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Uniform Motion Blur in Poissonian Noise: Blur/Noise
Trade-off

Giacomo Boracchi and Alessandro Foi

Abstract—In this paper we consider the restoration of images cor-
rupted by both uniform motion blur and Poissonian noise. We formulate
an image formation model that explicitly takes into accountthe length
of the blur point-spread function and the noise level as functions of
the exposure time. Further, we present an analysis of the achievable
restoration performance by showing how the root mean squared error
varies with respect to the exposure time. It turns out that the worst
situations are represented by either too short or too long exposure times.
In between there exists an optimal exposure time that maximizes the
restoration performance, balancing the amount of blur and noise in the
observation. We justify such result through a mathematicalanalysis of
the signal-to-noise ratio in Fourier domain; this study is then validated
by deblurring synthetic data as well as camera raw data.

Index Terms—blur modeling, noise modeling, image restoration, de-
convolution, digital camera imaging.

I. I NTRODUCTION

This paper concerns restoration from uniform motion blur, which
is the blur produced by a convolution against a point-spread function
(PSF) that is constant on its straight 1-D support. Uniform motion
blur is a simplified description of the blur resulting from some
translational motion between camera and scene during the exposure.

Under noisy conditions, inversion of uniform motion blur is
particularly challenging due to the patterns of zeros in the Fourier
domain. Nevertheless, this type of blur has been the subject of the
earliest works on image restoration [1]–[3], mainly because of the
simple parametric description of the corresponding PSFs in terms
of blur extent and direction. Recently, uniform motion blur has
been considered in blind image restoration algorithms [4], [5], in
the restoration of pictures containing moving objects [6], and in
a study on how the restoration performance varies when several
uniform motion blurred images are available [7]. Uniform motion
blur seriously affects aerial images, and forward motion compensation
(FMC) hardware [8] is typically exploited in order to attenuate the
image degradation due to plane or satellite motion. FMC devices are
either based on mechanical actuation (e.g., by physically translating
the imaging sensor during the exposure time) or on time-delayed
integration (i.e. a specialized charged coupled device that, during the
exposure, shifts the rows of charged pixels together with the motion):
in both cases the exact ground speed and the flight altitude are re-
quired. The optical image stabilization methods, nowadays becoming
omnipresent in digital cameras, are instead based on accelerometers
which as such cannot sense the uniform motion causing the blur.
Hence, under many circumstances, uniform motion blur needs to be
compensated by means of digital image processing.

Although uniform blur has been often considered in the literature,
the blur and noise have been always considered independent whereas
in practice they are always linked: e.g., by controlling the exposure
time of a digital sensor, one can reduce the noise level at the
expense of heavier blur, and vice versa. This paper aims at filling
this gap, by introducing an image formation model that describes the
interplay between noise, blur, and signal intensity as the exposure
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time varies. This model is particularly suited for the raw data from
digital imaging sensors (see, e.g., [9], [10]). The proposed model
allows to evaluate the trade-off between noise and blur, aiming at
establishing an optimal exposure time for which the image quality can
be maximized by means of a deconvolution algorithm. It turns out that
such optimal exposure time is, to a first approximation, independent
from the original image (i.e. the underlying image without blur and
noise), as images having different content demonstrate similar optimal
exposure-time values.

The rest of the paper is organized as follows. Section II introduces
the image formation model and shows how the noise level in the
observed data varies with the exposure time. In Section III we present
an analytical analysis of the best restoration performance achievable
by blur inversion in an ideal scenario where the PSF is known.
This analysis is consistent with the experimental results given in
Section IV. In particular, we show results obtained for synthetically
blurred images as well as for raw data from digital camera. Section
V concludes the paper presenting some implications of these findings
to practical applications.

II. I MAGE FORMATION MODEL

We model an imagezT acquired with an exposure timeT as

zT (x) = κ (uT (x) + η(x)) , x ∈ X, (1)

whereX ⊆ R
2 is the sampling grid andκ > 0 is a factor that can

be used for scaling the signal into a usable (limited) dynamic range,
thus mimicking the amplification gain in digital sensors (typically,
κ ∝ T−1). The two componentsuT (x) and η (x) are independent
random variables distributed as

uT (x) ∼ P
(

λ

∫ T

0

y (x − vt) dt

)

, (2)

η(x) ∼ N
(

0, σ2) ,

where P and N denote respectively the Poisson and Gaussian
distributions, andλ > 0 is a parameter characterizing the quantum
efficiency of the sensor [9]. The functiony : R

2 → R
+ represents

the original image whilev ∈ R
2 identifies the blur direction and

velocity. The termη represents a source of noise that is independent
from the original imagey. In what follows, in order to simplify some
derivations, we assume0 < m ≤ y ≤ M < ∞. This assumption is
always satisfied in practical applications.

A. Uniform Blur PSF

The blur is modeled as a linear and shift-invariant operator and,
thus, using generalized functions, the argument of the Poisson distri-
bution in (2) can be rewritten as

λ

∫ T

0

y(x − vt)dt = λ

∫ T

0

(y ⊛ δvt) (x)dt =

= λ

(

y ⊛

∫ T

0

δvtdt

)

(x) = λ(y ⊛ hT )(x), (3)

where δvt denotes the Dirac delta function atvt ∈ R
2 and

hT (·) =
∫ T

0
δvt(·)dt is the PSF of uniform motion blur. In the simple

parametric description of uniform motion blur PSF, the direction and
the extent correspond to the direction ofv andL = |vT |, respectively.
This PSF is therefore a line mass supported on the segmentvT . In
particular, it follows

∫

R2

hT (s)ds = T. (4)

Note that despite PSFs are often assumed to have unit mass, in our
model the mass, given by the integral (4), equals the exposure time
T : in such a way, we take into account how the signal expectation
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varies with respect to the exposure time. The parameterκ in (1) will
eventually take care of the normalization. Since we restrict to uniform
blur PSF, out-of-focus or blur due to camera optics are neglected as
these are time-independent.

B. Noise

Equation (1) can be then rewritten in the following form:

zT (x) = E {zT (x)} + std {zT (x)}α(x), (5)

where α (x) is a random variable with zero mean and unitary
variance and overallα is an independent homoskedastic process.
The expectation and the standard deviation of our observations are,
respectively,

E {zT (x)} = κE {uT (x)} =

= κλ

∫ T

0

y (x − vt) dt = κλ(y ⊛ hT )(x), x ∈ X (6)

and

std {zT (x)} = κ
√

var {uT (x)} + var {η(x)} =

= κ
√

λ(y ⊛ hT )(x) + σ2 =
√

κE {zT (x)} + κ2σ2. (7)

The two termsuT −E {uT } andη respectively model the signal-
dependent noise, inherent to the photon acquisition process, and
the signal-independent electric and thermal noises. The latter are
approximated as independent of the exposure time and thus, while
uT is influenced by the exposure time,η is not.

C. Observation SNR

Let us now consider how the exposure time influences the signal-
to-noise ratio (SNR) between the expectation of the observation
(meant as thesignal) and its noise. SincehT > 0, from (4) we
have

inf
s∈R2

{y(s)}T ≤ (y ⊛ hT ) (x) ≤ sup
s∈R2

{y(s)}T , ∀x ∈ X . (8)

From the above inequality and from (7), it follows∀x ∈ X

κ
√

λT inf
s∈R2

{y (s)} + σ2 ≤

≤ std {zT (x)} ≤
≤ κ

√

λT sup
s∈R2

{y (s)} + σ2. (9)

Thus, forT large enough we havestd {zT (x)} ≍ κ
√

λT , where the
≍ symbol indicates that the ratio between the two terms is bounded
from above and from below by two strictly positive constants. Simi-
larly, one may derive from (6) thatE {zT (x)} ≍ κλT . This leads to
an asymptotic expression for long exposure times of SNR(zT (x)),
the signal-to-noise ratio ofzT at x ∈ X:

SNR(zT (x)) =
E {zT (x)}
std {zT (x)} ≍

√
λT →

T→+∞

+∞. (10)

On the contrary, forT small enough we have thatstd {zT (x)} ≍
κ
√

λT + σ2, and E {zT (x)} ≍ κλT . Then, the corresponding
asymptotic expression of SNR(zT (x)), for short exposure times is

SNR(zT (x)) =
E {zT (x)}
std {zT (x)} ≍ T β →

T→0
0, (11)

with β = 0.5 whenσ = 0, andβ = 1 otherwise.
Note however that because of the blur, the increase of the

SNR(zT (x)) in (10) does not necessarily correspond to an obser-
vation that can lead to a better restoration. Such a correspondence
holds when the blur effects do not increase with the exposure: for
the uniform blur this happens, for example, wheny is constant along

SNR(ZT (ω))/|Y (ω)|

L ω

Fig. 1. The factor enclosed in square brackets of Equation (14), whenσ = 0
and λ = 1. The plot illustrates how the normalized signal-to-noise ratio
SNR(ZT (ω)) /|Y (ω)| on each frequencyω varies as a function of the PSF
extentL = 1, . . . , 30, and thus as a function of the exposure timeT . Only
on the DC component the SNR increases with the exposure time while, on
the other frequenciesω 6= 0, the upper bound of the SNR decreases.

the PSF direction, or whenv is zero. Only for such exceptional
cases the SNR(zT ) can be a meaningful indicator of the restoration
quality. Otherwise, whileE {zT (x)} increases andstd {zT (x)}
decreases with the exposure time, the blur extent increases, making
the restoration more challenging.

In order to clarify the interplay between blur and noise with
the increase of the exposure time, we now reformulate the above
inequalities in Fourier domain. In what follows, for the sake of
simplicity, we will consider discrete domain variables, ignoring
possible aliasing effects in the convolutions.

III. F OURIER DOMAIN ANALYSIS

The Fourier transformZT of the observationzT can be expressed
thanks to (5)-(7) as

ZT (ω) = λκY (ω)HT (ω) + ST (ω)Θ(ω), (12)

whereΘ(ω) is a complex valued random variable with unit variance
and zero mean,Y andHT are the Fourier transforms ofy andhT ,
respectively, and

S2
T (ω) =

∑

x∈X

var {zT (x)} = κ2
∑

x∈X

(

λ(y ⊛ hT )(x) + σ2) . (13)

This equality follows from the independence ofα in (5), and from
the fact that the basis elements of the Fourier transform take their
values on the unit circle in the complex plane. On similar grounds,
we remark thatΘ is not an independent and identically distributed
process.

The SNR on each frequency allows us to speculate on the effects
of both blur and noise in our observation. Let SNR(ZT (ω)) be the
computed SNR for the frequencyω of our observation, i.e.

SNR(ZT (ω)) = |Y (ω)|









λ|HT (ω)|
√

∑

x∈X

λ(y ⊛ hT )(x) + (#X)σ2









,

(14)
where(#X) stands for the cardinality ofX.

Considerations similar to those leading to inequalities (9) give the
following upper bound for the SNR(ZT (ω)) :

SNR(ZT (ω)) ≤ |Y (ω)| λ|HT (ω)|
√

(#X)(λc T + σ2)
, (15)

c > 0 being a suitable constant.
As discussed in Section II-A, we have thathT is a line mass

uniform over its 1-D segment support, whose length is proportional
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Fig. 2. Experiments on synthetically generated observation: the top row shows an observation detail and the PSF used for generating each blurred noisy
image. These observations were generated withκ = 1, λ = 24000, σ = 0 and exposure timesT = 0.005, 0.0188, 0.0707, 0.2659, 1, respectively. The
bottom row shows the restored images: the RMSEs (computed on the whole image) are7.4671, 5.9970, 4.7432, 6.3724, 8.9060, respectively. Note that all
the observations and the PSFs have been rescaled for visualization purpose.

to the exposure timeT . Without loss of generality, we assume that the
support ofhT is horizontal: this allows us to carry out the analysis of
the SNR in frequency domain by considering 1-D Fourier transform
(the 2-D Fourier transform ofhT is constant along linesω2 = const).
Let thenHT be the 1-D Fourier transform ofhT : apart from the DC
component (ω = 0), HT (ω) , ω 6= 0 is a sinc function that satisfies
|HT (ω)| ≤ 1/|ω|. Therefore inequality (15) becomes

SNR(ZT (ω)) ≤ λ|Y (ω)|
|ω|

√

(#X)(λc T + σ2)
, ω 6= 0. (16)

In other words, for any fixed frequencyω 6= 0, the upper bounds for
SNR(ZT (ω)), decrease likeT−0.5.

Figure 1 shows how the factor in square brackets in (14) varies
with the extentL, and thus with the exposure timeT . The considered
PSFs have constant value 1 on their support of lengthL = 1, . . . , 30
pixels. In this way, Figure 1 illustrates how, for any original imagey,
the SNR on each frequency of the observationZ is scaled when the
exposure time varies. The SNR of the DC component, SNR(ZT (0)),
increases monotonically with respect to the exposure time, while on
all the other frequencies (ω 6= 0), SNR(ZT (ω)) shows a sinusoidal
behavior with respect to the exposure time. Equation (16) implies that
the local maxima of these sinusoids are decreasing with the exposure
time T , and that such decay is faster the higher is the frequency.

A. Blur and Inversion

Equation (16) gives a quantitave estimate of the poor conditioning
resulting from rectilinear blur as the exposure time varies. Regardless
of the particular technique utilized for recoveringy out of z, the
inversion of the blur shall aim at scaling the attenuated spectral
componentsZT (ω) back to Y (ω). Diagonal inverses, such as the
pseudoinverse or a regularized inverse, operate by frequency-wise
multiplication of eachZT (ω) by an appropriate scaling factor, and
in these cases the SNR on each frequency of the restored image varies
proportionally to the term in squared brackets from (14). Effective
deblurring techniques are instead essentiallynon-diagonal operators1,
as they exploit the existing structural correlations in the underlying
image y to restrain the noise. Nevertheless, also in this case, the

1the non-diagonality is meant with respect to the Fourier spectrum, regard-
less of the particular domain in which the deblurring technique operates.

SNR of non-DC components of the restore image will, asT grows,
necessarily decrease unless more and more correlations are exploited
as a result of some kind of (adaptive) filtering. However, because the
correlations iny are fixed, and because theT−0.5 rate for (16) holds
for all ω 6= 0, we can conclude that this particular rate is generally
valid for any deblurring algorithm forT large enough. Thus, the SNR
after the blur inversion follows, for eachω, a limiting trend like the
one shown in Figure 1, which tells us that for an increasing exposure
time one will eventually be able to recover only the mean values of
the image along lines parallel to the blur direction.

B. Optimal Exposure Time

From the equations derived so far we can conclude that, in case
of uniform blur, increasing the exposure time may not result in
observations that are easier to restore, as the conditioning of the
blur operator may worsen. In particular, for each individual non-zero
frequency, the corresponding SNR is inevitably maximized at a finite
exposure time. In principle, this does not have any direct implication
on the overall quality of the restored image, because such exposure
times might not be the same for every frequency and, moreover, on
each frequency SNR(ZT (ω)) depends on the image spectrum|Y (ω)|,
as shown in (14). Consider, for example, the trivial cases wherey is
flat or contains only stripes perfectly aligned with the PSF: the longer
is the exposure, the less the noise affects the resulting image, while
instead the blur leaves the image unchanged. However, except from
these cases and all other situations where the AC terms in the image
spectrum are dominated by the DC term alone, it is natural to expect
the overall quality to eventually decrease, as the exposure time goes
to infinity. Thus, it appears that there exists a finiteoptimal exposure
time that, balancing the blur/noise trade-off, maximizes the quality of
the restored image. The following experiments aim at establishing the
existence of this optimal exposure time within a concrete deblurring
application and at assessing how its value is affected by the image
content and noise parameters.

IV. EXPERIMENTS

In this section, we show how the restoration performance varies
with the exposure time, first by considering a dataset of synthetically
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Fig. 3. Ideal restoration performance (the blur PSF is known and an oracle regularization parameterε⋆ has been used): tests onLena, Boats and Baboon.
Each plot shows the RMSE when restoring observations generated with varying exposure times from a fixed test image. Different curves in each plot represent
the RMSE for different values ofλ, whenσ = 0 andσ = 16. A cross marks the minimum of each curve, and represents the optimal exposure time and the
corresponding restoration performance.

blurred and noisy observation, and second by restoring blurred and
noisy raw-data images acquired with a digital camera.

The image restoration algorithm used is the LPA-ICI deconvolution
for signal-dependent noise2 [11], [12]. This algorithm is based on a
nonparametric Poisson ML modeling and it couples the Tichonov
regularized inverse

Ŷ RI
T,ε = ZT

HT

|HT |2 + S2
T ε2

(17)

with adaptive anisotropic filtering. This filtering is realized in spatial
domain, using directional polynomial-smoothing kernelsgθi,h+(θi)

having pointwise-adaptive support-sizeh+ (θi) along the different
directionsθi: the final restored imagêy is computed as

ŷ(x) =
∑

θi

β
(

x, h+ (θi) , θi

)

∫

ŷRI
T,ε (ξ) gθi,h+(θi)

(x − ξ) dξ, x ∈ X,

where ŷRI
T,ε is the inverse Fourier transform of̂Y RI

T,ε (17), and the
convex weightsβ

(

x, h+ (θi) , θi

)

are used to combine the directional
estimates into an anisotropic one. For details we refer the reader to
[13] and especially to [12].

As criterion, we utilize the root mean squared error (RMSE)
computed between the rescaledŷ and the original imagey,

RMSE(ŷ, y) = 255

√

1

#X

∑

x∈X

(

1
κλ

ŷ (x) − y (x)
)2

.

We assume that the PSFhT is exactly known; moreover, an oracle
regularization parameterε⋆ is selected for each observation by
minimizing the RMSE. The minimization has been carried out using
the Nelder-Mead algorithm [14], [15]. Although these assumptions
are rarely met in practice, they allow to investigate how the potential
restoration performance varies with the exposure time: for this reason,

2Available at http://www.cs.tut.fi/∼lasip/ .

in the sequel, this RMSE is referred to as theideal restoration
performance.

A. Deblurring of Synthetic Data

We synthetically generate several blurred and noisy observations
according to Equation (1) using five standard512 × 512 grayscale
test images (Lena, Hill, Boats, Baboon, Man), by considering100
exposure times exponentially distributed betweenT1 = 0.005 and
T100 = 1. The test images are normalized so that black and white
correspond to 0 and 1, respectively. We restrict to horizontal uniform
blur PSFs, generated using subpixel linear interpolation. The PSF
supports range from2 (atT1) to 34 (atT100) pixels, depending on the
exposure time. The top row of Figure 2 shows some details taken from
some of the observations generated fromLena (κ = 1, λ = 24000,
σ = 0, and exposure timesT ∈ {0.005, 0.0188, 0.0707, 0.2659, 1}),
with the corresponding PSFs depicted in the top-left corner, while the
bottom row shows the corresponding restored images: their RMSE
are, respectively,7.47, 6.00, 4.74, 6.37, 8.91.

An extensive simulation is made to evaluate the restoration per-
formance under several values ofλ (ranging from750 to 3072000)
andσ (ranging from0 to 32). We fixedκ = 1, as this scaling factor
bears no effect on the result. The plots of Figures 3-4 show the
RMSE of the restored image when assuming perfectly known PSF
and oracle regularization parameters for each exposure time. In order
to reduce the influence of the discretization of PSFs on the image grid,
the reported values are, for each exposure time, the averages of the
RMSEs obtained after restoring10 different observations generated
by subpixel shifting the PSF of0.1 × {0, 1, . . . , 9} pixels. Figure
3 shows the results for three different test images forσ = 0 and
σ = 16, while Figures 3 and 4 show the results averaged over the
five considered test images images for all consideredλ andσ values.
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Fig. 4. Ideal restoration performance (the blur PSF is known and an oracle regularization parameterε⋆ has been used): the average over the 5 test images.
Different curves in each plot represent the average of the RMSE when restoring observations generated with varying exposure times from the 5 test images,
asλ varies. Each plot shows the restoration performance whenσ = 0, 2, 4, 8, 16, 32, respectively. The restoration has been performed assuming known PSF
and using an oracle regularization parameterε⋆. A cross marks the minimum of each curve, and represents the optimal exposure time and the corresponding
restoration performance.

B. Deblurring of Camera Raw Data

In order to ensure uniform motion blur, we acquired a sequence of
pictures in front of a monitor running a short movie containing the
Lena image progressively translated. A still image ofLena was also
shown, in order to provide a ground-truth image for measuring the
restoration performance. We processed one of the green subchannels
of the Bayer raw data. The size ofLena imaged in this way was
408×408 pixels. A marker moving together with the image was
used as an aid for the estimation of the PSFs, which was obtained
via parametric fitting, first on the image of the blurred marker (as
initialization), and then through the minimization of the RMSE.
Images have been acquired with a Canon EOS 400D 10-Mpixel
camera fixed on a tripod: the parallelism between the monitor and the
imaging sensor was ensured by controlling that the imaged windows
containing the video and the still image were rectangular. We acquired
8 blurred images by changing the camera exposure and ISO parameter
as listed in Table I, while all other camera parameters where fixed.
The pedestal in the raw data had been subtracted prior to processing,
ensuring a linear response of the sensor, while the noise model
parametersλ andσ were estimated using the algorithm [9] and are
given in Table I. After processing, the image intensities were rescaled
adaptively, in order to have all images in the same range. The obtained
RMSE results are given in Table I3, while Figure 5 shows some details

3In the table, we list two pairs of values:T and λ̂ and T̂ andλ. T are the
exposure times manually selected on the camera andλ̂ are estimated assuming
these values exact. However, according to (2),λ should have a unique value
characteristic of the sensor. Hence,λ can be set equal to a fixed value (roughly
equal to the median of thêλ values) and̂T are the exposure times derived from
this constantλ. By comparing these values with the extentsL̂ measured from
the fitted PSF, one can observe thatT̂ are slightly more consistent exposure
values thanT are. We note that the extent̂L estimated for the first image
is a clear underestimate of the PSF length, due to the inability of accurately
determining the length of a PSF shorter than a pixel.

of the observations together with the estimated PSFs (top row) and
the corresponding restored images (bottom row).

C. Discussion

The plots in Figures 3 and 4 show that the behavior of the RMSE
with respect to the exposure time is consistent with the equations
derived in Sections III and with the trend of the SNR in Fourier
domain shown in Figure 1. In particular, the RMSE curves show
that the optimal exposure time exists and that after this moment the
RMSE eventually increases. Moreover, the oscillations that appear in
all plots for large values ofλT reflect the oscillatory behavior of
the SNR shown in Figure 1. These are not seen unlessλT is large
enough, because the regularization term in (17) eventually dampens
the role of HT in the deblurring. Note that because of the oracle
regularization, the deblurred estimate is in practice never worse than
a flat image equal to the mean value of the image, which bounds

the RMSE to255

√

1
#X

∑

x∈X

(

y (x) − 1
#X

(
∑

s∈X
y (s)

)

)2

. For

this reason, the rate predicted by (11) is never realized and one can
observe the effect of oracle regularization in Figure 4 whenσ = 32
andλ = 750.

Most importantly, the plots show that the optimal exposure time
is essentially determined by theλ and σ parameters, whereas the
influence of the particular image to be restored is negligible, at least
when images are drawn from the same class (in our experiments we
have been processing natural test images). Thus, the optimal exposure
times found from the plots in Figure 4 can be used for any of the
images leading to RMSE results practically identical to the optimal
ones. We emphasize that even though our test images are indeed
taken from the same class of natural images, they nevertheless portray
significant variations in the image content, also in terms of spectral
features (e.g., amongLena, Boat, andBaboon).
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Fig. 5. Experiments on camera raw data: raw data images#1,2,3,5,8 with the estimated PSF (top row) and restored images(bottom row). Acquisition
parameters and restoration performance are given in Table I. Images have been rescaled for visualization purposes.

TABLE I
RAW-DATA IMAGES : PARAMETERS(SEE TEXT) AND RMSE RESULT AFTER DEBLURRING.

image# ISO T (s) T̂ (s) λ̂ λ σ̂ κ̂ L̂ (pixels) RMSE

1 1600 1/30 0.033 2984 3000 5.08 1.005×10−2 0.07 8.73
2 1600 1/15 0.067 3020 3000 5.31 4.967×10−3 0.97 5.24
3 1600 1/8 0.134 3210 3000 5.02 2.492×10−3 2.05 4.21
4 800 1/4 0.263 3156 3000 5.91 1.267×10−3 3.88 4.50
5 400 1/2 0.503 3019 3000 7.79 6.625×10−4 6.97 5.93
6 200 1 0.964 2893 3000 10.68 3.456×10−4 14.43 8.43
7 100 2 1.867 2802 3000 18.37 1.784×10−4 26.04 15.22
8 100 2.5 2.23 2674 3000 16.70 1.496×10−4 33.90 20.09

Experiments reported in Figure 5 and in Table I show that the
results on camera raw data are consistent with the results obtained
on synthetic data.

V. CONCLUDING REMARKS

We presented an image formation model where both the blur due
to camera motion and the sensor noise are defined as functions
of the exposure time. This model can be directly generalized to
arbitrary motion PSFs, and it is thus suited for describing very general
acquisition paradigms including the recently proposed approaches
based on blurred/noisy image pairs [16], [17], as it offers a unified
description of both long-exposure and short-exposure images.

We have shown that in case of uniform blur, increasing the expo-
sure time leads to an improvement of the SNR of the observed blurred
and noisy image, but, even in ideal conditions (where the PSF is
perfectly known and an oracle regularization term is given), this does
not imply an improvement of the restoration performance. On the
contrary, our study highlights that there is a finite optimal exposure
time which maximizes the restoration performance, balancing the
blur/noise trade-off in the observation. According to experiments on
both synthetically generated observation and on camera raw data,
the estimated optimal exposure times correspond to observations that
are corrupted by noise levels that are far form being negligible.
Thus, at least in case of uniform motion blur, explicitly handling the
noise (even in long-exposure images) becomes a mandatory issue for
algorithms that rely on observations acquired with varying exposure
times.

Our ongoing research generalizes the presented analysis to random-
motion PSFs to investigate the blur/noise trade-off for a wider class
of camera motions.

ACKNOWLEDGMENTS

The authors would like to thank the Reviewers for their con-
structive comments and the Editor for her constant efforts on this
manuscript.

This work was supported by the Academy of Finland (project no.
213462, Finnish Programme for Centres of Excellence in Research
2006-2011, project no. 118312, Finland Distinguished Professor
Programme 2007-2010, and project no. 129118, Postdoctoral Re-
searchers Project 2009-2011), by CIMO, the Finnish Centre for
International Mobility (fellowship TM-07-4952), and by the FIRB
Project InSyEme (Integrated Systems for Emergencies 2008-2010).

REFERENCES

[1] D. Slepian, “Restoration of photographs blurred by imagemotion,” Bell
Syst. Tech., Tech. Rep., 1967, j.46, 23532362.

[2] S. C. Som, “Analysis of the effect of linear smear on photographic
images,”J. Opt. Soc. Am., vol. 61, no. 7, pp. 859–864, 1971. [Online].
Available: http://www.opticsinfobase.org/abstract.cfm?URI=josa-61-7-
859

[3] T. Cannon, “Blind deconvolution of spatially invariantimage blurs with
phase,”IEEE Trans. Acoustics Speech Signal Process., vol. 24, no. 1,
pp. 58–63, February 1975.

[4] Y. Yitzhaky, R. Milberg, S. Yohaev, and N. S. Kopeika, “Comparison of
direct blind deconvolution methods for motion-blurred images,” Applied
Optics, vol. 38, pp. 4325–4332, Jul. 1999.

[5] A. Rav-Acha and S. Peleg, “Restoration of multiple images with motion
blur in different directions,” inApplications of Computer Vision, 2000,
Fifth IEEE Workshop on, 2000, pp. 22–28.

[6] A. Levin, “Blind motion deblurring using image statistics,” in
Advances in Neural Information Processing Systems 19, B. Scḧolkopf,
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