TO APPEAR IN IEEE TRANSACTIONS ON IMAGE PROCESSING 1

Uniform Motion Blur in Poissonian Noise: Blur/Noise time varies. This model is particularly suited for the raw data from

Trade-off digital imaging sensors (see, e.g., [9], [10]). The proposed mode
allows to evaluate the trade-off between noise and blur, aiming at
Giacomo Boracchi and Alessandro Foi establishing an optimal exposure time for which the image quality can

be maximized by means of a deconvolution algorithm. It turns out that

. . . . such optimal exposure time is, to a first approximation, independent
Abstract—In this paper we consider the restoration of images cor-

rupted by both uniform motion blur and Poissonian noise. We brmulate from the qr|g|nal |mage (",e' the underlying image W'thO_Ut_ blur apd
an image formation model that explicitly takes into accountthe length ~ NOIse), as images having different content demonstrate similar optimal
of the blur point-spread function and the noise level as funtions of exposure-time values.
thet expasure }'me- Fumt‘)eﬂ e Pfesﬁm an analtyss of the ?@mﬂb'e The rest of the paper is organized as follows. Section Il introduces
restoration performance by showing how the root mean square error . : : :
varies with respect to the exposure time. It turns out that tre worst the image formatl.on mOdel and shows_ how the nc_)lse level in the
situations are represented by either too short or too long eposure times. OPserved data varies with the exposure time. In Section Il we present
In between there exists an optimal exposure time that maxinzies the an analytical analysis of the best restoration performance achievable
restoration performance, balancing the amount of blur and roise in the by blur inversion in an ideal scenario where the PSF is known.
observation. We justify such result through a mathematicalanalysis of = g analysis is consistent with the experimental results given in
the signal-to-noise ratio in Fourier domain; this study is hen validated Section IV. | ticul h Its obtained f theticall
by deblurring synthetic data as well as camera raw data. ection IV. In particular, we show results obtained tor synthetically
blurred images as well as for raw data from digital camera. Section
V concludes the paper presenting some implications of these findings
to practical applications.

Index Terms—blur modeling, noise modeling, image restoration, de-
convolution, digital camera imaging.

. INTRODUCTION II. IMAGE FORMATION MODEL

_ This paper concerns restoratioq from L_lniform motion blur, Whi(_:h We model an imager acquired with an exposure tin as
is the blur produced by a convolution against a point-spread function
(PSF) that is constant on its straight 1-D support. Uniform motion zr(z) = r(ur(z) +n(@), =z €X, @
blur is a simplified description of the blur resulting from somevhere X C R? is the sampling grid anet > 0 is a factor that can
translational motion between camera and scene during the exposbeeused for scaling the signal into a usable (limited) dynamic range,

Under noisy conditions, inversion of uniform motion blur isthus mimicking the amplification gain in digital sensors (typically,
particularly challenging due to the patterns of zeros in the Fourieroc 7~ '). The two componentsr (z) andn (z) are independent
domain. Nevertheless, this type of blur has been the subject of flm@dom variables distributed as

earliest works on image restoration [1]-[3], mainly because of the / T B
simple parametric description of the corresponding PSFs in terms ur () PA 0 yl@—vtydt), 2)
of blur extent and direction. Recently, uniform motion blur has n(x) ~ N(0,0%),

been considered in blind image restoration algorithms [4], [5], in . . .
g g (41, 15] WhereP and N denote respectively the Poisson and Gaussian

the restoration of pictures containing moving objects [6], and ir. tributi D> 0] ter ch terizing th ¢
a study on how the restoration performance varies when seveq ributions, andi > U'1S a parameter ¢ araQC enzulg € quantum
ciency of the sensor [9]. The function: R® — R™ represents

uniform motion blurred images are available [7]. Uniform motiorf 1 'C1ENC! i hil R? identifies the blur direct d
blur seriously affects aerial images, and forward motion compensatittg}T original Image whilev € iaentimies the biur direction an
elocity. The termy represents a source of noise that is independent

(FMC) hardware [8] is typically exploited in order to attenuate thf

image degradation due to plane or satellite motion. FMC devices jam the original imaggy. In what follows, in order to simplify some

either based on mechanical actuation (e.g., by physically translat%'vat'ons’ we assume < m < y < M < co. This assumption is

the imaging sensor during the exposure time) or on time-delayg ays satisfied in practical applications.
integration (i.e. a specialized charged coupled device that, during the
exposure, shifts the rows of charged pixels together with the motio®). Uniform Blur PSF
in _bOth cases the ‘?XaCt gfounf‘ speed and the flight altitude are.reThe blur is modeled as a linear and shift-invariant operator and,
quwe_d. The o_pt|c§I_|mage stablllzatlorl methods, nowadays becomlﬁl,%s, using generalized functions, the argument of the Poisson distri-
omnipresent in digital cameras, are instead based on accelerome(gﬁ%n in (2) can be rewritten as
which as such cannot sense the uniform motion causing the blur. -’ "
Hence, under many circumstances, uniform motion blur needs to be/\/ y(z — vt)dt = )\/ (y ® 8u1) (2)dt
compensated by means of digital image processing. 0

Although uniform blur has been often considered in the literature, T
the blur and noise have been always considered independent wherea =A (y ® /O 6“tdt) (@) = Ay ® hr)(z), ()
in practice they are always linked: e.g., by controlling the eXposuiare 5., denotes the Dirac delta function at € R? and
time of a dlgltal_ sensor, one can reduce Fhe noise _Ievel at Fﬂ%(_) _ [OT 5.:(-)dt is the PSF of uniform motion blur. In the simple
expense of heavier blur, and vice versa. This paper aims at ﬁ"%%e :

. . : . A i rametric description of uniform motion blur PSF, the direction and
this gap, by introducing an image formation model that describes extent correspond to the directionuodindZ — |vT'|, respectively.

interplay between noise, blur, and signal intensity as the eXpPosHiRs bSE is therefore a line mass supported on the segménin

Copyright (c) 2010 IEEE. Personal use of this material is piechi particular, it follows
However, permission to use this material for any other purpasest be hr(s)ds =T (4)
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varies with respect to the exposure time. The parameiar(1) will =
eventually take care of the normalization. Since we restrict to uniform  SNR(Zr(w))/|Y (w)]
blur PSF, out-of-focus or blur due to camera optics are neglected as

these are time-independent. ¢

B. Noise 353
Equation (1) can be then rewritten in the following form: “
zr(x) = E{zr(2)} + std {zr(2)} a(z), ©) «

where o (z) is a random variable with zero mean and unitary o

variance and overaltx is an independent homoskedastic process. =

The expectation and the standard deviation of our observations are o
respectively, L ®

5 w

E{zr(z)} = kE{ur(x)} = *
(er(@)} {ur(@)} Fig. 1. The factor enclosed in square brackets of Equatidh (thenc = 0

T
_ _ _ and A\ = 1. The plot illustrates how the normalized signal-to-noiséora
HA/O y(@—vt)dt =rMy® hr)(@), z€X (6) SNR(Zr(w)) /|Y (w)] on each frequency varies as a function of the PSF

and extentL = 1,...,30, and thus as a function of the exposure tiffieOnly
on the DC component the SNR increases with the exposure timie,vadm
std {zr(x)} = n\/var {ur(z)} + var {n(z)} = the other frequencies # 0, the upper bound of the SNR decreases.

=k\VAY® hr)(z) + 02 =/ kE {zr(x)} + k202, (7)
\/ ( @) \/ {_ (@)} ) the PSF direction, or whenm is zero. Only for such exceptional
The two termsur — E {ur} andr respectively model the signal- ;o5 the SNR7) can be a meaningful indicator of the restoration
dependent noise, inherent to the photon acquisition process, %nd%“ty_ Otherwise, whileE {zr(z)} increases andstd {z7(x)}

the signal-independent electric and thermal noises. The latter gte.eases with the exposure time, the blur extent increases, making
approximated as independent of the exposure time and thus, WQHS restoration more challenging

ur is influenced by the exposure timeis not. In order to clarify the interplay between blur and noise with

the increase of the exposure time, we now reformulate the above
C. Observation NR inequalities in Fourier domain. In what follows, for the sake of

Let us now consider how the exposure time influences the signdiMPlicity, we will consider discrete domain variables, ignoring
to-noise ratio (SNR) between the expectation of the observatiBRSSiPIe aliasing effects in the convolutions.
(meant as thesignal) and its noise. Sincér > 0, from (4) we

I1l. FOURIER DOMAIN ANALYSIS
have

i The Fourier transforn¥r of the observatiorzr can be expressed
inf {y(s)}T < (y® hr) (z) < sup{y(s)}T, Vz € X.  (8) thanks to (5)-(7) as

sER2 sER2

From the above inequality and from (7), it follow& € X Zr(w) = ARY (w)Hr (w) + S7(w)O(w), (12)

H\/)\T inf {y(s)} +0 <
s€R
respectively, and

s stdter(e)} < S7 2 My ®h 3. (@13
o T, @ = i) = 3 s ). 09
e This equality follows from the independence ®fin (5), and from
Thus, forT large enough we haverd {zr(z)} =< kv AT, where the the fact that the basis elements of the Fourier transform take their
= symbol indicates that the ratio between the two terms is boundeglues on the unit circle in the complex plane. On similar grounds,
from above and from below by two strictly positive constants. Simive remark that® is not an independent and identically distributed
larly, one may derive from (6) thal {zr(x)} =< kAT This leads to process.

where®(w) is a complex valued random variable with unit variance
and zero meanY and Hr are the Fourier transforms gf and hr,

an asymptotic expression for long exposure times of G\Rz)), The SNR on each frequency allows us to speculate on the effects
the signal-to-noise ratio of; atz € X: of both blur and noise in our observation. Let SNR-(w)) be the
SNR(z1 () E{zr(z)} S 3T o oo, (10) computed SNR for the frequency of our observation, i.e.
std {zr(x)} T— o0
On the contrary, for' small enough we have thatd {zr(z)} =< SNR(Zr(w)) = |Y (w)] AHr(w)|
kVAT + 02, and E{zr(z)} =< sAT. Then, the corresponding S My @ hr)(z) + (#X)o?
asymptotic expression of SNRr(z)), for short exposure times is weX (14)
SNR(zr(z)) = Eler(z)} =T° — 0, (11) Where(#X) stands for the cardinality oX..
std {zr(z)} T—0 Considerations similar to those leading to inequalities (9) give the
with 8 = 0.5 wheno = 0, and 3 = 1 otherwise. following upper bound for the SNRZr(w)) :
Note however that because of the blur, the increase of the SNR(Zr(w)) < |Y (w)] A Hr(w)] ’ (15)
SNR(zr(z)) in (10) does not necessarily correspond to an obser- VF#HX) AT + 02)

vation that can lead to a better restoration. Such a correspondence 0 being a suitable constant.
holds when the blur effects do not increase with the exposure: forAs discussed in Section II-A, we have that is a line mass
the uniform blur this happens, for example, wheis constant along uniform over its 1-D segment support, whose length is proportional
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Fig. 2. Experiments on synthetically generated observatioe top row shows an observation detail and the PSF usedefuergting each blurred noisy
image. These observations were generated with 1, A = 24000, o = 0 and exposure time$’ = 0.005,0.0188,0.0707,0.2659, 1, respectively. The

bottom row shows the restored images: the RMSEs (computedeowltble image) ar§.4671,5.9970, 4.7432, 6.3724, 8.9060, respectively. Note that all

the observations and the PSFs have been rescaled for i@l purpose.

to the exposure tim&'. Without loss of generality, we assume that th&NR of non-DC components of the restore image will Tagrows,
support ofhr is horizontal: this allows us to carry out the analysis ofecessarily decrease unless more and more correlations are exploited
the SNR in frequency domain by considering 1-D Fourier transforas a result of some kind of (adaptive) filtering. However, because the
(the 2-D Fourier transform dir is constant along liness = const).  correlations iny are fixed, and because tiie %5 rate for (16) holds

Let then Hr be the 1-D Fourier transform éfr: apart from the DC for all w # 0, we can conclude that this particular rate is generally
componentd = 0), Hr(w) ,w # 0 is a sinc function that satisfies valid for any deblurring algorithm fof" large enough. Thus, the SNR

|Hr(w)| < 1/|wl|. Therefore inequality (15) becomes after the blur inversion follows, for each, a limiting trend like the
SNR(Zr(w)) < AlY (w)] w#0. (16) one shown in Figure 1, which tells us that for an increasing exposure
T | VEX) AT + 02)’ time one will eventually be able to recover only the mean values of

In other words, for any fixed frequency # 0, the upper bounds for the image along lines parallel to the blur direction.
SNR(Zr(w)), decrease likg %5,

Figure 1 shows how the factor in square brackets in (14) varigs optimal Exposure Time
with the extentZ, and thus with the exposure tinfé The considered
PSFs have constant value 1 on their support of ledgth 1, ..., 30
pixels. In this way, Figure 1 illustrates how, for any original image
the SNR on each frequency of the observatibiis scaled when the

From the equations derived so far we can conclude that, in case
of uniform blur, increasing the exposure time may not result in
observations that are easier to restore, as the conditioning of the

exposure time varies. The SNR of the DC component, SKR0)), blur operator may worsen. In partic_ula.tr, fqr each ind.ivifjual noroze
increases monotonically with respect to the exposure time, while gﬁquency, the corresponding SNR is inevitably maximized at a finite

all the other frequencieso(# 0), SNR(Zr(w)) shows a sinusoidal exposure time. In principle, this does not have any direct implication
! . ies (R the overall quality of the restored image, because such exposure

the local maxima of these sinusoids are decreasing with the exposmées might not be the same for every frequency and, moreover, on

time T, and that such decay is faster the higher is the frequency. each frequ_ency SWT(?")) depends on the image_: spectrﬂM{w)J,
as shown in (14). Consider, for example, the trivial cases whease

flat or contains only stripes perfectly aligned with the PSF: the longer

A. Blur and Inversion is the exposure, the less the noise affects the resulting image, while

Equation (16) gives a quantitave estimate of the poor conditionifigstead the blur leaves the image unchanged. However, except from
resulting from rectilinear blur as the exposure time varies. RegardiéBgse cases and all other situations where the AC terms in the image
of the particular technique utilized for recoveringout of z, the spectrum are dominated by the DC term alone, it is natural to expect
inversion of the blur shall aim at scaling the attenuated spectthe overall quality to eventually decrease, as the exposure time goes
componentsZr(w) back to Y (w). Diagonal inverses, such as theto infinity. Thus, it appears that there exists a firgptimal exposure
pseudoinverse or a regularized inverse, operate by frequeney-wigne that, balancing the blur/noise trade-off, maximizes the quality of
multiplication of eachZr(w) by an appropriate scaling factor, andthe restored image. The following experiments aim at establishing the
in these cases the SNR on each frequency of the restored image vaiéstence of this optimal exposure time within a concrete deblurring
proportionally to the term in squared brackets from (14). Effectivapplication and at assessing how its value is affected by the image
deblurring techniques are instead essentiadty-diagonal operators, ~content and noise parameters.
as they exploit the existing structural correlations in the underlying
image y to restrain the noise. Nevertheless, also in this case, the IV. EXPERIMENTS

lthe non-diagonality is meant with respect to the Fourier speg regard- In this section, we show how the restoration performance varies
less of the particular domain in which the deblurring techeigperates. with the exposure time, first by considering a dataset of synthetically



TO APPEAR IN IEEE TRANSACTIONS ON IMAGE PROCESSING 4

Lenao=0 Boats 0= 0 Baboon 0= 0
NisT5 i75
~ S
B i \
=30®\ <000 T~ i
: J . S i 3
; ’ L ~A=12000 T
w10 ~A=12000 N ‘ —
8 20 - — o —— —
[~~A=48000 — NEE RS
x T ~—— = m /""'::w"’\-'/
T 92000 v i ah 7
L ~A=768000 ; f/\./f’
(SRRE i ; 8
R \ i
8072000 \ J
3 %
10° - ‘ -
10 10" 10
Exposure
16
T e
4 IRy Lt
w10 T
= L ’_'_,w'*-'"" j I
h'd ’ | /:ﬂ JWNA_ P
\./‘/J
10° : . P 10° L : . 10° : ;_ i
10" 10° 10° 10" 10° 107 10" 10°
Exposure Exposure Exposure

Fig. 3. Ideal restoration performance (the blur PSF is knomah @n oracle regularization parametér has been used): tests arna, Boats and Baboon.
Each plot shows the RMSE when restoring observations gekvath varying exposure times from a fixed test image. Difieirves in each plot represent
the RMSE for different values oX, wheno = 0 ando = 16. A cross marks the minimum of each curve, and represents theapgxposure time and the
corresponding restoration performance.

blurred and noisy observation, and second by restoring blurred andthe sequel, this RMSE is referred to as tiueal restoration
noisy raw-data images acquired with a digital camera. performance.
The image restoration algorithm used is the LPA-ICI deconvolution
for signal-dependent noi$¢11], [12]. This algorithm is based on a
nonparametric Poisson ML modeling and it couples the Tichondy Deblurring of Synthetic Data

regularized inverse o We synthetically generate several blurred and noisy observations
VR — 7, Hr a7 according to Equation (1) using five stand&tR x 512 grayscale
e |Hr|? + S2e? test images l(ena, Hill, Boats, Baboon, Man), by consideringl00

with adaptive anisotropic filtering. This filtering is realized in spatiaéxposure times exponentially distributed betw&ggn= 0.005 and
domain, using directional polynomial-smoothing kerngls j+,, Tio0 = 1. The test images are normalized so that black and white
having pointwise-adaptive support-siz€” (§;) along the different correspond to 0 and 1, respectively. We restrict to horizontal uniform
directionsd;: the final restored imagg is computed as blur PSFs, generated using subpixel linear interpolation. The PSF

R supports range from (at 71) to 34 (atT100) pixels, depending on the

(z) = Z B (z,h7 (6:),6:) /yIT%’IE () o, n+(o,) (x =€) dE, € ' exposure time. The top row of Figure 2 shows some details taken from

i some of the observations generated frbema (x = 1, A = 24000,

where yﬁ is the inverse Fourier transform af/! (17), and the o = 0, and exposure timeE € {0.005,0.0188, 0.0707, 0.2659, 1}),
convex weights? (x ht(6;),0; ) are used to combine the directionalwith the corresponding PSFs depicted in the top-left corner, while the
estimates into an anisotropic one. For details we refer the readembtatom row shows the corresponding restored images: their RMSE

[13] and especially to [12]. are, respectivelyy.47, 6.00, 4.74, 6.37, 8.91.
As criterion, we utilize the root mean squared error (RMSE) An extensive simulation is made to evaluate the restoration per-
computed between the rescalgdind the original image, formance under several values ®f(ranging from750 to 3072000)
5 ando (ranging fromoO to 32). We fixedx = 1, as this scaling factor
RMSE(g, y) = 255 #X Z i (@) —y () bears no effect on the result. The plots of Figures 3-4 show the
zeX RMSE of the restored image when assuming perfectly known PSF

We assume that the PSFr is exactly known; moreover, an oracleand oracle regularization parameters for each exposure time. In orde
regularization parametet” is selected for each observation byo reduce the influence of the discretization of PSFs on the image grid,
minimizing the RMSE. The minimization has been carried out usinge reported values are, for each exposure time, the averages of the
the Nelder-Mead algorithm [14], [15]. Although these assumptiongMSEs obtained after restorin) different observations generated
are rarely met in practice, they allow to investigate how the potentig), subpixel shifting the PSF af.1 x {0,1,...,9} pixels. Figure
restoration performance varies with the exposure time: for this reas@nshows the results for three different test imagesdor 0 and
o = 16, while Figures 3 and 4 show the results averaged over the
2Available at http:/iwww.cs.tut.fitlasip/ . five considered test images images for all considereasido values.
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Fig. 4. Ideal restoration performance (the blur PSF is knoneth @n oracle regularization parametér has been used): the average over the 5 test images.
Different curves in each plot represent the average of th&SRMhen restoring observations generated with varying sxgotimes from the 5 test images,
as \ varies. Each plot shows the restoration performance when0, 2, 4, 8, 16, 32, respectively. The restoration has been performed assumiogrk PSF

and using an oracle regularization parameterA cross marks the minimum of each curve, and represents thealptxposure time and the corresponding
restoration performance.

B. Deblurring of Camera Raw Data of the observations together with the estimated PSFs (top row) and

In order to ensure uniform motion blur, we acquired a sequence B corresponding restored images (bottom row).
pictures in front of a monitor running a short movie containing the
Lena image progressively translated. A still imagelaiha was also ¢C. Discussion
shown, in order to provide a ground-truth image for measuring the

. The plots in Figures 3 and 4 show that the behavior of the RMSE
restoration performance. We processed one of the green sulethann. . . . . .
. . . . with respect to the exposure time is consistent with the equations
of the Bayer raw data. The size akna imaged in this way was

408x 408 pixels. A marker moving toaether with the image Waderived in Sections Il and with the trend of the SNR in Fourier
P ’ g 'og 9 .aodnain shown in Figure 1. In particular, the RMSE curves show

used as an aid for the estimation of the PSFs, which was Obta"}ﬁat the optimal exposure time exists and that after this moment the

via parametric fitting, first on the image of the blurred marker ( MSE eventually increases. Moreover, the oscillations that appear in
initialization), and then through the minimization of the RMSE, Y . ’ pp

Images have been acquired with a Canon EOS 400D 10-Mpi al| plots for large values ofAT reflect the oscillatory behavior of

) Lot - . >?ﬁe SNR shown in Figure 1. These are not seen unlgdsss large
camera fixed on a tripod: the parallelism between the monitor and the R .
enough, because the regularization term in (17) eventually dampens

imaging sensor was ensured by controlling that the imaged Wmd(.) (S? role of Hr in the deblurring. Note that because of the oracle

containing the video and the still image were rectangular. We acquire o . S :
: . re[ ularization, the deblurred estimate is in practice never worse than
8 blurred images by changing the camera exposure and ISO paramg r

as listed in Table I, while all other camera parameters where fixed. at image equal to the mean value of the image, wh|2(:h bounds
The pedestal in the raw data had been subtracted prior to processihg,RMSE to255\/#ix >eex (y (@) = % (Deex ¥ (s))) . For

ensuring a linear response of the sensor, while the noise moggl reason, the rate predicted by (11) is never realized and one can
parameters\ and o were estimated using the algorithm [9] and ar@pserve the effect of oracle regularization in Figure 4 when 32

given in Table I. After processing, the image intensities were rescalgdq \ — 750.

adaptively, in order Fo ha_ve all image_s in_the same range. The obtfainemost importantly, the plots show that the optimal exposure time
RMSE results are given in Tabl While Figure 5 shows some detailsjg essentially determined by the and o parameters, whereas the

3In the table, we list two pairs of value: and A and7” and \. T are the m:uer!ce of the padrtlcula:‘ Imags to be resltored. IS negllglblg, at least
exposure times manually selected on the camera\are estimated assuming when images are _rawn rom the §ame class (in our experlments we
these values exact. However, according to {25hould have a unique value have been processing natural test images). Thus, the optimal ezposu
characteristic of the sensor. Hendecan be set equal to a fixed value (roughiytimes found from the plots in Figure 4 can be used for any of the
equal to the median of thevalues) and’” are the exposure times derived fromimages leading to RMSE results practically identical to the optimal
this constanf\. By comparing these values with the extehtsneasured from ones. We emphasize that even though our test images are indeed

the fitted PSF, one can observe tiiaare slightly more consistent CXPOSUTE 5 ken from the same class of natural images, they nevertheless portra
values thanl" are. We note that the extett estimated for the first image ges, Yy p y

is a clear underestimate of the PSF length, due to the inabiliaccurately ~Significant variations in the image content, also in terms of spectral
determining the length of a PSF shorter than a pixel. features (e.g., amonigena, Boat, and Baboon).
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Fig. 5. Experiments on camera raw data: raw data imagé=,3,5,8 with the estimated PSF (top row) and restored imégmsom row). Acquisition
parameters and restoration performance are given in Tabhalges have been rescaled for visualization purposes.

TABLE |
RAW-DATA IMAGES: PARAMETERS(SEE TEXT) AND RMSERESULT AFTER DEBLURRING

| image# | 1SO [T | T | X | A ] & | R | L (pixels) | RMSE |
1 1600 | 1/30 [ 0.033 | 2984 | 3000 | 5.08 | 1.005x10~2 0.07 8.73
2 1600 | 1/15 | 0.067 | 3020 | 3000 | 5.31 | 4.967x1073 0.97 5.24
3 1600 | 1/8 0.134 | 3210 | 3000 | 5.02 | 2.492x10~3 2.05 4.21
4 800 1/4 | 0.263 | 3156 | 3000 | 5.91 | 1.267x1073 3.88 4.50
5 400 1/2 0.503 | 3019 | 3000 | 7.79 | 6.625<10~* 6.97 5.93
6 200 1 0.964 | 2893 | 3000 | 10.68 | 3.456x10~* 14.43 8.43
7 100 2 1.867 | 2802 | 3000 | 18.37 | 1.784x10~4 26.04 15.22
8 100 2.5 2.23 | 2674 | 3000 | 16.70 | 1.496x10~4 33.90 20.09

Experiments reported in Figure 5 and in Table | show that the ACKNOWLEDGMENTS
results on camera raw data are consistent with the results obtainego 5uthors would like to thank the Reviewers for their con-

on synthetic data. structive comments and the Editor for her constant efforts on this
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