as

li j =

√

√

√

√

√aii −
i−1
∑

k=1

l2ik (2)

and nondiagonal elements, li j , as

li j = 1
li j

⎛

⎝ai j −
j−1
∑

k=1

likl jk

⎞

⎠, (3)

where ai j denotes the elements of A. Equations (2) and (3)
show that nondiagonal elements require division by square
root and diagonals square root operations. Thus, the division
by square root can be replaced with multiplication with the
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inverse square root, that is, two demanding operations are
substituted with one demanding and one less demanding
operation. The square root operation of (2) can also be
computed with an additional multiplication, as

√
x = x/

√
x.

An important property of Cholesky decomposition is the
preservation of the subunitary of matrix elements, which
limits the arguments of 1/

√
x operations efficiently.

3.3. QR Decomposition for LSD. The LSD is used in MIMO
receivers to estimate the transmitted symbol, s, by approxi-
mating maximum likelihood detection:

s′ = arg min
s

∥

∥y −Hs
∥

∥
2, (4)

where y is the received symbol vector and H is complex-
valued channel matrix whose dimensions are equal to the
number of transmit and receive antennas of MIMO system.
The approximation is based on substitution with QR decom-
position QR = H, that is,

s′ = arg min
s

∥

∥y′ − Rs
∥

∥
2, where y′ = QHy. (5)

The LSD approximates (5) by gradually increasing the di-
mensions of symbol vector and computing partial Euclidean
distances. With this practice, the search space can be limited
efficiently.

QR factorization with modified Gram-Schmidt algo-
rithm [24] is presented in Algorithm 1.

It decomposes Hn×n to the orthogonal Qn×n and upper
triangular Rn×n. Conjugated transpose is denoted with (·)H .
The lines 2 and 3 show that division by square root is required
as the elements are divided by diagonals which are norms,
‖ · ‖. In a similar way as with Cholesky decomposition, the
division can be substituted with multiplication by inverse
square root.

4. Low-Complexity Approximation Method

The main principle of the proposed method is to avoid
straightforward approximation of 1/

√
x function which is

highly nonlinear in subunitary range 0 < x ≤ 1. Instead,
the more softly nonlinear function 1/

√
c + u with c ≥ 1

and 0 < u ≤ 1 is approximated. The usage of 1/
√
c + u is

justified by the following fixed-point representations in two
complement formats of x, c, and u. If the positive subunitary
x has α leading zeros, c and u can be defined so that

x = 0.00 · · · 0
︸ ︷︷ ︸

α

cN−1cN−2 · · · c0uM−1uM−2 · · ·u0. (6)

In other words, the bits of c and u do not overlap and
the word lengths of c and u are denoted with N and
M, respectively. Positive nonsubunitary range, x > 1, is
presented similarly, except that the number of leading zeros,
α, can have negative values. Since cN−1 = 1 for all valid values
of x, the x can be presented with the aid of shifting by α, that
is,

x × 2α = 1 · cN−2 · · · c0uM−1uM−2 · · ·u0,

x = 2−α × 1 · cN−2 · · · c0uM−1uM−2 · · ·u0.
(7)

(1) for k = 1 : n
(2) Rk,k = ‖H1:n,k‖
(3) Q1:n,k = H1:n,k/Rk,k

(4) for j = k + 1 : n
(5) Rk, j = QH

1:n,kH1:n, j

(6) H1:n, j = H1:n, j −Q1:n,kRk, j

(7) end
(8) end

Algorithm 1

Thus, the desired form, c + u, can be obtained, and we note
that u is a positive subunitary number. The targeted function
can be written as

1√
x
= 1
√

2−α(c + u)
= 2α/2

1√
c + u

. (8)

We can distinguish two cases depending on the value of
α, which represents the number of leading zeros of fixed-
point binary representation of x (6). This distinct behavior
is obtained because the remainder of α/2 in (8) can be either
zero or one. For even values α = 2k,

1√
x
= 2k

1√
c + u

(9)

and, for odd values α = 2k + 1,

1√
x
= 2k

√
2

1√
c + u

. (10)

In order to approximate (9) or (10), the expression
1/
√
c + u must be considered. A tempting solution is to

approximate 1/
√
c + u with binomial series. In principle,

the 1/
√
c + u could be approached with arbitrarily high

precision, as the binomial series converges. Multipliers are
required if polynomial approximation [9, 10] or series
expansion [16] is applied. Although the approximation with
binomial series has a solid basis, it does not lend itself to low-
complexity implementations due to the high-order terms.

4.1. Linear Approximation. We attempt to identify the
characteristic of 1/

√
c + u and to determine a first-degree

polynomial that will give the smallest approximation error
for a low-complexity hardware implementation. So, we will
approximate the expression 1/

√
c + u with straight lines, that

is,

1√
c + u

� at − bt(c + u), (11)

where at , bt > 0 and subscript t is the integer interpretation of
the concatenation cN−2 · · · c0α0. The number of approximat-
ing lines, that is, the accuracy of the approximation, depends
on the WL of c. Since the MSB of c has always constant value,
cN−1 = 1, the number of approximating lines is 2N .

The range of the targeted expression is 1 ≤ 1/
√
c + u ≤

1/
√

2, since 1 ≤ c + u < 2. The domain of c is defined by the
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Figure 1: Linear approximation of 1/
√
c + u: (a) approximating lines; (b) approximation error decreases as N is increased.

WL, N , that is, 1 ≤ c ≤ 2(1− 2−N ). Naturally, the domain of
u depends on N and M, that is, 0 ≤ u ≤ 2−(N−1)−2−(M+N−1).
In practice, the approximating lines are formed by dividing
the domain of c + u into evenly spaced regions, which are
determined by the N highest bits of c. The values in the start
and end points are given by 1/

√
c and the value of the last

end point is 1/
√

2. The linear approximation is illustrated
in Figure 1(a) where 1/

√
c + u, with even α approximated

with N = 1, 2, 3. The error of approximation is shown in
Figure 1(b). The figures indicate that by increasing the word
length N , the accuracy of the approximation can be adjusted
conveniently.

For odd values α = 2k + 1, the
√

2/
√
c + u is approx-

imated in a similar way. The lines used for even values,
α = 2k, cannot be used without multiplication with

√
2,

and, therefore, different approximating lines are preferred.
To obtain the final result, that is, the approximation of 1/

√
x,

the approximating straight lines in must be scaled with 2k as
shown in (9) and (10). The scaling can be carried out easily
with shift operation, whose direction depends on the sign of
α.

4.2. Coefficients for Hardware Implementation. The linear
approximation has the form at − bt(c + u), which includes
multiplication. However, for obtaining low complexity, the
multiplications should be avoided. Braun multiplier adds
shifted values of the multiplicand multiplied with one bit of
the multiplier. The principle of adding shifted values can be
used to approximate the product bt(c + u). Since bt ≤ 1/2,
the product can be presented as

bt(c + u) = d1,t
c + u

21
+ d2,t

c + u

22
+ · · · + dM+N−1,t

c + u

2M+N−1
,

(12)

where di,t ∈ {−1, 0, 1}. As division with powers of two can
be implemented with hardwired shifting in hardware, an
approximation of the previous form is suitable for low-
complexity implementation. Naturally, the accuracy depends
on the number of terms included in the sum. In the proposed
method, at maximum three terms are included, that is, an
approximation,

bt(c + u) � d1,t
c + u

2e1,t
+ d2,t

c + u

2e2,t
+ d3,t

c + u

2e3,t
, (13)

in which di,t ∈ {−1, 0, 1} and ei,t ∈ {1, . . . , 8}, is used. The
coefficients di,t and ei,t are searched for each approximating
line, that is, for each c and α0, separately. Instead of three
shifters with freely variable shift count, three multiplexers
can be used to select appropriate terms.

5. Inverse Square Root Unit Implementations

The block diagrams of the hardware implementations of the
inverse square root units are shown in Figure 2. Figure 2(a)
shows only the linear approximation at − bt(c + u). The top
three multiplexers correspond with term bt(c + u), and the
fourth multiplexer outputs at . The selections of multiplexer
are controlled by parity of α and bits of c excluding the cN−1

which has constant value.
In the next block diagram in Figure 2(b) the previous

unit is instantiated in the inverse square root unit. The range
of the unit in Figure 2(b) is positive subunitary, that is, 0 <
x ≤ 1, which is sufficient for the Cholesky decomposition.
The structure is further extended in Figure 2(c) to allow
free range, that is, x > 0. Basically, nonsubunitary range of
x results also in negative values of α, and, therefore, both
left shifting and right shifting are required as indicated in
Figure 2(c). In practice, shifters consists of hardwired shift
operations from which one is selected with multiplexer.
Therefore, a combination of left and right shifters can be
assumed to have the same complexity of unidirectional
shifter with respectively wider range of shifted bits. As the
input signal x has wider WL in Figure 2(c), the negative α is
detected by comparing the number of leading zeros and IWL.

Only basic arithmetic and logic units are being used. The
key components are priority encoder, adders, multiplexers,
and shifters. Part of the functionality, for example, constant
scaling, is implemented by hardwiring bits to the new
positions. Due to the scaling, WLs of intermediate signals
are relatively short. As the targeted accuracy depends on
N , different implementations can be generated according to
targeted application. Figure 2(a) shows a general case, that is,
the number of inputs of multiplexers andN are free variables.
In Figures 2(b) and 2(c) N = 1 and, therefore, multiplexers
are controlled solely by α0. If N > 1, the c is obtained from
the output of the first shifter(s) and the control signal is
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Figure 2: Units for (a) linear approximation with at − bt(c + u), (b) approximation of 1/
√
x in subunitary range, and (c) approximation in

nonsubunitary range. Left shifting and right shifting are denoted with	 and
, respectively. Negation is marked with (−1).

generated by concatenation of cN−2 · · · c0 and α0. Only the
structure of linear approximation depends on N , and the
other components in Figures 2(b) and 2(c) remain unaltered
if N is increased.

6. Comparisons

Areas of the proposed method and competitive methods
are estimated for a suggestive comparison. The proposed
method is synthesized with 130 nm technology. The areas
of other methods are estimated by considering their most
expensive area components, such as multipliers and LUTs,
unless more accurate details are clearly specified in the
referred design. Only the mantissa of floating-point imple-
mentations is considered since its computation is similar in
fixed-point number system.

6.1. Estimation of Area. Areas in terms of logic gate equiv-
alents (GEs) of the synthesized arithmetic and logic opera-
tions with different WLs are given in Table 1. Since the basic

unit of area is one NAND gate, fractions are possible. On the
contrary to simple cost estimation of LUTs in [10], we have
estimated the area of all LUTs individually. If structures of
LUTs are not specified in detail, fair assumptions are made
for the referred works. The synthesized LUTs are filled with
random bits. The main reason for accurate modeling of LUT
complexity is that the relative area of LUT depends both on
the address line width and data WL. Estimated areas of all the
LUTs are given in Table 1.

6.2. Compared Implementations. Since low area is empha-
sized in the targeted application domain of baseband pro-
cessing, the methods are compared using the area efficiency
as the ratio of accuracy versus area. The metric is defined as

area efficiency = accuracy in bits
area in GEs

. (14)

For single precision (SP) methods the accuracy is 23 bits and
for dual precision (DP) methods 52 bits. The area efficiency
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Figure 3: TTA processor for QR decomposition. Filled circles denote valid connections between resources and internal buses. The processor
has special function units for complex-valued arithmetic and 1/

√
x approximation.

Table 1: Estimated area in terms of GEs of arithmetic and logic
units and LUTs in compared implementations.

(a)

Unit Operands GE

Inverter 1 0.75

XOR 1× 1 2.25

Full adder 1× 1× 1 6.50

Adder 8× 6 34.75

Adder 19× 10 76.50

Adder 20× 9 78.75

Multiplier 7× 7 247.00

Multiplier 20× 20 2047.00

Multiplier 22× 23 2542.00

Multiplier 16× 56 4254.50

Multiplier 56× 56 14647.25

Multiplier 76× 76 26590.00

(b)

LUT size GE

108× 16 488.50

29 × 6 505.50

216× 8 593.75

29 × 8 670.25

29 × 10 872.00

27 × 36 943.50

29 × 19 2258.75

821× 22 3720.50

210 × 23 4740.50

210 × 25 5065.50

211 × 23 9334.75

results for all the methods are shown in Table 2. The average
accuracy of the proposed method in Table 2 is obtained in
the subunitary range. Nonsubunitary range would increase
the average accuracy even further. There are four versions of
the proposed method with design parameter N = 1, 2, 3, 4.

The results show that the proposed method has the lowest
area, and even if the accuracy is adjusted with N , the area
efficiency remains the highest except with N = 1. Naturally,
the accuracy is relatively modest, as we have preferred the
lowest area instead of high accuracy.

The first method in Table 2 was targeted to DP general
purpose processor [5]. It required LUTs of sizes 210 × 23
and 211 × 23 and multiplier for 76 × 76 operands. Since
the implementation was targeted to the general purpose
processor, the hardware resources were not dedicated only to
the inverse square root function. In [6] two 16× 56 and one
56×56 multipliers were required. The total memory size was
72192 bits divided into four tables. For smaller gate count, we
have assumed uniform division to four tables of 18048 bits
with WL 22 bits, which is the widest word fetched from
the tables. High speed was emphasized in [10]. Therefore,
we compare with the method with single multiply and
accumulate unit [10], which had better area efficiency. The
authors also reported the complexity of 5030 full adders and,
therefore, their value is used instead of our own estimates.
In [13], SP floating-point numbers were targeted. A 210 × 25
LUT was required and a 20 × 20 multiplier. In addition, a
requirement of 15 inverters was reported. Symmetric table
addition method (STAM) was used in [21]. The smallest total
LUT size was obtained with four LUTs of sizes 29×19, 28×10,
28×8, and 28×6. In addition, a sum of all the data read from
LUTs must be generated, which requires adders with operand
sizes 19 × 10, 8 × 6, and 20 × 9. Also a requirement of 45
XOR gates was reported. Both SP and DP were targeted in
[16] but the method for SP gave better area efficiency. The
SP method required 27 × 36 LUT, four 4 × 4 multipliers,
and one 22×23 multiplier. Fixed-point number systems were
targeted in [23]. The method applied STAM enhanced with
added correction value. Estimated complexity of 625 GE and
LUT size of 3456 bits were given in [23]. Since the structures
of LUTs were not reported, we have assumed that, due to
the STAM, the memory is divided at least to two LUTs. We
also assume 16-bit WL. Several smaller LUTs or shorter WL
would degrade the area efficiency. The estimated complexity
of LUTs is added to the reported gate count.
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Table 2: Suggestive comparison of inverse square root methods.
The proposed method has the highest area efficiency with N =
2, 3, 4.

method Accuracy
(FWL of result)

Area
(GE)

Area efficiency
(accuracy/area)

[5] 52 40665.25 0.0012787

[6] 52 38038.05 0.0013671

[10] 52 32695.50 0.0015905

[13] 23 7123.80 0.0032286

[21] 16 4597.80 0.0034800

[16] 23 4383.50 0.0052469

[23] 16 1602.00 0.0099875

Proposed N = 1 4 405.75 0.0098583

Proposed N = 2 6 433.75 0.0138329

Proposed N = 3 8 514.00 0.0155642

Proposed N = 4 10 622.00 0.0160772

6.3. Power Consumption. The power consumption of the
largest proposed unit (N = 4) with 100 MHz is 0.339 mW,
which includes the power required by input and output
registers. Naturally, the static power consumption is propor-
tional to the area, and, therefore, low complexity has been
targeted. The dynamic power is proportional both to the
area and average switching activity of the gates. Even if the
average switching activity of competitive methods cannot
be estimated sufficiently accurately, the differences in the
area are significant. For example, [23] has the smallest area,
1602 GE, of the referred methods and the average switching
activity of [23] should get as low as 622/1602× 100% = 39%
of the average switching activity of the largest proposed unit
(622 GE, N = 4) to achieve roughly the same dynamic power
consumption.

7. Matrix Decomposition Implementation
Case Studies

In this section, the proposed method for 1/
√
x approxima-

tion is applied in QR and Cholesky decomposition imple-
mentations. Many matrix decompositions are implemented
with systolic arrays [25] applying inherent regularity of
the algorithm, and the computations are alleviated with
CORDIC [26] algorithm. However, such structures are
not as flexible as programmable processors and such high
parallelism can easily result in so fast processing that the
array processor must idle most of the time if applied, for
example, in QR decomposition of MIMO receiver.

7.1. QR Decomposition with ASIP. Complex-valued QR de-
composition was implemented with transport triggered
architecture (TTA) [27] processor in [28]. The TTA is
an ASIP template where parallel computing resources can
be tailored according to the application. The proposed
1/
√
x unit is instantiated in the processor as shown in

Figure 3. In addition, there are units for complex addition

and subtraction and complex multiplication with optional
conjugation.

Typically, MIMO systems have only a couple of transmit
and receive antennas, and, therefore, a 4 × 4 matrix decom-
position is targeted. The modified Gram-Schmidt algorithm
requires 2n3 operations for n× n matrix [24]. The processor
implementation takes 139 clock cycles for 4 × 4 matrix.
If 2048 subcarriers must be processed within a coherence
time of the channel, 160 MHz clock frequency is adequate.
The processor is synthesized with 130 nm technology and it
takes 16.3 kGE with 160 MHz and 23.2 kGE with 269 MHz.
The power consumption with 160 and 269 MHz clock
frequencies is 6.91 mW and 16.79 mW, respectively.

7.2. Cholesky Decomposition with DSP. Cholesky decompo-
sition was implemented as a software routine on TI’s C55x
DSP in [29]. Equations (2) and (3) show that the algorithm
lends itself to the multiply and accumulate instruction,
for which DSPs are typically optimized. Furthermore, an
efficient hardware looping can be applied in the innermost
loops as testing within the loop can be avoided. With
the simple 1/

√
x approximation the developed program

decomposes 64× 64 matrix in 85070 clock cycles.
Maintenance of a continuous flow of computations is

more important for an efficient software implementation
than focusing on avoidance of multiplications. In other
words, pipeline should be kept full by avoiding conditional
branching when possible. For example, describing compu-
tation of α as defined in (6) in C language would result
in a cumbersome loop testing bits of x. However, it can
be avoided as the instruction set of the applied DSP has
adequate assembly instruction for obtaining the number
of leading zeros. Furthermore, short branches according to
the parity of α can be avoided with guarded instructions,
that is, the computations proceed uninterrupted by both
branches but only the other branch affects the state. Thus,
the proposed method lends itself to an efficient software
implementation on a DSP with adequate instructions for
obtaining the number of leading zeros and for guarded
execution.

8. Conclusions

The inverse square root function is highly nonlinear function
and, therefore, approximated usually with high-complexity
implementation. The proposed approximation method tar-
gets moderate precision fixed-point numbers. The com-
putation has been based on an appropriate substitute,
which allowed approximation without large LUTs and large
multipliers. The method has one design parameter which
allows scaling of the accuracy and hardware complexity.
The area efficiency of the proposed method has been given
in terms of approximation accuracy per area. Comparisons
with previously reported methods show that the proposed
method achieves low complexity and high area efficiency.
Finally, the method has been applied on the targeted
baseband functions as a function unit of an ASIP and as a
software routine on a DSP.
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