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Quasi Stage Order Conditions for SDIRK

Methods

Frank Cameron a� Mikko Palmroth b� Robert Pich�e b

aPori School of Technology and Economics� P�O� Box ���� ����� Pori� FINLAND

bTampere University of Technology� P�O� Box 	
�� ����� Tampere� FINLAND

Abstract

The stage order condition is a simplifying assumption that reduces the number of or�
der conditions to be ful�lled when designing a Runge Kutta �RK� method� Because
a DIRK �diagonally implicit RK� method cannot have stage order greater than ��
we introduce quasi stage order conditions and derive some of their properties for
DIRKs� We use these conditions to derive a low�order DIRK method with embed�
ded error estimator� Numerical tests with sti	 ODEs and DAEs of index � and 

indicate that the method is competitive with other RK methods for low accuracy
tolerances�

Key words� Di	erential�algebraic systems� Runge�Kutta methods

� Introduction

Of all the classes of implicit Runge�Kutta methods �IRK s�� diagonally implicit
RK methods �DIRK s� are arguably the easiest to implement� In the past
however� when DIRKs have been compared with other IRKs in tests on DAEs�
they have performed poorly ���	
�� One obvious reason for this is that DIRKs
tested were not originally designed for DAEs� In particular� they were not
designed to attain a certain order for DAEs�

To attain a certain order RK methods must satisfy order conditions� The stage
order property is useful since it reduces the number of distinct order conditions�
Other classes of IRKs used for solving DAEs usually have some stage order
property as an integral part of their design �	����� However� DIRKs can only
have the lowest stage order possible� This makes solving the order conditions
for DIRKs an unappealing task� To remedy this situation for DIRKs� we use
the concept of quasi stage order�
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The idea behind quasi stage order is not new� Although they did not give it
a name� Cooper and Sayfy ��� used it in developing DIRKs for ODEs� Verner
�	�� called it dominant stage order and used it to develop high�order explicit
Runge�Kutta methods for ODEs� Our contribution is to extend the idea for
use in developing DIRKs for DAEs�

The paper is organised as follows� In section � we give background notation
and basic results� The quasi stage order concepts are de�ned in section 
�
and various results for DIRKs are given� A DIRK that was derived using
quasi stage order is presented in section �� together with some numerical test
results�

� Notation

��� DAEs

We are mainly interested in �nding the numerical solution of the implicit
index 	 di�erential algebraic equation �DAE� initial value problem

F �y�� y� � � � y�t�� � y� � y��t�� � y�� �	�

where y � R � RN and F � RN � RN � RN � Although this DAE is au�
tonomous� the discussion and results apply equally for non�autonomous DAEs�
We assume that y is su�ciently di�erentiable� Kv�rn� ��� gives conditions for
DAE �	� to be of index 	� A special case of �	� is the quasi�linear DAE

B�y�y� � f�y� � � � ���

where B�y� is singular�

We will also be interested in solving the index � DAE initial value problem

y� � f�y� z� � y�t�� � y� � Rn �
a�

� � g�y� � z�t�� � z� � Rm �
b�

This DAE has been widely researched �	����� It is known that the same Runge
Kutta �RK� method order conditions are valid for both �	� and for the y
component of �
� ��� pg� ����� Thus if we have a candidate method for solving
�	�� then we can use it for solving for the y component of �
�� assuming the
method satis�es any other requirements arising from �
��

�



��� Runge�Kutta methods

This section contains some RK terminology� Hairer and Wanner ��� should be
consulted for more details�

The stage variables Yi� i � 	� �� � � � s and the stage derivatives Y �

j � j � 	� �� � � � s
of an s�stage RK method are related by

Yi � yn � h
sX

j��

aijY
�

j � i � 	� �� � � � s ���

In ��� h is the stepsize� When ��� is applied to �	� the equation for stage i is

F �Y �

i � yn � h
sX

j��

aijY
�

j � � � � i � 	� � � � � s ���

Once all the stage derivatives have been computed the state can be updated
using

yn�� � yn � h
sX

i��

biY
�

i ���

The parameters of an RK method are the matrix A � Rs�s of ��� and the
vector b � Rs�� of ���� A FIRK �fully implicit RK method� has an invertible

A� We will use W
�

� A��� A DIRK �diagonally implicit RK method� is a
FIRK whose A is lower triangular� An SDIRK �singularly diagonally implicit
RK method� is a DIRK whose A has one real s�fold eigenvalue�

We let �y�tn��� represent the exact solution of �	� after one time step when
starting from consistent initial conditions f tn� yn� y

�

n g� The local truncation

error �LTE� for the RK solution of ��� and ��� is

�yn��
�

� yn�� � �y�tn��� ���

The local order of the RK method is �L if

�yn�� � O�h�L� ��

The LTE can be expressed as

�yn�� �
�X

i��L

hi

�
� �iX

j��

Tij Dij

�
A � ���

where the Dij are elementary di�erentials or sums and products of partial
di�erentials of F � The truncation error coe�cients �TECs� Tij are functions of






A� b and c� For an RK method to have local order �L we must have Tij � �� �j�
i � 	� � � � � �L� 	� Typically however� an order condition is presented as some
multiple of its corresponding TEC� e�g� �Tij � �� where � makes the order
condition neater�

We de�ne the abscissae c � Rs�� of an RK method by c
�

� Aes� where es is a
s�vector of ones� A non�con�uent RK method is one with distinct ci�

In an embedded RK pair there is a second �b � Rs�� vector� The local order
associated with the �A��b��RK method is ��L� Assuming ��L and �L are di�erent�
then we can estimate the LTE from

j �n�� j
�

� j h
sX

i��

�bi � �bi�Y
�

i j � j�yn��j �	��

We assume that the �A� b��RK method is used for updating the state via ����
We refer to the �A� b� and �A��b��RK methods as the updating and the auxiliary
methods respectively�

There is a one�to�one correspondence between order conditions and certain
trees� The order of tree t is denoted ��t�� An RK method has local order �L
when all order conditions are satis�ed for trees having ��t� � �L � 	� Table 	
contains the trees for ��t� � �� The notation t � �t�� � � � � tk� u�� � � � � u��y
means the tree obtained by connecting the roots of t�� � � � � tk� u�� � � � � u�
to a new light vertex� which becomes the root of tree t� Analogously� u �
�t�� � � � � tk�z indicates the tree obtained by connecting the roots of t�� � � � � tk
to a new heavy vertex� which becomes the root of tree u� Further details on
trees and their corresponding order conditions can be found from Kv�rn� ����

� Quasi�stage order

��� De	nitions

In the literature the following condition is typically associated with stage
order�

k A ck�� � ck � k � �� 
� � � � q �		�

We will say an RK method has complete stage order q� denoted C�q�� when
�		� is satis�ed� Note that complete stage order requires something from all
rows of A� and depends only on A �because c � Aes�� not on b�

It is known that a DIRK cannot have C�q� for q � �� However� a DIRK may
enjoy some quasi stage order properties� which are de�ned as follows�

�



tree ��t� graph tree ��t� graph
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Table �
The order trees up to ��t�  �� The root vertex is labelled by �r�
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De�nition � Stage i of an RK method has individual forward stage order 	i

or �C�	i�
 when

k Ai � c
k�� � c

k

i � k � �� 
� � � � 	i

De�nition � An RK method has forward quasi stage order q
 or �C�q�
 when
�C�	i�
 	i � q for every stage where bi 	� ��

Note that forward quasi stage order requires something only from the rows of
A where bi 	� �� and depends not only on A but also on �the sparsity pattern
of� b�

For a FIRK� condition �		� is equivalent to

W ck � k ck�� � k � �� 
� � � � q �	��

This can be used as the basis for another form of quasi stage order�

De�nition � Stage i of an RK method has individual reverse stage order 	i

or �C�	i�
 when

Wi � c
k � k c

k � �
i � k � �� 
� � � � 	i

De�nition � An RK method has reverse quasi stage order q
 or �C�q�
 when
�C�	i�
 	i � q for every stage where bi 	� ��

Obviously� complete stage order implies both forward and backward quasi
stage order� However� forward quasi stage order does not in general imply
reverse quasi stage order or individual reverse stage order�

As we shall see later� the number of distinct order conditions can be reduced
by requiring �C�q� or �C�q�� and DIRKs can have �C�q� and�or �C�q� for q � ��
However� both forward and reverse quasi stage order need their own set of
conditions� which is in contrast to complete stage order� where �		� and �	��
are equivalent�

��� DIRKs and quasi stage order �

In this section we present some results that pertain to quasi stage order �� All
proofs are relegated to the appendix�

We will use the following partition�

A �

�
��A� �

A� A�

�
	
 � W �

�
��W� �

W� W�

�
	
 � b �

�
�� �


�

�
	
 � c �

�
����
��

�
	
 �	
�

�



where A� � Rr�r� A� � R�s�r���s�r�� and the other matrices are appropriately
dimensioned�

Row � of a DIRK can have either �C��� or �C���� but not both� This restriction
can be seen when we parameterize the �rst � rows of A and W as follows�

�
��A��

A��

�
	
 �

�
�� a�� � � � � � �

c� � a�� a�� � � � � �

�
	


�
��W��

W��

�
	
 �

�
�� 	�a�� � � � � � �

�a�� � c����a�� a��� 	�a�� � � � � �

�
	


With this parameterization the conditions for �C��� and �C��� for row � are

c���� � �c� � a��� a�� � a�� c� �	��

� c� a�� a�� � �a�� � c�� c
�
� � a�� c

�
� �	��

It can be shown that all solutions of �	�� �	�� imply a singular A and hence
are not permissible�

Another restriction is the following�

Lemma � If a DIRK is sti�y accurate
 has forward quasi stage order �C���
and has an A matrix whose last row is

As� �
�
� � � � � � 	� ass ass

�
�

then this DIRK cannot have �L � �
 even for ODEs�

Both forward and reverse quasi stage order make redundant some of the order
conditions corresponding to the trees of Table 	� If a DIRK has �C���� then the
redundant order conditions are those corresponding to trees having the form
t � �t�� t���y where t� is given in Table 	 and t�� are all other branches in
the remainder of the tree� The order condition for this tree has the form

bT �Ac
  � � 	���t�

From defn� � and �	
� we can rewrite this order condition as

�
� 
T

�

� ��
�
��A� ��

�����

�
	



�
���
�

�
	

�
A � 
T

� � �������
 � � �
	

�
bT �c� 
 � � 	���t�

This expression corresponds to the tree t � �t�� t�� t���y�

�



to attain number distinct order conditions

local order when RK method has properties

�L no sti	 �C�
� and �C�
� and �C�
�� �C�
�

properties acc� sti	 acc� sti	 acc� and sti	 acc�

� � � � � 


� �� 
� �� �� �

Table 

The number of distinct order conditions given various properties�

The order conditions made redundant by reverse quasi stage order �� �C����
are those whose tree has the form t � �u�� t���y� where

u� � h��
s

ZZs

and t�� are all other branches in the remainder of the tree� The order condition
for such a tree has the form

bT �W c� 
  � � 	���t�

From defn� � and �	
� we can rewrite this order condition as

�
� 
T

�

� ��
�
��W� �

�
�

� ��

�
	



�
���
�

�
	

�
A � 
T

� � �� ���
 � � � �bT �c
 � � 	���t�

This expression corresponds to the tree t � �t�� t���y�

If we combine forward or reverse quasi stage order with sti� accuracy� we can
further reduce the number of distinct order conditions� Sti� accuracy makes re�
dundant all order conditions corresponding to trees of the form

h
�t�� � � � � tk�z

i
y
�

Table � gives the number of distinct order conditions for various situations� In
particular� if a DIRK is required to have sti� accuracy� �C���� and �C���� then
of the 
� trees of Table 	 all but the following � are redundant� t�� t�� t��� t���
t��� t��� t�	� t� and t���

��� General results on quasi stage order

In this section we present some general results on quasi stage order�

It follows directly from defn� � that if a DIRK is sti!y accurate and has �C�q��





then it satis�es the order conditions

bT ck � 	��k � 	� � k � 	� �� � � � q

Similar order conditions arise from DAEs�

bT W ck � 	

However� any sti!y accurate FIRK will satisfy all order conditions of this
latter form" we need not require reverse quasi stage order �C�q��

The next lemma shows that separate conditions for �C�	� and �C�	� are not
needed for row s of A�

Lemma � If a DIRK is sti�y accurate
 has �C�	� and the partition of �	
�
holds
 then row s of the DIRK has �C�	��

The next two lemmas give su�cient conditions for SDIRKs to have individual
forward and reverse stage order�

Lemma 	 Let ai�� ai�� � � � � aiq be free parameters in Ai� of a non�con�uent

SDIRK� By setting these parameters row i can have �C�q� for i � q�

Lemma 
 Assume that for all i
 ci 	� �� Let wi�� wi�� � � � � wiq be free param�

eters in Wi� of a non�con�uent SDIRK� By setting these parameters row i can
have �C�q� for i � q�

In the proof of lemma � there were no restrictions on the elements of Ai��
However� in a sti!y accurate SDIRK As� is constrained by partition �	
��
i�e� the �rst r elements of As� are zero� The following lemma shows what is
attainable for row s in this situation�

Lemma � Let as�r��� as�r��� � � � � ass be free parameters in As� of a non�

con�uent
 sti�y accurate SDIRK� By setting these parameters row s can have
�C�q� for s� r � q�

Lemma �� Assume that for all i
 ci 	� �� Let ws�r��� ws�r��� � � � � wss be free

parameters in Ws� of a non�con�uent sti�y accurate SDIRK� By setting these

parameters row s can have �C�q� for for s� r � q�

Combining lemmas � and � we get

Theorem �� An s�stage sti�y accurate SDIRK can have �C�q� for s � � q�

Similarly� we can combine lemmas  and 	� to get

Theorem �� An s�stage sti�y accurate SDIRK can have �C�q� for s � � q�

�



We expect that in practice individual stage orders for SDIRKs will never need
to exceed 
� We have found it possible to attain both �C�p� and �C�q� for row
i when p� q � 	 � i� 	 � p � 
 and 	 � q � 
� For p� q � 	 � i however� we
must assume there is one free parameter from some row j� j � i�

� A new SDIRK embedded pair

We used quasi stage order in designing the new SDIRK pair� denoted SDIRK��
given by the following Butcher table�

	�� 	�� � � �

		�� 	�� 	�� � �

	�
 �	�	�� ����	�� 	�� �

	 � � 
�� 	��

bT � � 
�� 	��

�bT ��	���� ������ ���	�� �
�	��

�	��

We required the updating SDIRK �A� b� to be sti!y accurate� which implies
g�yn� � � for �
�� that is� the algebraic constraints are satis�ed at the end of
each RK step� We also required both �C��� and �C���� After satisfying the two
distinct order conditions remaining �see Table ��� we obtained an updating
SDIRK with �L � �� The auxiliary �A��b� SDIRK has ��L � 
� so the local
error can be estimated from �	��� The updating �A� b� SDIRK is L�stable" this
removes one source error in the error propagation error of FIRKs ��� Thm� ����
and in addition implies A�stability� The auxiliary �A��b� SDIRK is A�stable�

We also considered the following quality measures for RK methods�

� Cameron �
� suggests that to obtain a good local error estimate for sti� prob�
lems� ����� should be small and ����� should be in the range ���	� 	��
where

��z�
�

� j exp�z�� R�z� j�j �R�z�� R�z� j �	�a�

��z�
�

� j �R�z�� R�z� j �	�b�

and R�z�
�

� 	 � zbT �I � zA���es is the standard stability function�
� Shampine �	�� pp� 
����� suggests that to obtain a good local error estimate

for sti� problems� the measures

��
�

� kT�L���� k � kT�L�� k �	�

	�



pair ����� ����� �� �� k�dT k�

SDIRK� � ���
 ��� ��� ���

SDIRK
 ���� � ��� ��� ���

Table �
Performance measures for the SDIRK pairs

��
�

� k bT�L���� � T�L���� k � kT�L�� k �	��

should be small� We choose to use the ��norm�
� N�rsett and Thomsen �		� suggest that if

k#dT k
�

� k �bT � �bT �A�� k ����

is small� then a more lax stopping criterion may be used with the iterative
�e�g� Newton� solver� so that less work is needed in this part of the method�

Table 
 contains the values of these performance measures for SDIRK�� For
comparison� we show the performance measures for the four stage method �b
from ���� here denoted SDIRK	� These measures all favour SDIRK	� However�
numerical test results presented later tend to favour SDIRK��

However� for solving the index � DAE �
�� SDIRK� is preferable� because it
can at least attain local order �L � � for z� whereas SDIRK	 cannot� There
is one order condition needed to obtain �L � � for z�

bT W � c� � �

The �A� b� SDIRK in SDIRK� satis�es this" neither SDIRK in SDIRK	 does�

� Tests

Numerical tests on six small ODE and DAE problems �Table �� were per�
formed using Olsson$s C�� solver package Godess �	�� running under Win�
dows NT on an Intel PIII CPU� Most of the examples are sti� ODE or DAE
benchmark problems from the literature ���	��� The hydraulics examples are
small nonlinear circuits that are modeled using the technique described in �	���
which gives a sparse set of �
 DAEs of index 	� The Godess default parameter
values were used throughout�

We solved these six problems using � di�erent RK methods� SDIRK	 and
SDIRK� from section �� the � stage SDIRK pair from from ��� pg� 	��� and
the RadauIIa pair from ���� The � stage SDIRK pair % we refer to it as
SDIRKHW % was designed for ODEs� not DAEs� For ODEs SDIRKHW has

		



name number description� comments
of states reference

Transistor � sti	� index��
ampli�er DAE ����

Robertson�s � index�� DAE used �nal time ��� s�
DAE ��� replaced third ODE in ���

with y� � y� � y�  �

Ring modulator �� sti	� index�
 ignored index�
 variables
DAE DAE ���� in error estimation

Ring modulator �� sti	 ODE
ODE ����

Hydraulic 
� sti	� index��
circuit� sti	 DAE ����

Hydraulic 
� nonsti	� index��
circuit� nonsti	 DAE ����

Table �
Description of test problems�

local orders ����� whereas for DAE ��� it has local orders 
���� We set up
Godess parameter �les for implementing SDIRK	� SDIRK� and SDIRKHW�
Godess comes with its own �les for implementing RadauIIa� These RadauIIa
�les however use the same values as given in ��� pgs� ���	�
�� We used Godess
because our purpose in these tests is to compare di�erent RK methods in the
same environment� However� other codes implementing the same methods� e�g�
RADAU� ���� may yield very di�erent performance results� Our conclusions
about these RK methods pertain only to their implementation in Godess�

The work�accuracy diagrams of Fig� 	 reveal that of the four RK methods�
no one is consistently the best nor is one consistently the worst� Even though
it is not designed for DAEs� SDIRKHW performs well on most of the DAE
problems� SDIRK	 and SDIRK� have similar performance� usually SDIRK� is
slightly better� Since RadauIIa has a higher order than the SDIRKs� one would
expect its performance to improve relative to the SDIRKs when higher accura�
cies are demanded� The results in general con�rm this expectation� However�
for low accuracy demands the performance of SDIRK� is usually comparable
to or better than that of RadauIIa�
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Appendix

Proof of Lemma � For row s of a DIRK �C��� implies

�As� c
� � cs � �

To have �L � � a DIRK must satisfy


 bT c� � 	

� bT c� � 	

Using sti� accuracy and the given As�� we can rewrite the last three equations�

�	� ass� cs�� � ass � 	��

�	� ass� c
�
s�� � ass � 	�


�	� ass� c
�
s�� � ass � 	��

Solving the �rst equation for cs�� and substituting into the other two equations
yields

�� ass � 	� � � � �� a�ss � � ass � 	� � �

These two equations do not have a common solution for ass�

Proof of Lemma � A DIRK having �C�	� and the partition of �	
� satis�es

�
��W� �

W� W�

�
	

�
���

�
�

���

�
	
 �

�
��W� �

�
�

	 �
�����
�

�
	


Multiplying both sides of this equation by A we get

�
���

�
�

���

�
	
 �

�
��A� �

A� A�

�
	

�
��W� �

�
�

	 �
�����
�

�
	


Owing to sti� accuracy� the last row of this expression can be written as

c�s �
�
� 
T

�

� ���W� �
�
�

	 �
�����
�

�
	
 � 	 
T

� ������� � 	 bT c�����

So the last row of A has �C�	��
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Proof of Lemma 	 To attain �C�q� row i must satisfy

Ai� c
��� � c�i�	 � 	 � �� 
� � � � q ��	�

Parameterizing Ai� by

Ai� �
�
ci �

Pi��
k�� aik � c� ai� ai� � � � c� � � � � �

�

we can rewrite ��	� by

i��X
k��

aik �c
�����
k � c

�����
� � � c� �c

�����
� � c

�����
i � � c�i�	� ci c

�����
� � 	 � �� 
� � � � q

����

Assuming q � i� then from ���� we can set up a linear equation set to solve for�
ai� ai� � � � aiq

�
� The �q�	���q�	� coe�cient matrix for this linear equation

set is�
����������

c� � c� c� � c� � � � cq � c�

c�� � c�� c�� � c�� � � � c�q � c��
���

���

c
�q���
� � c

�q���
� c

�q���
� � c

�q���
� � � � c�q���q � c

�q���
�

�
									

� V�� � V��V�� ��
�

where

�
�� 	 V��

V�� V��

�
	
 is the transpose of the Vandermonde matrix for �c�� � � � � cq��

The Vandermonde matrix �and hence the coe�cient matrix ��
�� is invertible
i� the abscissae c�� c�� c�� � � � cq are distinct�

Proof of Lemma 
 The parameterization of Wi� we will use is

Wi� �
�
c��� �c� � c�

Pi��
k�� wikck � ci� wi� wi� � � � c

��
� � � � � �

�
����

Row i to have �C�q� when the following are satis�ed�

Wi� c
� � 	 c���i � 	 � �� 
� � � � q ����

Using ���� we can rewrite ���� as

i��X
k��

wik ck �c
�����
k�� � c

�����
� � � c

�����
i � c

�����
� � 	 c

�����
i � c�i�c� � 	 � �� 
� � � � q

����

	�



Assuming q � i� then from ���� we can set up a linear equation set to solve

for
�
wi� wi� � � � wiq

�
� The �q � 	�� �q � 	� matrix for this linear equation set

can be written as�
����������

c� � c� c� � c� � � � cq � c�

c�� � c�� c�� � c�� � � � c�q � c��
���

���

c
�q���
� � c

�q���
� c

�q���
� � c

�q���
� � � � c�q���q � c

�q���
�

�
									


�
���������

c� � � � � �

� c� � � � �
���

� � �
���

� � � � � cq

�
								


����

We can use the same reasoning as in the proof of Lemma � to argue that
non�con&uency and ci 	� � are su�cient for this matrix to be invertible�

Proof of Lemma � We will only consider the case of q � s� r�

Let As� be given by

As� �
�
� � � � � � 	�

Ps��
k�r�� ask � ass as�r�� as�r�� � � � ass

�

The conditions we need to satisfy are given by ��	� with i � s and ci � 	� We
can write these conditions as

ass �	� c
�����
r�� � �

s��X
k�r��

ask �c
�����
k � c

�����
r�� � � 	�	� c

�����
r�� � 	 � �� 
� � � � q ���

If we set up the linear equation set to solve for
�
as�r�� as�r�� � � � ass

�
� then the

corresponding �s� r � 	�� �s� r � 	� matrix is

�
����������

cr�� � cr�� cr�� � cr�� � � � 	� cr��

c�r�� � c�r�� c�r�� � c�r�� � � � 	� c�r��
���

���

c
�q���
r�� � c

�q���
r�� c

�q���
r�� � c

�q���
r�� � � � 	� c

�q���
r��

�
									


We can use the same reasoning as in the proof of Lemma � to argue that
non�con&uency is su�cient for this matrix to be invertible�

Proof of Lemma �� The proof of lemma � uses the framework of the proof
of lemma � with the following condition� we may solve only for the last s�r�	
elements of As�� which includes the diagonal element� In the same sense we
can prove lemma 	� using the framework of the proof of lemma �

	�



Proof of Theorem �� Consider a sti!y accurate SDIRK designed with the
following properties� �i� rows q � 	� q � �� � � � s� 	 have �C�q�� �ii� row s has
�C�q�� and �iii� the �rst q elements of As� are zero� Property �i� is possible from
lemma �� Property �iii� and the partition of �	
� implies r � q� From r � q
and lemma �� property �ii� is possible when s � q � r � �q� From defn� � this
SDIRK has C�q��

Proof of Theorem �� Analogous to the proof of Theorem 		�

	


