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Optimal inversion of the generalized Anscombe
transformation for Poisson-Gaussian noise

Markku Mäkitalo and Alessandro Foi

Abstract—Many digital imaging devices operate by successive
photon-to-electron, electron-to-voltage, and voltage-to-digit con-
version. This process is subject to various signal-dependent er-
rors, which are typically modelled as Poisson-Gaussian noise. The
removal of such noise can be approached indirectly by applying
a variance-stabilizing transformation (VST) to the noisy data, de-
noising the stabilized data with a Gaussian denoising algorithm,
and finally applying an inverse VST to the denoised data. The
generalized Anscombe transformation (GAT) is often used for
variance stabilization, but its unbiased inverse transformation has
not been rigorously studied in the past. We introduce the exact
unbiased inverse of the GAT and show that it plays an integral
part in ensuring accurate denoising results. We demonstrate that
this exact inverse leads to state-of-the-art results without any
notable increase in the computational complexity compared to
the other inverses. We also show that this inverse is optimal in
the sense that it can be interpreted as a maximum likelihood
inverse. Moreover, we thoroughly analyze the behaviour of the
proposed inverse, which also enables us to derive a closed-form
approximation for it. This paper generalizes our work on the
exact unbiased inverse of the Anscombe transformation, which
we have presented earlier for the removal of pure Poisson noise.

Index Terms—denoising, photon-limited imaging, Poisson-
Gaussian noise, variance stabilization.

I. INTRODUCTION

Many imaging devices, such as digital cameras and any
device equipped with a CCD or a CMOS sensor, capture
images by successive photon-to-electron, electron-to-voltage,
and voltage-to-digit conversion. This capturing process is
subject to various signal-dependent errors, and a standard way
to model these errors is to consider them as Poisson-Gaussian
noise. Specifically, photon emission and sensing are inher-
ently random physical processes, which in turn substantially
contribute to the randomness in the sensor output. Thus, the
noise model employs a Poisson component in order to account
for this signal-dependent uncertainty. Complementarily, the
additive Gaussian component accounts for the other signal-
independent noise sources involved in the capturing chain,
such as thermal noise. This modelling has been successfully
used in several practical applications, e.g., in noise fitting and
denoising of clipped and non-clipped raw CCD data [1], [2],
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in the denoising of fluorescence microscopy images [3], [4],
in fluorescent-spot detection [3], and in astronomy [6].

There are two main options for approaching the problem of
denoising images corrupted by signal-dependent noise. One
option is to directly consider the statistics of the particular
noise model, and take advantage of these properties and
observations in designing an effective denoising algorithm.
For the case of Poisson-Gaussian noise, this avenue has
been explored in, e.g., [4]. Alternatively, the problem can be
tackled in a modular fashion through variance stabilization.
This general denoising process involves three steps. First,
the noisy data is modified by applying a nonlinear variance-
stabilizing transformation (VST) specifically designed for the
chosen noise model. Note that in an image corrupted by
signal-dependent noise, the noise variance is typically not
constant and varies with the expectation of the pixel value.
For instance, the variance of a Poisson variable equals its
mean. Thus, the rationale of applying a VST is to remove this
signal-dependency by rendering the noise variance constant
throughout the image. In particular, the transformed data
can be assumed to have an approximately Gaussian noise
distribution with a known constant (e.g., unitary) variance.
Hence, the second step is to treat the noisy data with any
algorithm designed for the removal of Gaussian noise. Finally,
the desired estimate of the unknown noise-free image is
obtained by applying an inverse VST to the denoised data
(i.e., by returning the denoised data to the original range). This
modular approach has several practical advantages: Not only
is the problem of Gaussian noise removal a well studied and
widely covered topic, with a plethora of denoising algorithms
to choose from, but it also allows the practical implementation
of the denoising framework to be divided into self-contained
modules, which may be designed and optimized independent
of each other.

In the case of Poisson-Gaussian noise, the generalized
Anscombe transformation (GAT) [6] is commonly used for
stabilizing the noise variance. This transformation general-
izes the classical Anscombe transformation [9], which was
designed for the pure Poisson case. Even though the GAT is a
well-known transformation, its corresponding exact unbiased
inverse transformation has been neglected in the past. We
introduce the exact unbiased inverse of the GAT and show that
it plays an integral part in ensuring accurate denoising results.
We also conclude that the poor denoising performance shown
in earlier works (especially in the low-intensity cases, where
an asymptotically unbiased inverse is particularly inaccurate
by its nature) is mostly due to applying an unsuitable inverse
transformation, and not simply due to the inability of the GAT
to stabilize the noise variance adequately.
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To the best of our knowledge, this paper is the first rigorous
study of the exact unbiased inverse of the GAT for Poisson-
Gaussian noise. Importantly, our results are exact and success-
fully applicable also for finite parameter values, while previous
works [6] have considered only the large-parameter asymptotic
case. Moreover, our experimental results demonstrate that
our approach leads to state-of-the-art denoising results, when
the exact unbiased inverse is combined with a state-of-the-
art Gaussian denoising algorithm. We also show that this
inverse is optimal in the sense that it can be interpreted
as a maximum likelihood inverse under certain reasonable
assumptions. Further, we provide a thorough analysis of the
behaviour of the proposed inverse. In particular, we show that
the exact unbiased inverse of the GAT can be approximated
with great accuracy by adding a simple correction term to the
exact unbiased inverse of the Anscombe transformation, which
we introduced in [7]. This also enables us to derive a closed-
form approximation for it, by adding the same correction term
to the closed-form approximation [8] of the exact unbiased
inverse of the Anscombe transformation. Finally, we provide
asymptotical, as well as global integral and global supremum
error bounds for both of these approximations.

Overall, this paper generalizes our earlier work [7], [8],
in which we presented an exact unbiased inverse of the
Anscombe transformation [9] and similarly showed its impor-
tance in guaranteeing accurate denoising results for the case
of pure Poisson noise. It is also worth noting that as a conse-
quence of this conceptual similarity, employing the exact unbi-
ased inverse remains computationally very inexpensive also in
this generalization. In other words, the proposed approach does
not introduce any notable computational overhead; the choice
of the Gaussian denoising algorithm completely dominates
the execution time. These observations are consistent with the
discussion on computational complexity in [7].

The rest of the paper is organized as follows: Section II
presents some preliminaries about Poisson-Gaussian noise and
about stabilizing its variance with the GAT. In Section III,
which is the core of our contribution, we discuss how to
construct an exact unbiased inverse of the GAT, the optimality
and asymptotic behaviour of this inverse, and how to approx-
imate it with a closed-form expression. Section IV consists
of various experiments. In particular, first we examine the
case of denoising with known noise parameters, after which
we consider the case with unknown parameter values. Then
we inspect how the denoising performance changes, when
the ratio between the Poisson and Gaussian noise component
changes. We conclude the section with a brief commentary on
the computational complexity of the proposed method. Finally,
in Section V we discuss the obtained results. For the sake of
readability, most of the mathematical derivations and proofs
are presented in the Appendix.

II. PRELIMINARIES

A. Poisson-Gaussian noise

Let ∗
zi, i = 1, . . . , N , be the observed pixel values obtained

through an image acquisition device. We model each ∗
zi as an

independent random Poisson variable pi with an underlying

mean value yi, scaled by α > 0 and corrupted by additive
Gaussian noise ∗

ni of mean µ and standard deviation ∗
σ. In

other words,
∗
zi = αpi +

∗
ni, (1)

where pi ∼ P (yi) and ∗
ni ∼ N (µ,

∗
σ2). Thus, we can define

Poisson-Gaussian noise as
ηi =

∗
zi − αyi. (2)

The problem of denoising an image corrupted by Poisson-
Gaussian noise is then equivalent to estimating the underlying
noise-free image y given the noisy observations ∗

z. For clarity,
we note that the overhead asterisk in ∗

z, ∗
σ and ∗

ni is used to
distinguish these variables before and after the affine trans-
formations (4), which we will employ in order to reduce the
number of parameters to be considered; the rest of the paper
will only deal with the corresponding transformed variables z,
σ and ni, and with y and pi, unless noted otherwise.

B. Variance stabilization with the generalized Anscombe
transformation

Assuming ∗
z is distributed according to (1), we can apply

the generalized Anscombe transformation [6]

f(
∗
z) =

{
2
α

√
α

∗
z + 3

8α
2 +

∗
σ2 − αµ, ∗

z > − 3
8α−

∗
σ2

α + µ

0,
∗
z ≤ − 3

8α−
∗
σ2

α + µ
(3)

to ∗
z in order to (approximately) stabilize its variance to unity,

i.e., var {f(
∗
z)|y, ∗

σ} ≈ 1. Note that for the pure Poisson case
(i.e., α = 1, σ = 0, and µ = 0), this coincides with the
traditional Anscombe transformation [9] used for stabilizing
data corrupted by Poisson noise.

The number of parameters which define the transformation
(3) can be reduced significantly by simple variable substitu-
tions

z =
∗
z − µ
α

, σ =
∗
σ

α
, (4)

which affinely map each pixel ∗
zi to zi, a random (non-scaled)

Poisson variable pi corrupted by additive Gaussian noise ni
of mean 0 and standard deviation σ:

zi = pi + ni, (5)

where pi ∼ P (yi) and ni ∼ N (0, σ2). In particular, the
probability distribution of z is

p (z | y, σ) =

+∞∑
k=0

(
yke−y

k!
× 1√

2πσ2
e−

(z−k)2

2σ2

)
. (6)

Thus, according to (3), z can be stabilized with the transfor-
mation

fσ(z) =

{
2
√
z + 3

8 + σ2, z > − 3
8 − σ

2

0, z ≤ − 3
8 − σ

2
. (7)

In other words, for any of the parameters α and µ, we can
stabilize the variance of ∗

z by means of variable substitutions
(4), followed by the transformation (7). Then, after applying
an inverse transformation I of (7) to the denoised data D,
we simply return to the original range by inverting (4), i.e.
setting the final estimate of the expected value of ∗

z to be
αI (D)+µ. Note that since (4) and its inverse are affine, they
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do not introduce any bias in the estimation. Thus, in the rest
of the paper, we consider only the stabilization of z, which
is the observed data after the variable substitution (4), and by
GAT we refer to the corresponding transformation (7).

Figure 1(a) shows the forward transformation (7) for the
parameter values σ = 0.01, 1, 2, 3, and the corresponding
standard deviations of the stabilized variables fσ (z) are shown
in Figure 1(b). Note that there is a particular overshoot in
the standard deviation at around σ = 2 for low values of y,
but it begins to settle down towards the desired value 1 as σ
increases. On the other hand, when σ is very small (i.e., when
the noise is practically pure Poisson), there is a significant
undershoot for low values of y, which is an inherent limitation
of the generalized Anscombe transformation. Regardless of
which transformation is used, it is not possible to stabilize the
variance to unity for y = 0, σ = 0, since in this case z has
zero variance.

III. EXACT UNBIASED INVERSE TRANSFORMATION

A. Definition

Assuming the denoising of fσ(z) was successful, we
may treat the denoised data D as the expected value
E {fσ (z) | y, σ}. However, due to the nonlinearity of fσ , we
generally have

f−1
σ (E{fσ(z) | y}) 6= E{z | y}. (8)

In practice, this means that applying the algebraic inverse
f−1
σ to the denoised data will, in general, produce a biased

estimate of y. This problem is traditionally mitigated by using
an asymptotically unbiased inverse instead of the algebraic
inverse. However, as we also show in this work, it is not suffi-
cient for guaranteeing accurate denoising results, in particular
for low-intensity images. Thus, there is a need for an exact
unbiased inverse that can be used in all situations.

The exact unbiased inverse of the generalized Anscombe
transformation (7) is in fact a family of inverse transformations
Iσ , parametrized by σ, that maps the values E{fσ (z) | y, σ}
to the desired values E{z | y, σ}:

Iσ : E {fσ (z) | y, σ} 7−→ E {z | y, σ} . (9)

Since we trivially know E {z | y, σ} = y for any given y,
constructing the inverse requires us to compute the values
E {fσ (z) | y, σ}, analogously to how the exact unbiased in-
verse of the Anscombe transformation was computed in [7].
In this more general case, it is computed as

E{fσ (z) | y, σ} =

∫ +∞

−∞
fσ (z) p (z | y, σ) dz (10)

=

∫ +∞

−∞
2

√
z +

3

8
+ σ2

+∞∑
k=0

(
yke−y

k!
√

2πσ2
e−

(z−k)2

2σ2

)
dz.

The exact unbiased inverse transformations Iσ for the pa-
rameter values σ = 0.01, 1, 2, 3 are shown in Figure 1(c),
along with the corresponding algebraic inverses of (7) for the
comparison. Note that even though visually Iσ resembles a
clipped algebraic inverse to some extent, replacing the standard
algebraic inverse by its clipped counterpart does not provide
any practical improvement.

B. Optimality

Under certain reasonable assumptions, we can show that
the exact unbiased inverse Iσ is optimal in the sense that it
coincides with a maximum likelihood (ML) inverse. In [7], we
made a similar conclusion about the exact unbiased Anscombe
inverse for the pure Poisson case, and thus, the discussion
below follows naturally the same lines.

Let us assume that instead of obtaining a perfectly accurate
denoising result D = E {fσ (z) | y, σ} (which we assumed
in the definition of Iσ in Section III-A), the pointwise mean
squared error of our estimate D is

ε2 = E
{

(D − E{fσ (z) | y, σ})2
}
> 0. (11)

In practice the probability density function p (D | y) of D is
unknown, but for simplicity we assume that it is symmetric
and unimodal, with mode at E {fσ (z) | y, σ} and variance
ε2. Note that the actual value of ε2 has very little to do with
the variance of z or fσ (z), since the estimation accuracy of
the denoising algorithm depends mainly on the features of the
signal (such as the complexity of details and patterns); thus,
it is sensible to treat ε2 as independent of both y and σ.

In other words, we assume
ξ = D − E {fσ(z)|y, σ} ∼ U0, (12)

where U0 is a unimodal distribution with mode at 0 with
probability density u0 (e.g., U0 could be the normal N (0, ε2)).
This implies that u0

(
ξ̄
)
≤ u0

(
ξ̆
)

, if either ξ̄ ≤ ξ̆ ≤ 0

or ξ̄ ≥ ξ̆ ≥ 0; in particular u0 (0) = maxξ (u0), and
u0 (D − E {fσ(z)|y, σ}) = p (D|y). Let us also remark that,
for any σ ≥ 0, E {fσ(z)|y, σ} is a continuous and monotoni-
cally increasing function of y.

While (12) also formally implies that D is an unbiased
estimate of E {fσ(z)|y, σ}, in fact also unknown estimation-
bias errors can be considered as contributors of ε2, with the
symmetry of the distribution about E {fσ(z)|y, σ} reflecting
our uncertainty about the sign of the bias.

By treating D as the data, the ML estimate of y is defined
as

IML(D) = arg max
y

p (D | y) . (13)

Under the above assumptions, this equals to (see Appendix B
for details)

IML(D) =

{
Iσ(D), if D ≥ E{fσ (z) | 0, σ}
0, if D < E{fσ (z) | 0, σ}. (14)

Thus, the exact unbiased inverse Iσ coincides with this form
of ML inverse.

C. Asymptotic behaviour

As we explicitly construct the inverse mapping (9) only for
a finite grid of values, it is also of interest to examine the
asymptotic behaviour of Iσ . When the standard deviation σ
of the Gaussian noise component is large, we may formulate
the exact unbiased inverse Iσ in terms of the exact unbiased
inverse Anscombe transformation I0 [7] as

Iσ ≈ I0 − σ2. (15)
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(a) (b) (c)
Fig. 1. The generalized Anscombe transformation (7) for the parameter values σ = 0.01, 1, 2, 3. (a) The forward transformations fσ (z), (b) The standard
deviations of the stabilized variables fσ (z), (c) The exact unbiased inverse transformations Iσ , compared with the corresponding algebraic inverses of (7).

Likewise, when σ is very small, we may do the same ap-
proximation. A rigorous derivation of this approximation is
provided in Appendix A.

Considering the direct asymptotics with respect to D =
E{fσ(z) |y, σ} and σ, we show that for a given fixed σ (and
thus considering large y),

y = Iσ(D) = I0(D)− σ2 +O
(
D−4

)
. (16)

For a fixed y (and thus considering large σ), we have σ2 ∼ D2

and, consequently,
y = Iσ(D) = I0(D)− σ2 +O

(
D−2

)
= I0(D)− σ2 +O

(
σ−2

)
. (17)

Finally, for fixed y and small σ, we have
y = Iσ(D) = I0(D)− σ2 +O

(
σ2
)
. (18)

The orders O
(
σ−2

)
and O

(
σ2
)

of the error terms in (17) and
(18), for various fixed values of y, are illustrated in Figure 2.
Similarly, Figure 3 visualizes the order O

(
D−4

)
of the error

term in (16). For the detailed derivation of these results, we
again refer the reader to Appendix A.

D. Global accuracy

Apart from the above asymptotic results, we studied the
global accuracy of the approximation (15) in terms of the
variance-normalized integral criterion (weighted L2 squared),
yielding∥∥∥∥I0(E{fσ (z) |y, σ})− σ2 − y

std {z|y, σ}

∥∥∥∥2

2

=

=

∫ +∞

0

∫ +∞

0

(
I0(E{fσ(z) |y, σ})−σ2−y

)2
y + σ2

dydσ = 0.0028

(19)
and in terms of the maximum absolute difference (L∞),
yielding∥∥I0(E{fσ(z) |y, σ})− σ2 − y

∥∥
∞ =

= max
σ≥0,y≥0

|Iσ(E{fσ(z) |y, σ})− y| = 0.0470 (20)

with the maximum in (20) attained at σ = 0.4 and y =
0. In Figure 4, the blue surface (below) shows the error

Fig. 2. The error Iσ(D) − I0(D) + σ2 = O
(
σ2
)

as a function of σ
for various fixed values of y, compared with σ−2 and σ2, confirming the
asymptotics in (17) and (18).

|I0(E{fσ(z) |y, σ}) − σ2 − y| associated with (15), thus
visualizing the overall accuracy and the maximum error of
the approximation.

E. Practical implementation

Due to the discussed asymptotic behaviour, and given that
I0 is already available (either in accurate numerical form or
as closed-form analytical approximation [7], [8]), to compute
Iσ it is sufficient to tabulate E{fσ(z) |y, σ} (10) only for
a finite grid of values, and resort to interpolation (between
the grid values) and to the asymptotic form I0(D) − σ2

(outside of the grid). In particular, for our experiments, we
considered 96 non-equispaced values σ ∈ {0.01, . . . , 50}
and 1199 non-equispaced values of y ∈ {0, . . . , 200} and
calculated E{fσ(z) |y, σ} on such 96×1199 grid. Our Matlab
software implementing this inverse transformation is available
online at http://www.cs.tut.fi/˜foi/invansc.
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Fig. 3. The error Iσ(D) − I0(D) + σ2 = O
(
D−4

)
as a function of D

(for fixed σ = 1), compared with D−4, confirming the asymptotics in (16).

F. Closed-form approximation

A closed-form approximation of Iσ can be obtained from
the closed-form approximation Ĩ0 [8] of I0 as

Ĩσ(D) = Ĩ0(D)− σ2 = (21)

=
1

4
D2 +

1

4

√
3

2
D−1 − 11

8
D−2 +

5

8

√
3

2
D−3 − 1

8
− σ2.

Of course, the negative powers of D become irrelevant when
D is large, i.e., when σ or y are large, yielding the asymptotic
inverse

Iasy (D) =
1

4
D2 − 1

8
− σ2. (22)

As in Section III-D, we studied the accuracy of the ap-
proximation (21) in terms of the variance-normalized integral
criterion (weighted L2 squared) and the maximum absolute
difference L∞, with the corresponding results being∥∥∥∥∥ Ĩσ(E{fσ(z) |y, σ})− y

std {z|y, σ}

∥∥∥∥∥
2

2

= 0.0069, (23)

and ∥∥∥Ĩσ(E{fσ(z) |y, σ})− y
∥∥∥
∞

= 0.0468, (24)

where the maximum of (24) is again attained at σ = 0.4 and
y = 0. The error surface associated with this criterion is also
illustrated in Figure 4 (purple surface on top).

In terms of the impact on denoising quality, the discrepan-
cies between Ĩσ and Iσ are very small, as affirmed by (23) and
(24), and by the experimental results and observations in the
next section. These results and considerations are consistent
with those presented in [8].

IV. EXPERIMENTS

A. Denoising with known parameter values α and σ

We evaluate the denoising performance associated with
the proposed exact unbiased inverse Iσ by considering the
Cameraman (256×256), Fluorescent Cells (512×512), and
Lena (512×512) test images. For each image, we scale the
original image to eight different peak values (1, 2, 5, 10, 20,

Fig. 4. The error surface |I0(E{fσ(z) |y, σ})−σ2−y| associated with (15)
(blue surface below), and the corresponding surface |Ĩσ(E{fσ(z) |y, σ})−y|
associated with the closed-form approximation (21) (purple surface on top).

30, 60, 120), and corrupt them with Poisson-Gaussian noise
(α = 1, σ = peak/10) according to (5), as was done in [4].
Let us remark that since α = 1, we have also ∗

σ = σ, as can
be seen from (4).

We denoise each image with the three-step variance stabi-
lization approach explained in Section I, using either BM3D
[10] or BLS-GSM [11] as the Gaussian denoising algorithm,
and inverting the denoised data with each of the following
transformations: the exact unbiased inverse Iσ , its closed-
form approximation Ĩσ , the asymptotically unbiased inverse
Iasy (D) = 1

4D
2− 1

8 −σ
2, or the algebraic inverse Ialg (D) =

1
4D

2 − 3
8 − σ2. When denoising the stabilized data fσ (z),

the algorithms assume that std {fσ (z) | y, σ} is exactly 1.
For comparison with the direct approaches, we also denoise
each image with the state-of-the-art UWT/BDCT PURE-LET
method proposed in [4]. The results are presented in Tables I–
II, where each PSNR value (Table I), and the respective SSIM
[12] value (Table II), is an average of ten individual denoising
results (performed on ten random realizations of the Poisson-
Gaussian noise).

We see that the proposed method is competitive with the
UWT/BDCT PURE-LET algorithm, outperforming it in many
cases, in particular when variance stabilization is combined
with the BM3D algorithm, which represents the state of the art
in additive white Gaussian noise removal. Moreover, there are
no major declines in performance for the low-intensity cases,
which demonstrates the fact that the poor performance shown
in earlier works (e.g., [4]) is not simply due to inadequate
variance stabilization associated with the GAT, but mostly
a consequence of using an improper inverse transformation.
In particular, we see that for the low-intensity cases it is
clearly not reasonable to use either the asymptotically unbiased
inverse or the algebraic inverse; instead, the proposed exact
unbiased inverse Iσ can be used everywhere. Further, its
closed-form approximation Ĩσ is practically on par with it,
introducing minor discrepancies only at the lowest intensities.
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(a) (b) (c) (d)
Fig. 5. The denoising of Fluorescent Cells (512×512). (a) Original image, (b) Noisy image (peak = 20, σ = 2, PSNR = 17.21 dB), (c) Denoised with
BM3D and the exact unbiased inverse Iσ (PSNR = 29.65 dB), (d) Denoised with UWT/BDCT PURE-LET (PSNR = 29.47 dB).

(a) (b) (c) (d)
Fig. 6. A 100×100 section of each of the images in Figure 5. (a) Original image, (b) Noisy image (peak = 20, σ = 2), (c) Denoised with BM3D and the
exact unbiased inverse Iσ , (d) Denoised with UWT/BDCT PURE-LET.

(a) (b) (c) (d)
Fig. 7. The denoising of Lena (512×512). (a) Original image, (b) Noisy image (peak = 100, σ = 2, PSNR = 22.64 dB), (c) Denoised with BM3D and the
exact unbiased inverse Iσ (PSNR = 33.41 dB), (d) Denoised with UWT/BDCT PURE-LET (PSNR = 32.92 dB).

Figures 5–8 present visual comparisons for Fluorescent
Cells (peak = 20, σ = 2) and Lena (peak = 100, σ = 2),
corroborating the observed good performance of the proposed
denoising method. Figure 9 shows the denoising results for
the low-intensity case of Cameraman with peak = 1 and
σ = 0.1, including a comparison of the different inverses. This
clearly visualizes the previously noted importance of applying
a proper inverse transformation to the denoised data.

B. Denoising with estimated parameter values αest and ∗
σest

Here we examine the robustness and practical applicability
of the proposed method by repeating a subset of the ex-
periments corresponding to Tables I–II, but using estimated
parameter values αest and ∗

σest instead of the true values α and
∗
σ. Note that since we now generally have αest 6= 1, we also
have ∗

σest 6= σest. Thus, in this part of the experiments, we
are making a distinction between ∗

σ and σ for clarity, even
though ∗

σ = σ still holds, as in all the previous experiments.
The parameters αest and ∗

σest are estimated from a single

noisy image by fitting a global parametric model into locally
estimated expectation / standard deviation pairs, as proposed
in [1]. Then, the transformations (4) and the GAT (7) fσest are
applied with σest =

∗
σest/αest, the stabilized data is denoised

with BM3D, and the final estimate is obtained by inverting the
denoised data with either the exact unbiased inverse Iσest , the
asymptotically unbiased inverse Iasy (D) = 1

4D
2 − 1

8 − σ
2
est,

or the algebraic inverse Ialg (D) = 1
4D

2 − 3
8 − σ

2
est.

The results of these experiments are presented in Table III,
showing the robustness of the proposed denoising framework,
as in the vast majority of the cases the denoising results
associated with Iσest are practically equal to the ones obtained
with the exact parameter values α and σ (Tables I–II); the only
notable declines in performance are the approximately 0.3 dB
drops for Fluorescent Cells with peaks 1 and 2. However, these
drops at low peaks are insignificant in comparison with the
major decline (several dBs) in performance caused by using
either the asymptotically unbiased inverse Iasy or the algebraic
inverse Ialg instead of Iσest .
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(a) (b) (c) (d)
Fig. 8. A 100×100 section of each of the images in Figure 7. (a) Original image, (b) Noisy image (peak = 100, σ = 2), (c) Denoised with BM3D and the
exact unbiased inverse Iσ , (d) Denoised with UWT/BDCT PURE-LET.

(a) (b) (c)

(d) (e) (f)
Fig. 9. The denoising of Cameraman (256×256). (a) Original image, (b) Noisy image (peak = 1, σ = 0.1, PSNR = 3.20 dB), (c) Denoised with BM3D
and the asymptotically unbiased inverse Iasy (PSNR = 15.55 dB), (d) Denoised with BM3D and the algebraic inverse Ialg (PSNR = 15.72 dB), (e) Denoised
with BM3D and the exact unbiased inverse Iσ (PSNR = 20.23 dB), (f) Denoised with UWT/BDCT PURE-LET (PSNR = 20.35 dB).

We remark that each result in Table III is obtained by
denoising a single image instead of averaging ten results, since
in Table I we observed that the variations between individual
results are typically minor (in the order of ± 0.1 dB around
the average PSNR). Note that even though the true value of α
equals 1 in all the experiments, this information is not used in
any way in computing the estimates αest and ∗

σest. Moreover,
using only α = 1 is not a fundamental restriction, as the more
general case (1) can be addressed through simple scaling.

C. Varying the ratio between the Poisson and Gaussian noise
components

Finally we analyze how much the denoising performance
changes, when the noise distribution gradually changes from
pure Poisson to additive white Gaussian noise (AWGN). In
practice, we denoise Cameraman and Lena with either BM3D

or BLS-GSM combined with the exact unbiased inverse Iσ ,
and with UWT/BDCT PURE-LET, when the PSNR of the
noisy image is kept constant at either 10 dB or 15 dB (with
negligible variations depending on the specific realization,
of the order ± 0.01 dB), but the ratio σ/

√
peak is varied

from 0 to 10. When this ratio is low, the Poisson noise
component is the dominant one, whereas a high ratio means
the noise distribution is nearly Gaussian. Specifically, the GAT
corresponding to the case σ/

√
peak = 10 is practically affine

over the interval [0, peak], and thus, this case is essentially
like denoising pure AWGN without any variance stabilization.
Conversely, when σ/

√
peak = 0, the Gaussian component is

absent, and hence we reduce to the case of denoising pure
Poisson data [7].

Figures 10–11 show the results of these experiments. First,
we see the general trend that the denoising performance in-
creases as the distribution becomes less Gaussian. We explain
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(a) (b)
Fig. 10. The results of denoising variance-stabilized data with either BM3D or BLS-GSM combined with the exact unbiased inverse Iσ , and denoising
with UWT/BDCT PURE-LET, when the PSNR of the noisy image is kept constant at 10 dB, but the ratio σ/

√
peak is varied from 0 (i.e., the Poisson

noise component dominates) to 10 (i.e., the Gaussian noise component dominates). Each PSNR value is an average over five random noise realizations.
(a) Cameraman (256×256); peak = 4.71 when σ = 0, (b) Lena (512×512); peak = 5.05 when σ = 0.

(a) (b)
Fig. 11. The results of denoising variance-stabilized data with either BM3D or BLS-GSM combined with the exact unbiased inverse Iσ , and denoising
with UWT/BDCT PURE-LET, when the PSNR of the noisy image is kept constant at 15 dB, but the ratio σ/

√
peak is varied from 0 (i.e., the Poisson

noise component dominates) to 10 (i.e., the Gaussian noise component dominates). Each PSNR value is an average over five random noise realizations.
(a) Cameraman (256×256); peak = 14.90 when σ = 0, (b) Lena (512×512); peak = 15.95 when σ = 0.

this perhaps curious behaviour by the fact that a Gaussian
distribution can be considered the worst-case scenario, in the
sense that it leads to the largest Cramér-Rao lower bound
under a rather general class of distributions [13]. Second,
it is apparent from Figure 10(b) that in the 10 dB case,
there is a minor drop in performance for BM3D at about
σ/
√

peak = 0.5, but it is not observed for UWT/BDCT PURE-
LET. This deficiency could be caused by inaccurate variance
stabilization. In particular, as σ/

√
peak decreases, the stabi-

lization changes from nearly perfect to a slight overshooting
(up to about 10 % extra in terms of the standard deviation),
and finally undershooting (see Figure 1(b)). For low input
PSNR values, such as 10 dB, the intensity range of the scaled
image is typically concentrated in the region with inaccurate
stabilization. However, for higher PSNR values this concerns
only the darkest part of the image. This notion is supported
by the comparisons in Figure 11, showing the corresponding
results for the 15 dB case; there is no drop in performance
for BM3D due to variance stabilization. Overall, BM3D and
the exact unbiased inverse Iσ outperforms the state-of-the-art
UWT/BDCT PURE-LET in all cases, even when inaccurate
variance stabilization causes a minor drop in performance for
low input PSNR values around a specific σ/

√
peak ratio.

The performance of BLS-GSM is much degraded by the

mismatch between the actual standard deviation of the stabi-
lized data and its assumed value (which is always 1). This
is not a peculiarity of the Poisson-Gaussian case, as drops
in performance comparable to those visible in Figure 10 can
be experienced with BLS-GSM also in the case of purely
Gaussian noise when the standard deviation of the noise is
over- or underestimated.

D. Computational complexity

To give the reader an indication of the typical execution
times, for Lena (512×512) the various components of the
denoising process require time approximately as follows: GAT
0.005 s, BM3D 5.4 s, exact unbiased inverse Iσ 0.2 s, closed-
form approximation Ĩσ 0.05 s, and the asymptotically unbiased
inverse Iasy 0.005 s. Hence, for instance, denoising Lena with
GAT + BM3D + exact unbiased inverse Iσ takes about 5.6 s
in total. Note that all of these execution times scale linearly
with respect to the image size. If BLS-GSM is used instead
of BM3D, one can expect a tenfold increase in the denoising
time. Finally, denoising Lena with UWT/BDCT PURE-LET
requires approximately 42 s (with 16×16 DCT blocks, as used
in all of our experiments for the best denoising results). These
results are obtained with an Intel Core 2 Duo E8400 processor,
running at 3.0 GHz.
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TABLE I
A COMPARISON OF THE DENOISING PERFORMANCE (PSNR, DB) OF SEVERAL DENOISING ALGORITHMS AND INVERSE TRANSFORMATIONS, USING
VARIOUS PEAK INTENSITIES AND VARIOUS STANDARD DEVIATIONS σ OF THE GAUSSIAN NOISE COMPONENT. THE RESULTS ARE AVERAGES OF TEN

INDEPENDENT REALIZATIONS, AND THE VARIATIONS BETWEEN INDIVIDUAL RESULTS ARE TYPICALLY IN THE ORDER OF ± 0.1 DB AROUND THE
AVERAGE PSNR.

Image Peak σ Noisy GAT + BM3D GAT + BLS-GSM UWT/BDCT

Iσ Ĩσ Iasy Ialg Iσ Ĩσ Iasy Ialg PURE-LET [4]

1 0.1 3.20 20.23 20.18 15.55 15.72 18.46 18.45 14.56 15.40 20.35

2 0.2 6.12 21.93 21.85 20.70 18.24 20.28 20.23 19.41 17.36 21.60

5 0.5 9.83 24.09 24.07 24.00 22.36 23.01 22.98 22.93 21.29 23.33

Cameraman 10 1 12.45 25.52 25.52 25.52 24.80 24.36 24.36 24.35 23.62 24.68

(256×256) 20 2 14.76 26.77 26.77 26.75 26.48 25.58 25.58 25.53 25.26 25.92

30 3 15.91 27.30 27.30 27.29 27.13 26.20 26.20 26.16 26.01 26.51

60 6 17.49 28.07 28.07 28.06 28.01 27.02 27.02 26.98 26.93 27.35

120 12 18.57 28.57 28.57 28.55 28.54 27.57 27.57 27.52 27.51 27.89

1 0.1 7.22 24.54 24.45 13.86 20.83 22.35 22.33 13.47 20.01 25.13

2 0.2 9.99 25.87 25.60 20.99 21.96 24.20 24.07 20.25 21.23 26.25

5 0.5 13.37 27.45 27.38 26.93 24.80 26.99 26.88 26.52 24.25 27.60

Fluorescent Cells 10 1 15.53 28.63 28.64 28.61 27.20 28.05 28.04 28.03 26.50 28.59

(512×512) 20 2 17.21 29.65 29.66 29.64 29.09 29.05 29.06 28.89 28.28 29.47

30 3 17.97 30.16 30.16 30.15 29.86 29.74 29.74 29.65 29.33 29.84

60 6 18.86 30.77 30.77 30.77 30.68 30.52 30.52 30.48 30.38 30.42

120 12 19.39 31.14 31.14 31.14 31.11 30.91 30.91 30.87 30.85 30.70

1 0.1 2.87 22.59 22.50 16.89 16.38 21.55 21.54 16.04 16.48 22.83

2 0.2 5.82 24.34 24.21 23.31 18.91 23.56 23.46 22.52 18.58 24.16

5 0.5 9.54 26.17 26.16 26.18 23.52 25.98 25.94 25.98 22.91 25.74

Lena 10 1 12.19 27.72 27.71 27.73 26.50 26.85 26.84 26.84 25.57 27.27

(512×512) 20 2 14.53 29.01 29.00 29.01 28.54 28.47 28.47 28.47 27.96 28.46

30 3 15.72 29.69 29.69 29.69 29.44 29.26 29.27 29.26 28.99 29.12

60 6 17.35 30.51 30.51 30.51 30.43 30.12 30.12 30.12 30.03 29.91

120 12 18.48 31.05 31.05 31.05 31.03 30.69 30.69 30.69 30.66 30.51

Based on the above results, and on the notion that the
proposed exact unbiased inverse Iσ is conceptually similar to
the exact unbiased inverse of the Anscombe transformation
introduced in our earlier work [7], it is evident that the
computational complexity associated with the exact unbiased
inverse is similar in both scenarios. Thus, we will not delve
deeper on this issue, and refer the reader to [7, Table V] for
complementary benchmarks. The important thing to emphasize
is that the time required for the whole denoising process
is overwhelmingly determined by the execution time of the
chosen Gaussian denoising algorithm. The components of the
variance stabilization process (applying the affine transfor-
mations (4) and the corresponding affine inverse, the GAT,
and the exact unbiased inverse) are very simple operations in
comparison, keeping in mind that the exact unbiased inverse
is implemented either via a pre-computed lookup table or via
the closed-form approximation (21).

V. DISCUSSION AND CONCLUSIONS

We have generalized our earlier work [7], [8] in order to
encompass the case of Poisson-Gaussian noise. Specifically,
we proposed an exact unbiased inverse of the generalized
Anscombe transformation for Poisson-Gaussian noise and
supplemented it with rigorous mathematical considerations.
We also proposed a closed-form approximation of this inverse,
based on our previously presented approximation for the exact
unbiased inverse of the Anscombe transformation [8].

We showed that the denoising performance associated with
the proposed exact unbiased inverse, in conjunction with a
state-of-the-art Gaussian noise removal algorithm, is compet-
itive with that of a state-of-the-art algorithm designed specif-
ically for the removal of Poisson-Gaussian noise. Further,
we observed that for low peak intensities, the performance
gain obtained by using the exact unbiased inverse instead
of the algebraic or the asymptotically unbiased inverse is
especially significant. In other words, we showed that the poor
denoising performance shown in earlier works is not simply
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TABLE II
A COMPARISON OF THE DENOISING PERFORMANCE (MEAN SSIM [12]) OF SEVERAL DENOISING ALGORITHMS AND INVERSE TRANSFORMATIONS,

USING VARIOUS PEAK INTENSITIES AND VARIOUS STANDARD DEVIATIONS σ OF THE GAUSSIAN NOISE COMPONENT. THE RESULTS ARE AVERAGES OF
TEN INDEPENDENT REALIZATIONS (EXACTLY THE SAME REALIZATIONS AS IN TABLE I).

Image Peak σ Noisy GAT + BM3D GAT + BLS-GSM UWT/BDCT

Iσ Ĩσ Iasy Ialg Iσ Ĩσ Iasy Ialg PURE-LET [4]

1 0.1 0.0442 0.5991 0.5973 0.5071 0.5652 0.5204 0.5177 0.4579 0.5007 0.5232

2 0.2 0.0736 0.6512 0.6427 0.5979 0.5992 0.5873 0.5784 0.5470 0.5437 0.5573

5 0.5 0.1238 0.7068 0.7044 0.6998 0.6663 0.6569 0.6528 0.6551 0.6131 0.6227

Cameraman 10 1 0.1661 0.7509 0.7514 0.7512 0.7343 0.6689 0.6685 0.6697 0.6419 0.6849

(256×256) 20 2 0.2085 0.7882 0.7883 0.7879 0.7840 0.7135 0.7131 0.7098 0.7012 0.7339

30 3 0.2314 0.8024 0.8024 0.8022 0.8005 0.7414 0.7413 0.7392 0.7348 0.7554

60 6 0.2657 0.8225 0.8225 0.8224 0.8218 0.7696 0.7696 0.7682 0.7666 0.7832

120 12 0.2913 0.8345 0.8346 0.8344 0.8342 0.7865 0.7866 0.7851 0.7845 0.7992

1 0.1 0.0234 0.6090 0.5938 0.3465 0.5189 0.5098 0.5002 0.2939 0.4715 0.6230

2 0.2 0.0421 0.6558 0.6031 0.4828 0.4518 0.5759 0.5302 0.4149 0.4169 0.6567

5 0.5 0.0806 0.7120 0.6943 0.6634 0.4930 0.6821 0.6558 0.6379 0.4421 0.6982

Fluorescent Cells 10 1 0.1184 0.7491 0.7515 0.7464 0.6134 0.7018 0.6993 0.7018 0.5148 0.7288

(512×512) 20 2 0.1569 0.7795 0.7811 0.7788 0.7365 0.7301 0.7292 0.7093 0.6347 0.7566

30 3 0.178 0.7980 0.7980 0.7968 0.7750 0.7608 0.7605 0.7488 0.7098 0.7661

60 6 0.2073 0.8157 0.8158 0.8152 0.8082 0.7913 0.7915 0.7861 0.7728 0.7867

120 12 0.2267 0.8241 0.8241 0.8236 0.8207 0.8021 0.8022 0.7973 0.7919 0.7913

1 0.1 0.016 0.6288 0.6290 0.6108 0.6068 0.6134 0.6135 0.5899 0.5929 0.5767

2 0.2 0.0296 0.6676 0.6670 0.6657 0.6513 0.6606 0.6604 0.6561 0.6443 0.6031

5 0.5 0.0606 0.7038 0.7031 0.7038 0.6985 0.6812 0.6804 0.6813 0.6754 0.6406

Lena 10 1 0.0946 0.7554 0.7553 0.7553 0.7538 0.6860 0.6855 0.6859 0.6841 0.7227

(512×512) 20 2 0.1343 0.7934 0.7934 0.7934 0.7930 0.7622 0.7621 0.7621 0.7616 0.7662

30 3 0.1591 0.8107 0.8107 0.8107 0.8105 0.7915 0.7915 0.7915 0.7913 0.7882

60 6 0.1965 0.8297 0.8297 0.8297 0.8297 0.8159 0.8159 0.8159 0.8158 0.8088

120 12 0.2266 0.8410 0.8410 0.8410 0.8410 0.8298 0.8298 0.8298 0.8298 0.8264

due to the inability of the GAT to stabilize the noise variance
adequately, but mostly due to applying an unsuitable inverse
transformation.

We also wish to point out that the GAT is not the only
possible choice for stabilizing the noise variance. For instance,
one may instead compute a family of optimized transforma-
tions [14] (mitigating the undershoot and overshoot observed
in Figure 1(b)), to which our denoising framework can be
accommodated by recomputing the grid of corresponding
expected values (10). However, this is not within the scope
of this paper, which focuses on the major significance of
the exact unbiased inverse transformation, not on optimized
variance stabilization.

In light of our contributions, it seems questionable whether
it is advantageous to go through the effort of designing sepa-
rate denoising algorithms for each specific noise distribution,
when comparable gains can be attained by perfecting the de-
noising algorithms in the AWGN case and addressing various
noise distributions through variance stabilization together with
a suitable inverse.
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APPENDIX

In Section A, we analyze the asymptotic behaviour of
the exact unbiased inverse Iσ of the generalized Anscombe
transformation fσ (7) for large and small values of σ, as well
as for large values of its argument D. Further, as a result of
our analysis, we also obtain a closed-form approximation of
Iσ , which can be used for any value of D and σ.

Finally, in Section B we prove (14), showing that the exact
unbiased inverse Iσ coincides with a maximum likelihood
inverse.

A. Asymptotics for the exact unbiased inverse

1) Expansion about the mean: Let

fσ(z) =

{
2
√
z + 3

8 + σ2, z > − 3
8 − σ

2

0, z ≤ − 3
8 − σ

2
. (25)
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Fig. 12. Probability density function of z when y = 0.5 and σ = 0.3 (green
area plot); generalized Anscombe transformation fσ (blue solid line) and its
Taylor expansion of order 9 centered at y (red dashed line).

Following [9], we consider the Taylor expansion of fσ (z)
about the mean y = E {z} ≥ 0 of z. Defining t = z − y and
y̆ = y + 3

8 + σ2, we have

fσ(z) =



2
√
y̆

(
1 + 1

2
t
y̆ −

1
8

(
t
y̆

)2

+

+ 1
16

(
t
y̆

)3

− 5
128

(
t
y̆

)4

+ . . . t > −y̆,

. . .+ (−1)
s
as−1

(
t
y̆

)s−1

+Rs

)
0 t ≤ −y̆,

(26)
where

as = (−1)
s+1 1 · (−1) · (−3) · . . . · (−2s+ 3)

2ss!
=

= −
s∏
j=1

1− 3

2j
= O

(
1

s3/2

)
and the series converges for |t| ≤ y̆, with the remainder term
Rs being

Rs = O
((

t

y̆

)s)
for all t ∈ R. This expansion is illustrated in Figure 12.

2) Moments: Let µk be the k-th centered moment of z. In
particular,

µ1 = 0, µ2 = y + σ2, µ3 = y, µ4 = y + 3
(
y + σ2

)2
.

More in general, µk can be expressed as a polynomial of
order at most k

2 with non-negative coefficients in the k − 1

cumulants {κj}kj=2 of z (see [15], Sect. 3.13, pp. 61–63).
In turn, each cumulant κj can expressed as the sum of the

j-th cumulants κP(y)
j and κ

N(0,σ2)
j of the Poisson P (y) and

Gaussian distribution N
(
0, σ2

)
, respectively. In particular, for

the Poisson we have κP(y)
j = y ∀j, while for the Gaussian

κ
N(0,σ2)
2 = σ2 and κ

N(0,σ2)
j = 0 ∀j 6= 2 [15]. This means

that κ2 = y + σ2 and κj = y ∀j 6= 2, and hence that µk is a
polynomial in y and y + σ2, which we denote as

µk = Pk
(
y, y + σ2

)
. (27)

Let us consider now the order of the centered moments

and absolute centered moments. As observed in [9], the k-th
absolute centered moment νP(m)

k of a Poisson variable with
mean m is of order O

(
m

1
2k
)

as m→ +∞. The same order

applies also to the centered moments µP(m)
k of the same Pois-

son variable. Since κj ≤ y+σ2 < y+ 3
8 +σ2 = y̆ and because

moments are polynomials with non-negative coefficients in the
cumulants, we have that

µ
P(y)
k ≤ µk ≤ µ

P(y+σ2)
k ≤ µP(y̆)

k ,

whence we obtain that µk is of at most order O
(
y̆

1
2k
)

as
y̆ → +∞. The same asymptotic order extends to the absolute
moments νk, because, for any odd k, νk−1 = µk−1 and νk ≤
(µk+1)

k/(k+1) (see [15], Sect. 3.6, p. 56).

3) Inverse mappings: Taking expectations on both sides of
(26), we obtain

E{fσ(z) |y, σ} = 2
√
y̆

(
1− 1

8

µ2

y̆2
+

1

16

µ3

y̆3
− 5

128

µ4

y̆4
+ . . .

. . .+ (−1)s as−1
µs−1

y̆s−1
+O

(
µs
y̆s

))
. (28)

By its very definition, the exact unbiased inverse Iσ of the
generalized Anscombe transformation fσ (7) is the mapping

E{fσ(z) |y, σ} Iσ7−→ y,
i.e.,

2
√
y+ 3

8
+σ2

(
1− 1

8

y + σ2(
y+ 3

8
+σ2

)2 +
1

16

y(
y+ 3

8
+σ2

)3 +

− 5

128

y + 3
(
y + σ2

)2(
y+ 3

8
+σ2

)4 + . . .+ (−1)s as−1

Ps−1

(
y, y + σ2

)(
y+ 3

8
+σ2

)s−1 +

+O

(
1(

y+ 3
8

+σ2
)s/2

))
Iσ7−→ y. (29)

For the particular case σ = 0, the above inverse reduces to the
exact unbiased inverse I0 [7] of the Anscombe transformation
f0, which is hence the mapping

2
√
y + 3

8

(
1− 1

8

y(
y + 3

8

)2 +
1

16

y(
y + 3

8

)3 +

− 5

128

y + 3y2(
y + 3

8

)4 + . . .+ (−1)s as−1
Ps−1 (y, y)(
y + 3

8

)s−1 +

+O

(
1(

y + 3
8

)s/2
))

I07−→ y. (30)

If we substitute y with y + σ2 in (30), we obtain

2
√
y+ 3

8
+σ2

(
1− 1

8

y+σ2(
y+ 3

8
+σ2

)2 +
1

16

y+σ2(
y+ 3

8
+σ2

)3 +

− 5

128

y+σ2+ 3
(
y+σ2

)2(
y+ 3

8
+σ2

)4 +. . .+(−1)sas−1

Ps−1

(
y+σ2, y+σ2

)(
y+ 3

8
+σ2

)s−1 +

+O

(
1(

y+ 3
8

+σ2
)s/2

))
I07−→ y+σ2. (31)

Of course, (30) and (31) define the same inverse I0, but the
similarities between Iσ and I0 become more evident when
comparing the mapping (29) with (31). Indeed, if we subtract
σ2 from I0, we obtain a mapping which coincides with Iσ
except for some high-order terms in the argument of the
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mapping:

2
√
y + 3

8
+ σ2

(
1− 1

8

y+σ2(
y+ 3

8
+σ2

)2 +
1

16

y+σ2(
y+ 3

8
+σ2

)3 +

− 5

128

y+σ2+ 3
(
y+σ2

)2(
y+ 3

8
+σ2

)4 +. . .+(−1)sas−1

Ps−1

(
y+σ2, y+σ2

)(
y+ 3

8
+σ2

)s−1 +

+O

(
1(

y+ 3
8

+σ2
)s/2

))
I0−σ2

7−→ y. (32)

The mappings (29) and (32) can be written in more compact
form as

Iσ (E {fσ (z) |y, σ}) = y, (33)

I0 (E {fσ (z) |y, σ}+ δ (y, σ))− σ2 = y, (34)

where δ (y, σ) is the difference between the left-hand sides of
(32) and (29):

δ (y, σ) =
1

8

σ2(
y+ 3

8
+σ2

)5/2 − 5

64

σ2(
y+ 3

8
+σ2

)7/2 + . . .

. . .+ (−1)sas−1 · 2 ·
Ps−1

(
y+σ2, y+σ2

)
− Ps−1

(
y, y+σ2

)(
y+ 3

8
+σ2

)s−3/2
+

+O

(
1(

y+ 3
8

+σ2
)(s−1)/2

)
. (35)

From (35) we can immediately see that δ (y, σ) → 0 as y +
3
8 +σ2 → +∞. In particular, δ (y, σ) = O

(
σ−3

)
as σ → +∞

and δ (y, σ) = O
(
y−5/2

)
as y → +∞ for a fixed σ.

To consider the case of small σ, let us first show that we
can factor out σ2 from the difference Pk

(
y + σ2, y + σ2

)
−

Pk
(
y, y + σ2

)
. It suffices to examine the differences di,j

between the corresponding monomials of equal order,

di,j =
(
y + σ2

)i+j − yi (y + σ2
)j

i+ j ≤ k − 1

and observe that, upon expanding the powers, both the left
term (minuend) and the right term (subtrahend) yield only one
monomial which does not have a factor σ2, namely yi+j , and
that this monomial vanishes in the subtraction. Thus,

Pk
(
y + σ2, y + σ2

)
− Pk

(
y, y + σ2

)
= σ2Qk

(
y, σ2

)
,

where Qk
(
y, σ2

)
is polynomial in y and σ2, again of the order

O
((
y+ 3

8 +σ2
) 1

2k
)

as y+ 3
8 +σ2 → +∞ and O(1) as σ → 0.

Then, for small σ

δ(y, σ) = σ2

(
1

8

1(
y+ 3

8
+σ2

)5/2 − 5

64

1(
y+ 3

8
+σ2

)7/2 + . . .

. . .+ (−1)s as−1

2Qs−1

(
y, σ2

)(
y+ 3

8
+σ2

)s−3/2
+O(1)

)
, (36)

and therefore δ (y, σ) = O
(
σ2
)

as σ → 0.
In conclusion, noting that I0 is a smooth function with

derivative I ′0, (33) and (34) yield

Iσ(E{fσ(z) |y, σ}) = I0(E{fσ(z) |y, σ})− σ2+

+O(I ′0(E{fσ(z) |y, σ}))O(δ(y, σ)) ,

where the orders for δ (y, σ) found above apply.
Equation (29) shows also that E{fσ(z) |y, σ} is large only

if y or σ are large, i.e., E{fσ(z) |y, σ} → +∞ if and only if
y̆ = y+ 3

8 +σ2 → +∞. Therefore, the above analysis implies
that Iσ(D) approaches I0(D)−σ2 for large D as well as for

large or small σ. We make this statement more precise in the
next section.

4) Direct asymptotics with respect to D and σ: Let D =
E{fσ(z) |y, σ}. For large y̆, we see from (28) that y̆ ∼ D2.
Hence, (35) yields δ(y, σ) = O

(
σ2D−5

)
. Since the derivative

I ′0(D) approaches D
2 for large D, we then have

y = Iσ(D) = I0(D)− σ2 +O
(
σ2D−4

)
. (37)

For a given fixed σ (and thus considering large y), this
becomes

y = Iσ(D) = I0(D)− σ2 +O
(
D−4

)
, (38)

whereas for a fixed y (and thus considering large σ), we have
σ2 ∼ y̆ ∼ D2 and, consequently,

y = Iσ(D) = I0(D)− σ2 +O
(
D−2

)
= I0(D)− σ2 +O

(
σ−2

)
. (39)

Finally, for fixed y and σ → 0, we have
y = Iσ(D) = I0(D)− σ2 +O

(
σ2
)
. (40)

Note that there is no analogous equation for the case σ 6= 0
and D approaching E{fσ(z) |0, σ} (i.e., small y), as for this
case Iσ(D)−I0(D)−σ2 converges to a number that, although
quite small (as shown by (24) in Section III-F), is typically
non-zero. This notwithstanding, (39) and (40) are valid also
for y = 0.

B. Derivation of the ML inverse

To prove (14), let us consider two cases. First, if D ≥
E {fσ (z) | 0, σ}, (13) can be maximized by choosing y in
such a way that the maximum of the probability density
function (PDF) p (D | y) coincides with D. In other words,
y = Iσ (D) is such that E {fσ(z)|0, σ} = D, and therefore it
maximizes p (D|y).

Second, if D ≤ E {fσ(z)|0, σ}, then D−E {fσ(z)|y, σ} ≤
0 for all y ∈ [0,+∞). Because the mapping y 7→ D −
E {fσ(z)|y, σ} is strictly decreasing, and because variations
of y correspond to translations of the PDF, p (D|y) =
u0 (D − E {fσ(z)|y, σ}) is maximized by taking the smallest
value of y, i.e., y = 0, thus giving IML(D) = 0.

Note that this proof is essentially the same as in [7] for the
pure Poisson case, and is presented here for completeness.


