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Motivated with the ever growing number of bibliometric trend extrapolation studies, we demonstrate through 
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We use Gompertz and Fisher-Pry curves to model the technological development of white light emitting diodes 
and flash memory, and show with extrapolation results from several bibliometric sources how a typical bias is 
caused in trend extrapolations.   

Findings 
We show how drastic an effect the decision to set an upper bound has on trend extrapolations, to be used as a 
reference for applications. We recommend carefully to examining the interconnection of actual development and 
bibliometric activity. 
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We are motivated by the fact that despite increasing interest in modelling technological data using this method, 
reports rarely discuss basic assumptions and their effects on outcomes. Since trend extrapolations are applied 
more widely in different disciplines, the basic limitations of methods should be explicitly expressed.  
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1. Introduction 
 
Bibliometric trending and trend extrapolations have been widely adopted in technology forecasting within the 
last two decades. Empirical evidence gathered from tangible technological advancements, modeled with 
significant accuracy1 by using extrapolations, has made extending the approach to bibliometric data attractive. 
Due to the simplicity of data gathering and validated methodological options, bibliometric trending has become 
an approachable method. However, discussion of the underlying assumption that trends based on bibliometric 
data could model actual development is virtually absent from the growing number of bibliometric studies. 
 
Motivated by the growing number of bibliometric studies, our aim is to develop an understanding of the 
correlation and causality of bibliometric data and actual, measurable, technical development. We focus on the 
following research question: How do Technological Life Cycle (TLC) indicators compare with technical 
advancements? The theoretical background of the study focuses on technology forecasting, trend extrapolations, 
and bibliometrics. Technology forecasting, as defined by Ayres (1969), answers (1) where is it possible to go 
from where we are now, (2) where we intend to go, and (3) where we expect to go. These questions have been 

                                                           
1 Refer to work from Ayres (1969) Martino (1993) and Porter et al. (2011) for application examples. 



approached using different foresight methods. Defining the methodical options available in forecasting, Popper 
(2008) conceptualized the Foresight Diamond. Taking advantage of earlier work by Cameron et al. (1996), who 
defined the triangular structure of methodologies, Popper (2008) defined a diamond with four types of 
knowledge sources: expertise, interaction, evidence, and creativity. These are attained using methods defined as 
quantitative, semi-quantitative, or qualitative. In this study, we focus on quantitative methods in which trend 
extrapolations, referred to as the “workhorse of technological forecasting,” are perhaps the methods most 
frequently used (Lenz and Lanford Jr, 1973). Based on an analysis of time series data with selected parameters, 
extrapolations are used to forecast a development trend in the future. In modeling the complex socioeconomic 
system of technological development, these extrapolations are often based on different S-shaped growth curve 
models. These growth models, such as the Fisher-Pry (1971) and Gompertz (1825) models, have been validated 
by an abundance of empirical case studies using actual development data.  
 
In contrast to using actual development data, bibliometrics takes advantage of the quantifiable information 
within databases, such as the number of articles in science databases that are directed toward a specific topic and 
uses this information as the basis for evaluating technological development. Evaluations are made as to the 
extent of the current state as trends or to the future as extrapolations. 
 
Current bibliometric approaches, however, make the underlying assumption that growth in a quantified 
bibliometric time series would coincide with actual technological development; they also assume that different 
stages of TLC would be visible within the bibliometric series. However, the empirical evaluations made to 
validate the growth models have been based on modeling tangible developments (Ayres, 1969; Roper et al., 
2011; Martino, 1993), such as Moore’s Law. With the growth of accessible databases, the possibility of 
extending the same approach to bibliometric information and using this to model technological development has 
been suggested (Daim et al., 2006; Bengisu and Nekhili, 2006). The quantified information is then also used as a 
basis for trend extrapolations in the future. These approaches accept the underlying assumption that the 
bibliometric data models for technological development is a more concrete basis for evaluation than the 
assumption based on using the lumen/watt efficiency of white LEDs to model advancements in LED technology. 
 
In this paper, we demonstrate through the findings of a study of two technologies---white light emitting diodes 
and flash memory---the potential problems in bibliometrical technology forecasting. The study takes advantage 
of bibliometric data made available by different databases as measures of technological advancements. The 
technologies are modeled through their current TLC by using databases, such as the Science Citation Index, 
Compendex, and the US Patent and Trademark Organization and News Services. The bibliometric series is 
measured against actual development data found in scientific or professional literature. We conclude the paper 
with guidelines for researchers to avoid potential problems in further studies. 

2. Theoretical Background 
 

Technology forecasting focuses on providing timely information about the prospects of a technology (Watts and 
Porter, 1997). Forecasting can be performed using different methods, some of which are qualitative while others 
rely on quantifying information embedded in databases. The latter often refers to analyzing textual databases 
with quantitative methods, which is referred to as bibliometrics (Borgman and Furner, 2002). Bibliometric 
methods are tools that extract information from large databases, uncovering the underlying structure of the 
databases and producing information from the apparently unstructured dataset (Daim et al., 2006). The data 
gathered can then be used to model the current state of a technology (Chao, Yang and Jen, 2007; Woon, 
Zeineldin and Madnick, 2011; Motoyama and Eisler, 2011) or to serve as the basis for extrapolations for future 
development (Marinakis, 2011). 
 
Bibliometrics is defined as a method of analyzing textual databases with quantitative methods (Borgman and 
Furner, 2002). Closely related to scientometrics, informetrics, and technometrics, the aforementioned definition 



provides a wide scope for understanding bibliometrics. A more narrow focus would be the definition given by 
Broadus (1987), for example, who defines bibliometrics as “the quantitative study of physical published units, or 
of bibliographic units, or of surrogates of either.” When we then define scientometrics as the “quantitative study 
of science and technology” (van Raan, 1998) and informetrics as “the study of quantitative aspects of 
information in any form,” we would understand informetrics as the overall term used when studying a broader 
set of data. Technometrics, on the other hand, focuses on mathematical modeling of technological advancements 
(e.g., (Sahal, 1984)), which differs from the aforementioned definition in that it applies a more tangible dataset 
as the basis for modeling. The terminological confusion related to different metrics is, to some extent, indifferent 
because all of the metrics focus on modeling databases with quantitative methods, as suggested by Borgman and 
Furner (2002). In this, the term bibliometrics is most often used (Hood and Wilson, 2001). 
 

The significant increase in different quantitative approaches, whether we call them bibliometric, technometric, or 
informetric, is driven by the availability of different databases. However, while more and more databases and 
electronically accessible sources are available for bibliometric analysis, most technology-oriented analyses use 
only one database as a source (Kostoff et al., 2001; Chao, Yang and Jen, 2007; Kajikawa et al., 2008). In 
bibliometrics studies, the Science Citation Index (SCI) or Compendex indexes are commonly used sources. The 
Science Citation Index is considered one of the best sources for bibliometrical publication data (Kostoff, 
Koytcheff and Lau, 2007; Kajikawa, Takeda and Matsushima, 2010) and is often used as a database of 
information about emerging technologies (Kostoff et al., 2005).  

Watts and Porter (Watts and Porter, 1997) introduced the concept of TLC indicators that attempt to understand 
how different kinds of databases mine information about technological innovations. The indicators represent 
each stage of R&D (Table 1). The TLC indicators---and technological forecasting overall---rely on a degree of 
orderliness or linearity in the innovation process (Watts and Porter, 1997).  
 
Table 1: Stages of technology growth and sources of TLC data (Martino, 2003). 

 
The linear model has been widely criticized, and this criticism has been targeted mostly on an overly simplified 
modeling of nature. (Balconi, Brusoni and Orsenigo, 2009) Several competing models have been developed (e.g. 
the chain-linked model (Kline and Rosenberg, 1986), multi-channel interactive learning model (Lundvall and 
Johnson, 1994)) and evolutionary model (Basalla, 1988). The evolutionary perspective has been further 
elaborated, for instance, by Arthur (2009) who explained that all technologies are passed down from earlier ones, 
and best performing and more efficient than others will be selected for future development. Further, Arthur 
argues that novel technologies arise by combining existing technologies. However, the linear view defends its 
position because of its intuitive simplicity and ease to use (Balconi, Brusoni and Orsenigo, 2009) (Godin, 2006). 
The linear model may well survive and be useful in science-based industries for example, or complement 
“broader, more general theories which recognize more clearly the dynamic interactive nature of the innovative 
process” (Balconi, Brusoni and Orsenigo, 2009). We employ linear model view in this paper to examine 
specifically how to avoid some of pitfalls with the linear modeling. 
 
Forecasts---or trend extrapolations as the forecasts in this context are often called---are often done by using an S-
shaped growth curve model. S-shaped growth curves fit well in modeling technological growth processes (Roper 
et al., 2011; Martino, 2003), although other forecast models, such as the ARIMA (Christodoulos, Michalakelis 
and Varoutas, 2010) and Richards model (Marinakis, 2011) have also been suggested. The application of trend 
extrapolations to quantitative information embedded in databases could be argued to be an extension of their use 
in modeling concrete technological development. Trend extrapolations have been based on the notion that “a 
specific technical approach to solving a problem will be limited by a maximum level of performance that cannot 
be exceeded” (Martino, 1993). Trend extrapolation results from modeling the S-shaped growth of a technical 
approach to a specific maximum level. The availability of information in databases has expanded the use of trend 
extrapolation to model the quantitative number of database entries. This would embed the underlying assumption 



that when a specific maximum number of database entries is reached this would coincide with the “maximum 
level of performance.” 
 
The process of trend extrapolation involves fitting a chosen growth curve to a dataset and is seen as modeling the 
technological development. This fitted model is then extrapolated into the future. This process, in most cases, 
includes the acceptance of several assumptions: 
 

1) “The upper bound of growth is known,”  
2) “The chosen growth curve to be fitted to the historical data is the correct one,” and  
3) “The historical data gives the coefficients of the chosen growth curve formula correctly” (Martino, 

1993).  
 
To analyze the first assumption, we should note that using historical data as the only source for setting the upper 
bound of growth is considered bad practice (Martino, 1993). Although we often see the “goodness of fit” of 
historical data presented as a significant variable in making trend extrapolations (Huang, Guo and Porter, 2010), 
using historical data poses several challenges when making trend extrapolations. When using bibliometric 
quantities as the historical data on which the trend extrapolations are based, the researcher lacks a practical point 
of reference for the analysis. This demands that the database captures the development of a technology by 
emphasizing the use of several sources of information to validate the results. Alternatively, the database needs to 
be able to anchor the development trend to some other practical point of reference. However, recent studies have 
only used one database as a source (Chao, Yang and Jen, 2007; Kajikawa et al., 2008; Kajikawa, Takeda and 
Matsushima, 2010). 
 
The second assumption focuses on the growth curve model used. Scholars are seen to use two distinct S-shaped 
growth models, the Fisher-Pry model and the Gompertz model, to forecast growth. In addition to the previously 
mentioned models, several other growth models have also been suggested and analyzed (Young, 1993). Both 
growth models produce an S-shaped growth curve, which, in addition to technological development, model 
several natural phenomena. These growth curves have a relatively slow early growth period, followed by a steep 
growth period that then turns into a saturation period in which the growth approaches the limit set. However, the 
Fisher-Pry and Gompertz models used in this study describe technological development quite differently.  
 
The Fisher-Pry model, named after its originators Fisher and Pry, was described by its authors as “a substitution 
model of technological change.” Fisher and Pry (1971) explained that the model would, for example, be 
powerful in forecasting technological opportunities. The Fisher-Pry model depends on the fraction of the 
technology penetration as well as on the fraction still being penetrated. This is loosely analogous to a situation in 
which the initial sales of a product will make subsequent sales easier by familiarizing prospective customers with 
the product. In contrast, the Gompertz model is most applicable in situations where “equipment replacement is 
driven by equipment deteriorations rather than technological innovation” (Roper et al., 2011). Sometimes 
referred to as the mortality rate, the Gompertz model fits a situation in which increased activity does not affect 
the future. This is analogous to a situation where “initial sales do not make subsequent sales easier” (Roper et al., 
2011). 
 
The underlying assumption made in both models is, however, that the dynamics of the developing technology 
would fit that of a growth curve. In this, we could argue that the “goodness of fit” would be insufficient for 
analyzing whether the growth curve fits the dynamics of technological development. Assumptions, especially 
when using short periods of historical data, should be based on empirical evidence for similar developments. 
 
The third assumption focuses on making the statistical fit of the actual data available. It is commonly approached 
with a least squares fit. In the case of S-shaped growth, a transformation to a linear form is often used. After a 
linear regression, the least squares approach is used to fit the transformed values, the statistical fit can be 



evaluated with the linear regression fit. In most cases, the fit between the actual values and the fitted values 
should also be evaluated. 

3. Methodology and Data 
 
In response to our objective, we employ the following research strategy here. First, we have already described 
three assumptions that are often made in bibliometric studies. In this chapter, we describe and justify why we 
have selected our two example technologies (white LED, flash memory). Next, we briefly describe extrapolation 
methods and their use, focusing on Fisher-Pry and Gomperz curves. This is followed by representing the 
quantitative data of the selected technologies. Throughout the illustrative case examples, we attempt to 
demonstrate the potential outcomes of implicit general assumptions in bibliometric studies. 

3.1. Case technologies 
 
The research question has been approached by selecting two different technologies: white light emitting diodes 
(LEDs) and flash memory. The technologies have been selected with hindsight, based on three criteria found 
after several attempts. First, development activities need to fit the availability of sources. Thus, only 
technologies developed since Science Citations Index (SCI) coverage began (1974) were possible. Second, the 
vocabulary of technologies, especially high-level naming, must be quite non-ambiguous since we used 
bibliometric methods. Third, the scope of the technology should represent that particular technology, not only 
the given “marketing name” (e.g., Bluetooth). A short description of each technology follows. 
 
White LEDs 

LED technology is a practical application of semiconductor technology that has been advantageously used for 
several decades. As an electronic component, LEDs have been available since the 1960s but have been restricted 
to wavelengths that enabled only small indicator lights. The first LED presented in 1962 (Holonyak and 
Bevacqua, 1962) had the luminous efficiency of 0.1 lm/W. More recent developments have led to white LEDs, 
which have a greater luminous efficiency, enabling LEDs to be used for lighting.  
 
LED is a semiconductor diode which, through a process of electrons recombining with holes, releases energy as 
photons. An LED consists of a structure called a p-n junction. Electrons are injected in the p-type region of the 
junction while holes are injected in the n-type area. The recombination process at the junction leads to the 
emission of light. The wavelength, or, in practical terms, the color of the light, is determined by the band gap of 
the semiconductor, which is determined by the materials used. Although several materials have been used, for 
high-powered LEDs to become efficient and reliable, suitable semiconductor materials had to be fabricated. 
 
While working toward the widespread use of LED technology, early increases in the efficiency of LEDs can be 
credited to the development of semiconductor technology. The practicality of the invention---it had already been 
used as an indicator during the late ’60s---and the rapid developments in semiconductor technology resulted in a 
near order of magnitude development in the lm/W efficiency of LEDs (Craford, 1997). However, this resulted 
only in red, yellow and green LEDs becoming more efficient. Materials enabling efficient white light still 
depended on the development of a blue LED. 
 
White light has been produced by either combining red, green, and blue LEDs or by using phosphorous material 
to convert blue or UV LED to a white light–emitting one (Yam and Hassan, 2005). The technological 
breakthrough produced by Nakamura, which enabled a gallium nitride–based blue and green LED (Nakamura, 
Mukai and Senoh, 1991; Nakamura, Senoh and Mukai, 1993), had a significant effect on the development of 
white LEDs. The invention propelled the development of white LEDs and has to date enabled LEDs to replace 
traditional lighting systems. Nakamura’s invention enabled the development of practical white LEDs. 



 
Because of this development cycle, LED technology has advantages when used as a light source. LEDs are 
highly efficient, reliable and rugged light sources. Although LEDs as such have been used for decades, 
Nakamura’s invention enabled the further development of efficient and practical white LEDs. The rapid 
development of LED efficiency is often referred to as Moore’s Law, which is similar to Haitz’s Law, which 
forecasted an exponential rate of development in lumen/watt efficiency of LEDs with doubling occurring every 
36 months (Anonymous, 2007). Since 2010, LEDs have matured into the general lighting market, and as its 
technology develops, it is taking an ever larger share of the lighting market. 
 
Flash memory 

The invention of flash memory was a continuum in the development of memory cells. The need for memory in 
different solutions ranging from personal computers to portable devices has increased the need for different 
memory cells. Semiconductor memory cells can be easily divided into two main categories: volatile and non-
volatile memory. Volatile memory, such as SRAM and DRAM, enables fast reading and writing but loses its 
data when the power supply is turned off. Non-volatile memory, such as flash, on the other hand, can sustain 
data even without a power supply. Non-volatile memory has several applications mainly due to this 
characteristic.  

Semiconductor-based memory technologies have taken up a significant portion of the whole semiconductor 
market. In particular, the explosive growth of the flash memory market has been a significant change. Flash 
memory demand has been driven by portable electronic devices, which use flash because it offers the best 
compromise between size and flexibility. Flash memory is used for two major applications: code storage and 
data storage. As the need for these applications increases, the demand for flash memory also increases (Bez et 
al., 2003). 
 
Flash technology is based on a floating-gate transistor memory cell. Masuoka et al. presented the structure of 
flash memory in a 1984 paper in which they argued flash memory could overcome the problems of conventional 
EPROM memory cells and thus be more reliable. After its invention, in the early 1980s, the first papers 
expecting a “market burst” were presented in 1988 (Lineback, 1988; Cole, 1988). However, due to the early 
reliability problems with flash memory, the technology had a relatively low market penetration (Pavan et al., 
1997). It was suggested in the mid-1990s that flash memory would have a market share of six percent by 2000, 
as dynamic random access memory would dominate the market. Since then, two dominant flash architectures 
have emerged: NOR flash designed for code and data storage and NAND flash for data storage (Bez et al., 
2003). 
 
The benefits of NOR and NAND flash memory have increased the market size of the technology. Flash memory, 
for example, is currently used in solid-state disks which take advantage of its small dimensions, low power 
consumption, and lack of mobile parts. With an increase in the number of applications taking advantage of the 
benefits of flash memory, flash memory’s market share has increased. Since 2000, flash memory technology has 
been seen as a mature technology, which has increased rapidly in market size (Bez et al., 2003). 

3.2. Trend extrapolation and limit curves 
 
The trend extrapolation method often relies on basic time series analysis. Using regression techniques to fit 
nonlinear relationships is seen as suitable for technological forecasting. The use of the methods is derived from 
the historical understanding that a specific nonlinear model would describe the complex system of technological 
development. This has been the case with limit curve models such as Fisher-Pry and Gompertz, which have been 
validated by the vast number empirical studies in which they have been used. 
 



To effectively model these non-linear relationships, we tend to use the data as a linear function of time. This 
requires the transformation seen in Table 2 for the Fisher-Pry and Gompertz curves. In both transformations, L, 
the upper limit of growth, affects the model fit. By selecting an appropriate upper level of growth, we can use 
linear regression in estimating the values of the constants a (intercept) and b (slope) in the linear model equation: 
 

Y = a + bX + e. 
 
The model validity is often evaluated statistically by selecting constants “a” and “b,” that minimizes the sum of 
squares errors “e” between the value of Y and the value predicted by the linear model. This straightforward 
statistical analysis rests heavily on the assumptions that (1) the upper bound of growth is known, and (2) the 
environment of the past will continue in the future. In this type of modeling, the researcher is forced to assume 
the development is a static process without discontinuities and thus affects the model only through the selection 
of an upper bound of growth. 
 
Table 2 Linear transformation with Fisher-Pry and Gompertz models adopted (Roper et al., 2011). 

In addition to using the least squares approach, the fitted values are evaluated by using Mean Absolute 
Percentage Error (MAPE) to analyze model fit (Young, 1993). By setting the upper bound of growth to 
minimize the MAPE, a statistical evaluation of the overall model fit is analyzed. 
 
 

3.3. Quantitative data of the case 
 
The databases used for this study were selected according to the Stages of Technology Growth and Sources of 
TLC data presented in Table 1. Thus, the SCI was selected to represent fundamental research, Compendex was 
used to represent applied research, patents from the US Patent and Trademark Office were used to represent 
development, and Newspaper Abstracts Daily were used to represent application. In the context of this study, the 
social impact of the technology has been omitted. 
 
Table 3 shows the summary of results on the cumulative document frequency of white LEDs. Table 4 shows the 
summary of results on flash memory. 
 
Table 3: Cumulative document frequency of white LEDs and the actual development of LED efficiency. 

The databases were analyzed by using “white led,” “white leds,” “white light emitting diode” and “white light 
emitting diodes” as search algorithm for LEDs. Similarly, "flash memory" or "flash memories" were used for 
flash memories. These were, through a process of trial and error, seen to find the relevant database entries. The 
first entries found in each database were further checked by an expert to make sure that the starting point of each 
dataset was set correctly.  
 
Table 4: Cumulative document frequency of flash memory and the actual development of NAND flash memory 
cell size. 

The bibliometric data in Table 3 and Table 4 is given as a cumulative document frequency. These cumulative 
data series are then used for the trend extrapolation. It should be pointed out that the data series, excluding patent 
data series for both technologies, have a growing number of documents appearing yearly. The number of patent 
documents has, however, peaked for both technologies and is now decreasing. The tables also show the Pearson 
correlation of each of the bibliometric data series compared to the reported actual development. This shows that 
the bibliometric data series are significantly correlated with the actual technological development. This shows 



that there is a correlation between each of the bibliometric data series and actual development. In the case of 
flash memory the correlation is naturally negative as the technology gets smaller. 

4. Results 
 
Figure 1 summarizes the search results. This shows an early increase in applied research in Compendex, which is 
not supported by the theory of linear development (Järvenpää, Mäkinen and Seppänen, 2011). 

 
Figure 1: Non-cumulative summary of Table 3 and Table 4, excluding actual development. 

The historical data was transformed into linear form using the equations in Table 2. Then the upper bound of 
growth that would result in the highest fraction of the total variance of the dependent variable explained by the 
model was selected. This is described by the coefficient determination, R². In Table 5, the linear regression of the 
indicators is shown. 
 
Table 5: Upper bound and model fit based on R² values. 

However, the indicator development forecasted by the highest R² does not seem plausible. By relying on the 
analysis, the described TLC of LEDs does not seem practical. In the graphical representations given in Figure 2 
and Figure 3, LED development is described in normalized form throughout the TLC. The Fisher-Pry model 
suggests that basic research is lagging overall LED development by several years and that the first indicators, 
“development” and “application,” would reach the upper bound of growth within a few years. This forecast 
seems implausible based on the order of development or by the upper bound of growth. 

 
Figure 2: Summary of Fisher-Pry model fit from Table 5.  

In comparison, in the Gompertz model, the least squares model fit resulted in implausible upper bounds of 
growth for basic and applied research seen in Table 5, while retaining a similar development path for the two 
following indicators. Again, these do not seem practical either by the order of development or by the upper 
bound of growth. 

 
Figure 3: Summary of Gompertz model fit from Table 5. 

The data was further analyzed with MAPE between the fitted value and the historical data as described by 
Young (1993). The upper bound of growth resulting in the smallest MAPE was selected for each R&D stage. 
This was done while accepting the lower R2 value of for the models, but by minimizing the MAPE for each 
dataset. Table 6 shows the upper bounds of growth resulting from the analysis as well as the MAPE values for 
the models. 
 
Table 6: Upper bound and model fit based on MAPE.  

The results of the MAPE fitted forecast were extrapolated to the future and can be seen in normalized Figure 4 
and Figure 5. 
 
Figure 4: Summary of Fisher-Pry model fit from Table 6. 

Figure 5: Summary of Gompertz model fit from Table 6. 
 
Table 7 summarizes how upper bounds vary depending on the statistical fit of the model and the model used. As 
we see with Fisher-Pry the values, the upper bounds are within the same range, but with Gompertz models, the 



values of the upper bounds vary significantly. This underlines the effect of setting an upper bound in the trend 
extrapolations.  
 
Table 7: Summary of different upper bounds in the above runs. 

The upper limit of the growth curves were also evaluated against the values of R2. Testing several values of the 
upper limit growth against a constrained value of R2, we found that with several of the curves the result was out 
of bounds of a practical number of iterations. By expecting R2 value of over 0,90, the upper limit of growth can 
range from the largest known (actual) value to a value several times the optimal value fitted by R2 or MAPE. 
This should be of particular interest when setting the upper bound of growth based on expert opinion and then 
using curve estimation to evaluate the result. 

5. Discussion 
 
Motivated by the paucity of explicitly expressed assumptions in bibliometric studies, we have presented two 
examples of technological development and demonstrated the effects of assumption on trend extrapolation 
outcomes. The results above seem to be promising on the surface. Looking at the statistical analysis, we found 
that the trend extrapolations modeled the developments with a good statistical fit. The variance in the data was 
explained---in most cases even with an R² value of 0.9. There are, of course, inherent differences with the results 
produced by different growth curves, such as the Fisher-Pry compared to Gompertz, but these were known prior 
to the analysis. For example, in the case studies used we expected that compared to Gompertz, Fisher-Pry would 
produce a stronger upward trend resulting in an earlier saturation point.  
 
However, looking below the surface, the studies emphasize several key factors affecting the practical analysis in 
the trend extrapolation. First, the statistically fitted model lacks the ability to produce a practically plausible 
model fit throughout the TLC. Second, the possibility of varying the upper bound of growth while still having a 
statistically good model was large. Third, the ability of different data sources to model stages or model a phase 
of development is questionable. These factors lead to several considerations and limitations, which are suggested 
as guidelines for trend extrapolation studies. 
 
First, considering the data used for the studies, researchers should consider if the sample is a representative 
sample. We often assume that the data sources used in bibliometric studies are representative of the whole 
population. We do not sufficiently question what biases are made by the nature of the data source that are 
independent of the actual development. For example, we might argue if the USPTO, most often used in 
bibliometric studies, is a representative sample for patent development---and turn a blind eye to the Chinese 
Patent Office database or European Patent Office that would lead to a more representative sample. Researchers 
should make the effort to validate the sample used or accept the limitations set by a biased sample. 
 
Second, researchers should consider if the data is valid for analysis “as it is” or if there are some underlying 
factors influencing the explanatory power of the dataset. The data in a bibliometric trend extrapolation is a 
dataset measuring activity (1995). These are subject to variations by causal forces derived from several factors, 
such as growth, decay, supporting, and opposing forces (Armstrong and Collopy, 1993). It is evident that the 
impacts of causal forces should seriously be taken into consideration prior to the analysis. For example, if a 
technology is heavily supported by policy and therefore research funding, we might argue about the extent to 
which there might be supporting causal forces present in the data. 
 
In addition to the causal forces, researchers are restricted by the period of the data used for the analysis. Curve 
fitting is often used ambitiously to demonstrate how novel technologies develop to maturity; however, there is 
severe danger that the result might be very different depending on single data points. Despite the fact that it is 
possible to model development with a fairly good statistical accuracy using only a few data points (for instance 



with the Fisher-Pry), a broad set of acceptable end results are produced. Thus, keeping in mind the rule of 
thumb---not to extend a forecast more into the future than the same period of historical data might be able to 
prove---should also be a valuable strategy for trend extrapolations. With short historical datasets, this might lead 
to a situation in which a different methodological approach, such as a moving average or an autoregressive 
integrated moving average, might be worth trying.  
 
Third, the result of a bibliometric extrapolation needs to be connected with actual development. By approaching 
technology forecasting with bibliometric trend extrapolation, the most significant assumption made by 
researchers is that the bibliometric data actually models technological development. Thus, an evaluation of the 
extent to which this holds true to the case at hand needs to be done. This should eventually lead to the use of 
expert opinion or rigorous analysis of the correlation between actual development data and bibliometric data. 
 
The final notion appears in the flash memory data (Table 4) which show that the development of Flash memory 
has been visible three years before the first patent document materialized. This notion contradicts the traditional 
belief that the interest of mass media is the last phase of TLC indicators, and for some technologies, it would be 
possible to detect the development through news pieces earlier than patent documents. Thus, further studies 
could investigate why some technologies may receive such interest from media, and in addition, if there are any 
shared factors among the technologies that may create identifiable patterns.  

6. Conclusion 
 
We have demonstrated above that using trend extrapolations with bibliometric datasets has challenges. Agreeing 
on a valid upper bound of growth is a well-known factor that affects the validity of the model. This is not news 
for statistically oriented researchers. However, many studies published do not seem to consider the effects of 
varying the upper bound. Thus, creating a practical context for the data is a significant research factor for 
validating trend extrapolation results. In addition, understanding the nature of the bibliometric data is relevant. 
Evaluating the limitations of the data used, such as limitations of data sources and causal forces, will help to 
prevent researchers from coming to wrong decisions. We recommend carefully examining the interconnection of 
actual development and bibliometric activity that is illustrated in Figure 6 below. 
 
Figure 6 Figure 1 in the context of actual development, seen in Table 3 and Table 4. Percentages of bibliometric 
data calculated from cumulative data. Actual development for NAND Flash Memory Cell Size has been 
inverted. 



In Figure 6 actual development data is included with the quantitative data extracted from the databases. Both of 
the technologies are either mature or rapidly maturing (See Section 3.1). Visual inspection suggests that the 
bibliometric data resembles the actual development to some extent. LED technical development seems to follow 
a slope similar to the bibliometric dataset. Naturally, technological development of flash memory (measured 
with cell size in µm) has a negative slope in comparison to the upward slope of bibliometric data. Similarities 
and differences are in the eye of beholder, thus, it is recommended that some correlation analyses for facts is 
made. In these cases, the Pearson correlation seen in Tables 3 and 4 suggests a clear correlation with bibliometric 
data series and the actual development. These fairly strong correlations do not serve as evidence of causality and 
successful extrapolation results.  

Further studies need to gain an understanding of the limitations of the methodology used. Trend extrapolations 
can, by selecting the database, growth curve, and upper bound of growth, be made to produce significantly 
different results. This calls for broader sensitivity analysis on the limits of extrapolation results with varying 
bibliometric datasets. Thus, researchers should also make the assumptions clear to readers when extrapolating 
with bibliometric datasets. 
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Table 1: Stages of Technology Growth and Sources of TLC Data (Martino, 2003). 

Stages of technology growth R&D stages 
Typical sources of TLC 

data 

Scientific Findings and Demonstration 
of Laboratory Feasibility 

Basic Research Science Citation Index 

Operating full-scale prototype or field 
trial 

Applied Research Engineering Index 

Commercial introduction and/or 
operational use 

Development Patent databases 

Widespread adoption/Proliferation 
and diffusion to other uses 

Application Newspaper Abstracts 

Societal effect and/or significant 
economical involvement 

Social Impacts Business and Popular press 

 
  



Table 2 Linear Transformation of Fisher-Pry and Gompertz Models, adopted (Roper et al., 2011) 

Growth Model Transformation 

Fisher-Pry Z = ln[(L − Y) / Y] 
Gompertz Z= ln[ln(L / Y)] 

 



Table 3: Cumulative Document Frequency of White LEDs and the actual development of LED efficiency . 

Year SCI Compendex Patents News 
lm/lamp  

approximate value 
1991 1  

1992 1  

1993 1  

1994 2  

1995 2  

1996 1 3  

1997 7 6 2 5  

1998 9 7 5 6  

1999 17 10 15 15  

2000 27 18 25 22 10 

2001 39 38 37 41  

2002 60 60 44 86 60 

2003 87 92 67 144  

2004 139 149 85 208 110 

2005 205 229 108 285  

2006 293 316 121 341 800 

2007 414 417 128 410 900 

2008 587 570 130 473  

2009 823 764 130 565 3000 
Actual development based on (Haitz and Tsao, 2011) 
Pearson correlations between actual development and each bibliometric 
dataserie: SCI 0.981, Compendex 0.969, Patents 0.697 and News 0.887 

 
  



Table 4: Cumulative Document Frequency of Flash Memory and the actual development of NAND Flash 
Memory Cell Size. 

Year SCI Compendex Patents News 
NAND Flash 

Memory Cell Size 
(µm2 ) 

1988 2 4  1  
1989 9 9  3  
1990 9 21  10  
1991 11 28 1 27  
1992 20 32 6 108  
1993 36 53 23 151  
1994 65 104 55 230  
1995 100 190 99 283  
1996 135 273 200 407 1 

1997 173 360 353 578  

1998 199 439 574 833 0,6 

1999 248 519 840 1018 0,3 

2000 294 619 1166 1304  

2001 353 771 1511 1572 0,15 

2002 414 916 1914 1842  

2003 484 1130 2342 2176 0,07 

2004 573 1453 2740 2509 0,04 

2005 657 1855 3124 3015 0,02 

2006 790 2273 3546 3671 0,015 

2007 939 2743 3950 4407  

2008 1109 3207 4208 5104  

2009 1302 3692 4268 5785  

Actual development based on (Shin, 2005) 
Pearson correlations between actual development and each bibliometric 
dataserie: SCI -0.693, Compendex -0.628, Patents -0.724 and News -0.694 

 
  



Table 5: Upper Bound and Model Fit Based on R² values 

Model Fit  SCI Compendex Patent News 

Fisher-Pry 

White 
LED 

(R²) 0,975 0,987 0,987 0,993 
Upper 
Bound 

1148 2878 133 632 

Flash 
(R²) 0,934 0,979 0,965 0,933 

Upper 
Bound 

5786 4305 4330 6043 

Gompertz 

White 
LED 

(R²) 0,990 0,985 0,983 0,993 
Upper 
Bound 

21144 11*1014 154 1229 

Flash 
(R²) 0,991 0,994 0,999 0,991 

Upper 
Bound 

5637 21373 6076 12466 

 
  



Table 6: Upper Bound and Model Fit based on MAPE. 

Model Fit  SCI Compendex Patent News 

Fisher-Pry 

White 
LED 

MAPE 24,35 % 20,59 % 10,49 % 40,73 % 
Upper 
Bound 

1387 2294 139 592 

Flash 
MAPE 21,14 % 24,57 % 39,17 % 54,42 % 
Upper 
Bound 

1345 4904 4269 5786 

Gompertz 

White 
LED 

MAPE 17,16 % 23,81 % 7,04 % 12,94 % 
Upper 
Bound 

56621 3*1011 160 1014 

Flash 
MAPE 13,41 % 12,68 % 5,82 % 15,69 % 
Upper 
Bound 

2756 17468 6143 8162 

 
  



Table 7: Summary of Different Upper Bounds in the above runs. 

Model Fit  SCI Compendex Patent News 

Fisher-Pry 

White 
LED 

R2 1148 2878 133 632 
MAPE 1387 2294 139 592 

Flash 
R2 5786 4305 4330 6043 

MAPE 1345 4904 4269 5786 

Gompertz 

White 
LED 

R2 21144 11*1014 154 1229 
MAPE 56621 3*1011 160 1014 

Flash 
R2 5637 21373 6076 12466 

MAPE 2756 17468 6143 8162 
 
 
  



 
Figure 7: Non-cumulative summary of Table 3 and Table 4, excluding actual development. 

  



 
Figure 8: Summary of Fisher-Pry model fit from Table 5.  

  



 
Figure 9: Summary of Gompertz model fit from Table 5. 

  



 
 
Figure 10: Summary of Fisher-Pry model fit from Table 6. 

 
 
 
  
  



 
Figure 11: Summary of Gompertz model fit from Table 6. 
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