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Abstract The paper investigates the problem of mobile tracking in mixed
line-of-sight (LOS)/non-line-of-sight (NLOS) conditions. The motion of mo-
bile station is modeled by a dynamic white noise acceleration model, while
the measurements are Time of Arrival (TOA). A first-order Markov model is
employed to describe the dynamic transition of LOS/NLOS conditions. An
improved Rao-Blackwellized particle filter (RBPF) is proposed, in which the
LOS/NLOS sight conditions are estimated by particle filtering using the opti-
mal trial distribution, and the mobile state is computed by applying approxi-
mated analytical methods. The theoretical error lower bound is further studied
in the described problem. A new method is presented to compute the posterior
Cramer-Rao lower bound (CRLB): the mobile state is first estimated by de-
centralized extended Kalman filter (EKF) method, then sigma point set and
unscented transformation are applied to calculate Fisher information matrix
(FIM). Simulation results show that the improved RBPF is more accurate than
current methods, and its performance approaches to the theoretical bound.
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1 Introduction

Mobile positioning using radio signals has received considerable attentions over
the past decades. Different kinds of location systems have been developed for
various kinds of applications, such as satellite positioning systems like global
positioning system (GPS) and GALILEO, cellular based positioning systems,
and indoor positioning system based on ultrawideband (UWB) signals.

However, precise positioning in non-line-of-sight (NLOS) conditions is still
a tough task. In NLOS conditions, the direct path between the transmitter and
receiver has been blocked by buildings and other obstacles. Propagation wave
may actually travel excess path lengths due to effects of reflection, refraction
and scattering. In terms of range based measurements such as time of arrival
(TOA), time difference of arrival (TDOA) and receiver signal strength (RSS),
this extra propagation distance imposes positive biases on the true path, which
cause large errors on the location estimations. In dense urban regions, the non-
line-of-sight (NLOS) condition is very common. For example, a field test in
GSM network shows that the mean and standard deviation of NLOS range
errors are on the order of 513 m and 436 m respectively [1].

Several methods have been proposed to deal with the NLOS problem. Gen-
erally, these methods can be divided into two categories: methods for static
positioning systems and methods for mobility tracking systems. The methods
for static positioning systems can be further divided into three ways. The first
way is to detect and identify the LOS signals for localization [2–5]. The second
way is to mitigate the NLOS effect and minimize the estimate error, which
include weights or scaling factors [6, 7], and equalization method [8]. The
third way is to model the NLOS propagation paths. Scattering models [9, 10],
multipath information in the time domain [11] or space-time domain [12] are
employed to achieve this kind of objective.

In mobility tracking systems, the general idea is to exploit the redundant
measurements in time series to mitigate the NLOS errors. Assuming that the
standard deviation of the range measurement in the case of NLOS is sig-
nificantly larger than that of LOS, polynomial fit [13] and two-step Kalman
filtering techniques [14] are applied to smooth range measurements and miti-
gate NLOS errors. However, the problem is that the deviation threshold needs
to be carefully considered to decrease the false detection of LOS signals. A
Markov process is introduced to describe the LOS and NLOS condition as
two interactive modes in [15]. A Kalman based interacting multiple model
(IMM) smoother is further proposed to estimate the range between the cor-
responding base station (BS) and mobile station (MS). It can track the true
range distance more accurately than the rough LOS/NLOS smoother in [14],
especially in the transitional intervals. The method in [16] uses a first-order
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homogeneous hidden Markov chain to simultaneously model the transition of
LOS/NLOS condition and receiver position. Grid based Bayesian estimation
[16] and particle filtering [17] are used for UWB indoor positioning. In our
previous work in [18], a modified extended Kalman filter (EKF) is proposed
to jointly estimate the mobile state and the LOS/NLOS sight state based on
the measurements from single BS. Then Bayesian data fusion algorithm is
further applied to improve the estimation accuracy. Simulation results show
the performance improvement over the method in [14, 15], and that the loca-
tion errors of the method are all significantly smaller than that of the Federal
Communication Commission (FCC) requirement [19] in different LOS/NLOS
conditions.

In this paper, we continue to investigate the mobile tracking problem in
mixed LOS/NLOS conditions. An improved Rao-Blackwellized particle filter-
ing (RBPF) method is proposed for mobility tracking. The method firstly
estimates the sight condition state using particle filtering, then applies decen-
tralized EKF method to analytically compute the mobile state. Meanwhile,
a theoretical lower bound of the described problem is also derived under the
assumption that the LOS and NLOS transition history is known, which avoids
the false detection of sight condition. A new method is presented to calculate
the posterior CRLB, which adopts the decentralized EKF method to estimate
the mobile state first, then applies sigma point set and unscented transfor-
mation to calculate Fisher information matrix (FIM), the inverse of posterior
Cramer-Rao lower bound (CRLB) value. The posterior CRLB we derive could
be used as the theoretical basis for evaluating new positioning algorithms. It
is also useful in predicting the performance for various sampling intervals and
sensor accuracy. Although we study the theoretical lower bound in the context
of mobile cellular positioning, the methodology is completely general for other
platforms, such as UWB, satellite based position etc.

The paper is organized as follows: Section 2 presents the dynamic sys-
tem models and formulates the problem of mobility tracking in the mixed
LOS/NLOS conditions. The proposed RBPF method is presented in Section 3.
Section 4 describes the derivation of the performance lower bound. Numerical
results and performance comparison are presented and discussed in Section 5.
Section 6 draws some conclusions.

2 System Description

2.1 State Model

In this work, we assume a mobile of interest moves on a two-dimensional
Cartesian plane, and the state at time instant !! is defined as the vector

x! =
[

"! #! "̇! #̇!
]"
,

where
[

"! #!
]"

corresponds to the east and north coordinates of the mobile

position;
[

"̇! #̇!
]"

are the corresponding velocities. The mobile state with
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random acceleration can be modeled as [20, p. 267]:

x!+1 = Φ!x! +w!, (1)

where the state transition matrix Φ! =

[

I2 %!!I2
0 I2

]

, with I2 the 2× 2 matrix

and %!! = !!+1 − !!. The random process w! is a white zero mean Gaussian
noise, with covariance matrix

Q! =

[
#$4!
4 Q #$3!

2 Q
#$3!
2 Q %!2!Q

]

,

where Q =

[

&2% 0
0 &2&

]

.

2.2 Measurement Model

In existing cellular systems, the range can be measured by TOA method. Sup-

pose (',! represents the true distance between the mobile position
[

"! #!
]"

and the location of the )th BS
[

"bs" #bs"
]"

:

(',!
△
= ℎ',!(x!) =

√

("! − "bs")
2 + (#! − #bs")

2, (2)

where ) ∈ {1, 2, . . . ,+} and + is the number of base stations. In a LOS en-
vironment, the range measurement between MS and BS' is only corrupted by
the system measurement noise ,',!, which can be modeled as an independent
and identically distributed (i.i.d.) zero mean white Gaussian noise N(0, &2)). In
NLOS conditions, the range measurement is corrupted by two sources of errors:
the measurement noise ,',! and the NLOS error -',!. According to the field
tests in [1], -',! can be modeled as a positively biased distribution. In this pa-
per we assume that NLOS error have Gaussian distribution N(.NLOS, &2NLOS),
the same assumptions as is used in publications [14, 15, 18, 21, 22]. We also
assume that errors ,',! and -',! are independent. Then the range measurement
equations are

LOS : /',! = (',! + ,',! (3a)

NLOS : /',! = (',! + ,',! + -',!. (3b)

We introduce a Boolean variable 0',! ∈ {0, 1} to represent LOS/NLOS
condition between the MS and BS' at time instant 1, with 0',! = 0 for LOS
and 0',! = 1 for NLOS. Equations (3a) and (3b) can then be written as

/',! = (',! + 2(0',!), (4)

where, 2(0',!) ∼ N(3(0',!),R(0',!)) and

3(0',!) = 0',!.NLOS (5a)

R(0',!) = &
2
) + 0',!&

2
NLOS. (5b)
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Fig. 1 Overall mobility tracking model

Field measurements have shown a dynamic transition between LOS and
NLOS conditions in typical cellular communication environments [23]. Thus,
the transitions of the two-state sight condition variable 0',! can be further
assumed as a time-homogeneous first-order Markov chain 0',! ∼ MC(4',A')
with initial probability vector 4' and transition probability matrix

A' =

[

P(0',! = 0∣0',!−1 = 0) P(0',! = 1∣0',!−1 = 0)
P(0',! = 0∣0',!−1 = 1) P(0',! = 1∣0',!−1 = 1)

]

. (6)

We assume that the transition probability matrix A' is constant. Denoting
P(0',! = 0∣0',!−1 = 0) = 50 and P(0',! = 1∣0',!−1 = 1) = 51, the transition
probability matrix can be written as

A' =

[

50 1− 50
1− 51 51

]

, for all ).

Note that the sight condition of each BS is governed by its own independent
Markov chain.

2.3 Problem Formulation

To sum up, the overall dynamic model of the mobility tracking in the mixed
LOS/NLOS conditions can be represented as follows:

⎧

⎨

⎩

x! = Φ!−1x!−1 +w!−1

0',! ∼ MC(4',A')
z! = h!(x!) + v!(s!)

, (7)

where 0',! is the )th component of vector s!, ) ∈ {1, 2, . . . ,+}, 1 ∈ ℕ. To
facilitate the understanding, the model is further depicted in Fig. 1.

Denote the total observation sequence up to time !! as z1:!, where z!
△
=

[/1,!, /2,!, . . . , /*,!]" The problem of mobile tracking in mixed LOS/NLOS
conditions is to infer the current mobile state x! from the observation z1:!,
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that is, to compute the marginal posterior 5(x!∣z1:!). The marginal posterior
is the mixture

5(x!∣z1:!) =
∑

s!

5(x!, s! = s!∣z1:!), (8)

where s! go through all 2* possibilities. Components of mixture (which are
also mixtures) 5(x!, s! = s!∣z1:!) can be determined recursively according to
the following relations [24, Ch. 1].
Prediction:

5(x!, s! = s!∣z1:!−1) =
∑

s!−1

(

P(s! = s!∣s!−1 = s!−1)×

∫

5(x!∣x!−1)5(x!−1, s!−1 = s!−1∣z1:!−1)dx!−1

)

;

(9)

Update:

5(x!, s! = s!∣z1:!) =
5(z!∣x!, s! = s!)5(x!, s! = s!∣z1:!−1)

∑

s!

∫

5(z!∣x!, s! = s!)5(x!, s! = s!∣z1:!−1)dx!
, (10)

where the transition probability is

P(s! = s!∣s!−1 = s!−1)=
*
∏

'=1

P(0',! = s',!∣0',!−1 = s',!−1), (11)

the transitional density is

5(x!∣x!−1) = 5w!−1(x! − Φ!−1x!−1)

and the likelihood is

5(z!∣x!, s! = s!) = 5v!(s!=s!)(z! − h!(x!)).

The solution to (10) cannot be derived analytically, because measurement
function h is nonlinear. Moreover the number of mixture components grows
exponentially with time. For this reason, several suboptimal solutions have
been proposed, in which different approximation methods have been applied
[14, 15, 18]. The sequential Monte-Carlo (SMC) method (also called particle
filtering) has proven to be successful in tracking applications with nonlinear
and non-Gaussian models [24]. Here, we resort to this kind of sample-based
numerical approximate method to solve the inference problem of this work.
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3 New tracking algorithm based on improved RBPF

The basic idea behind particle filters is as follows. Denote y!
△
=

[

x!
s!

]

, and

suppose a set of 6 weighted samples {y(+)!−1, 7
(+)
!−1}

,
+=1 is used to approximate

the posterior 5(y!−1∣z1:!−1) at time !!−1 with the following point-distribution

5(y!−1∣z1:!−1) ≈
,
∑

+=1

7(+)
!−18(y!−1 − y

(+)
!−1), (12)

where 8(⋅) denotes the Dirac-delta function.

Then, new samples y(+)! are generated from a suitably designed proposal

distribution 9(y!∣y
(+)
!−1, z!), which may depend on the old state and the new

measurement. The new importance weights are set to

7(+)
! ∝ 7(+)

!−1

5(z!∣y
(+)
! )5(y(+)! ∣y(+)!−1)

9(y(+)! ∣y(+)!−1, z!)
. (13)

Thus, a new set of samples {y(+)! , 7
(+)
! },+=1 is approximately distributed

according to 5(y!∣z1:!) at time !! by the above SMC procedure.
Since, in most cases, it is difficult or computationally too expensive to

directly sample from the posterior, some trial sample densities can be used to
draw particles. In standard particle filtering, transition priors are utilized as
the proposal distribution

9(y!∣y
(+)
!−1, z!) = 5(y!∣y

(+)
!−1) = 5(x!∣x

(+)
!−1)5(s!∣s

(+)
!−1).

Thus,

7(+)
! ∝ 7(+)

!−15(z!∣y
(+)
! ).

However, in this problem, the mobile state x! and the sight condition
state s! constitute a high dimensional state space (Note: vector s! has + in-
dependent components, totally 2* states of sight conditions). Thus, to obtain
an accurate estimation in such space, a large number of particles should be
used, which prohibitively increases computational complexity. Additionally, in
ranged-based outdoor positioning, where the covariance of the measurement
noise in both LOS and NLOS conditions are much larger than that of the state
noise, the overlapping region between the transition prior and the likelihood
is relatively small. Without introducing the current step of measurements,
the transition prior, used as the proposal in standard particle filtering, can-
not sample from the interest region effectively, and this will cause the “particle
impoverishment” problem after several iterations. Moreover, the standard par-
ticle filtering does not estimate the velocity effectively, because the weight only
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reflects the similarity between the position component

[

"(+)!

#(+)!

]

of x(+)! and the

actual position.
To reduce the dimension of the variable directly inferred by particle fil-

tering, RBPF is proposed to decompose the state space into two parts, with
one part being estimated by particle filtering while the other part being ana-
lytically calculated [25, 26]. As a result, the variance of the estimates can be
reduced compared with the standard particle filtering [27]. RBPF has been
previously investigated in mobile tracking in [28, 29], in which the mobile
positions and command process are estimated with a particle filter, and the
speeds and accelerations with a Kalman filter. However, the method could not
directly be used in the problem of our concern, because of the hidden variable
0',! with different states that corrupt the measurement data in the observa-
tion model. Also the sight conditions 0',! between MS and different BS are
assumed independent, which makes the problem more complicated.

Factorize the posterior 5(x!, s!∣z1:!) according to Bayes’ rule:

5(x!, s!∣z1:!) = 5(x!∣s!, z1:!)5(s!∣z1:!). (14)

If the posterior density of 5(s!∣z1:!) could be represented by a set of weighted

samples {s(+)! , 7
(+)
! },+=1, i.e.,

5(s!∣z1:!) ≈
,
∑

+=1

7(+)
! 8(s! − s(+)! ), (15)

Then, the marginal density 5(x!∣z1:!) can be approximately expressed by a
mixture of densities:

5(x!∣z1:!) ≈
,
∑

+=1

7(+)
! 5(x!∣s!, z1:!)8(s! − s(+)! )

=
,
∑

+=1

7(+)
! 5(x!∣s

(+)
! , z1:!),

(16)

where the mixture component 5(x!∣s
(+)
! , z1:!) approximately conforms to Gaus-

sian distribution N(x̂(+)! , P̂
(+)
! ), which can be calculated by decentralized EKF,

an extension to decentralized KF [30]:

x̂
(+)
! = x̂(+)!∣!−1 +

*
∑

+=1

K(+)
',!(/',! − /̂(+)',!∣!−1) (17)

P̂(+)
! =

[

(P̂(+)
!∣!−1)

−1 +
*
∑

'=1

(H(+)
',!)

"R(0(+)',!)
−1

H(+)
',!

]−1

(18)
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where x̂(+)!∣!−1 is the predicted mean of x(+)!−1:

x̂
(+)
!∣!−1 = Φx̂(+)!−1 (19)

and P̂(+)
!∣!−1 is the corresponding predicted covariance:

P̂(+)
!∣!−1 = Φ!−1P̂

(+)
!−1Φ

"
!−1 +Q (20)

The predicted mean of measurement /̂(+)',!∣!−1 is

/̂(+)',!∣!−1 = ℎ'(x̂
(+)
!∣!−1) +3(0(+)',!) (21)

The Kalman gain is

K(+)
',! = P̂(+)

',!(H
(+)
',!)

"R(0(+)',!)
−1

(22)

and H(+)
',! = ∂ℎ"

∂x
∣
x=x̂

(#)
!∣!−1

.

To sample s(+)! from 5(s!∣z1:!), the optimal trial distribution could minimize

the variance of the importance weights [27]. Conditioned upon s(+)!−1,x
(+)
!−1 and

z!, the optimal trial distribution is:

9(s!∣s
(+)
!−1,x

(+)
!−1, z!)opt = P(s!∣s

(+)
!−1,x

(+)
!−1, z!)

=
5(z!∣s!,x

(+)
!−1)P(s!∣s

+
!−1)

5(z!∣s
(+)
!−1,x

(+)
!−1)

(23)

where 5(z!∣s!,x
(+)
!−1) can be further approximated as:

5(z!∣s!,x
(+)
!−1) =

∫

5(z!∣s!,x!)5(x!∣x
(+)
!−1)dx!

≈

∫

5(z!∣s!,x!)8(x! − x̂(+)!∣!−1)dx!

= 5(z!∣s!, x̂
(+)
!∣!−1)

(24)

Based on the independent transition of the + sight conditions (11), the trial
distribution (23) can be further expressed as

9(s!∣s
(+)
!−1,x

(+)
!−1, z!) =

∏*
'=1 5(/',!∣x̂

(+)
!∣!−1, 0',!)P(0',!∣0

(+)
',!−1)

5(z!∣s
(+)
!−1,x

(+)
!−1)

, (25)

The likelihood 5(/',!∣x̂
(+)
!∣!−1, 0

(+)
',!) conforms approximately to a Gaussian dis-

tribution with mean /̂(+)',!∣!−1 (21) and covariance:

:̂(+)
',!∣!−1 = H(+)

',!P̂
(+)
!∣!−1(H

(+)
',!)

" +R(0(+)',!). (26)
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The corresponding importance weight can be calculated as

7(+)
! ∝ 7(+)

!−15(z!∣s
(+)
!−1,x

(+)
!−1)

= 7(+)
!−1

∑

s!

[

5(z!∣s!,x
(+)
!−1)P(s!∣s

(+)
!−1)

]

= 7(+)
!−1

∑

s!

[
*
∏

'=1

5(/',!∣x
(+)
!∣!−1, 0',!)P(0',!∣0

(+)
',!−1)

]

.

(27)

From (27), the importance weight 7(+)
! only depends on the current mea-

surement z! and the particles of !!−1, i.e. {x̂
(+)
!−1, P̂

(+)
!−1, s

(+)
!−1}

,
+=1, while s! is

marginalized out. Thus, to improve the sample effectiveness, the particles of
!!−1 could be selected (resampled) based on current measurement z!, and the
fittest particles could be allowed to propagate. Then, new particles could be

sampled from s! based on s(+)!−1,x
(+)
!−1 and z! according to (25).

Algorithm 1 summarizes the whole scheme.

Algorithm 1: Improved RBPF method

for 1 = 1, 2, . . . do
for ; = 1, 2, . . . , 6 do

Compute predicted mean x̂(+)!∣!−1 and covariance P̂(+)
!∣!−1 using (19),(20)

and new weight 7(+)
! using (27).

end for
Resample particles {7(+)

! , s
(+)
!−1, x̂

(+)
!∣!−1, P̂

(+)
!∣!−1}

,
+=1 using new weights 7(+)

!

to obtain
{7(/)

! , s
(/)
!−1, x̂

(/)
!∣!−1, P̂

(/)
!∣!−1}

,
/=1, where 7

(/)
! = 1

,
.

for < = 1, 2, . . . , 6 do

1. Sample s(/)! ∼ P(s!∣s
(/)
!−1, z!) according to (25).

2. Update using prior particles {s(/)!−1, x̂
(/)
!∣!−1, P̂

(/)
!∣!−1}

,
/=1 and decen-

tralized EKF according to (17)-(22) to obtain {s(/)! , x̂
(/)
! , P̂

(/)
! },/=1.

end for
end for

The advantage of the RBPF method is that by introducing the factoriza-
tion of the posterior 5(x!, s!∣z1:!), we could use PF to estimate the marginal
posterior 5(s!∣z1:!) first, then use decentralized EKF to analytically compute
the mean and covariance of the mobile state. As a result of the marginalization,
the covariance of the estimate can be reduced compared with the standard PF.

In particle filtering, in order to achieve the minimum weight conditional
variance of importance weights, we choose the optimal trial distribution. Ac-
cording to the description of Algorithm 1, the resampling step is implemented
before sampling step, and the fittest particles are chosen to propagate, thus
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the particle effectiveness is improved. In contrast with the standard parti-
cle filtering in RBPF[31], the proposed method is called an improved RBPF
(I-RBPF).

4 Lower bound of performance

An error lower bound gives an indication of performance limitations. In time-
invariant statistical models, Cramé-Rao bound (CRB) is commonly used. In
the time-varying systems context we deal with here, a CRB for random param-
eters is referred to as posterior CRLB (PCRLB) [32, p. 66-86]. The PCRLB for

the joint estimation of y!
△
=

[

x!
s!

]

is bounded by I−1
! , where I! is the posterior

FIM:

I! = E{−Δy!
y!

log 5(y!, z!)}, (28)

Δ0
1 = ∇1∇"

0 , ∇ is first order derivative operator.
It is not possible to compute the close-form solution because it requires

that all associated probability density functions must be continuously differ-
entiable [24, Chapter 4.4]. However, for a discrete variant s!, the differentia-
tion of 5(s!+1∣s!) does not exit. As an alternative, we here to compute a kind
of PCRLB under the assumption that LOS and NLOS transition history is
known, which avoids the false detection of sight condition.

By assuming the sight condition s! is known, only x! is to be estimated.
Let x̂! be an estimator of x! based on the measurements z1:!. Then, the
estimate covariance P! is bounded by the PCRLB J−1

!

P! = E{[x̂! − x!][x̂! − x!]
" } ≥ J−1

!

J! = E{−Δx!
x!

log 5(x!, z!)}
(29)

Tichavsky et al [33] show that the FIM J! can be recursively calculated as

J!+1 = D22
! −D21

! (J! +D11
! )D12

! , (30)

where

D11
! = E

{

−%x!
x!

log =(x!+1∣x!)
} (1)
= Φ"

!Q!
−1Φ! (31a)

D12
! =

[

D21
!

]"
= E

{

%
x!+1
x! log =(x!+1∣x!)

} (1)
= −Φ"

!Q!
−1 (31b)

D22
! = E

{

−%
x!+1
x! log =(x!+1∣x!)

}

+E
{

%
x!+1
x!+1 log =(z!+1∣x!+1)

}

︸ ︷︷ ︸

Ψ!

(1)
= Q−1

! +Ψ!

(31c)

and the recursion (30) is initialized with

J0 = E{−%x0
x0

log 5(x0)}. (32)
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Apply the inverse matrix lemma:

J!+1 = (Q! +Φ!J
−1
! Φ"

! )
−1 +Ψ! (33)

Ψ! relates to nonlinear measurement equation:

Ψ! =
1

2
E

{

%
x!+1
x!+1

[

z!+1−h(x!+1)−3(s!+1)
]"

Σ−1
!+1

[

z!+1−h(x!+1)−3(s!+1)
]
}

≈ E2(x!+1,z!+1)

{

H(x!+1)
"Σ−1

!+1H(x!+1)

}

= Ez!+1 E2(x!+1∣z!+1)

{

H(x!+1)
"Σ−1

!+1H(x!+1)

}

︸ ︷︷ ︸

Λ!

(34)

where H(x!+1) = [H1(x!+1), ...,H* (x!+1)]
" and H'(x!+1) =

∂ℎ"(x)
∂x

∣x=x!+1 .
By assuming the sight conditions known, 5(x!+1∣z!+1) is approximately

conformed to Gaussian distribution, which can be computed by the decentral-
ized EKF method:

x̂!+1 = x̂!+1∣! +
*
∑

'=1

K',!+1(/',!+1 − /̂',!+1∣!) (35a)

P̂!+1 = [P̂−1
!+1∣! +

*
∑

'=1

(H'(x̂!+1∣!))
"R(0',!+1)

−1H'(x̂!+1∣!)]
−1 (35b)

P̂',!+1 =
[

P̂−1
!+1∣! + (H'(x̂!+1∣!))

"R(0',!+1)
−1H'(x̂!+1∣!)

]−1
(35c)

K',!+1 = P̂',!+1(H'(x̂!+1∣!))
"R(0',!+1)

−1 (35d)

/̂',!+1∣! = ℎ'(x̂!+1∣!) +3(0',!+1) (35e)

Assume a ,% dimension state variable x!+1 ∼ N(x̂!+1, P̂!+1), a set of

2,%+1 sigma points >>(+)
!+1 =

{

? (+)
!+1,x

(+)
!+1

}

can be deterministically sampled

from this multivariate Gaussian distribution (Table 1). Parameter @ > 0 is a
scaling parameter.

Table 1 Symmetric Sigma Points Set of N
(

x̂!, P̂!

)

Index (") Weight (# (")
!+1) Sigma point (x(")

!+1)

0 #
$$+#

x̂!+1

1, . . . , %%
1

2($$+#) x̂!+1 +

(

√

(%% + &)P̂!+1

)

"

%% + 1, . . . , 2%%
1

2($$+#) x̂!+1 −

(

√

(%% + &)P̂!+1

)

"
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Based on sigma points >>(+)
!+1, the expectation Λ! is:

Λ! =
2)$∑

+=0

[

H(x(+)!+1)
"Σ−1

!+1H(x
(+)
!+1)

]

? (+)
! . (36)

To get Ψ!, which is the expectation with respect to 5(z!+1), we set up
Monte Carlo simulation: according to one specific sight condition sequence
s1:!, B different trajectories could be generated with different measurements:
{z11:!, ⋅ ⋅ ⋅ , z

3
1:!}. For each {z/1:!}, (< ∈ 1 : B), Λ/

! can be computed according
to (36). Then,

Ψ! =
1

B

3
∑

/=1

Λ/
! (37)

To get a general PCRLB which does not rely on one specific known sight
condition, Monte Carlo simulations could be set with different sight conditions:
{s11:!, ⋅ ⋅ ⋅ , s

MC
1:! }. By assuming each of the sight condition {smc

1:!} is known, the
corresponding specific PCRLB is then computed as:

PCRLBmc(x!) = [Jmc
! ]−1 (38)

Then the general PCRLB is defined as the expected value of specific CRLB:

PCRLB(x!) = E

{

PCRLBmc(x!)

}

=
1

MC

MC
∑

mc=1

[Jmc
! ]−1 (39)

Algorithm 2 gives a detailed scheme to compute PCRLB.

Algorithm 2: PCRLB computation

for mc = 1, 2, . . .MC do
for 1 = 1, 2, . . . do
for < = 1, 2, . . . B do

1. Update the {x̂mc,/
!+1 , P̂

mc,/
!+1} according to (35a)-(35b) with one spe-

cific sight condition {smc
1:!} known.

2. Deterministically choose a set of 2,%+1 sigma points >>(+),mc,/
!+1 =

{

? (+),mc,/
!+1 ,x(+),mc,/

!+1

}

according to Table 1.

3. Compute Λ22,4,mc
! according to (36).

end for
Compute Ψmc

! according to (37).
Update Jmc

!+1 according to (33).
Compute PCRLBmc(x!) according to (38)

end for
end for
Compute PCRLB(x!) according to (39).



14

Symmetric sigma set and unscented transformation method computes mean
and covariance to second order accuracy [34]. Thus, based on the analytical
estimate of the mobile state, and the deterministical sampling method us-
ing sigma set and unscented transformation, the PCRLB can be effectively
calculated. This bound is not achieved by any filter, because it assumes the
knowledge of the sight condition is known. In other words, the detection prob-
ability of the sight condition is correctly detected, which is not possible for a
practical algorithm. Nevertheless, the bound could also provide useful infor-
mation in predicting the performance for various sampling intervals and sensor
accuracy [24, p. 80].

5 Numerical results and performance evaluation

In the simulation, MS is assumed to be able to receive the signals from three BS
all the time. The coordinates of BS are [-3.0 km, -1.0 km], [-3.0 km, 5.0 km],
[5.0 km, -1.0 km]. The mobile trajectories are generated according to the mo-
bility model described in Section 2., in which the initial position of the MS
is set to [-1.5 km, 1.5 km], and the initial velocity is set as [20 m/s, 0 m/s].
The random acceleration variances &2%, &

2
& are both chosen to 0.5 (m/s2)2.

The simulated trajectory has B = 1600 time samples, and the sample interval
%! = 0.2 s. The simulated measurement data are generated by adding the
measurement noise and the NLOS noise to the true distance from MS to each
BS. The measurement noise is assumed to be a white random variable with
zero mean and standard deviation &5 = 150 m, whereas the NLOS measure-
ment noise is also assumed to be a white random variable with positive mean
.NLOS = 513 m, and standard deviation &NLOS = 409 m [13]. The sight con-
dition between the MS and each BS is changed every 200 samples [14, 15, 18].

The performance of the IMM [15], the modified EKF banks [18] and the
I-RBPF method are compared. Different number of particles are used in the
I-RBPF method, denoted as I-RBPF(N) for brevity. The initial position is
calculated by Chan’s algorithm [35] using the first three range measurements.
For vague prior of the mobile state, the initial velocity is set as [0 m/s, 0 m/s]

and the covariance matrix C$0 =

[

1502 ⋅ I2 0
0 202 ⋅ I2

]

corresponding to a stan-

dard deviation of 150 m for the position and 20 m/s (72 km/h) for the ve-
locity of each coordinate. The initial estimation of sight condition is set to
P(0',0 = 0) = P(0',0 = 1) = 0.5, where ) = 1, 2 and 3. All the simulation
results are obtained based on ,mc = 50 Monte Carlo realizations with the
same parameters. The mobile location error is calculated with the elimination
of the first 100 samples so as to ignore the large location error caused by the
initial conditions. The evaluation index used in the evaluation are defined as:
(1) Root Square Error (RSE):
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RSE
#
=
√

("̂! − "!)
2 + (#̂! − #!)

2 (40)

(2) Root Mean Square Error(RMSE) at time 1 :

RMSE!
#
=

√
√
√
⎷

1

,mc

)mc∑

5=1

[("̂!,5 − "!)
2 + (#̂!,5 − #!)

2] (41)

(3) Average RMSE:

Average RMSE
#
=

1

B

∑3

!=1
RMSE! (42)

5.1 Performance comparison

Fig. 2 shows the position RMSE versus time and Fig. 3 shows the CDF of
RSE. The prior transition probability of LOS/NLOS is set as 50 = 51 =
0.85. From Fig. 2 and 3, the I-RBPF(100) has slightly better performance
than I-RBPF(10), while both I-RBPF(100) and I-RBPF(10) can track more
accurately than the IMM and modified EKF method. The CDF and RMSE
of PCRLB are also given in Fig. 2 and 3. The PCRLB is derived under 50
randomly generated sight conditions. For each sight condition sequence, 50
different trajectories are generated. From Fig. 3 , although the bound is based
on the sight conditions known, the I-RBPF method approaches to the bound.

Fig. 4 gives the estimated and actual trajectories in a single realization. For
the safe of the clarity in the figure, the trajectory of I-RBPF(10) is omitted,
as it is indistinguishable form I-RBPF(100).

Table 2 shows the impact of different prior transition probabilities on the
algorithms. Since the transition matrix assumes symmetric in the simulations,
the values are studied from 0.55 to 0.997. The sight condition of each BS
is changed for every 200 samples, which corresponds to a prior transition
probability 50 = 51 = 0.995 [15]. From Table 2, the larger setting errors in the
prior transition probability lead to larger tracking errors in all the algorithms.
However, I-RBPF can track more effectively than the others, which suggests
that I-RBPF can estimate the posterior distribution more correctly despite of
prior setting errors. The improvement may come from its optimal sampling
distribution and effective particle selecting mechanisms. The prior transition
probabilities of sight conditions did not have obvious influence to the PCRLB,
because the sight conditions are assumed known.

5.2 Complexity comparison

Table 3 compares the relative complexity and precision of the algorithms with
the prior transition probability 50 = 51 = 0.85. It is clear that with the
increase of the particle numbers, the computing time of the I-RBPF increases
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Fig. 3 CDF of RSE ('0 = '1 = 0.85)

proportionally. Accordingly, the precision also increases. But the improvement
is slight when the number is larger than 10. Also, there is almost no precision
difference when using 100 and 1000 particles. Thus, it can be concluded that
I-RBPF(10) achieves a good tradeoff between complexity and precision.

To sum up, in this section, we compare the performance of three methods
and also with PCRLB in LOS/NLOS transition conditions. Simulation tests
show that the I-RBPF method has better performance than the other two.
Increasing the number of the particles will improve the estimation accuracy
of I-RBPF. Numerical results also suggests that the error performances of I-
RBPF both with 10 particles and 100 particles approaches to PCRLB when
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Fig. 4 The estimated and actual trajectories of the MS in a single realization

Table 2 Average RMSE vs. Transition Probability of Sight Condition

0.55 0.65 0.75 0.85 0.95 0.995 0.997
IMM 201.5 158.5 113.8 83.2 57.6 52.1 52.8
Modi-EKF 115.2 108.0 81.9 68.6 53.7 48.6 46.9
I-RBPF(10) 109.6 92.4 73.3 50.8 48.6 45.5 44.1
I-RBPF(100) 109.6 92.3 69.4 45.2 42.5 40.2 41.3
PCRLB 38.2 38.5 37.2 36.2 37.1 36.1 36.2

Table 3 Complexity vs. Precision

IMM Modi- I-RBPF
EKF 1 4 10 30 50 100 1000

Complexity 1 1.6 0.7 2 4.9 14.1 23.3 46.3 462.3
Precision 1 1.21 1.06 1.28 1.64 1.71 1.78 1.84 1.84

Complexity is based on the CPU running time of the algorithms and the value is
proportion to that of IMM method. The precision is the reciprocal of the average
RMSE that each algorithm achieves, and also the precision of IMM is normalized.

the sight conditions can be correctly detected. Complexity analysis suggests
that the I-RBPF method with 10 particles achieves a good tradeoff between
complexity and precision.

6 Conclusion and further work

An improved RBPFmethod has been proposed for mobile localization in mixed
LOS and NLOS conditions. The algorithm estimates the sight condition state
using particle filtering, in which particles are sampled by the optimal trial dis-
tribution and selected by one-step backward prediction. By applying decen-
tralized EKF method, the mobile state could then be analytically computed.
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Simulation shows that compared with current methods, the algorithm achieves
more accurate estimation and is less influenced by setting errors of transition
probability. Moreover, the theoretical error lower bound is also studied, which
assumes that the LOS and NLOS transition history is known. Although the
bound is over optimistic that could not be achieved by any practical method,
simulation results show that the error performances of I-RBPF approaches to
the bound when the sight conditions can be correctly detected.

Further work will relax the assumption that the sight transition sequence
is known and use the Markov chain model of the sight condition to calculate
the theoretical bound.
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