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The efficiency of second-harmonic generation from thin films by use of two input beams at the fundamental
frequency depends sensitively on the polarization states of the fundamental beams. This dependence allows
precise measurement of the retardation induced by optical elements. We present a theoretical analysis of the
technique and discuss its advantages and limitations with regard to retardation measurements. We demon-
strate our technique by measuring the retardation of a commercial half-wave plate to a precision and repeat-
ability of better than l/104. The technique is remarkably insensitive to misalignments of the optical compo-
nents and of the fundamental beams for the retardation range investigated (d 5 180 6 10°). The extension
of the technique to measure low values of retardation (d ; 0°) is straightforward. © 2003 Optical Society of
America
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1. INTRODUCTION
Polarization is an essential parameter in the character-
ization of vectorial waves and is therefore a fundamental
property of light.1,2 Many processes that involve light
depend on polarization. The polarization of light that
travels through a medium is sensitive to its optical
properties.2 For this reason, the study of polarization is
a powerful tool in spectroscopy and has a plenitude of ap-
plications in, e.g., chemistry, biology, astronomy, and re-
mote sensing.3–6 In fiber optics, polarization mode dis-
persion is a key factor that limits transmission speed.7

An arbitrary (elliptical) polarization state is completely
specified by two parameters: the azimuth (direction of
the major axis of the polarization ellipse) and the elliptic-
ity (ratio between the minor and the major axes of the el-
lipse, which usually includes the handedness of the el-
lipse). Alternatively, the polarization state can be
defined by the relative amplitudes of two arbitrary or-
thogonal polarization components and the phase differ-
ence (retardation) between them.8

It is difficult to measure polarization precisely. The
orientation of the polarization ellipse can be determined
to a precision of 1026 rad by use of existing ellipsometric
techniques.9 The retardation induced by active compo-
nents has been measured to a precision of the order of
l/108 by use of, e.g., an intracavity polarimeter10 or opti-
cal heterodyne techniques.11 With passive components, a
similar precision has been reached only for specific cases,
e.g., for supermirrors with ultralow birefringence.12

However, accurate measurement of the ellipticity of an ar-
bitrary beam or of the retardation induced by common bi-
refringent elements remains a challenging task.

Characterization of wave plates illustrates the prob-
lems encountered in retardation measurements. Wave
plates are commonly used to control or analyze polariza-
tion. They operate by resolving light into two orthogonal
polarization components and by producing a phase shift
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between them. The phase shift determines the polariza-
tion of the resulting light wave. In optical industry, re-
tardation of wave plates can nowadays be measured to a
precision of l/1000 by ellipsometric techniques.13

Considerable effort has been put into increasing the ac-
curacy of retardation measurements by improving tradi-
tional techniques or by developing alternative
methods.14–19 Some techniques reach a precision of
l/7000 but require complicated experimental arrange-
ments or data analysis.14–17 Recently, a technique based
on polarization modulation18,19 quoted a sensitivity of the
order of l/105. However, a relative uncertainty of 1%
limits the technique to low values of retardation.19 Ex-
isting techniques often rely on careful alignment of sev-
eral polarization components. Their absolute precision is
then considerably lower than the quoted sensitivity.

Second-order nonlinear optical processes are sensitive
probes of material symmetry. For example, thin films of
low symmetry can have characteristic signatures in their
nonlinear response.20–22 Such sensitivity arises from the
tensor nature of the nonlinear response, which also re-
sults in a sensitive dependence on polarization. Second-
order crystals, for example, have already been used as po-
larizers and analyzers.23

The polarization sensitivity of nonlinear processes sug-
gests that nonlinear techniques could also be used to de-
termine an arbitrary polarization state of an optical
beam. We recently pursued this idea by developing a
nonlinear technique based on second-harmonic genera-
tion to measure optical retardation.24 We used two
beams at the fundamental frequency to generate second-
harmonic light from a polymer film. The sensitive polar-
ization dependence of the process allows measurement of
the retardation of one fundamental beam in a precise way.
The technique relies on symmetry properties of the non-
linear interactions and does not require sophisticated ex-
perimental arrangement or data analysis to achieve high
2003 Optical Society of America
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precision. In our initial demonstration of the technique,
we already achieved a precision of l/104.

Here we present a theoretical analysis of our technique
and discuss its advantages and limitations with regard to
retardation measurements. Special attention is given to
the optimization of the experimental geometry and to
practical issues that concern data analysis. We also de-
scribe the retardation measurements performed to dem-
onstrate our technique and address various sources of
possible errors in the technique.

2. THEORETICAL FRAMEWORK
The geometry of the technique is illustrated in Fig. 1.
Two beams (E1 and E2) at fundamental frequency v are
applied to the same spot of a thin nonlinear film. The
beams are in the same plane of incidence with respect to
the sample, with angles of incidence u1 and u2 and wave
vectors k1 and k2 . The coordinates x and y are in the
plane of the film, and z is along the film normal. More
specifically, x and y, respectively, are parallel and perpen-
dicular to the plane of incidence. The propagation direc-
tions of the beams are then given by unit vectors k̂ i
5 sin ui x̂ 2 cos ui ẑ.

Our technique is based on the general symmetry prop-
erties of the nonlinear interaction rather than on its de-
tails. Therefore we simplify our model by assuming
unity linear refractive indices for the film and the media
surrounding it. This assumption allows us to maintain
mathematical simplicity in the theoretical description of
the technique, while fully accounting for its salient fea-
tures. The assumption is waived in the actual retarda-
tion measurements. In this model, the Cartesian compo-
nents of the nonlinear polarization P at frequency 2v are

Pi 5 x ijk
~2 !EjEk , (1)

where E 5 E1 1 E2 is the total incoming field and x ijk
(2) is

the second-harmonic susceptibility tensor. The sub-
scripts ijk refer to the x,y,z coordinates and summation

Fig. 1. Geometry of nonlinear retardation measurements. Two
beams (target and probe) at the fundamental frequency v are ap-
plied to the same spot on a poled thin film and coherent second-
harmonic light in the sum direction is detected. All beams are
on the same plane of incidence. Note that angles u1 and u2 are
drawn as positive and negative, respectively.
over repeated indices is implied. The amplitude of the
second-harmonic field emitted in direction n is propor-
tional to25

E3 ; @n 3 P# 3 n. (2)

The planar extension of the nonlinear material pro-
vides a phase-matching condition in the x and y direc-
tions. Coherent second-harmonic beams are then ob-
served along 2k1 and 2k2 as results of processes driven
by each fundamental beam separately. In addition, the
two beams jointly lead to a second-harmonic beam in a
third direction k3 in the same plane of incidence. Since
the component of the wave vector in the plane of the film
is conserved, the propagation angle u3 of this beam is
given by26 sin u3 5 (sin u1 1 sin u2)/2.

The fields Ei (i 5 1, 2, 3) are most naturally expressed
as a sum of p (parallel to the plane of incidence) and s
(normal to the plane of incidence) components, Ei
5 Eisŝ 1 Eipp̂i . The s direction is the same for all
beams ( ŝ 5 2ŷ), whereas the p direction depends on the
propagation direction p̂ i 5 ŝ 3 k̂ i . The components of
Ei in the two reference systems are related by

Eix 5 Eip cos u i , Eiy 5 2Eis , Eiz 5 Eip sin u i .
(3)

Equation (2) yields the components of the second-
harmonic field emitted in direction n 5 k̂3 :

E3x 5 ~Px cos u3 1 Pz sin u3!cos u3 , (4)

E3y 5 Py , (5)

E3z 5 ~Px cos u3 1 Pz sin u3!sin u3 . (6)

Throughout this paper we consider a thin film of C`v
symmetry (such as an achiral poled polymer film). Such
a sample is isotropic in the plane of the film but has a
second-order nonlinear response that is due to broken
symmetry along the film normal. The nonvanishing com-
ponents ijk of tensor x ijk

(2) are then zzz, zxx 5 zyy, xxz
5 xzx 5 yyz 5 yzy. Using Eqs. (3)–(6), we found the
following general forms for the components of the second-
harmonic field27

E3p 5 fpE1pE2p 1 gpE1sE2s . (7)

E3s 5 fsE1pE2s 1 gsE1sE2p . (8)

The expansion coefficients fi and gi are linear combina-
tions of the components of x ijk

(2) and depend on angles u i :

fp 5 2xxxz
~2 ! sin u1 cos u2 cos u3

1 2xxxz
~2 ! cos u1 sin u2 cos u3

1 2xzxx
~2 ! cos u1 cos u2 sin u3

1 2xzzz
~2 ! sin u1 sin u2 sin u3 , (9)

gp 5 2xzxx
~2 ! sin u3, (10)

fs 5 2xxxz
~2 ! sin u1 , (11)

gs 5 2xxxz
~2 ! sin u2 , (12)

We obtained Eqs. (9)–(12) by assuming unity refractive
indices for all the materials. A complete treatment in-
cluding the indices of refraction of the various materials
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and other complicating factors is straightforward.28 In
the analysis of experimental results we used only the gen-
eral Eqs. (7) and (8), which remain valid also in the com-
plete treatment, since they are a pure consequence of the
symmetry of the sample.

3. POLARIZATION EFFECTS
As already pointed out, second-harmonic generation de-
pends sensitively on polarization. Therefore, a careful
analysis of the second-harmonic signal yields information
about the polarizations of the fundamental beams. In
our technique, the polarization of one beam (target beam,
wave vector k1) is determined by measurement of the de-
pendence of the second-harmonic signal on the polariza-
tion of the other beam (probe beam, wave vector k2).

Previous research with poled films showed that a circu-
larly polarized target beam results in a different response
of second-harmonic generation to left- and right-hand cir-
cularly polarized probe beams.27 The difference effect
can be quantified by the normalized circular-difference re-
sponse in the second-harmonic signal intensity

DI

I
5

I left 2 Iright

~I left 1 Iright!/2
, (13)

where the subscripts refer to circular probe polarizations.
A circular-difference response occurs also with elliptical
target polarization, which can be described as the sum of
linear and circular components. Moreover, the difference
response depends on the ellipticity of the target beam,
which determines the relative amplitudes of the circular
and linear polarization components.

To understand the origin of the circular-difference ef-
fect, we calculate the response when the probe beam is
circularly polarized, i.e., E2s 5 6iE2p , where the 1 and
2 signs correspond to left- and right-hand circular polar-
izations, respectively. From Eqs. (7) and (8) we then de-
termine that the intensities of the p and s components of
the second-harmonic field are proportional to

uE3pu2 5 @ u fpu2uE1pu2 1 u gpu2uE1su2

6 i~ f p* gpE1sE1p* 2 fpgp* E1s* E1p!#uE2pu2,

(14)

uE3su2 5 @ u fsu2uE1pu2 1 u gsu2uE1su2

6 i~ fs gs* E1s* E1p 2 f s* gsE1sE1p* !#uE2pu2,

(15)

Equations (14) and (15) show that there are two possible
sources of a circular-difference effect: a phase difference
between a pair of expansion coefficients fi and gi or a
phase difference between the polarization components of
the target beam.

For our measurement technique, a phase difference be-
tween fi and gi constitutes a limitation. In general, the
components of x ijk

(2) are complex numbers. Equations (9)–
(12) show that phase differences between susceptibility
components will result in phase differences between ex-
pansion coefficients. However, for poled films that con-
tain chromophores with a single charge-transfer axis, the
nonvanishing components of x ijk

(2) are zxx 5 zyy 5 xxz
5 xzx 5 yyz 5 yzy 5 zzz/r, where r is the (real) poling
ratio,29 and no phase differences occur between them.
Nevertheless, the most general expressions for fi and gi
depend on linear (complex) refractive indices and propa-
gation effects. Hence, the absence of phase differences
between the coefficients fi and gi must be verified experi-
mentally for the sample used.

When phase differences between expansion coefficients
are excluded, the circular difference is determined by the
imaginary part of E1sE1p* . The only possible source for a
circular-difference response is then a phase difference be-
tween the polarization components of the target beam,
i.e., no circular-difference effect occurs for linear target
polarization. An arbitrary phase difference between the
target polarization components leads to a circular-
difference response that arises directly from interference
between the real and the imaginary parts of the target po-
larization vector. However, to access these interference
effects, a phase difference between the components of the
probe polarization vector must be introduced, for ex-
ample, by use of circular probe polarizations, as was as-
sumed in the derivation of Eqs. (14) and (15).

Let us consider a general elliptical target polarization
(Fig. 2). With 2a and 2b as the lengths of the principal
axes of the ellipse, the field components along the princi-
pal directions j and h are

E1j~t ! 5 a exp~2ivt !, E1h~t ! 5 7ib exp~2ivt !.
(16)

Here, the upper sign represents an ellipse of positive
handedness (right-hand ellipse). Introducing the ellip-
ticity e 5 6b/a(21 < e < 1), Eqs. (16) yield E1h

5 2ieE1j . The ellipticity e incorporates the handed-
ness of the ellipse: it is positive for right-hand and nega-
tive for left-hand polarization.

When c is the azimuth of the polarization ellipse (angle
between the major axis and the p direction, 0 , c < p),
the p and s components are

E1p 5 E1j cos c 2 E1h sin c 5 ~cos c 1 ie sin c!E1j ,

(17)

E1s 5 E1j sin c 1 E1h cos c 5 ~sin c 2 ie cos c!E1j .

(18)

Fig. 2. Elliptically polarized target beam. The principal axes
of the polarization ellipse are oriented along j and h. Azimuth c
is the angle between the major axis and the p direction (0 , c
< p). The lengths of major and minor axes of the ellipse are
2a and 2b, respectively.
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As discussed above, once phase differences between coef-
ficients fi and gi are excluded, the circular-difference re-
sponse is governed by the imaginary part of E1sE1p* ,
which now is

Im~E1sE1p* ! 5 2euEju2~cos2 c 1 sin2 c! 5 2ea2.
(19)

As a consequence, the difference I left 2 Iright in the
second-harmonic signal depends only on the ellipticity but
not on the azimuth of the target polarization ellipse.
However, the normalized circular-difference response [Eq.
(13)] also depends on the azimuth.

4. MEASUREMENT OF WAVE-PLATE
RETARDATION
Next we consider the potential of the polarization depen-
dence of the nonlinear response to determine the retarda-
tion of wave plates. The wave plate under investigation
is placed in the target beam, just before the sample.

In general, the polarization vector E of a beam after it
traverses a wave plate is related to the field E0 before the
wave plate by

FEp

Es
G 5 TwpFEp

0

Es
0G , (20)

where Twp is the Jones matrix for a wave plate of retar-
dation d (Ref. 30):

Twp

5 S cos d/2 2 i cos 2f sin d/2 2i sin 2f sin d/2

2i sin 2f sin d/2 cos d/2 1 i cos 2f sin d/2D ,

(21)

and f is the angle between the fast axis of the wave plate
and the p direction. Retardations d 5 p and p/2 corre-
spond to half- and quarter-wave plates, respectively.

We take the target beam before the wave plate to be po-
larized along the p direction and assume f 5 145°.
This choice is experimentally favorable and will be justi-
fied later. The components of the target beam after the
wave plate are then

E1p 5 cos ~d/2!E1p
0 , E1s 5 2i sin~d/2!E1p

0 , (22)

where E1p
0 is the field amplitude of the target beam before

the wave plate. Equations (7) and (8) yield the intensi-
ties of the p and s components of the second-harmonic
field for the two circular probe polarizations:

uE3pu2 5 u fp cos~d/2! 6 gp sin~d/2!u2uE2pu2uE1p
0 u2, (23)

uE3su2 5 u fs cos~d/2! 7 gs sin~d/2!u2uE2pu2uE1p
0 u2.

(24)

Intensity I of the second-harmonic signal is then

I 5 uE3pu2 1 uE3su2 5 @~ u fpu2 1 u fsu2!cos2~d/2! 1 ~ u gpu2

1 u gsu2!sin2~d/2! 6 ~ fpgp* 2 fsgs* 1 f p* gp 2 f s* gs!

3 cos~d/2!sin~d/2!#uE2pu2uE1p
0 u2. (25)
Equation (25) yields the difference response of second-
harmonic generation to left- and right-hand circularly po-
larized probe beams:

I left 2 Iright 5 ~ fpgp* 2 fsgs* 1 f p* gp 2 f s* gs!

3 uE2pu2uE1p
0 u2 sin d. (26)

Equation (26) shows that any retardation d different from
mp (m is an integer) results in a circular-difference re-
sponse unless the factor that includes the expansion coef-
ficients fi and gi vanishes.

As an example, we consider the case of a nominal half-
wave plate. A deviation of the actual wave-plate retar-
dation from l/2 (or p) introduces a small circular compo-
nent in the target polarization and therefore results in a
circular-difference response. Assuming a small retarda-
tion error s 5 d 2 p ! p, one can approximate Eqs. (23)
and (24) as

uE3pu2 5 u fps/2 7 gpu2uE2pu2uE1p
0 u2, (27)

uE3su2 5 u fss/2 6 gsu2uE2pu2uE1p
0 u2. (28)

For a given component, a high circular-difference re-
sponse is thus obtained when gi and fis/2 are of the same
order of magnitude. This is the first condition for the ge-
ometry to be used. With Eqs. (11) and (12), one can show
that a high circular-difference response for the s compo-
nent of the second-harmonic field is achieved when uu2u
! uu1u, i.e., when the probe beam is near normal inci-
dence. However, if u2 5 0, gs vanishes [Eq. (12)] and no
circular-difference response is observed. The condition
for the p component of the second-harmonic field is less
easily interpreted because of the more complicated angu-
lar dependence of coefficient fp [Eq. (9)].

5. OPTIMIZATION OF THE EXPERIMENTAL
GEOMETRY
For a precise retardation measurement, the polarization
of the target beam before the wave plate must be known
accurately. The most natural choice is linear polariza-
tion because of the high quality of linear polarizers. The
ellipticity induced by a wave plate of arbitrary retarda-
tion d can then be specified by angle « (tan « 5 e, 2 p/4
< « < p/4) (Ref. 8):

sin 2« 5 sin 2f sin d, (29)

where f is the angle between the fast axis of the wave
plate and the incoming linear polarization. The magni-
tude of « and, consequently, of ellipticity e are maximum
when f 5 645°.

It is convenient to optimize the normalized circular-
difference response [Eq. (13)] to achieve a better contrast
in the measured intensities. As explained above, this
quantity also depends on the azimuth of the target polar-
ization ellipse. For C`v sample symmetry, it can be
shown that the normalized response is maximum when
the major axis of the polarization ellipse after the wave
plate is oriented along the s direction.

We used a computer simulation to optimize the experi-
mental arrangement for measurement of the retardation
of a nominal half-wave plate. Some results are shown in
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Fig. 3. We assumed a retardation error « 5 l/1000 in
the wave plate. The beam before the wave plate was po-
larized along the p direction and the fast axis of the wave
plate was rotated by 45° resulting in elliptical target po-
larization with the major axis along the s direction.
Unity refractive indices of all materials and the ideal pol-
ing ratio 3 for the film were assumed.29 The normalized
circular-difference response was calculated as a function
of incident angles of the target (u1) and the probe (u2)
beams. For unpolarized detection, a maximum 4.3% nor-
malized circular-difference response was obtained for
small incident angles of the probe beam.

We also investigated the response for polarized detec-
tion of the second-harmonic signal. Detecting the p com-
ponent reduces the overall maximum of the normalized
circular difference to approximately 3.8%. With
s-polarized detection, the overall maximum increases by
an order of magnitude for even smaller angles of inci-
dence of the probe beam. However, this improvement is
compromised by a simultaneous decrease in the intensity
of the s component.

The optimum incident angles u1 5 24° and u2
5 24.5° for unpolarized detection result from a trade-off
between high difference effects and high second-harmonic
intensity. With these angles, the circular-difference re-
sponse is still high (approximately 4%), but the signal in-
tensity for circular probe polarizations is approximately 1
order of magnitude higher than the intensity obtained
when the circular-difference response alone is maximized
(Fig. 3). With optimum incident angles, the p component
of the second-harmonic signal for circular probe polariza-
tions is approximately 75% of the total second-harmonic
intensity.

Fig. 3. Simulations for the case of unpolarized detection assum-
ing a nominal half-wave plate with a retardation error of l/1000.
(a) Variation of the circular-difference (CD) response (%) on inci-
dent angles u1 and u2 (degrees) of target and probe beams, re-
spectively. (b) Second-harmonic generation (SHG) intensity
(a.u.) for right-hand circular probe polarization.
6. DATA ANALYSIS
So far we have focused our attention on the different re-
sponse of second-harmonic generation to left- and right-
hand circularly polarized probe beams. The circular-
difference effect alone, however, does not yield the target
retardation directly. The retardation can be determined
only if the expansion coefficients fi and gi are also known.
The coefficients can be calculated theoretically but the
most realistic models require precise knowledge of the
second-order susceptibility tensor and of the refractive in-
dices of the materials. To avoid these theoretical prob-
lems, we determined the expansion coefficients experi-
mentally for the very geometry used in the actual
retardation measurements. This, in principle, allows
calculation of the target retardation from the measured
circular-difference effect.

In our experiments, however, we used an alternative
approach in which a quarter-wave plate is rotated con-
tinuously to access a range of probe polarization states in-
cluding the circular ones. The recorded polarization line
shape is then fitted by use of a prescribed model and the
measured values of fi and gi , yielding the retardation of
the target wave plate directly. This approach is superior
to that based on the circular-difference response alone,
because the polarization line shape is sensitive to the de-
tails of the experiment and contains information that al-
lows verification of the proper operation of the setup.

We consider a situation in which the fundamental
beams before the wave plates are p polarized. The polar-
ization components of the target beam after the wave
plate (arbitrary retardation d, oriented at 45°) are given
by Eqs. (22). Equations (20) and (21) with d 5 p/2 yield
the components of the probe beam after the quarter-wave
plate:

E2p 5 @1 2 i cos~2f !#E2p
0 ,

E2s 5 2i sin~2f !E2p
0 , (30)

where E2p
0 is the probe amplitude before the wave plate.

Rotation angles of f 5 645° correspond to circular probe
polarizations. By inserting Eqs. (30) into Eqs. (7) and
(8), we obtained a model for the second-harmonic inten-
sity as a function of the rotation angle of the probe wave
plate:

I ; @ f p
2 cos2~d/2! 1 gs

2 sin2~d/2!#~1 1 cos2 2f !

1 @ f s
2 cos2~d/2! 1 gp

2 sin2~d/2!#sin2 2f

1 ~ fs gs 2 fp gp!sin d sin 2f. (31)

As explained before, we verified experimentally the ab-
sence of phase differences between coefficients fi and gi .
Since our method is insensitive to absolute phase, we con-
sider all expansion coefficients to be real. Formula (31)
is then used to fit the recorded polarization line shape and
allows a precise determination of target retardation d.
Note that retardation is the only fit parameter in the
model of formula (31), except for a mere scaling factor for
the absolute signal level.

To address possible phase differences between the ex-
pansion coefficients further, we developed a more general
model that allows for complex expansion coefficients in
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Eqs. (7) and (8). For a fixed target polarization, intensity
I of the second-harmonic signal is then of the form

I ; auE2pu2 1 buE2su2 1 ~c 1 id !E2pE2s*

1 ~c 2 id !E2p* E2s. (32)

The real coefficients a, b, c, and d include both the polar-
ization components of the target field and the complex co-
efficients fi and gi . Using Eqs. (30) we obtained the sig-
nal intensity as a function of rotation angle f:

I ; a@1 1 cos2~2f !# 1 b sin2~2f ! 1 c sin~4f !

2 2d sin~2f !. (33)

As a matter of fact, formula (32) is valid for an arbi-
trary sample symmetry. Hence, formula (33) determines
the fit quality of any recorded polarization line shape. A
nonvanishing value of c in formula (33) indicates phase
differences between coefficients fi and gi .

7. EXPERIMENTAL DETAILS
In our experiments we used a spin-coated thin film (;250
nm thick) of the side-chain polyimide A-095.11 (Sandoz).
After spin coating, the nonlinear chromophores are ran-
domly oriented. The sample was poled to produce a net
alignment of the chromophores and to obtain a second-
order response, while preserving the in-plane isotropy of
the film (C`v symmetry). The principal absorption maxi-
mum of the polymer was at 502 nm and its refractive in-
dex at the fundamental wavelength (1064 nm in our ex-
periments) was approximately 1.676.

The experimental setup for retardation measurements
is shown in Fig. 4. Infrared light from a Q-switched
Nd:YAG laser (1064 nm, ;5 mJ, 10 ns, 30 Hz) was split
into two beams of nearly the same intensity (target and
probe). Calcite Glan polarizers (;4 3 1026 extinction
ratio) were used to polarize each beam separately along
the p direction. The polarization of the probe beam was
varied by means of a quarter-wave plate and the nominal
half-wave plate to be tested was placed in the target
beam. Zero-order wave plates were used because of their

Fig. 4. Experimental setup for retardation measurements. La-
ser light at 1064 nm is split into two beams (target and probe).
After the beam splitter (BS), the beams are p polarized by Glan
polarizers (P). The polarization of the probe beam is varied by a
zero-order quarter-wave plate (QWP). The nominal half-wave
plate (HWP) to be investigated is placed in the target beam.
The beams are applied to the same spot of a poled polymer film
and second-harmonic light at 532 nm is detected by a photomul-
tiplier (PM) in the sum direction.
better thermal stability compared with multiorder wave
plates.31 The beams were then applied to the same spot
of the sample. Because of refraction at the air–polymer
interface, the optimum internal incident angles were ob-
tained with external angles of 43° and 27.5° for the target
and the probe, respectively. We recorded second-
harmonic light at 532 nm in the sum direction by means
of a photomultiplier tube while we kept the target polar-
ization fixed and continuously rotated the probe quarter-
wave plate. The use of an analyzing polarizer was
avoided to keep the setup as simple as possible.

As explained in the above sections, our technique as-
sumes that there are no phase differences between expan-
sion coefficients fi and gi . In addition, the coefficients
must be known precisely. Several preliminary measure-
ments were performed to verify that the experimental
setup is properly aligned and has sufficient polarization
purity to fulfill these requirements. The absence of
phase differences was confirmed by the measurement of
no circular-difference response when the target beam had
an arbitrary linear polarization (cleaned by a Glan polar-
izer). The expansion coefficients were then determined
for the very experimental geometry used in the subse-
quent retardation measurements. All the results showed
that no phase differences occurred between the expansion
coefficients and were in agreement with the C`v sample
symmetry.

In the actual retardation measurements, the fast axis
of the nominal half-wave plate to be tested was rotated by
45° from the p direction to maximize the induced elliptic-
ity. We controlled the retardation of the target wave
plate by tilting it about its fast axis.24 We recorded po-
larization line shapes for a fixed target polarization by ro-
tating the probe quarter-wave plate. The measured line
shapes were first fitted with the most general model of
formula (33) to address possible phase differences be-
tween the expansion coefficients further. The quality of
the fits was independent of whether coefficient c in for-
mula (33) was assumed to be zero, proving the absence of
phase differences. Finally, we fitted the line shapes by
using the model of formula (31) and the measured values
for coefficients fi and gi yielding the true retardation of
the target half-wave plate. A typical polarization line
shape and its fit are shown in Fig. 5.

Fig. 5. Second-harmonic generation (SHG) intensity recorded
continuously as the probe quarter-wave plate (QWP) is rotated.
Left- (LHC) and right-hand (RHC) circularly polarized probe
beams correspond to rotation angles of 245° and 145°, respec-
tively. For this measurement, the target retardation was deter-
mined as 178.45 6 0.03°.
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The procedure described here yielded the true retarda-
tion of the target wave plate with a precision higher than
l/104. Such precision results from the symmetry proper-
ties of the nonlinear interaction rather than a compli-
cated experimental setup. The repeatability of the tech-
nique was also determined to be better than l/104.
These values are limited by noise in the measured line
shapes and temperature fluctuations of the environment.
Therefore, they can most likely be improved by refine-
ments in the experimental details, e.g., by stabilizing the
temperature of the wave plates.

8. LIMITATIONS AND APPLICATIONS
We demonstrated our technique by determining the ac-
tual retardation of a nominal half-wave plate to l/104. It
would clearly be interesting to measure any retardation
to a similar precision. Equation (26) shows that, for a
target wave plate of retardation d oriented at 45°, the ab-
solute circular-difference response is proportional to sin d.
Therefore, the difference depends less sensitively on re-
tardation when this is close to p/2 or 3p/2, which corre-
sponds to circular target polarizations.

On the other hand, the sensitivity is at its maximum
when the retardation is near p or 0. A retardation
d > p corresponds to the technically relevant case of a
half-wave plate that we investigated in this study. An-
other promising application is the detection of small val-
ues of retardation (d > 0), for example, to measure low-
level residual birefringence in optical components used in
high-precision instruments.18 An advantage of our tech-
nique is that it yields the sign of the retardation [Eq. (26)]
in addition to its absolute value.

Figure 6 shows the dependence of the normalized
circular-difference response [Eq. (13)] on the target retar-
dation for the incident angles used in our experiment.
Unity refractive indices for all the materials and a poling
ratio of 3 for the film were assumed. When the target
beam before the wave plate is p polarized, the normaliza-
tion increases the sensitivity at d > p. A similar result

Fig. 6. Normalized circular-difference response as a function of
the target retardation (simulation). The angle between the fast
axis of the wave plate and the p direction was assumed to be 45°.
The incident angles of the target and the probe beams were as-
sumed to be u1 5 24° and u2 5 24.5°, respectively; the refrac-
tive indices of all materials were equal and unity; and the poling
ratio of the film was 3.
can be achieved also at d > 0 if the target polarization be-
fore the wave plate is along s.

9. SENSITIVITY TO ERRORS
We have performed a detailed analysis of the sensitivity
of our technique to various sources of error. As possible
sources we considered retardation errors in the probe
quarter-wave plate and misalignments of the optical com-
ponents and of the fundamental beams. Assuming unity
refractive indices for all the materials, a poling ratio of 3
for the film, and a fixed value for the target retardation,
we simulated the second-harmonic signal allowing a de-
viation in one of the above parameters. The simulated
line shape was fitted with the model of formula (32),
which assumes an ideal experimental situation. Finally,
the fitted target retardation was compared to the value
assumed in the simulation. We present the results for
the retardation range d ; p, which corresponds to our
experimental situation. Similar considerations also ap-
ply to the d ; 0 range.

The analysis of the experimental results assumes an
ideal probe quarter-wave plate. On the other hand, our
technique relies on the sensitive polarization dependence
of the nonlinear response. Possible retardation errors of
the quarter-wave plate are therefore an important issue
from the point of view of the reliability of the technique.
Our error analysis shows that, for the retardation range
investigated, the quality of the probe wave plate is not a
limiting factor. With a deviation of l/1000 from an ideal
quarter-wave plate, e.g., the error in the determination of
the target retardation is of the order of l/105 for target
retardations in the 180 6 1.2° range and is still less than
l/104 for the 180 6 12° range. Therefore, small errors in
the retardation of the probe wave plate do not lead to any
significant errors in the measurement of the target retar-
dation.

We also considered the influence of the misalignment of
the optical elements used to control the polarizations of
the two fundamental beams. We aligned the probe and
the target wave plates to within ;0.1° by placing them
between two crossed calcite Glan polarizers. Our analy-
sis shows that such misalignment of the probe quarter-
wave plate does not lead to any significant error. The
technique is more sensitive to the alignment of the target
half-wave plate. Nevertheless, its misalignment by 0.1°
results in an error of only approximately l/(5 3 105) in
the determination of its retardation. Misalignments of
the linear polarizers lead to similar results. We also ad-
dressed the possibility that the beams do not lie on the
same plane of incidence with respect to the sample. A
misalignment of 0.06° (corresponding to a deviation of ap-
proximately 1 mm over 1 m), leads to a maximum error of
l/(2 3 106) in the retardation measurement.

The underlying reason for the inherent stability of the
technique is that the circular-difference response arises
from interference between the real and the imaginary
parts of the fundamental field amplitudes. Clearly, the
quality of the probe wave plate influences its polarization
state. However, for the target retardations d ; p and
d ; 0, the (near) circular probe polarizations are princi-
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pally used to detect a small imaginary component in the
target polarization. Small deviations of the probe wave-
plate retardation from d 5 p/2 can therefore be tolerated
without a significant reduction in the precision of the
technique. Nevertheless, possible retardation errors in
the probe wave plate are an issue when the target retar-
dation significantly differs from 0 or p. Misalignments of
the optical components or of the beams do not introduce,
to a first approximation, any additional imaginary compo-
nents in the field amplitudes and do not, therefore, sig-
nificantly affect the precision of the technique.

Here we have described the technique in detail for C`v
sample symmetry to emphasize the salient features of the
technique and because such samples are commonly avail-
able. However, the technique does not rely on this par-
ticular symmetry. If the symmetry of the sample is lower
than C`v , Eqs. (7) and (8) must be modified accordingly.
In the most general case, eight expansion coefficients are
needed to describe the second-harmonic response. How-
ever, even in this case, once phase differences between the
expansion coefficients are excluded, a circular-difference
effect can arise only from a phase difference between the
polarization components of the target beam.

Other nonlinear polarization effects (e.g., nonlinear po-
larization ellipse rotation) at the fundamental or second-
harmonic frequency could also influence the response.32

However, such effects accumulate in propagation and can
be neglected with a thin-film sample. For example, a
typical third-order susceptibility of nonlinear polymers
(10210 esu) leads to a polarization azimuth rotation of
1024 rad, which does not cause any appreciable error in
the retardation measurements.

10. CONCLUSIONS
We have demonstrated a highly sensitive nonlinear opti-
cal technique for retardation measurements, which is
based on second-harmonic generation from thin films by
use of two fundamental beams. The technique relies on
fundamental symmetry properties of nonlinear interac-
tions and does not therefore require a sophisticated ex-
perimental arrangement or data analysis to achieve high
precision. We presented a theoretical analysis of our
technique and discussed its advantages and limitations
with regard to retardation measurements. In addition,
we performed a detailed analysis of the sensitivity of the
technique to various sources of errors. The technique is
remarkably insensitive to misalignments of the funda-
mental beams or of the optical components as well as to
errors in the retardation of the probe quarter-wave plate.
We have discussed the technique in detail for samples of
C`v symmetry to emphasize its salient features while pre-
serving mathematical simplicity. The technique can also
be generalized to samples of other symmetry.

In the initial demonstration of the technique, we al-
ready achieved a precision and repeatability of better
than l/104 in determining the retardation of a nominal
half-wave plate. We believe that these values can be fur-
ther improved by future refinements in the experimental
details. We are also investigating ways to extend the
technique to measure arbitrary values of retardation with
the same precision.
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