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We present a two-dimensional coarse-grained �CG� model for a lipid membrane composed of
phospholipids and cholesterol. The effective CG interactions are determined using radial distribution
functions �RDFs� from atom-scale molecular dynamics simulations using the inverse Monte Carlo
�IMC� technique, based on our earlier work �T. Murtola et al., J. Chem. Phys. 121, 9156 �2004�; J.
Chem. Phys. 126, 075101 �2007��. Here, the original model is improved by including an internal
discrete degree of freedom for the phospholipid tails to describe chain ordering. We also discuss the
problem of RDF inversion in the presence of internal states, in general, and present a modified IMC
method for their inclusion. The new model agrees with the original models on large-scale structural
features such as density fluctuations in pure dipalmitoylphosphocholine and cholesterol domain
formation at intermediate concentrations and also indicates that ordered and disordered domains
form at all cholesterol concentrations, even if the global density remains uniform. The inclusion of
ordering also improves transferability of the interactions between different concentrations, but does
not eliminate transferability problems completely. We also present a general discussion of problems
related to RDF inversion. © 2009 American Institute of Physics. �DOI: 10.1063/1.3167405�

I. INTRODUCTION

With advances in computer power, atomistic simulations
using classical molecular dynamics �MD� have become a
standard tool in studies of complex biomolecular systems
such as lipid bilayers. However, even with present-day com-
puters and software, atom-scale simulations can only access
length scales up to perhaps 20 nm and time scales of the
order of microseconds or less.1,2 Hence, simplified coarse-
grained �CG� models are needed for studies of many phe-
nomena occurring at larger scales,3 examples being phase
separation and other structural rearrangements.

A large amount of effort has been devoted to accurate
parametrization of atomistic potential energy functions,4–9

but following similar routes for CG models is less straight-
forward. Because of the lower level of detail, quantitative
reproduction of �some� properties for some specific system
can typically only be achieved by a parametrization for that
specific system. In such parametrization efforts, it is often
advantageous to use information from atom-scale models in
a systematic fashion. Other approaches are also possible: For
example, the popular MARTINI model10–12 has been param-
etrized similarly to atomistic potentials, using densities and
partition coefficients between different substances. However,
such an approach becomes more and more difficult as the
level of detail decreases.

Systematic CG approaches calculate a set of target quan-
tities from the atom-scale simulation, and then attempt to
parametrize the CG model such that these quantities are re-
produced as accurately as possible. Research on these meth-
ods has focused on two different approaches, using either
structural information13–15 or forces.16–19 In the first, the ra-
dial distribution functions �RDFs� are calculated for the CG
particles from the atomistic simulation, and pairwise interac-
tions are then constructed such that the original RDFs are
reproduced. In the second, a similar procedure is carried out
for pairwise forces using a set of atomistic configurations:
The forces on each CG particle are calculated for each con-
figuration, and a least-squares fit is performed to obtain the
CG forces. Although at first sight very dissimilar, the force-
matching approach can also be related to the structural prop-
erties of the original system.20

The approaches above focus on determining CG interac-
tions from atom-scale simulations. Another problem in con-
structing CG models is choosing good degrees of freedom: It
is difficult to determine a priori whether some choice is bet-
ter than another in describing the underlying system, given
some constraints on the complexity of the model. A few dif-
ferent approaches have been proposed for this problem,
mostly in the field of protein simulations.21–25 These are ei-
ther based on analysis of a single structure21–23 or on preser-
vation of dynamical information.24,25 Use of clustering algo-
rithms or self-organizing maps in this context has also been
discussed.26,27a�Electronic mail: teemu.murtola@tkk.fi.
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This paper focuses on the problem of determining the
pairwise interactions, given the degrees of freedom and the
RDFs. This is the so-called inverse problem in classical sta-
tistical mechanics, and it is known that such interactions are
unique and they exist whenever such RDFs can be
produced.28–30 However, there are often practical problems in
determining this unique interaction; one aim of this paper is
to critically discuss these issues.

As a model system, we use a lipid bilayer composed of
dipalmitoylphosphocholine �DPPC� and cholesterol, a sys-
tem which we have also previously studied both at atomistic
level31 and using coarse graining.32,33 Already such a two-
component system shows interesting phase behavior, the mi-
croscopic details of which are still elusive, in particular, at
intermediate cholesterol concentrations �see, e.g., Ref. 34
and references therein for recent experiments, and Ref. 35
for theoretical work�. Computer simulations would, in prin-
ciple, be ideal to study their detailed behavior. However,
both the length and time scales needed to see phase separa-
tion in multicomponent lipid bilayers are currently beyond
the reach of atomistic simulations. Hence, CG models are
needed, and here we focus on a very simple model, with the
idea that even such simple models could be able to give
insight into the phase behavior if carefully parametrized.
Also, a high degree of coarse graining, i.e., going for as
simple models as possible, provides a highly nontrivial test
case for development and assessment of CG models and
methodology.

In our previous CG studies, we have constructed simple
two-dimensional �2D� models for the large-scale structure of
DPPC/cholesterol mixtures.32,33 In the first model,32 each
molecule was replaced by a single pointlike particle, and the
second model33 extended this description to include three
particles for DPPC, one for the headgroup and one for each
tail. The particles were thought of as describing the center of
mass �CM� of �the part of� the molecule, and effective inter-
actions were constructed to reproduce RDFs calculated from
atomistic simulations. In this paper, we take one step further
and include the ordering of the DPPC tails in the model
using a discrete, internal degree of freedom: Each chain has
a two-state degree of freedom that labels the chain as either
ordered or disordered, similarly to the phenomenological
models of Nielsen et al.36,37 Hence, this paper completes the
process of systematically constructing a CG model that is
similar to these phenomenological models; one of the origi-
nal motivations was the success of these models in reproduc-
ing the phase behavior of lipid/sterol mixtures. As the inter-
actions in the above phenomenological models do not
depend on the thermodynamic state,36,37 it is also interesting
to study the effect of the new degrees of freedom on the
transferability of the CG interactions: In the earlier models
without internal states, transferability was quite poor, in par-
ticular, across phase boundaries. It should then be expected
that including the internal states would improve transfer-
ability.

In this paper, we will first discuss the theoretical back-
ground of systematic coarse graining and RDF inversion in
Sec. II. Next, Sec. III discusses the inverse Monte Carlo
�IMC� method,13 which has been used in this work to

achieve RDF inversion. Improvements and changes to the
IMC algorithm, necessary for construction of the present
model, are also presented. The construction of the new CG
model is presented in Sec. IV, and associated problems are
discussed. Monte Carlo �MC� simulations of larger systems
using the model are described and discussed in Sec. V. Fi-
nally, Sec. VI contains a thorough discussion of the results
and also discusses the RDF-based coarse graining approach
in general.

II. COARSE GRAINING AND CLASSICAL
INVERSE PROBLEM

The aim of systematic coarse graining is to reproduce
the properties of the microscopic model as well as possible.
If the microscopic degrees of freedom R� and the CG degrees
of freedom r� are connected by a mapping function r�=M� �R� �,
we can define an effective Hamiltonian Heff as

e−�Heff�r�� =� e−�H�R� ���M�R� � − r��dR� , �1�

where H�R� � is the configurational part of the microscopic
Hamiltonian and ��x� is the Dirac delta function. Although
this equation is typically written such that r� contains only the
CG bead positions, it is also valid more generally. In particu-
lar, we can include discrete internal degrees of freedom into
r�; in this case, the mapping function should also give values
for the internal degrees of freedom. For clarity, we do not
write these internal degrees of freedom explicitly, but it is to
be understood that they are included in r�.

The right-hand side of Eq. �1� is the sum of the Boltz-
mann factors of all microstates consistent with specified val-
ues of the CG degrees of freedom r�; the left-hand side is just
the Boltzmann factor of a system with Hamiltonian Heff.
Hence, if we could sample CG configurations according to
Heff defined by Eq. �1�, all properties that depend only on the
CG degrees of freedom r� could be calculated exactly. Note
that Heff is a free energy of a particular configuration r�, and
hence contains entropic effects in addition to the potential
energy. For the same reason, Heff depends on the thermody-
namic state.

It is not practical to estimate Heff directly for several
reasons: �i� r� can be high-dimensional, making it impossible
to store Heff, e.g., on a grid, �ii� as such, Heff can only be
applied to a system identical in size to the microscopic one,
and �iii� evaluation of any free energies from microscopic
simulations is costly. For problems �i� and �ii�, it is possible
to approximate Heff with

Heff = w0 + �
i,j

w2�rij� + �
i,j,k

w3�rij,rik,rjk� + ¯

� V0 + �
i,j

V2�rij� , �2�

where we have assumed that the system is isotropic and ho-
mogeneous, and wn is the direct n-particle interaction than
can be fixed by requiring that Eq. �2� should hold for all N
with the same functions wn, where N is the number of par-
ticles. The sum on the first line can in principle range up to
an N-body term. The second line suggests a computationally
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convenient approximation: The sum is replaced by an effec-
tive pair interaction V2�r�, which also contains effects from
the higher-order terms. In this form, we only need to store
the pair interaction, and the form can also be extrapolated to
larger systems. It should be noted that the approximation �2�
results in an additional state dependence of Heff: The best
V2�r� may have a different state dependence than the exact
Heff. This state dependence can then lead to inconsistent ther-
modynamics if the origins of the pair interaction are not kept
in mind.38 Also, although the constant and the single-particle
field �absorbed into V0 in Eq. �2�� are independent of particle
positions, they may depend on the thermodynamic state and
should be taken into account to treat thermodynamics
accurately.39

Approximation �2� does not solve problem �iii�; hence,
some derived quantity, not Heff itself, needs to be used for
obtaining V2�r�. Force matching uses derivatives of Eq. �1�
with respect to r�;18 the approach discussed here is based on
structural quantities. The structural quantity most often used
in this context is the RDF g�r�: It gives the probability of
observing a particle at distance r from the origin, given that
there is one at the origin. The normalization is such that
g�r�=1 everywhere for a homogeneous distribution, i.e., in
an ideal gas.

It is not immediately clear that taking the RDFs as the
target would result in well-defined interactions. A partial an-
swer to this problem was provided by Henderson in 1974,
who proved that if two systems with pairwise interactions
give the same RDFs, the Hamiltonians can only differ by a
constant, i.e., the pairwise interactions are unique.28 Ten
years later, a rigorous proof was given for the existence of
such interactions.29,30 It has also been shown that of all sys-
tems that reproduce the given RDFs, the one with pairwise
interactions has the highest entropy.40 More recently, RDF
matching has been shown to be equivalent to maximizing the
likelihood that the configurations produced by the CG model
produce the atomistic probability distribution.41

The uniqueness proof is a straightforward application of
the inequality

F2 − F1 � �H2 − H1	1, �3�

where H1,2 are the Hamiltonians of the two systems, F1,2 are
their free energies, and the equality holds only if the Hamil-
tonians differ by a constant.28 The existence proof is more
complex, but the basic idea is to show that the functional
F�V� defined by

�F�V� = ln
exp�− �
V�x,x����2��x,x��dxdx��


exp�− ��W�x1, . . . ,xN� + �i,jV�xi,xj���dNx
�4�

attains its maximum with a pair potential V, which is then
shown to give the correct RDF g �which is the normalized
version of the target two-particle density ��2��.29,30

W�x1 , . . . ,xN� is an arbitrary fixed N-particle interaction that
acts in the system. The proof by Chayes et al.29,30 then shows
that for any such W �with some finiteness criteria� and any
��2� that is a two-particle reduction of an admissible
N-particle density, there exists a unique pair potential that
reproduces ��2�. Here, admissibility just refers to finiteness of
certain thermodynamical functionals.30 We also note that F

differs from the relative entropy defined in Ref. 41 only by a
constant that does not depend on V. It should be noted that in
the commonly used scenario where the system has a finite
volume, the existence proof is strictly valid only in a system
with the same volume as in which the RDFs were deter-
mined. In a system with a different volume, the pair interac-
tions will also, in general, be different. Hence, when devising
methods for the inversion, one should perform fitting for
systems with identical sizes, as also noted in the original
IMC paper.13

As discussed above, the RDFs calculated from any simu-
lation define a unique set of effective pair interactions under
quite general conditions. Thus, using them as a target in
coarse graining results, at least theoretically, in a well-
defined model. By construction, this model then reproduces
the short-range structure, although using the effective inter-
actions in larger systems than in which they were determined
can lead to minor changes in the RDFs.33 In principle, the
thermodynamics of the system can also be recovered through
the compressibility route38,42 because the equation only in-
volves RDFs. Other thermodynamic equations, such as the
virial pressure, lead, in general, to different results.38 Also,
three-particle correlation functions will, in general, be differ-
ent from the atomistic ones.42,43

III. IMC METHOD

IMC is one practical method for constructing the unique
pair interactions that lead to given RDFs.13 For other ap-
proaches, see, e.g., Ref, 15 and references therein. In this
section, we briefly describe the IMC method and our modi-
fications and improvements.

A. Basic idea

The central idea of the IMC method is to write the
Hamiltonian of the system in the form13

H = �
�

S�V�, �5�

where the sum goes over potential bins, V� is the value of the
potential within the bin �, and S� is the number of particle
pairs that fall within this bin. Now, �S�	MD, where the sub-
script MD indicates that the average is calculated for the
atomistic positions mapped to the CG degrees of freedom, is
a grid approximation to the target RDFs that we want the CG
model to reproduce. Using Eq. �5� for the Hamiltonian, one
can then write a linear approximation for the change in �S�	
in terms of changes to V� as13

��S�	 = �
�

��S�	
�V�

�V�,
��S�	
�V�

= −
�S�S�	 − �S�	�S�	

kBT
.

�6�

IMC then proceeds as follows. First, we take an initial guess
V0 for the potentials and evaluate �S�	 and the derivatives
from simulations of the CG model that employ this initial
potential. Then, we set ��S�	= �S�	MD− �S�	. This allows us
to solve for �V from a linear set of equations and set V1

=V0+�V, resulting in a better approximation for the interac-
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tions. This procedure is then iterated until the RDFs match
sufficiently well. Any interaction �or any other quantity
which appears as such a linear term in the Hamiltonian� for
which a target value �S�	MD �or an equivalent quantity� is
known can be included in the iteration, although for bonded
interactions, special care must be taken to make the solution
to the matrix equation unique: In this case, the derivative
matrix has a zero eigenvalue for each bonded potential, cor-
responding to addition of a constant to the potential.33

Here, we note an alternative approach for arriving at the
same equations: If the functional �4� is maximized with
Newton’s method and the Hamiltonian �5� is used, the equa-
tion for one iteration becomes exactly Eq. �6�. This also
gives some insight into the convergence of IMC: if the de-
rivatives can be calculated exactly and the trial potential is
close to the correct one, Newton’s method converges
quadratically.44 However, the effect of noise on the deriva-
tives requires more careful analysis, which is beyond the
scope of the present discussion. Also, if the trial potential is
not close, there is no guarantee of convergence; the direction
of the change is an ascent direction for Eq. �4�, but the step
may be too long.

B. Regularization and thermodynamic constraints

As described previously, it is advantageous to change the
linear equation to a quadratic minimization problem:33 In-
stead of solving a matrix equation of the type Ax=b, we
minimize 
Ax−b
. In this form, it is possible to apply effi-
cient regularization to better deal with noise in the input data.
Further, it is also possible to add a thermodynamic constraint
to constrain the surface tension of the system to avoid un-
physical interactions.33 That is, the potentials can be deter-
mined under the constraint that the surface tension � is con-
strained to a predetermined value. We define � using the
standard virial formula,

�V = �Ekin	 +
1

2��
i�j

f ijrij� , �7�

where �Ekin	=NkBT is the average kinetic energy. Here, V is
the area of the system and f ij and rij are the force and the
distance, respectively, between particles i and j. The internal
degrees of freedom only enter through the forces f ij, which
depend on the internal states of the involved particles. The
constraint can be treated identically to Ref. 33: The con-
straint that � should remain at a particular value is added
through a Lagrange multiplier. One should note that the
value of the surface tension defined by Eq. �7� is not the
thermodynamic surface tension of the system because the
interactions depend on the thermodynamic state �see Sec. II�.
Because of this, the value needs to be fixed using some aux-
iliary quantity. In Ref. 33, the area compressibility was quali-
tatively fitted to experimental values, and the same surface
tensions are also used in this study to facilitate comparison.
It is also worth to note that the exact value of the surface
tension does not alter the qualitative results obtained from
the model.33

C. Internal degrees of freedom

For the present model, we also have discrete degrees of
freedom that describe the chain ordering. In practice, this
means that the degrees of freedom for a single chain are now
xi= �r�i ,si�, where si� �0,1�. Here, and also in the rest of the
manuscript, we refer to particle types when all internal states
are considered as a single type and particle kinds when each
internal state is separated. The states si enter the description
through two ways: �i� each internal state is treated as a sepa-
rate particle kind, determining the pair interactions through
which the particle interacts, and �ii� additional terms are
needed in the Hamiltonian to describe the internal �free� en-
ergies of the states. Full treatment of the issue is given in
Appendix A; here we just present the end result that the
Hamiltonian to be parametrized becomes

H = �
�

S�V� + �
i

Eini + �
i,j

Eij�ni�nj . �8�

Here, Ei and Eij are parameters and ni are the numbers of
particle of each kind. In Eq. �8�, �ni=ni−ni

ave measures the
fluctuations from an arbitrary constant reference number
ni

ave. Since the total number of particles of each type remains
constant, the ni are not all independent of each other. To
make the Hamiltonian unique, Eq. �8� should be interpreted
such that the sums only include an independent set of the ni.
In the case of the present model, this means that the total
number of tails is a constant. Hence, only the number of
disordered tails �denoted as nd� is required �or equivalently
no, the number of ordered tails�. The Hamiltonian then be-
comes

H = �
�

S�V� + �End + Efluct�nd
2, �9�

where we have used �E to denote the internal energy differ-
ence between the ordered and disordered kinds and Efluct for
the second-order term.

Full justification for Eq. �8� is given in Appendix A.
Here it suffices to note that the second-order term in ni,
which distinguishes the system from a standard semigrand
canonical ensemble, is needed for precise control of the num-
ber of particle pairs in the system: ninj terms appear in the
number of pairs in the system, and a certain number of pairs
is required for exact reproduction of the two-particle
densities.

The nonlinearity in ni makes it nontrivial to generalize
the model to a larger system as the Hamiltonian as such is no
longer an extensive quantity. If the particle number increases
by a factor M, ni

ave should be transformed to Mni
ave to pre-

serve �ni	 /N, where N is the total particle number. However,
the Eij terms can be treated in two different ways: �i� Eij are
kept constant or �ii� Eij are scaled to Eij /M. However, neither
works well if Eij �0, as �ii� does not preserve the energetics
of flipping a single state, while �i� can make the cases ni=0
and ni=N exceedingly favorable. As accurate matching of
the RDFs seems to lead to such problems in the present case,
we have only used interactions with Eij 	0 for larger sys-
tems, and the other cases are only studied in a system iden-
tical in size to the underlying atomistic simulations.
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It is also possible to apply the IMC in such a way that Eij

is set to zero and not included in the iteration, also neglecting
the value of ��ni�nj	 during the inversion. This corresponds
to the standard semi-grand canonical ensemble. This can be
combined with any of the implementations discussed below
and is applied in some of the calculations discussed in Secs.
IV C and V.

D. Straightforward implementation

IMC can be generalized straightforwardly to Hamilto-
nians of the form �8� since all the parameters appear linearly
in the Hamiltonian. The calculation of the derivatives can be
carried out as before, and the linearization �6� still holds with
additional terms for the derivatives with respect to Ei and Eij.
A similar linearization can also be written for the ��ni	 and
���ni�nj	, which results in an extended set of linear equa-
tions that can be solved for changes in the potentials and the
internal energies. Subsequently, this approach is referred to
as method A. In Sec. IV C, we also briefly employ a variant
where Ei are fixed and the linearization �6� for each ��ni	 are
used as a constraint to keep �ni	 at its target values. This
variant is referred to as A�.

E. Alternative implementations

There are issues with method A that may result in poor
generalizability of the determined interactions to larger sys-
tems; these are discussed in more detail in Secs. IV C and
VI. Hence, we have implemented several alternative ap-
proaches, collectively referred to as method B. The basic
principle in this approach is to optimize the RDFs and
the energy parameters separately. This is achieved by calcu-
lating the target pair counts for each iteration as S�

t

= �S�	MD�N�	 / �N�	MD, where N� is the number of pairs inter-
acting through the interaction associated with S�. This effec-
tively separates the changes in the structure from changes in
the number of particle pairs. This is in contrast with method
A, where the target pair counts are calculated directly from
the target two-particle density �S�

t = �S�	MD� and remain the
same for every iteration. For consistency, we also need to use
Eq. �6� for �S�	 without the terms coming from Ei or Eij in
method B. Essentially, method B then solves �V as if there
were no internal states, only scaling the target pair counts
appropriately.

Several different subimplementations of method B are
possible, differing in the way the derivative matrix
��S�	 /�V� is evaluated.

�1� Use Eq. �6� directly �without terms from Ei or Eij�.
�2� Do an ad hoc modification to factor out the effects of

state occupancy changes on the pair counts, using a
replacement S�→S��N�	 /N� inside all the expectation
values in Eq. �6�.

�3� Calculate the derivative for �S�	 / �N�	 instead of �S�	.

Of these, �i� is the simplest, but it does not necessarily
converge to the correct solution because the derivative ma-
trix still contains effects from changes in the number of
pairs. The concrete effect is that Ei remain close to their

initial values because any change in the interactions that
would change the pair counts is disfavored. This limits the
space of interactions that the method searches, but within
this space, it still finds a good match for the RDFs. Approach
�ii� cannot be easily justified theoretically, but solves the
above problem. �iii� leads to a nonsymmetric matrix and has
stability problems and was only studied briefly in this work.
The first two approaches are referred to as B� �for �i�� and B,
respectively. The reason for this labeling becomes more ap-
parent when comparing with method A, since A and B, and,
respectively, A� and B� behave similarly. The last approach
is referred to as B�iii�.

The implementation so far discussed does not consider
how Ei and Eij should change. For all the subimplementa-
tions, we have used the same approach to adjust these pa-
rameters. First, after the potential change has been evaluated,
Ei are adjusted using the linearizations �6� for ��ni	 to keep
�ni	 constant. An additional adjustment is then made to ob-
tain the desired ��ni	 and ���ni�nj	, using the iteration for-
mulas derived in Appendix B. Here, let us only quote the
final formulas,

�E�2� =
1

2�
��
−1� , �10�

�
��E�1� − 2�E�2�nave� = − ��n	 + �
�
−1�n	� . �11�

Here, E�1� and E�2� are the vector and matrix formed from Ei

and Eij, respectively, �n	 is a vector with the average state
occupancies from the CG simulation, and 
 is a matrix with
the fluctuations in the state occupancies from the CG simu-
lation. In our implementation, we have neglected the second
term in the latter equation because �
 is typically small.

IV. MODEL CONSTRUCTION

A. General

As before, we construct a simple model with the follow-
ing assumptions.32,33 First, the interaction between the two
monolayers is assumed to be weak, allowing us to construct
a model for a single monolayer only. The effect of undula-
tions is also assumed weak. Together, these assumptions al-
low a 2D model to be constructed. Also, we assume that the
system can be adequately described with pairwise and iso-
tropic effective potentials.

Our new model uses three particles per each DPPC mol-
ecule, similarly to Ref. 33. One particle is used for the head-
group and the glycerol parts and one for each of the tails.
One particle is used for each cholesterol molecule. These
particles are thought to describe the CM positions of the
corresponding groups of atoms. Each tail particle has a two-
state internal degree of freedom that describes ordering. This
state can change during the simulation, and it selects the
nonbonded interaction tables that the particle uses. Although
the tails of a DPPC molecule are not completely equivalent,
we assume that the nonbonded interactions of these particles
can be treated identically.

For bonded interactions, there are two separate head-tail
bond interactions �one for each tail� and one tail-tail interac-
tion, but no angle potentials. A standard practice in many
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simulations is to use exclusions for bonded interactions, i.e.,
nonbonded interactions are ignored between particles con-
nected by bonds. However, the derivation for Eq. �8� is
strictly valid only when exclusions are not used. Hence,
when considering models with the full Hamiltonian �Efluct

�0�, nonbonded interactions are also present between
bonded pairs, in contrast to Ref. 33. If Efluct is zero, the
treatment of exclusions is theoretically not as important, and
in this case we did use exclusions. For simplicity, we assume
that the bonded interactions do not depend on the ordering
state of the particles.

With the above assumptions, the model consists of four
kinds of particles �headgroup, ordered and disordered tails,
and cholesterol� that interact through ten different non-
bonded interactions �one for each pair� and three different
bonded interactions. There are also two internal energy pa-
rameters �see Eq. �9��. We set the reference point for the
fluctuations as nd

ave= �nd	MD.
As with the previous models,32,33 the IMC process re-

quires the RDFs between all pairs of CG particles and the
areas per molecule from the atomistic simulations. In addi-
tion, �nd	MD and ��nd�nd	MD are needed. For method A, we
need the two-particle density �S�	MD and not the RDFs di-
rectly; hence, we also need the expected number of particle
pairs for each RDF �or we can calculate the two-particle
density directly�.

In order to calculate the above quantities from atomistic
simulations, we need a definition that allows us to character-
ize any conformation of a DPPC tail as either ordered or
disordered. For this purpose, we have decided to use the
chain order parameter that is commonly used in characteriz-
ing the ordering of the tails, even when considering instan-
taneous order.35,45,46 Here, we have averaged the order pa-
rameter over all carbon atoms in the chain,

Szz =
1

Nc − 2 �
i=2

Nc−1
1

2
�3 cos2 �i − 1� , �12�

where Nc=16 is the number of carbon atoms in a chain and
�i is the angle between the bilayer normal and the orientation
of the chain at the ith carbon. We have taken the z axis as the
bilayer normal, and the orientation �i is calculated using the
vector connecting the carbons i−1 and i+1. A chain was
identified as being ordered if Szz�C, where C is a cutoff
value whose selection will be discussed below.

B. MD analysis

The MD simulations used as the basis for the model
construction were the same as with the previous models in
Refs. 32 and 33, and details of the simulations can be found
in Ref. 31. Briefly, the simulated systems consisted of 128
fully hydrated lipid molecules, i.e., DPPCs and cholesterols.
The Berger set of parameters was used for DPPC,47 and cho-
lesterol parameters were taken from Höltje et al.48 The simu-
lations were performed with 0, 3, 8, 13, and 19 cholesterols/
ML, corresponding to cholesterol molar concentrations 0%,
5%, 13%, 20%, and 30%. Each simulation was run
for 100 ns in the NPT ensemble at T=323 K using the

GROMACS simulation package,49 and first 20 ns was treated
as equilibration.

Figure 1 shows the distribution of instantaneous chain
Szz values for the different cholesterol concentrations. The
distribution is smooth with a single maximum at all concen-
trations, showing that there is no clear distinction between
ordered and disordered chains. Hence, the selection of the Szz

cutoff for our two-state model is somewhat arbitrary and is
only limited by the condition that at all concentrations, there
should be a significant fraction of both ordered and disor-
dered chains to give reasonable statistics for all the RDFs.
Also, a priori it is reasonable to take the cutoff at the same
value for each concentration. Based on these considerations,
a value of 0.6 was selected. However, it should be noted that
other cutoffs could also be used without any clear advantage
or disadvantage. More than two states could also be justified,
but would lead to a significant increase in the number of
interactions and would also increase the statistical noise in
the RDFs. This makes it a substantial amount of work to
construct such models. As there are no clear a priori advan-
tages over two-state models, such models were not studied in
this work in any detail.

Figure 2 shows the RDFs calculated with an ordered
chain defined by Szz�0.6. The fraction of ordered chains as
a function of cholesterol concentration is also shown, to-
gether with the fluctuation around this average value.
Bonded RDFs are not shown, as they are identical to those
published previously33 and are not important for the present
discussion. The RDFs were calculated from the 2D projec-
tions of the CM positions corresponding to the CG particles,
considering each monolayer separately. Note that bonded
pairs were not excluded in the calculation, i.e., the results
cannot be directly compared to those in Ref. 33, where ex-
clusions were used. This treatment is in line with the selected
form of the Hamiltonian, i.e., exactly those pairs that would
interact through a certain CG pair potential were included in
the calculation of the corresponding RDF.

Qualitatively, the RDFs behave as in Ref. 33, i.e., order
generally increases with increasing cholesterol concentra-
tion, while still maintaining a liquidlike structure. This effect
is most clearly seen in the RDFs in the tail region, i.e., the
two bottom rows. However, the division of the tails into
ordered and disordered shows that the heights of the RDF
peaks increase the most for the RDFs involving the disor-
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FIG. 1. Order parameter distributions for different cholesterol concentra-
tions calculated from MD data. The vertical dotted line shows the cutoff
employed for classifying a chain as ordered �see text for details�.
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dered tails. In contrast, the nearest-neighbor peak of ordered
tails actually decreases when cholesterol concentration in-
creases. Nevertheless, the minima become deeper for all the
RDFs. The fact that the ordering of disordered tails also in-
creases indicates that the presence of cholesterol has an ef-
fect that is not only mediated by tail ordering, at least when
ordering is measured using Szz only �the RDFs behave simi-
larly for other Szz cutoffs as well�. Also, the ordered-
disordered RDF shows much smaller changes than the oth-
ers, the peaks remaining small. This indicates that tails prefer
to be next to other tails which are in the same state, i.e., that
ordered and disordered tails tend to occupy different regions.
The ordered fraction behaves as expected: With increasing
cholesterol concentration, more and more tails become or-
dered. Fluctuations around the average are quite small, with
a maximum at 20% concentration. This maximum is easily
explained by the fact that at this concentration, the ordered
fraction is closest to 0.5, i.e., entropic effects from the dif-
ferent numbers of microstates for different fractions limit the
fluctuations least at this concentration.

Areas per molecule were also obtained for each choles-
terol concentration by dividing the average total box area by
the number of molecules in one monolayer �i.e., by 64�. The
values are identical to those used for the previous
models31–33 and are omitted here. It is sufficient to note that
the area decreases monotonically with increasing cholesterol
concentration, starting from 65 Å2 for the 0% concentration
and ending at 42 Å2 at the 30% concentration.31 The linear
sizes of the MD systems hence decreased from 6.5 to 5.2 nm.

C. Determination of interactions

Several sets of effective interactions for the CG particles
were constructed using the different IMC approaches de-

scribed in Sec. III, using the RDFs in Fig. 2 �or ones with
exclusions�. The details of the calculations are given in Table
I and discussed in more detail below. The names in the first
column of the table are used to refer to the calculations
throughout the text.

For all calculations, a separate interaction was used for
each pair used for RDF calculation �Fig. 2 plus three bonded
interactions33�. The cutoff for all interactions was 2.5 nm, a
limit imposed by the fact that the RDFs can only be calcu-
lated up to half the linear size of the system. The input RDFs
and the effective potentials were pre- and postprocessed
identically to the previous model �Ref. 33�, i.e., a spline-
fitting algorithm50 was used to smooth the input RDFs and
the final potentials, and power-law forms were used for the
potentials in regions where the RDFs were zero.
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FIG. 2. RDFs for pairs of CG beads calculated from atomistic MD simulations calculated without exclusions. The fraction of ordered chains �squares� and the
fluctuations around this average �circles� are shown in the small figure. A chain was identified as ordered if Szz�0.6. The bonded RDFs are identical to those
published previously �Ref. 33� and are not shown here. RDFs not involving tail particles are identical to those in Ref. 33.

TABLE I. List of IMC calculations performed. All the calculations were
performed only for the 30% cholesterol concentration; only calculations A3,
B1, B2, and B3 were performed for all concentrations.

Name Method
�E

�kBT� a
Efluct

�10−2kBT� a Figure 4 line style

A1 A 
22 
2.5 Gray solid
A2 A� 1.4 0.7 Gray dashed
A3 A�

b 1.48 0 Gray dash dotted
B1 B 
21 
2.1 Black solid
B2c B� 1.4 1.2 Black dashed
B3d B�

b 1.7 0 Black dash-dotted
B4 B�

b,e 
3.9 0 Black dotted

aEnergy values given for 30% cholesterol concentration.
bIn standard semigrand canonical ensemble with nonbonded interactions ex-
cluded between bonded particles.
cUsed for large-scale studies and shown in Fig. 3.
dUsed for transferability studies and shown in Fig. S1 �Ref. 51�.
eWith a manual intervention to change �E.
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The sampling for the IMC runs, as well as the simula-
tions reported in Sec. V, were done using standard Metropo-
lis MC. Two types of moves were used: �i� a randomly se-
lected particle was displaced or �ii� the internal state of a
randomly selected chain was flipped.

Using the potential of mean forces �V�r�=−kBT ln g�r��
as the initial potentials resulted in very unstable iteration.
Hence, for each concentration, we first performed an IMC
run where the internal states were treated as identical. The
final potentials from this run were then used as the initial
potentials for the full IMC inversion.

As with our previous model,33 we observed that the sur-
face tension needs to be constrained during the IMC process
to obtain positive virial pressures. The target values for the
surface tension constraints were the same as with the previ-
ous model to facilitate comparison, and the obtained area
compressibilities were within 10% of those obtained within
the previous model. The constraint was applied for all the
reported calculations: For pure DPPC systems, the surface
tension was constrained to ��90 dyn /cm, while for
cholesterol-containing systems a value of ��220 dyn /cm
was used.33

Figure 3 shows the set of potentials for calculation B2,
which is also the set used in Sec. V to study large-scale
behavior of the system �the potentials used for transferability
studies are shown in supplementary material, Fig. S1 �Ref.
51��. The internal energy terms are also shown as a function
of cholesterol concentration. The B2 potentials were deter-
mined using IMC approach B� from the RDFs in Fig. 2. The
potentials are, in general, very soft due to the high degree of
coarse graining.32,33 Note also that the internal energies �E
are very close to the potential of mean force result

�E=−kBT ln��nd	MD / �no	MD� used as the initial guess for �E
�shown in triangles in the figure�, as expected for approach
B�.

The behavior of the effective potentials as a function of
cholesterol concentration is very similar to the earlier three-
particle model in Ref. 33. In the tail region, higher choles-
terol concentrations imply stronger repulsion at short ranges,
while at intermediate ranges the 20% potentials are the most
attractive, with monotonic reduction in attractiveness when
the concentration is changed either way. The main difference
between the potentials involving ordered and disordered tails
seems to be the increase in detail at short length scales for
the potentials involving ordered tails. Interestingly, the inclu-
sion of the ordering in the model has very little effect in the
strength of the concentration dependence, in contrast to our
a priori assumption that the new degree of freedom would
improve transferability.33 However, despite the concentration
dependence, the transferability properties actually improve;
this is discussed in more detail in Sec. V.

The B2 potentials in Fig. 3 do not result in perfect RDF
agreement. This is because the method B� restricts �E to an
incorrect value. However, one should note that the root-
mean-square difference between the CG and MD RDFs is of
the order of 0.02 or less, i.e., the differences are mostly of
the order of the linewidth in Fig. 2 �the differences are shown
in Figs. S2 and S3 in the supplementary material51�. Never-
theless, these minor differences prompted us to construct
several different sets of interactions to understand the RDF
inversion in more detail. Largest differences between differ-
ent approaches were observed in the highest cholesterol con-
centrations, and hence we focus here on only the 30% case.
It turned out that not all of the potentials generalized well to
larger systems, as will be discussed below in more detail. For
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the pure DPPC, all potentials worked, but the problems be-
came larger and larger as cholesterol concentration
increased.

Figure 4 shows all the different potential sets from Table
I for the 30% cholesterol concentration. Only head-ordered,
ordered-ordered, and ordered-cholesterol potentials are
shown for brevity; the full figure is provided as supplemen-
tary material �Fig. S4�.51 Each set of potentials is identified
with a different line style as described in Table I. The poten-
tials from Fig. 3 are shown in dashed black. The color of the
line determines the IMC approach: Black lines used ap-
proach B, gray lines approach A. The solid lines �A1 and B1�
imposed no restrictions on the internal energy terms and used
either A or B. Dashed lines �A2 and B2� used either A� or B�
and had �E�−kBT ln��nd	MD / �no	MD�. The dash-dotted lines
�A3 and B3� are otherwise similar, but have, in addition,
Efluct=0. The dotted black line �B4� had �E�−4kBT and
Efluct=0, i.e., �E was in between those of B1 and B2 �ap-
proach B� was used with some manual intervention to
modify the internal energies�.

The best RDF agreement is achieved, as expected, with
the full Newton-type method in A1, i.e., the solid gray line in
Fig. 4 �see Figs. S2 and S3 in the supplementary material51�.
Methods B and B�iii� also lead to similar potentials and in-
ternal energy values �calculation B1�, although B�iii� seems
to have stability problems and was only briefly studied. The

behavior of the internal energies for the A1 potentials is
shown in Fig. 5; the full set of potentials can be found in the
supplementary material �Fig. S5�.51 The difference to Fig. 3
is quite large, as �E is now of the order of 
10 to 
20 kBT.
The lower end is of the same order of magnitude as the free
energy difference between the ordered and disordered states
in the phenomenological models of Nielsen et al.36,37 The
energy terms �E and Efluct also show nonmonotonic behavior
as a function of cholesterol concentration. Their magnitude
seems to be closely coupled, with a larger −�E resulting in a
larger −Efluct. It is not straightforward to give a physical
meaning to these parameters; they are mainly mathematical
constructs that are used in combination with the effective
pair interactions to estimate the effective Hamiltonian, which
includes both energetic and entropic contributions. Neverthe-
less, the qualitative match between the phenomenological
models and the present model at most concentrations is
encouraging.

By construction, each of the interaction sets should re-
produce the RDFs when a system identical in size to the
original MD system is simulated. This is indeed the case,
with the root-mean-square difference between the CG and
MD RDFs being of the order of 0.02 or less in all cases. All
of the sets seem to have minor systematic deviations from
the target RDFs �see Figs. S2 and S3 in the supplementary
material51�, but it is very difficult to judge whether they are
significant or not, in particular a priori without comparison
to other potentials. However, we performed a test that shows
that the differences, although almost invisible to the eye,
actually are important: If we take the A2 potentials for the
30% concentration and use them to produce the target RDFs
for an IMC run that is otherwise identical to the B2 run, the
A2 potentials are recovered. The same holds true if the roles
of the two potential sets are reversed. Similar observations
have also been reported by Bolhuis and Louis in the context
of semidilute polymer systems.52

Although the differences between the potentials in Fig. 4
were minor in a system identical in size to the atomistic
simulation, major differences were found when linear system
size was increased eightfold �we still focus on the 30% case,
but similar effects could also be seen in lower concentra-
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tions, although not as clearly�. This is in contrast to our ear-
lier model, where the value of the virial pressure could be
constrained to different values without any qualitative
changes in the behavior.33

In the present case, potentials A2 and A3 result in clearly
unphysical situations, having dense clusters of particles sepa-
rated by empty space. For A1 and B1, the failure is more
subtle and is not unphysical per se: These potentials result in
very strong density variations, caused by phase separation of
cholesterol and ordered tails in one phase and disordered
tails in another phase. In principle, such a behavior could
occur also for the 30% case, but the number �nd	 /N actually
deviates significantly from the value used in the parametri-
zation, casting some doubt on the validity. Also, this does not
happen for other interactions, nor for our earlier models, so
we have opted to use interactions for which this does not
happen. Representative configurations from both these cases
are included as supplementary material �Fig. S6�.51

The potentials determined with IMC approach B�, i.e.,
B2, B3, and B4, did not have the above problems �a repre-
sentative configuration of this case is also shown in the
supplementary material51�. All of these gave similar results.
For B2 �Fig. 3�, where Efluct was not zero, the interactions
worked only when the Efluct were not scaled with the number
of particles; if scaling was used, similar problems as above
were observed. The reason for these differences is returned
to in Sec. VI, after discussing the large-scale behavior of the
model with the potentials B2 and B3. For these interactions,
the RDFs change only little when the system size is in-
creased �see Figs. S7– S9 in the supplementary material51�.
However, there is an effect that comes from segregation of
the ordered and disordered tails into separate regions �see
Sec. V�.

V. BEHAVIOR AT LARGE LENGTH SCALES

Let us now briefly analyze the behavior of the new CG
model at larger scales. The results presented here were ob-
tained using the potentials B2 from Fig. 3 �transferability
studies were done with B3 that had Efluct=0, shown in Fig.
S1 in the supplementary material51�. The MC simulations
were mostly conducted for systems with 16 times the linear
size of the original MD simulation �transferability studies
were done with half this size�. That is, the linear system size
was in the range of 80–110 nm, depending on the cholesterol
concentration. Reasonable statistics, good for qualitative
conclusions, could be obtained within a few days on a stan-
dard desktop computer.

We use the static structure factor S�k�� to characterize the
long-range order in the system. S�k�� is defined by

S�k�� =
1

N��
i=1

N

�
j=1

N

exp�− ik� · �r�i − r� j��� , �13�

where N is the number of particles, r�i are the positions of the
particles, and k� is a reciprocal space vector. It is also possible
to calculate the structure factor for a subset of the particles
by restricting the summations to these particles. Although in
principle, S�k�� and the corresponding RDF carry the same

information �they are related by a Fourier transform�, the
static structure factor is more convenient to characterize the
long-range structure �small k� values�.

Figure 6 shows the total static structure factor for each
cholesterol concentration. The behavior is very similar to the
earlier models: At 13% and 20% concentrations, there is
some large-scale order, as shown by an increasing S�k� when
k is reduced. However, this effect is weaker than for the
three-particle model without ordering33 and comparable to
the one-particle model.32 For 20% concentration, it is even
slightly weaker than for either of the previous models. Nev-
ertheless, decomposition of the structure factors into partial
structure factors shows that the cholesterol-cholesterol struc-
ture factor has a similar peak at small k. In the present
model, the ordered and disordered tails give an additional
contribution to the peak �see below�. We also note that the
0% and 5% systems have a peak around k�1 nm−1 simi-
larly to the earlier three-particle model; this peak was inter-
preted as indicating strong density fluctuations in the fluid
phase of pure DPPC systems and was later confirmed
through large-scale atomistic simulations.46

The new feature of the present model is chain ordering,
and it is interesting to see how the different chain states take
part in the behavior discussed above. This is shown in Fig. 7:
It shows the partial static structure factors for the tail-tail
pairs for the 0%, 13%, and 30% concentrations. Both the o-o
and d-d structure factors increase as k→0 at all concentra-
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tions, while the cross-S�k� is negative, and becomes more so
at the k→0 limit. This shows that at all concentrations, the
ordered and disordered tails tend to segregate and form
larger domains; however, at the 30% concentration the total
density remains homogeneous, as seen in the total structure
factor �Fig. 6�. At 0% and 5% concentrations, it is seen that
exactly this segregation is the reason for the peak at k
�1 nm−1. This is in agreement with the atomic-scale simu-
lations, which showed that the chains within the denser do-
mains are generally more ordered.46 The RDF comparison
shown in the supplementary material �Figs. S7–S9�51 also
show that such segregation occurs when system size is
increased.

One of the main motivations for including the chain or-
dering was an a priori assumption that it would improve the
transferability of the effective interactions between the dif-
ferent concentrations.33 As before, we evaluate the transfer-
ability by using the interactions determined at a certain con-
centration to study the neighboring concentrations and
compare the results to those obtained with the correct effec-
tive potential. This addresses the consistency of the effective
interactions evaluated from different atomistic simulations
and assesses whether it could be possible to evaluate, e.g.,
phase boundaries with the current model. However, it does
not provide any direct measure for the quality of the CG
model.

In the general case, the form �8� for the Hamiltonian
makes transferability studies more difficult. Namely, it is not
clear how the final term should be treated, as it includes
information from the thermodynamic state in the values ni

ave.
In the present case, we only studied the transferability of
potentials B3, which had Efluct=0, and hence these problems
were avoided. A figure of these potentials is included as
supplementary material �Fig. S1�.51

The transferability results are summarized in Fig. 8
�similar figures, but with RDFs instead of structure factors,
can be found in the supplementary material, Figs. S10 and
S11 �Ref. 51��. Between all concentrations, the results are
qualitatively correct for the nearest-neighbor peak �k
�13 nm−1�. This is demonstrated in the middle figure,
which shows the transferability between 5% and 13% con-
centrations: Although the change in the nearest-neighbor
peak is smaller than the difference between the correct struc-
ture factors, it is in the correct direction. Between 20% and
30%, as well as from 13% to 20%, the transferability is even
better in this respect: Also the height of the nearest-neighbor
peak is reproduced �the bottom figure�. For the small k re-
gion, the results are not as good: The interactions determined
at 5% or 30% do not give the marked increase at 13% or
20% concentration. However, the opposite direction works
better: Very little remains of the small k peak when the in-
teractions from 13% and 20% are used in 5% and 30%,
respectively. Between 13% and 20% the transferability is
reasonable in both directions, although from 13% to 20% the
small k peak increases slightly instead of decreasing.

The transferability is mostly similar to the earlier three-
particle model without the internal degrees of freedom:33

Also the earlier model showed qualitatively correct behavior
of the nearest-neighbor peak. However, there are two im-

provements: �i� the behavior of the nearest-neighbor peak is
also quantitatively correct in some cases, and �ii� the small k
region shows a degree of transferability also across the phase
boundaries, i.e., from the inhomogeneous concentrations of
13% and 20% to the homogeneous ones of 5% and 30%.
However, the latter does not work in the opposite direction,
i.e., from the homogeneous to the inhomogeneous. Hence,
the transferability did improve, but only slightly.

It could be possible to improve the transferability by
improving the mapping of the atomistic simulations to the
CG degrees of freedom, in particular, for the ordering states.
This could be done either by having more than two internal
states or with a different definition of the ordered-disordered
division. However, the Szz order parameter distributions in
Fig. 1 seem to indicate that the order changes quite continu-
ously, so there might not be any good way of dividing the
tails into two �or more� well-defined, separate groups. In-
creasing the number of states is also problematic from the
technical point of view, as discussed in Sec. IV B. It is also
possible that the system is simply too complex for good
transferability. The fact that all the different models we have
constructed actually have similar cholesterol-cholesterol in-
teractions indicates that the concentration dependence might
be an intrinsic feature of the chosen particle description. The
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FIG. 8. Potential transferability properties between different concentrations
using interactions B3 �potentials shown in the supplementary material �Ref.
51�, Fig. S1�. The diagram on top summarizes the transferability properties
between the concentrations: The first + /− stands for �qualitative� reproduc-
tion of the small k behavior of S�k�, the second + for qualitative reproduc-
tion of the nearest-neighbor peak in S�k�, and the possible third + for quan-
titatively nearly correct S�k� away from the small k region. The figures on
the bottom show total static structure factors for two cases: In both figures,
the correct S�k� is shown as a solid line, and the S�k� given by the trans-
ferred interactions as a dashed line. Each figure shows the transferability in
both directions between adjacent concentrations, and the color of the lines
shows the simulation concentration.
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transferability properties may also be adversely affected by
sampling issues in the underlying MD; these are briefly dis-
cussed in Sec. VI.

VI. DISCUSSION AND CONCLUSIONS

Although theoretically the solution to the inverse prob-
lem is unique, we have demonstrated that widely different
potentials can give rise to essentially the same RDFs �see
Fig. 4�, in line with observations by Bolhuis and Louis.52

Further, in our earlier study the virial pressure of the system
could be constrained to widely different values with only
minimal changes in the RDFs.33 However, not all of the in-
teractions perform well in larger systems. In Ref. 33, the
virial pressure was used as an additional constrained quantity
to obtain workable interactions, but in the present case also
that fails to distinguish “good” interactions from “bad” ones:
All the interactions discussed in this paper give essentially
the same value for the virial pressure in the small system
where they were determined. This demonstrates that it is
nontrivial to evaluate the quality of effective interactions
even if the target RDFs are well reproduced.

The above problems also reflect in the sensitivity of the
potentials to the RDFs. However, although the differences
between the different interactions may not even be visible to
the eye without magnification, they are typically enough to
distinguish the underlying interactions in the inversion: If a
pairwise interaction is used to create the RDFs, exactly this
pairwise interaction is recovered with algorithms such as
IMC if no additional constraints are imposed. Because of the
above issues, one needs to be careful when using RDFs de-
termined from complex systems to determine just a single set
of interactions because there may be subtle effects from in-
complete sampling that may result in large changes in the
interactions.

Why do the interactions from some IMC approaches
then perform worse than those from others? One reason
seems to be that the “natural” internal energy values for the
system have Efluct�0, which make it impossible to general-
ize the interactions to a larger system �see Sec. III�. The
interactions that worked had Efluct	0 and did not suffer from
this problem. However, not all of the interactions with
Efluct	0 worked, and most notably so those from IMC ap-
proach A. A clue to this difference is provided by the obser-
vation that the problems become larger as cholesterol con-
centration increases. With increasing cholesterol
concentration, the size of the simulation box becomes closer
and closer to twice the cutoff. This means that the number of
particle pairs that, on average, are beyond the cutoff is much
smaller for the 30% system. This makes it possible to better
and better compensate for incorrect values of �E and Efluct

with changes in the potential without other major changes �if
all the particles were within the cutoff, �E and Efluct param-
eters would not be needed because their effect could be in-
cluded in the potentials �see Appendix A��. Hence, one pos-
sible reason for the poor performance of approach A is its
tendency to compensate any inaccuracies in the energy pa-
rameters with changes in the potential, which only works for
the original system size. In approach B, the target counts are

rescaled such that these inaccuracies are more or less invis-
ible in the potential equation. However, this separation is not
perfect, and it is possible that some of the variants suffer
from similar problems as approach A. In particular, con-
straining Efluct to zero in approach B does not solve the prob-
lem, although Efluct no longer is negative.

It is possible that the underlying reason for the problems
lies in incomplete sampling of the underlying MD simula-
tions. As our model is more complex than the previous ones,
the statistics on the RDFs are worse. The spline fitting used
to smooth the RDFs can then induce small errors. Also, the
one-particle densities calculated from the underlying MD
simulations are not homogeneous, with the largest differ-
ences seen at higher cholesterol concentrations in the
ordered/disordered tail densities. Further, autocorrelation
functions of the chain states �calculated such that the two
states correspond to 0 and 1� show that the timescale for
converting a chain from one state to the other also depends
strongly on the cholesterol concentration: For pure DPPC,
the chains lose the memory of their previous state within 200
ps, while for the highest cholesterol concentrations this
reaches 10 ns. In the highest concentrations, different chains
also sample the different states quite differently, i.e., the frac-
tion of time the chain is ordered depends on the chain much
more than in pure DPPC. Together, these observations sug-
gest that the complete phase space of the system may not be
sampled for the highest concentrations. This can then alter
the RDFs even to the point that the pair interactions that
exactly reproduce them no longer exist. However, with the
present data, it is difficult to ascertain if this is the case.
Studies on simpler model systems where the sampling is not
an issue should provide additional insight into this problem
and the suitability of RDF inversion for models with internal
states, in general, but is beyond the scope of the present
article.

It is also interesting to note that the problems seen in
Ref. 33 with the virial pressure follow the same pattern as
those here: The good virial pressure and the virial pressure
obtained without any constraint in the IMC differ more and
more as the cholesterol concentration increases. Also in that
case, the pure DPPC system worked quite well without the
pressure constraint. It is thus possible that the origins of
these problems are linked, although no concrete evidence can
be provided.

Let us now briefly turn to the different algorithms used
in inverting the RDFs. The most common of these are itera-
tive Boltzmann �IB� inversion14,53 and IMC;13 for a review of
other possible approaches, see Ref. 15. In this paper, we
noted that IMC corresponds to Newton’s method for maxi-
mizing the functional �4�, while Soper has provided an argu-
ment for the global convergence of IB.14 In our experience,
IMC requires careful regularization during the initial steps of
the iteration to remain stable. Hence, IB might be more suit-
able for use during the first steps in the optimization, while
IMC could be used for the final optimization to take advan-
tage of the quadratic convergence of Newton’s method �as-
suming exact sampling of the required quantities�. This is
also supported by the observation that the convergence of the
long-range part of the interaction is slow in IB, as measured
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by the virial pressure.54 In contrast, our experience indicates
that IMC converges to the “native” virial pressure within a
few iterations if the RDFs are close to the target ones. As a
final note on the convergence of the different approxima-
tions, we observe that the second derivative of the functional
�4� is exactly the cross-correlation matrix that also appears in
IMC. As such, it is positive definite, and hence the functional
is convex. This rules out the possibility of local maxima and
ensures that an iterative method to refine the RDFs cannot
get stuck in a local optimum.

RDF inversion is only one of the approaches for con-
structing CG models from detailed simulations. It is possible
to devise other approaches based on the matching of
forces17,18 or potential energy.42,55 All these different ap-
proaches lead to different effective interactions, each of the
interactions performing better for some quantities than for
others. In general, there is no single effective interaction that
can reproduce all quantities of interest.38,42 To some extent,
this problem of representability is related to the fact that the
same quantities can have a different meaning in the different
models: For example, if we coarse grain the water away from
a solution of ions, the virial pressure in the CG model is
actually the osmotic pressure in the detailed picture.40,56

However, it may be difficult to find such relationships for all
quantities, and also the approximation of Heff by an effective
pairwise potential results in correction terms in such equa-
tions that may be difficult to evaluate. Hence, care is needed
when applying models with effective interactions, and the
origins of the interactions should be kept in mind.38

In conclusion, we have extended the IMC method to
handle models with internal degrees of freedom and applied
it to extend our earlier CG model for a DPPC/cholesterol
bilayer to include the tail ordering in a discrete fashion. Our
series of CG models of increasing complexity contributes to
understanding of RDF inversion and its limitations as a CG
technique, in general, and this issue has been discussed in
this paper at length. Despite the limitations, interesting re-
sults can be obtained already with the simple models we
have constructed. Examples include the cholesterol-rich and
cholesterol-poor domains at intermediate concentrations, tail
density fluctuations at low cholesterol concentrations, and
the effect of the internal degrees of freedom on the transfer-
ability properties. However, detailed analysis of the behavior
of the models, e.g., in terms of domain sizes, still does not
seem reasonable as there are uncertainties in the model con-
struction process �such as the selection of the cutoff,33 pos-
sibility of insufficient sampling, and definition of the
ordered/disordered boundary� that can have a significant ef-
fect on the quantitative results.

It has proven to require a substantial amount of work to
improve our original one-particle CG model constructed in
Ref. 32, but each improvement has yielded some additional
insight. The first three-particle model uncovered the tail den-
sity fluctuations at low cholesterol concentrations. The
present work provided some additional information on order-
ing of the tails, but the main contribution in our view is the
generalization of RDF inversion to models with internal
states and demonstration of the problems that may result.

If the uncertainties in the model construction can be

solved, systematic construction of the interactions can give
substantial added value to the phenomenological models by
Nielsen et al. In particular, the interactions could then be
linked to a particular lipid system, and different mixtures,
e.g., with different sterols could be studied to understand the
effects of the microscopic features on the general behavior.
However, a substantial amount of work may be needed. Fur-
ther, easy-to-interpret results may prove difficult to obtain
because transferability problems are expected, even when
chain ordering is included as in the present work. Under-
standing simpler model systems might help alleviate the
problems, and detailed studies in this respect are an interest-
ing direction for future research.

It would also be interesting to study the extent of the
problems seen in the present study in semiatomistic models
for lipid bilayers,57,58 where the degree of coarse graining is
not as high. Again, systematic approach to the interactions
could provide a link to atom-scale chemical detail. Compari-
son of the resulting interactions with the simple Lennard-
Jones form used in, e.g., the MARTINI force field,10,11 could
also yield insight into the strengths and weaknesses of gen-
eral �e.g., MARTINI� versus specific �RDF and force match-
ing� approaches to coarse graining. Finally, comparing dif-
ferent systematic CG approaches, both on simple model
systems and more realistic cases as studied here, could pro-
vide better understanding of their differences, as well as the
source of the problems seen in the present study.
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APPENDIX A: MOST GENERAL HAMILTONIAN
WITH INTERNAL STATES

In this appendix, we justify Eq. �8�, i.e., the form of the
Hamiltonian used for our CG model. The uniqueness and
existence proofs make no explicit reference to the form of
the space,29,30 so they apply equally well for the present case
where xi= �r�i ,si�. Now, the pair potential�s� V�x ,x�� can be
thought of as consisting of several distinct pair potentials,
each of which is a function of the positions r� only. There is
one such pair potential for each combination of s values, and
hence an equivalent description can be achieved for having a
separate potential for each combination of internal states.
However, the number of particles of each kind is no longer
constant, and hence the two-particle density should be used
instead of RDF as the target quantity: RDFs do not contain
the information necessary to determine the occurrence prob-
abilities of different s values. From now on, we will use the
second picture unless explicitly noted, i.e., the pair potentials
will be functions of positions only.
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The pairwise Hamiltonian is unique up to a constant.
Without internal states, this statement is equivalent to each
pair interaction being unique up to a constant. With internal
states, this holds only for each V�x ,x��, i.e., not for each
individual pair potential if they are considered as functions
of positions only. Hence, in the present case, we cannot re-
quire that each potential approach zero when r→�.

When we introduce an approximation that each pair po-
tential is zero beyond some cutoff, we limit the class of
Hamiltonians available. In order to recover the full class of
Hamiltonians on which the existence proof holds, we need to
be able to add additive constants to each individual pair po-
tential also beyond the cutoff. To calculate the minimum
Hamiltonian that allows this, we calculate how the Hamil-
tonian changes when a different constant is added to each
pair potential.

Let us consider a system with Nk particle kinds and
1
2Nk�Nk+1� pairwise potentials Vab�r�. If we add constants
Cab to respective potentials, the Hamiltonian becomes

H − H0 =
1

2�
i�j

Ckikj
=

1

2�
k=1

Nk

�
l=1

Nk

�nknl − �klnk�Ckl

= −
1

2�
k=1

Nk

Ckknk +
1

2�
k=1

Nk

�
l=1

Nk

Cklnknl,

�A1�

where ki is the kind of particle i, H0 is the Hamiltonian
before the addition, and nk is the number of particles of kind
k. Since the total number of particles of each type is constant
�in a canonical ensemble�, not all nk are independent and we
can choose Ns=Nk−Nt independent nk, where Nt is the num-
ber of particle types. In terms of these independent nk num-
bers, the Hamiltonian becomes

H = H0 + �
i=1

Ns

�Eini + �
i=1

Ns

�
j=i

Ns

�Eij�ni�nj + C0, �A2�

where �Ei, �Eij, and C0 are linear combinations of the Cab.
Hence, if we take the original Hamiltonian as �8�, we can
now add �Ei and �Eij to the corresponding Ei and Eij, and
the new Hamiltonian has the same functional form as the old
one.

The last term in the Hamiltonian �8� can be written either
as �ni�nj or ninj, and these forms can be interchanged using
a suitable modification of Ei �also, any value of ni

ave can be
selected�. However, the one with �ni�nj �Eq. �8�� and ni

ave

= �ni	MD is more suitable for the IMC iteration because the
magnitude of �ni�nj is much smaller than ninj. The form
selected for Eq. �8� also perhaps shows more clearly the
physical significance of the parameters Eij in controlling the
magnitude of fluctuations.

APPENDIX B: ITERATION FORMULAS
FOR INTERNAL ENERGIES

In this appendix, we derive the iteration formulas �10�
and �11� used for the internal energies in the IMC approach
B.

We start by writing the partition function of the system
and integrating out the positional degrees of freedom to ar-
rive at

Z = Tr exp�− ���
i

Eini + �
i,j

Eij�ni�nj + f�n��� , �B1�

where f is some unknown function of the vector n formed
from the ni, and the trace is over all possible combinations of
ni. f�n� is essentially the free energy of such a combination
of ni �of which the two internal energy sums have been fac-
tored out�. Switching to matrix notation and approximating f
with a quadratic form around �n	 as f�n�=C0+ �D�1��Tn
+nTD�2�n, the partition function becomes

Z = Tr exp�− ��C̃0 + �D�1� + E�1� − 2E�2�nave�Tn

+ nT�D�2� + E�2��n�� , �B2�

where E�1� and E�2� are a vector and a matrix formed from Ei

and Eij, respectively. Setting v=D�1�+E�1�−2E�2�nave and A
=D�2�+E�2� and replacing the trace with an integral over the
full real axis for each ni, the partition function can be evalu-
ated exactly as a Gaussian integral,

ln Z = 1
4�vTA−1v + C , �B3�

where C does not depend on E�1�. Differentiating both sides
with respect to Ei and canceling a common factor −� gives

�n	 = − 1
2A−1v , �B4�

and a second differentiation gives

�ninj	 − �ni	�nj	 =
1

2�
�A−1�ij . �B5�

Denoting 
ij = �ninj	− �ni	�nj	 and inverting both sides of Eq.
�B5�, we can then solve the change required in A to bring the
fluctuations to the correct value as

��
−1� = 2��A . �B6�

Substituting Eq. �B5� into Eq. �B4� gives

�n	 = − �
v , �B7�

which can be linearized to yield

��n	 = − �
�v − ���
�v . �B8�

Solving �v from Eq. �B7�, substituting this into the above
equation and rearranging gives

�
�v = − ��n	 + �
�
−1�n	� . �B9�

Assuming that D�1� and D�2� are constants, Eqs. �B6� and
�B9� immediately give Eqs. �10� and �11�.
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