
Tampere University of Technology

Author(s) Müller, Juliane; Shoemaker Christine A.; Piché, Robert

Title SO-MI: A surrogate model algorithm for computationally expensive nonlinear mixed-integer
 black-box global optimization problems

Citation Müller, Juliane; Shoemaker Christine A.; Piché, Robert 2013. SO-MI: A surrogate model
 algorithm for computationally expensive nonlinear mixed-integer black-box global
 optimization problems. Computers & Operations Research vol. 40, num. 5, 1383-1400.

Year 2013

DOI http://dx.doi.org/10.1016/j.cor.2012.08.022

Version Post-print

URN http://URN.fi/URN:NBN:fi:tty-201311061417

Copyright NOTICE: this is the author’s version of a work that was accepted for publication in
 Computers & Operations Research. Changes resulting from the publishing process, such
 as peer review, editing, corrections, structural formatting, and other quality control
 mechanisms may not be reflected in this document. Changes may have been made to this
 work since it was submitted for publication. A definitive version was subsequently published
 in Computers & Operations Research, volume 40, issue 5, DOI
 http://dx.doi.org/10.1016/j.cor.2012.08.022

All material supplied via TUT DPub is protected by copyright and other intellectual property rights, and duplication
or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by
you for your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an
authorized user.

SO-MI: A Surrogate Model Algorithm for

Computationally Expensive Nonlinear Mixed-Integer

Black-Box Global Optimization Problems

Juliane Müllera,b,c, Christine A. Shoemakerb, Robert Pichéa

aTampere University of Technology, Department of Mathematics
P.O. Box 553, 33101 Tampere, Finland

bCornell University
School of Civil and Environmental Engineering

School of Operations Research and Information Engineering
Center of Applied Mathematics

220 Hollister Hall, Ithaca, NY 14853-3501
cCorresponding author,

Permanent address: Tampere University of Technology, Department of Mathematics
P.O. Box 553, 33101 Tampere, Finland, phone: +358 40 8490 580

Abstract

This paper introduces a surrogate model based algorithm for computation-

ally expensive mixed-integer black-box global optimization problems that

may have computationally expensive constraints. The goal is to find accu-

rate solutions with relatively few function evaluations. A radial basis function

surrogate model (response surface) is used to select candidates for integer and

continuous decision variable points at which the computationally expensive

objective and constraint functions are to be evaluated. In every iteration

multiple new points are selected based on different methods, and the func-

tion evaluations are done in parallel. The algorithm converges to the global

optimum almost surely. The performance of this new algorithm, SO-MI, is

compared to a branch and bound algorithm for nonlinear problems, a genetic

algorithm, and the NOMAD (Nonsmooth Optimization by Mesh Adaptive

Preprint submitted to Computers & Operations Research June 20, 2012

Direct Search) algorithm for mixed-integer problems on sixteen test problems

from the literature (constrained, unconstrained, unimodal and multimodal

problems), as well as on two application problems arising from structural

optimization, and three application problems from optimal reliability design.

The computational results show that SO-MI reaches significantly better re-

sults than the other algorithms when the number of function evaluations is

very restricted (200 to 300 evaluations).

Keywords: Surrogate model, mixed-integer optimization, multimodal,

black-box, nonlinear, global optimization, radial basis functions,

derivative-free

2000 MSC: 90C11, 90C30, 90C56

2

Nomenclature

z mixed-integer decision variables, see equation (5)
x continuous variables, see equation (5)
u discrete variables, see equation (5)
i1 index for continuous variables, see equation (3)
i2 index for discrete variables, see equation (4)
f(z) objective function value, see equation (1)
yι ιth objective function value
Zn the set of n already evaluated points
fp(z) objective function value augmented with penalty term, see equation (9)
f̃p(z) objective function value augmented with penalty term, see equation (11)
cj(z) the jth constraint function, see equation (2)
k1 dimension of the continuous variables, see equation (3)
k2 dimension of the discrete variables, see equation (4)
k problem dimension (k = k1 + k2)
Ωb box-constrained variable domain
ΩD discrete box-constrained variable domain
ΩC continuous box-constrained variable domain
Ω variable domain constrained by box-constraints and linear and nonlinear constraints
sf(z) radial basis function interpolant, see equation (6)
zmin best feasible point found so far
fmin objective function value of the best feasible point found so far
fmax objective function value of the worst feasible point found so far
n number of already sampled points
n0 number of points in initial experimental design

3

1. Introduction

Mixed-integer optimization problems naturally arise in many application

areas such as logistics, engineering design, portfolio optimization or energy

generation. These problems are in general NP-hard and difficult to solve.

Most algorithms for solving mixed-integer optimization problems are based

on branch and bound methods, or some evolutionary strategy such as genetic

algorithms [1, 2, 3] or ant colony optimization (for example MIDACO [4]).

While for solving problems with convex objective and constraint func-

tions several software packages are available (for example DICOPT [5]

or BONMIN [6]), algorithms for solving nonconvex problems are rather

scarce and are usually based on problem reformulation and convexification

strategies [7, 8, 9]. However, when dealing with black-box objective and

constraint functions, where all that is known about the problem is the

deterministic output for a given input, reformulating the problem is not

possible, and other methods must be developed. Moreover, if a single func-

tion evaluation requires a time consuming simulation (from several minutes

to several hours or even days), the number of function evaluations for find-

ing a good approximation of the global optimum has to be as low as possible.

The branch and bound algorithm is based on recursively dividing the set of

possible solutions into smaller sets (nodes) during the so-called branching

step, and a tree structure evolves. During the bounding step an upper and

lower bound on the objective function value is calculated for every solution

subset. This requires minimizing the costly objective function at least

once because in order to obtain the lower bound, a relaxed problem (where

4

certain integer variables are assumed to be continuous) must be minimized.

For solving computationally expensive black-box functions, however, branch

and bound might not be suitable because to obtain valid lower bounds for

multimodal problems the global optimum of the relaxed problem must be

found, which requires the application of a global optimization algorithm.

Furthermore, some application problems may not allow a relaxation of the

integer variables because the objective function evaluation may be otherwise

unsuccessful.

Evolutionary algorithms such as genetic algorithms [10] mimic the natural

process of evolution by survival of the fittest. An initial population of

individuals (solutions) is generated randomly. The fittest individuals

are chosen for reproduction. Their offspring are generated by random

crossover and mutation operations. The advantage of this algorithm type

is that it is possible to escape from a local optimum. In general, a large

number of function evaluations must be done to find a good approxi-

mation of the global optimum due to the number of individuals in the

population and the number of generations. Thus, genetic algorithms may

not be suitable for solving computationally expensive optimization problems.

Another derivative-free algorithm often referred to in the literature

is NOMAD (Nonsmooth Optimization by Mesh Adaptive Direct

Search) [11, 12, 13]. NOMAD uses a mesh adaptive direct search al-

gorithm designed for solving constrained black-box optimization problems.

The mesh adaptive direct search is an extension of generalized pattern search

5

algorithms for which superior convergence properties can be shown [14].

NOMAD is applicable for mixed-variable problems, and by using the

variable neighborhood search [15, 16] option in the C++ implementation, it

is able to escape from local minima [17]. The mixed-variable pattern search

can be shown to guarantee first-order optimality conditions with respect

to the continuous variables, and local optimality in the mixed-integer case

is defined by user-specified neighboring points [18]. Although the C++

implementation of NOMAD is able to use surrogate models during the

search, the user has to implement the desired model him/herself.

Furthermore, there are no extensive numerical studies of using NOMAD

for solving constrained mixed-integer problems. Liuzzi et al. [19] compared

their derivative-free algorithms to NOMAD on many low-dimensional

mixed-integer local optimization problems and few global optimization test

problems with at most 20 dimensions that have only bound constraints, but

application problems were not considered in [19].

Recently, surrogate model based algorithms have been a focus of interest

in the global optimization literature [20, 21, 22, 23, 24, 25, 26, 27, 28].

Surrogate models have proved successful for finding the global optima of

computationally expensive continuous optimization problems, and have

been employed for solving real world application problems [29, 30, 31, 32].

Despite their success in solving continuous optimization problems, surrogate

6

model algorithms have only started to be considered for solving mixed-

integer optimization problems [33, 34, 35, 36]. Davis and Ierapetritou [33]

suggest an algorithm that is able to handle problems with noisy data, and

that have continuous and binary variables. A branch and bound framework

is coupled with Kriging response surfaces and response surface methodology

to obtain a balance of local and global search while using a very restricted

number of function evaluations.

Holmström et al. [35] describe in their paper an adaptive radial basis

function algorithm for solving mixed-integer optimization problems. The

algorithm uses mixed-integer subsolvers from the commercial TOMLAB

optimization environment to solve an auxiliary problem to determine the

points where to evaluate the expensive objective function in every iteration

of the algorithm. Holmström et al. [35] considered mainly low dimensional

problems (one test problem with 11 dimensions, and other test problems with

six or fewer dimensions). The response surface is not necessarily unimodal,

and solving the auxiliary problem may require itself the application of a

global optimization algorithm. Furthermore, constraints have to either be

computationally cheap, or otherwise added as penalty term to the objective

function value. The adjustment of the penalty factor is however a delicate

task, and there are no recommendation on how to adjust the penalty factor.

Similarly, Rashid et al. [36] use a MINLP subsolver to solve two auxiliary

optimization problems for determining the next sample site(s). In addition

to the computationally expensive objective function, Rashid et al. [36]

7

consider problems that may have computationally inexpensive as well as

expensive constraints. Although a multistart method is applied when

optimizing the auxiliary problems, there is no guarantee that the actual

global optimum of the subproblems will be found, and the chosen sample

points may therefore be derived from local optima of the auxiliary problems.

The present work is intended as a contribution to the new area of applying

surrogate models for solving larger dimensional mixed-integer computation-

ally expensive black-box problems without using mixed-integer subsolvers,

and where the integer variables may take on a wide range of values rather

than binary values.

The remainder of this paper is organized as follows. The problem formula-

tion is given in Section 2, and the concept of surrogate models using radial

basis functions is briefly outlined in Section 3. The new algorithm, SO-MI,

for solving constrained mixed-integer optimization problems using surrogate

models is described in Section 4. In Section 5 the set up of the numerical ex-

periments is described. The performance of SO-MI is compared to a genetic

algorithm, a branch and bound algorithm, and NOMAD on 16 test problems

from the literature, and five application problems that are briefly described

in Section 6. A more thorough description of the test problems is given in

the online supplement. The numerical results are summarized in Section 7,

and Section 8 concludes the paper.

8

2. Mixed-Integer Optimization Problem

In the following let f : Rk1 × Zk2 "→ R denote the costly black-box objec-

tive function that may in general be nonlinear or multimodal. Denote the

decision variables by zT = (xT ,uT), where x ∈ Rk1 denote the continuous

variables, and u ∈ Zk2 denote the discrete variables. The optimization prob-

lem considered in this paper is

minimize f(z) (1)

s.t. cj(z) ≤ 0, ∀j = 1, . . . , m (2)

−∞ < xl
i1
≤ xi1 ≤ xu

i1
< ∞, ∀i1 = 1, . . . , k1 (3)

−∞ < ul
i2
≤ ui2 ≤ uu

i2
< ∞, ∀i2 = 1, . . . , k2 (4)

x ∈ R
k1 ,u ∈ Z

k2 , zT = (xT ,uT) (5)

where xl
i1

and xu
i1

denote the lower and upper bounds on the continuous

variables xi1 , i1 = 1, . . . , k1, respectively, and where ul
i2

and uu
i2

denote the

lower and upper bounds on the discrete variables ui2, i2 = 1, . . . , k2, respec-

tively. The jth computationally expensive constraint is denoted by cj(z).

Inequalities (3) and (4) are the box constraints. Denote the box-constrained

discrete variable domain by ΩD ⊂ Zk2 , and the box-constrained continuous

variable domain by ΩC ⊂ Rk1. The mixed-integer box-constrained variable

domain is denoted by Ωb = ΩC × ΩD, and it holds that |ΩD| = κ < ∞, i.e.

ΩD is a finite set. The dimension of the mixed-integer optimization problem

is denoted by k = k1 + k2. Throughout this paper it is assumed that every

point z satisfies the integrality constraints imposed on u, and that f(z) and

cj(z), j = 1, . . . , m, are continuous when the discrete variables are fixed.

9

The objective functions of the optimization problems considered in this pa-

per may in general look as illustrated in Figure 1 (constraints left out for

simplicity). Illustrated are the graphs of a function with one discrete and

one continuous variable when the discrete variable is fixed to three different

values. As can be seen, the function depends now only on the continuous

variable and may be multimodal.

0 0.5 1 1.5 2 2.5 3
−100

−50

0

50

100

150

x

f(x|u)

u=1
u=−5
u=10

Figure 1: Illustrated is the function f(x, u) = ux+ u sin3(u3x) + ux2

for three different fixed values of u. The function may be multimodal
depending on the discrete variable values.

10

3. Surrogate Models and Radial Basis Functions

Surrogate models, also known as response surface models or metamodels,

are approximations of simulation models [20]. Simulation models are used

to capture the behavior of physical processes. A single simulation may

however require several hours of computation time. Therefore, it is often

useful to approximate the output of a computationally expensive simulation

model with a surrogate model, i.e. f(x) = sf(x) + ε(x), where f(x) is the

simulation output, sf(x) denotes the surrogate model output, and ε(x) is

the difference between both. Surrogate models can be non-interpolating

(for example multivariate adaptive regression splines [37], regression poly-

nomials [38]), or interpolating (for example Kriging [24, 39], radial basis

functions [22, 27, 40]). Furthermore, mixture surrogate models [25] have

appeared in the literature and can be, depending on the models in the

mixture, either interpolating or non-interpolating. For a review of different

approaches for using surrogate models in optimization see [23]. Surrogate

models have been used, amongst others, for solving groundwater remediation

problems and design optimization problems [27, 28, 29, 30, 31, 32, 41, 42].

Denote in the following Zn = {z1, . . . , zn} the set of n sample points where

the objective function has been evaluated. The objective function values at

these points are denoted by y1, . . . , yn. In this paper radial basis function

(RBF) models are used as surrogate models. The RBF interpolant can be

represented as

sf(z) =
n

∑

ι=1

λιφ(‖z− zι‖) + p(z) (6)

11

where sf denotes the response surface, φ : Rk "→ R denotes the radial basis

function, and p(z) = bTz+a is the polynomial tail. Here, b = [b1, . . . , bk]
T ∈

Rk and a ∈ R. In this paper the cubic radial basis function φ(r) = r3 is

used. The parameters λι, ι = 1, . . . , n, bi, i = 1, . . . , k and a are determined

by solving a linear system of equations [22]:





Φ P

PT 0









λ

c



 =





F

0



 , (7)

where Φιν = φ(‖zι − zν‖), ι, ν = 1, . . . , n, 0 is a matrix with all entries 0 of

appropriate dimension, and

P =

















zT1 1

zT2 1
...

...

zTn 1

















, λ =

















λ1

λ2

...

λn

















c =























b1

b2
...

bk

a























, F =

















y1

y2
...

yn

















.

The matrix in (7) is invertible if and only if rank(P) = k + 1 [43].

4. Surrogate Model Algorithm for Mixed-Integer Black-Box Opti-

mization Problems

4.1. General Structure of Surrogate Model Algorithms for Continuous Prob-

lems

Surrogate model algorithms work iteratively and have in general the same

structure. Initially, several sample points are chosen for evaluating the

costly objective function. Finding these sample points can, for example, be

12

done by Latin hypercube sampling [21] or some other experimental design

strategy [38]. Given that data, the parameters of the chosen response surface

model are determined. Then, the next sample point where to evaluate

the expensive objective function is chosen according to some strategy.

Gutmann’s strategy [22], for example, is based on solving an auxiliary

optimization problem where a ’bumpiness’ measure is minimized. Jones

et al. [24], on the other hand, maximize the expected improvement in order

to decide where to do the next expensive function evaluation. Regis and

Shoemaker [27] suggested a so-called candidate point strategy that does not

require solving an auxiliary optimization problem. Note however that these

are all strategies for continuous optimization problems.

After the next sample point has been determined and the expensive objec-

tive function evaluated at this point, the response surface parameters are

updated. The surrogate model algorithm iteratively determines the next

sample site and updates the response surface parameters until a predefined

stopping criterion has been met. The following are the components of a

general surrogate optimization method:

1. Build an initial experimental design and do expensive function evalua-

tions.

2. Use the data from 1. to compute the parameters of the surrogate model.

3. Select the next sample point and do the expensive function evaluation

at this point.

4. Update the surrogate model parameters.

5. Iterate through 3. and 4. until a predefined stopping criterion has been

13

met.

The surrogate model algorithm presented in this paper has been developed

for finding (near) optimal solutions of mixed-integer optimization problems.

It will in the following be referred to as SO-MI (Surrogate Optimization -

Mixed-Integer). The single steps of SO-MI are described in detail in the

following sections.

4.2. The Initial Experimental Design for SO-MI and Penalty Functions

The initial experimental design consists of 2k + 1 points that are generated

using a symmetric Latin hypercube design where the integer constraints

are satisfied by rounding the corresponding variable values to the closest

integers. Note that there is a potential problem of the rank of the matrix

P in (7) being less than k + 1 after rounding the integer variables. This

has not been a problem in the computational experiments, but, in order

to circumvent this problem, after rounding the rank of the matrix P is

computed, and if rank(P) < k + 1, a new initial experimental design is

generated until rank(P) = k + 1.

It is assumed that one feasible point is known, and this point is added to the

initial experimental design. In practice, it can be assumed that at least one

feasible solution is known due to experience and a general understanding of

the problem at hand. Thus, totally n0 = 2(k + 1) points are in the initial

experimental design, which is twice the minimum number of points required

to fit the RBF model of dimension k. Next, the computationally expensive

objective function and the constraints are evaluated at these points.

14

The constraints cj(z) in (2) are integrated during the optimization phase in

the objective function by a penalty term. A constraint violation function

v(z) =
m
∑

j=1

[

max
{

0, cj(z)
}]2

, (8)

is used, where it is assumed that z ∈ Ωb, i.e. only points within the box-

constrained domain are considered. If v(z) = 0, the point z satisfies every

constraint cj(z), j = 1, . . . , m. The penalty for constraint violations is in-

corporated in the two different ways. At the beginning of the algorithm

when there are possibly only one or very few feasible points known, it is of

major interest to stay within the feasible region and explore it, i.e. to find

further feasible points, in order to improve the accuracy of the response sur-

face within the feasible region. To achieve this goal the following penalty

augmented objective function is used

fp(z) =











fmax + cpv(z), if z is not feasible

f(z), otherwise
, (9)

where cp denotes the penalty factor and fmax is the worst feasible objective

function value found so far. This definition guarantees that the penalty

augmented function values of the infeasible points are larger than the worst

feasible objective function value. Otherwise, if defining the penalty function

for example by f(z) + cpv(z), it may be possible that for a constant penalty

factor cp infeasible points reach despite penalty a better objective function

value than the feasible points, and the search might be drawn into the

infeasible region and many unnecessary objective function evaluations could

15

be done. To prevent numerical instabilities, high function values fp are

replaced by the median. The data (zι, fp(zι)), ι = 1, . . . , n0, from the initial

experimental design are then used to solve the linear system of equations (7)

in Section 3 to obtain the response surface parameters.

Since the goal is to find accurate approximations of the global optimum

within as few function evaluations as possible, it is desired to do only very

few function evaluations at infeasible points. By adding large values to

infeasible points as done in (9) the response surface is likely to predict

high objective function values for points in the vicinity of infeasible points.

The response surface is used to approximate fp(z), and the penalty term

acts similarly to a barrier method with the goal to stay initially within

the feasible region. The disadvantage is however that the accuracy of the

response surface near the boundary of the feasible domain is decreased.

To overcome this drawback the penalty term is changed after 100 function

evaluations have been done1.

The penalty augmented objective function used for the remaining function

evaluations is defined as follows. First the sum of squared constraint viola-

tions (8) is scaled to the interval [0, 1]:

vs(z) =
v(z)− vmin

vmax − vmin

, (10)

1Numerical experiments showed that for the problems in Section 6 100 evaluations
were sufficient to find several feasible points. The number may be increased depending
on the size of the initial experimental design and the total number of allowed function
evaluations.

16

if vmin += vmax, and vs(z) = 1 otherwise. Here vmin = min{v(zι), ι =

1, 2, . . . , n} and vmax = max{v(zι), ι = 1, 2, . . . , n}. Thus, feasible points

(including the points on the boundary) obtain the value vs = 0, whereas

points that violate the constraints obtain positive values for vs depending on

how much these points violate the constraints. The new penalty augmented

objective function values are then defined by

f̃p(z) = f(z) + vs(z)fmax. (11)

Thus, the worst feasible objective function value fmax is added to the func-

tion value of the point with the largest constraint violation, whereas only a

fraction of fmax is added as penalty to the objective function values of points

with lower constraint violations. This penalty function does not guarantee

that infeasible points have worse objective function values than the best fea-

sible point. The parameters of the response surface are then computed using

the data (zι, f̃p(zι)), and may predict better objective function values for in-

feasible points than for feasible points, and the probability of sampling points

at the boundary of the feasible region is larger than when using (9).

4.3. Selecting the Next Sample Site in SO-MI

Preliminary numerical experiments showed that a random sampling strategy

for determining the next sample site is more successful than optimizing

some auxiliary function based on the response surface. The response surface

is in general not unimodal, and the efficiency of methods such as minimizing

a bumpiness measure [22] or maximizing the expected improvement [24]

are highly dependent on the subsolver used for finding the optimum of

17

these auxiliary problems. The auxiliary problem itself may be a multimodal

optimization problem, and if the global optimum of this problem is not

found, then the next sample site may be derived from a local optimum or

some other stationary point only. Therefore, a random sampling strategy is

employed in this paper.

In every iteration of the algorithm four new sample sites are chosen for

evaluating the expensive objective and constraint functions. These four

points are determined by generating four groups of candidate points. The

first group of points is generated by perturbing only the continuous variables

of the best feasible point found so far (this point is in the following denoted

by zmin). The discrete variable values of zmin are kept constant. Randomly

chosen continuous variables of zmin are perturbed by randomly adding or

subtracting small, medium and large perturbations. If k > 5, then each

variable is perturbed with a probability of 5/k. Otherwise, every variable

is perturbed. Considering high-dimensional problems, this is a practical

approach because the goal of a local search is to stay within the vicinity of

zmin, and perturbing each variable of, for example, a 30-dimensional problem

may cause candidate points to be far away from zmin [26]. By perturbing

only the continuous variables it is possible to find the minimum of the

function f(x|u fixed), which is at least a local optimum of f(z).

For generating the candidate points in the second group, the continuous

variables of zmin are kept constant, and only randomly chosen discrete

variables are perturbed by randomly adding or subtracting small, medium

18

or large discrete perturbations that depend on the minimum variable range

of the variables, and that are at least one unit. Thus, it is possible to explore

how much the objective function values change when transitioning from

one integer sequence to another (compare for example the three objective

function values of the graphs in Figure 1 when the continuous variable

is kept constant). If, for example, the global optima for each function

f(u|x fixed) are at the same point x for all u, it is possible to find the global

optimum of f(z) very efficiently.

The candidate points in the third group are generated by perturbing ran-

domly chosen discrete and continuous variables of zmin by randomly adding

or subtracting small, medium and large perturbations that are defined as for

the first two groups. The candidate points in the fourth group are generated

by uniformly sampling points from the whole box-constrained variable

domain Ωb, ensuring that every point in Ωb has a positive probability of

becoming a candidate and therefore also sample point. The integrality

constraints are satisfied by rounding the corresponding variables to the

closest integers. If any candidate point in the first three groups exceeds the

lower or upper variable bounds xl
i1
, ul

i2
or xu

i2
, uu

i2
in (3) and (4), respectively,

then these variable values are set to the value of the corresponding bound

that has been exceeded.

The standard deviations of the perturbations of the continuous variables

have been set to h1 = δ ·min{min{xu
i1
−xl

i1
, i1 = 1, . . . , k1},min{uu

i2
−ul

i2
, i2 =

1, . . . , k2}}, where δ = 0.1 for large perturbations, δ = 0.01 for medium

19

perturbations, and δ = 0.001 for small perturbations. The standard

deviations of the perturbations for the integer variables have been defined

as h2 = max{1, [h1]}, where [h1] is the value of h1 rounded to the closest

integer. The random perturbations ζh1 and ζh2, where ζ ∼ N (0, 1), are

then added to the variables chosen to be perturbed, and integer variables

are subsequently rounded to the closest integer value. Three standard

deviations for the perturbations have been used in order to increase the

variability of the generated candidate points.

Each group contains 500k candidate points, which is sufficient to create a

large diversity of points in each group. The four groups have been generated

with the incentive of obtaining points that are close to zmin (local search),

and points that are randomly selected from the variable domain (global

search). A balance of local and global search can therefore be established,

and it is possible to explore the vicinity of zmin more thoroughly, as well as

search globally for other promising regions of the variable domain.

If it is a priori known that the optimization problem is unimodal, it might

be sufficient to use only candidate points from the third group, and later

switching to using candidate points only from the first group to further refine

the search since the perturbations are in general much smaller (perturbing

an integer variable results in a perturbation of at least one unit). In general,

it is however unknown how many local and/or global optima are present.

The candidate points in the fourth group allow the exploration of the whole

variable domain, and thus it is possible to escape from local optima.

20

In order to determine the ”best” candidate point in each group, two scoring

criteria [27] are used. The first criterion is derived from the objective func-

tion value predicted by the response surface. Denote χ the th candidate

point,  = 1, . . . , t, in any of the four groups. For every candidate point  the

function sf (χ) in equation (6) is evaluated, and smax = max=1,...,t sf (χ)

and smin = min=1,...,t sf(χ) are determined, i.e. the maximum and the min-

imum of the predicted objective function value over all candidate points is

determined. The score of the th candidate point derived from the predicted

function value is then calculated as

VR(χ) =
sf (χ)− smin

smax − smin

(12)

if smin += smax, and VR(χ) = 1 otherwise. Note that this step is very fast

because evaluating the response surface is computationally inexpensive.

The second criterion is derived from the distance of the candidate points to

the set of already sampled points Zn. DenoteD the Euclidean distance in Rk.

For every candidate point ∆(χ) = minι=1,...,n D(χ, zι) is computed, where

zι ∈ Ωb is the ιth already sampled point. Also, ∆max = max=1,...,t ∆(χ) and

∆min = min=1,...,t ∆(χ) are determined, i.e. the maximum and minimum

of the distances of all candidate points to Zn. Then the score for the th

candidate point derived from the distance criterion is calculated as

VD(χ) =
∆max −∆(χ)

∆max −∆min

(13)

21

if ∆min += ∆max, and VD(χ) = 1 otherwise.

A weighted sum

W (χ) = wRVR(χ) + wDVD(χ) (14)

of both criteria is then used to determine the best candidate in each group.

Here, wD is the weight for the distance criterion, wR is the weight for the pre-

dicted function value criterion, and wR + wD = 1. The weights are adjusted

in a cycling manner, i.e. starting with a high weight for the distance criterion

(wD = 1) and a low weight for the response surface criterion (wR = 0), the

algorithm updates the weights in every iteration, slowly reducing the weight

of the distance criterion and increasing the weight of the response surface

criterion. After the weight for the distance criterion has reached zero, it is

reset to the initial value, and will be reduced in the following iterations anew.

If wD is high, then the distance criterion is emphasized, and candidate

points that are far away from Zn are preferred. In this case the search is

more global because the best candidate points will be in regions that are

rather unexplored. On the other hand, if wR is high, then the criterion

based on the predicted objective function value will have more influence.

The search becomes more local because candidate points that have low

predicted objective function values will be preferred, and these points are

often in the vicinity of zmin. By adjusting the weights in a cycling manner,

a repeated transition from global to local search is achieved.

Based on the final score the best candidate point in each group is chosen for

22

doing the next expensive objective and constraint function evaluations, i.e.

one point from each of the four groups is chosen. It is assumed that objective

and constraint function values are the output of the same computationally

expensive black-box simulation model, i.e. whenever the objective function is

evaluated, also the constraint function values are obtained. The four evalua-

tions can thus be done in parallel because they are independent of each other.

Of course, the parallelization can be extended to more than four points if one

wishes to select more than four candidate points for doing function evalua-

tions.2. After the function values have been obtained, the four new points

are added to Zn, and, depending on the stage of the algorithm, either fp in

equation (9) or f̃p in equation (11) is computed for each point in Zn. The

parameters of the response surface (6) are updated by solving the system (7)

using either the data (zι, fp(zι)) or (zι, f̃p(zι)), ι = 1, . . . , n (depending on

the stage of the algorithm), and the algorithm iterates through generating

candidate points, calculating scores, and updating the response surface until

a given maximal number of function evaluations has been reached.

4.4. SO-MI Algorithm

The specific steps of the surrogate model algorithm SO-MI for computation-

ally expensive mixed-integer black-box optimization problems is given below.

Algorithm SO-MI

2If objective and constraint function values are the output of separate black-box sim-
ulation models, it might be favorable (depending on the number of constraints and their
corresponding computational demand) to use m+1 processors, and do objective and con-
straint evaluations for one point at a time in parallel rather than using one processor for
each point.

23

1. Generate a large initial experimental Latin hypercube design with 2k+1

points, round the discrete variables to the closest integers, and add a

known feasible point to the design. Denote the points by z1, . . . , zn0
,

where n0 = 2(k + 1).

2. Do the costly function evaluations to obtain yι = f(zι), and cj(zι), ι =

1, . . . , n0, j = 1 . . . , m.

3. Find the best feasible point zmin = argmin{f(zι) where cj(zι) ≤ 0, j =

1 . . . , m} with lowest function value fmin, and determine the worst fea-

sible objective function value fmax = max{f(zι) where cj(zι) ≤ 0, j =

1 . . . , m}.

4. Compute fp(zι), ι = 1, . . . , n0, the adjusted objective function values

according to (9).

5. Use the data (zι, fp(zι)), ι = 1, . . . , n0, to calculate the RBF model

parameters by solving (7).

6. Iterate until the maximal number of allowed function evaluations has

been reached:

(a) Create four groups of candidate points by randomly (i) perturbing

only continuous variable values of zmin, (ii) perturbing only dis-

crete variable values of zmin, (iii) perturbing continuous and dis-

crete variable values of zmin, and (iv) uniformly sampling points

from Ωb.

(b) Calculate the scoring criteria for every candidate point.

• Predict the objective function value of each candidate point

χ,  = 1, . . . , t, using the response surface, and compute

VR(χ) in (12).

24

• Determine the distance of each candidate point χ,  =

1, . . . , t, to Zn, and compute VD(χ) in (13).

• Compute the weighted score for every candidate point W (χ)

in (14).

(c) Choose from each group the candidate point with the best score

W .

(d) Do the expensive function evaluations at these points (in parallel).

(e) Update best feasible point found so far zmin. Update the worst

feasible objective function value fmax, and adjust the objective

function values according to (9) or (11), depending on the stage

of the algorithm.

(f) Update the RBFmodel parameters by solving the system (7) using

the penalty augmented objective function values from Step 6(e).

7. Return the best feasible solution found zmin.

4.5. Convergence of SO-MI

The following shows that SO-MI is convergent, specifically asymptotically

complete [44]. It is assumed that f is a deterministic real-valued function

on the compact set Ω ⊆ Ωb defined by the box constraints, and the linear

and nonlinear constraints cj , j = 1, . . . , m, if they exist. It is assumed that

f and cj , j = 1, . . . , m, are continuous when the integer variables are fixed.

Denote f ∗ = infz∈Ω f(z) > −∞ the feasible global minimum. Let z∗ be

a feasible global minimizer of f over Ω and suppose that f is continuous at z∗.

Theorem 4.1. The algorithm SO-MI is asymptotically complete, i.e. assum-

ing an indefinitely long run-time and exact computations, a global minimum

25

of the optimization problem (1)-(5) will be found with probability one.

The proof of the theorem is given in the online supplement.

5. Numerical Experiments

The SO-MI algorithm has been implemented and tested in Matlab 2010a.

The performance of SO-MI is in the following analysis compared in numerical

experiments to a branch and bound algorithm for solving nonlinear mixed-

integer optimization problems, a genetic algorithm, and the mixed-integer

option of the C++ implementation of NOMAD [12, 17].

The branch and bound algorithm for nonlinear problems is based on the

implementation by E.C. Kuipers [47] and applies the trust-region-reflective

algorithm (Matlab optimization toolbox function fmincon) when solving

the relaxed subproblems in the tree nodes. The maximum number of

function evaluations to solve one subproblem has been kept at the default

value 100k. The branch and bound implementation uses a depth-first

search with backtracking. The branching variable is chosen such that

|f(x1, . . . , xk1, u1, . . . , ui2, . . . , uk2) − f(x1, . . . , xk1 , u1, . . . , [ui2], . . . , uk2)| is

maximized over all i2 ∈ {1, . . . , k2}, where [ui2] is the value of the i2th

discrete variable rounded to its closest integer.

The branch and bound algorithm has been included in the comparison

because it is a widely used algorithm for solving mixed-integer optimization

problems. However, as argued before, the performance of branch and

bound cannot be expected to be good on multimodal problems due to the

26

computation of the lower bounds in the tree nodes that would require a

global optimization algorithm. The comparison with branch and bound

is included to show that although the algorithm is suitable for solving

mixed-integer problems with special characteristics such as convexity, it

is not a feasible option for finding (near) optimal solutions to black-box

problems within only very few function evaluations.

The genetic algorithm has a population of 20 individuals, 20 generations,

and, following [48], uses real-coded chromosomes. The parents for gener-

ating the next generation’s individuals are chosen based on their objective

function value fp. Crossover and mutation operations have been applied

for generating the offspring. In the crossover operation two parents are

chosen and the crossover point is selected randomly. The mutation operator

randomly selects variables of the parent and adds a value dζ , where ζ is

a random variable drawn from the normal distribution N (0, 1), and d = 1

initially and increases if the mutation does not result in new offspring, i.e.

variable vectors that are not yet included in the population. The discrete

variables are then rounded to the closest integer values, and variables

exceeding any upper or lower bounds are replaced by the respective value of

the bound that has been exceeded.

As suggested by the literature [49, 50] and in order to help the genetic

algorithm to perform well within a limited number of function evaluations, a

dynamic adjustment of the crossover and mutation probabilities is applied.

The probability of using crossover decreases as the number of generations

27

increases, whereas the probability of using mutation increases with the

generation number. Hence, a transition from a rather global to a more local

search can be achieved as the algorithm advances. The linear and nonlinear

constraints have been incorporated in the objective function with a penalty

term. The branch and bound algorithm and the genetic algorithm were

implemented and tested with Matlab 2010a.

NOMAD 3.5 has been obtained from [12] and can solve mixed-integer

problems [17]. The C++ implementation has been used because it in-

corporates the variable neighborhood search (the setting VNS SEARCH

0.75 as suggested in the user manual has been used) that enables the

algorithm to escape from local optima. The constraints are treated with the

progressive barrier approach (setting PB). Although the user manual states

that NOMAD can be used with a surrogate model, the software does not

include an implementation of a surrogate model. Therefore, NOMAD has

not been used with surrogate models in the numerical experiments.

In the SO-MI algorithm, the penalty factor cp = 100 in (9) has been

used. The factor guarantees that infeasible points will have worse function

values than the worst feasible point. By subsequently replacing large

function values with the median, numerical instabilities can be prevented.

Furthermore, the numerical experiments showed that the strategy of using

four candidate point groups with different ranges of perturbations as well

as randomly sampled points as described in Section 4.3 is very successful.

During the iterations improvements were found by points from all four

28

groups.

The maximum number of allowed function evaluations for SO-MI, the

genetic algorithm, and NOMAD has been set to 300 since the algorithm

developed in this paper is intended for problems for which only a lim-

ited number of function evaluations can be done, and in many real life

applications even 100 function evaluations are already computationally

infeasible. Branch and bound was run until it stopped, but only the

first 300 function evaluations have been considered in the comparison.

30 trials have been made with every algorithm for every problem, and

every algorithm was given the same feasible point for the same trial of a

given test problem. This feasible point was either the starting point for

the algorithm (NOMAD and branch and bound), or it was added to the

initial experimental design/initial generation (SO-MI and genetic algorithm).

The mixed-integer global optimization solver arbfMIP contained in the

commercial TOMLAB optimization environment [35] has not been included

in the comparison due to the following reasons. TOMLAB has been devel-

oped for unconstrained problems and problems that have computationally

cheap constraints. If the constraints are computationally expensive, they

have to be incorporated in the objective function with a penalty term.

There are however no recommendations on how to adjust the penalty factor.

Moreover, the objective and constraint function values must be computed

in separate Matlab files, and thus there are difficulties applying the penalty

method used in SO-MI as described in Section 3. A fair comparison between

29

SO-MI and TOMLAB for constrained problems is therefore not possible.

On the other hand, there are several parameters that need to be adjusted

(for example, global search type, cycle length, global and local solver, etc.),

which may have to be adjusted according to the test problem, and which is

without further knowledge of the problem at hand difficult to do such that

the comparison with the other algorithms would be fair.

The mixed-integer global optimization solver arbfMIP has been applied to a

five- and a 30-dimensional unconstrained test problem with computationally

cheap objective functions. The calculations for the five-dimensional prob-

lem have been interrupted after more than two hours computation time and

the algorithm was not close to having done 300 computationally cheap func-

tion evaluations. For the thirty-dimensional problem, the algorithm required

more than two hours for finding only 50 points for doing the computationally

cheap function evaluations, i.e. the arbfMIP tends to become itself a com-

putational burden (SO-MI needs less than a tenth of that time). Assuming

an allowed maximum number of 300 function evaluations, where each evalu-

ation would take about two minutes, the total time for solving the problem

would almost double for the 30-dimensional problem. Thus, the TOMLAB

optimization environment seems to be efficient only for problems where the

function evaluation requires considerably more time. Also the solver glcSolve

could be used, which is significantly faster than arbfMIP. For glcSolve it is

however not possible to define a starting point (the given feasible point).

Thus, also for this solver a fair comparison of the algorithms would not be

30

possible. For the reasons stated above, TOMLAB has not been included in

the computational experiments.

6. Test Problems

6.1. Generic Test Problems

Totally, 16 test problems (which are modifications of literature problems)

have been used to examine the efficiency and solution quality of SO-MI

compared to branch and bound, the genetic algorithm, and NOMAD. Four

test problems used by Koziel and Michalewicz [51] (test problems 5-8,

Table 1), that are originally continuous global optimization test problems,

have been used and integrality constraints have been imposed on some of

the continuous variables.

Four test problems from the Mixed-Integer Nonlinear Programming models

library MINLPLib [52] (test problems 3, 9, 11, 12, Table 1), five problems

that have only box constraints (test problems 2, 10, 13, 14, 15, Table 1),

and three test problems from [53] have been used to compare the algorithms

(see also [54, 55, 56], integer variables are binary variables in these cases,

test problems 1, 4, 16, Table 1). The mathematical description of all test

problems is for convenience given in the online supplement together with the

best known solution. Although some of the problems have convex objective

functions, the constraints determine the number of local optima. Many

problems have therefore several local optima. Furthermore, some problems

have flat regions, i.e. regions where several points of the variable domain

have the same function value.

31

6.2. Structural Design Applications

Two applications from structural design have been examined. Mixed-integer

optimization problems are often encountered in this application area, for

example when designing truss structures.

The goal is in general to minimize structural costs such as the total weight

of the structure while satisfying constraints such as limits on the maximal

nodal displacements when loads are applied. A finite element analysis must

be done to determine these nodal displacements, and depending on the

number of elements involved and the type of finite element analysis required,

the computation times may become a considerable burden [57, 58, 59, 60, 61].

The need for integer as well as continuous decision variables arises because

technological requirements do not allow the production of truss members

with arbitrary cross-sectional areas. Rather, catalogues are used from which

commercially available member sizes may be chosen. Therefore, discrete

variables enter the design problem. On the other hand, as the length of

the truss element is variable (one can always weld truss members together),

continuous variables are encountered. A more thorough description of the two

examined design optimization problems is given in the online supplement.

6.3. Reliability-Redundancy Allocation Problems

Three application problems arising from reliability engineering are exam-

ined. Reliability engineering is an important topic in fields such as system,

32

mechanical, electronics or software engineering. Depending on the system

under consideration different levels of reliability must be guaranteed. The

consequences of the failure of a system’s reliability may vary significantly

between different applications (compare for example the crash of an airplane

and the malfunctioning of a coffee machine). Although the reliability

requirements for different systems are in general very different, the common

goal is to maximize the total system reliability.

The reliability of a system is defined as the probability that a sys-

tem or device will perform its intended function for a specified time

period under given restrictions such as production costs, for example.

The most commonly used system reliability measure is the mean time to

failure (MTTF). The higher the MTTF is, the higher the system’s reliability.

The engineer has in general two options for increasing the reliability of a

system. On the one hand, it is possible to increase the reliability of single

components (continuous variables), and on the other hand redundancy can

be provided at various stages of the system (discrete variables). Because

the component cost often increases exponentially when the component

reliability exceeds a certain limit, it might be cheaper to use components of

lower reliability and to provide redundancy, i.e. to add more components

of the same kind of lower reliability to the system. Although additional

components also incur costs, the cost increase might be less compared to

the costs caused by increasing the component reliability. A tradeoff between

component reliability increments and component redundancy arises. This

33

problem type is in the literature referred to as reliability-redundancy

allocation (see for example [63]).

Since reliability is a probability, it is in practice difficult to test a system’s

reliability. A single test of the system is in general not representative, and

performing multiple tests or tests of systems with a high MTTF may be too

expensive. Thus, when adjusting reliability and redundancy parameters for

maximizing the total system reliability, it is important to strictly limit the

number of reliability tests to a minimum.

In the literature, different heuristic algorithms [64, 65], as well as algorithms

based on branch and bound [66] and evolutionary algorithms [67, 68]

have been developed for solving reliability-redundancy allocation problems.

However, these methods require in general many function evaluations which

may become infeasible in practice.

Three reliability-redundancy allocation problems have in the following been

examined, namely a series-parallel configuration, a bridge system, and an

overspeed protection system (see [69, 70, 71, 72]). Block diagrams for a

simple bridge and series-parallel configuration, and the configuration specific

data are given in the online supplement.

6.4. Overview of Test Problems

A summary of all test problems is shown in Table 1. The column k2

denotes the number of discrete variables, and the column Notes gives

34

information about the origin of the problem. The column Characteristics

contains information about the problem constraints, where NLC stands for

nonlinear constraints, and LC for linear constraints, and indicates whether

the problem is unimodal (UM) or multimodal (MM). FEA means that a

finite element analysis has to be done for evaluating the constraints.

7. Numerical Results

In the following the genetic algorithm will be referred to as GA, and the

branch and bound algorithm for nonlinear problems will be abbreviated

by B&B. The test problems have been divided into four groups as follows.

Table 2 shows the results for all test problems that have only box constraints.

Table 4 summarizes the results of the algorithms for problems that have in

addition to the box constraints linear and/or nonlinear constraints. Table 6

shows the numerical results for the structural design application problems,

and the results of the reliability-redundancy allocation problems are given

in Table 8 (note that these are maximization problems).

Each table shows the problem ID as defined in Table 1, and the function

value achieved by every algorithm after 100, 200, and 300 function evalua-

tions, respectively, averaged over 30 trials together with the corresponding

standard errors of the men (SEM) in columns 100 eval., 200 eval., 300 eval.

The reported numbers are all for feasible points only. Note that if a test

problem has constraints, then the constraints are evaluated if and only if

the objective function is evaluated, i.e. every objective function evaluation

35

Table 1: Summary of test problems; NLC - nonlinear constraints, LC - linear constraints, FEA - finite
element analysis, k -problem dimension, k2 - dimension of integer variables, UM - unimodal, MM -

multimodal
(a) http://www.aridolan.com/ga/gaa/MultiVarMin.html

(b) reliability-redundancy allocation problem

Problem ID k Domain k2 Notes Characteristics

1 11 [0, 1]8 × [0, 0.997]× [0, 0.9985]× [0, 0.9988] 4 [54] 3 NLC, 4 LC, MM
2 8 [−10, 10]8 4 convex no constraints, UM
3 5 [0, 10]3 × [0, 1]2 2 [52] 2 NLC, 3 LC, UM
4 3 [0, 1]× [0.2, 1]× [−2.22554,−1] 1 [73] 1 NLC, 2 LC, MM
5 25 [0, 10]25 6 [51] 1 NLC,1 LC, MM
6 5 [78, 102]× [33, 45]× [27, 45]3 2 [51] 6 NLC, UM/flat
7 2 [13, 100]× [0, 100] 1 [51] 2 NLC, MM
8 7 [−10, 10]7 3 [51] 4 NLC, MM
9 5 [0, 10]3 × [0, 1]2 3 [52], linear 3 LC, UM
10 5 [−100, 100]5 2 (a) no constraints, MM
11 10 [3, 9]10 5 [52] no constraints, UM
12 10 [3, 99]10 5 [52] no constraints, UM
13 12 [−1, 3]12 5 [74] no constraints, MM
14 12 [−10, 30]12 5 [74] no constraints, MM
15 30 [−1, 3]30 10 [74] no constraints, MM
16 11 [0, 1]8 × [0, 10]3 4 [56] 4 NLC, 9 LC, MM
17 14 [10, 60]11 × [2000, 3200]3 11 2-dim. truss FEA
18 31 [1, 10]24 × [0, 1000]7 24 3-dim. truss FEA
19 10 [1, 10]5 × [0, 0.999999]5 5 (b), bridge 3 NLC
20 8 [1, 10]4 × [0, 0.999999]4 4 (b), overspeed 3 NLC
21 10 [1, 10]5 × [0, 0.999999]5 5 (b), series-parallel 3 NLC

36

is followed by the evaluation of all constraints, and constraints are not

evaluated at a point without the objective function being evaluated. In

many real-life application problems objective and constraint function values

are the output of the same computationally expensive black-box simulation,

and therefore this assumption has been made in the numerical experiments.

The columns dim. and |ΩD| in all tables give information about the problem

dimension and the cardinality of the discrete variable domain. The last

column indicates whether the problem is unimodal (UM) or multimodal

(MM).

It has to be emphasized that the algorithms are compared with respect

to the number of function evaluations needed to find improvements, and

that the computation times of the algorithms are neglected because in

applications where a function evaluation may take up to several hours or

even days, the algorithms’ computation time becomes insignificant. The

objective function values reported in the tables are for feasible points only.

It shall be noted at this point that the performance of NOMAD, GA,

and B&B may be improved by combining these algorithms with surrogate

models. However, publicly available codes are rather scarce, and as in the

case of NOMAD, the developers ask the user to implement the surrogate

model him/herself.

In order to better compare the solution quality of the algorithms for the

four problem classes, the ”score” rows of each table summarize how much

each algorithm deviates from the best feasible solution averaged over 30 trials

37

(numbers in %). The value is computed for each column (100 eval., 200 eval.,

and 300 eval.) and each algorithm as

1

|N |

∑

π∈N

∣

∣

∣

∣

fn
a − fn

best

fn
best

∣

∣

∣

∣

· 100, (15)

where N is the set of problems in each category (box-

constrained/constrained/structural/redundancy-reliability), π denotes

a certain problem within the category, fn
best is the best average feasible

objective function value reached for a given problem after n function

evaluations (n is 100, 200, or 300), and fn
a is the average objective function

value reached by algorithm a (a is SO-MI, GA, B&B, or NOMAD) after n

evaluations for a given problem. The best algorithm for a given problem

receives therefore the score 0, whereas all other algorithms with worse results

obtain a positive number. Thus, by this definition, the smaller the reported

score is, the better is the algorithm’s performance because the lower is the

deviation from the best solution.

In addition, Tables 3, 5, 7, and 9 contain information of hypothesis testing for

differences in means between the algorithms after 100, 200, and 300 function

evaluations

7.1. Results for Box-Constrained Problems

The results for the box-constrained problems in Table 2 show that SO-MI

and NOMAD outperform B&B and GA on all problems of this group.

Comparing the feasible function values averaged over all 30 trials, shows

that SO-MI is better than NOMAD for five out of seven problems after 100

38

function evaluations (column 3), indicating that SO-MI finds improvements

faster. SO-MI is also superior after 200 and 300 function evaluations.

B&B did not find any improvements during 300 function evaluations for test

problems 11, 12, 13, 14 and 15. GA found improvements for all problems,

but could not compete with SO-MI or NOMAD. B&B has in general the

worst performance, and is outperformed by all other algorithms for five out

of seven problems including the unimodal test problems. This fact indicates

that the optimization of the subproblems in the leaves of the branch and

bound algorithm consumes too many function evaluations, and feasible

solutions with respect to the integer constraints cannot be found efficiently.

Problems 13 and 14 are essentially the same problems, but problem 14 has a

larger variable domain. The results show that for both problems the results

found by SO-MI after 300 evaluations are about equal to the results found

by NOMAD, whereas the results of NOMAD for problem 14 are for all

evaluations significantly worse. B&B found for problem 13 only very slight

improvements of the initially given feasible solution within 300 evaluations,

and was not able to find any improvements when the variable domain was

increased. Also the performance of GA is significantly worse for the problem

with larger variable domain (problem 14) than for problem 13.

Similarly, problems 11 and 12 have the same structure, but problem 12

has a larger variable domain. The results show that SO-MI is able to find

for both problems a near optimal feasible solution within fewer than 100

39

function evaluations, whereas NOMAD reaches competitive results after

300 evaluations. B&B did not find any improvements of the initially given

solutions for both problems. GA performs slightly worse for problem 12

(the final solution is about 40% worse than the best feasible solution after

300 evaluations) than for problem 11 (the final solution is about 22% worse

than the best feasible solution after 300 evaluations), indicating that the

performance of GA decreases when the variable domain increases. These

four problems (11, 12, 13, and 14) show that the performance of SO-MI is

less affected by the size of the variable domain than the other algorithms.

The scores for each algorithm in the table are computed without taking

the convex problem 2 into consideration because SO-MI was developed for

non-convex and multimodal problems, and was not expected to work so well

on a convex problem. The convex problem was included only to examine

how well SO-MI might do on this problem class. The scores in the table

show that SO-MI performs better than all other algorithms and has the

smallest deviations from the best feasible solution found. Although SO-MI

does not continuously perform best on all problems, the cases where it is

outperformed by NOMAD show that the differences between the results

found by NOMAD and SO-MI are much smaller than the differences for the

problems where SO-MI outperforms NOMAD. Compared to GA and B&B,

SO-MI and NOMAD perform significantly better.

The standard errors of the means (SEM) given for each algorithm in Table 2

are for SO-MI in general lowest (except for test problem 10). The hypothesis

40

testing for differences in means between the different algorithms in Table 3

shows that except for problems 10, 13, and 15 the average feasible objective

function values of SO-MI are significantly lower than those of GA, NOMAD,

and B&B at the significance level α = 0.01. NOMAD reaches significantly

lower values than SO-MI only for test problems 10 and 15 after 200 and

more function evaluations, and for problem 13 for up to 100 evaluations.

The SEM values reported for B&B for test problems 11, 12, 13, 14, and 15

correspond to the value computed based on the initially given feasible points

since B&B was not able to find any improvements for these test problems.

Figure 2 illustrates the development of the objective function value for feasi-

ble points averaged over 30 trials versus the number of function evaluations

for all four compared algorithms for test problem 12. Since the problem was

about minimization, the best algorithm is the one that achieves the fastest

reduction of the objective function value. The figure shows that SO-MI

improves the objective function value within the lowest number of function

evaluations as compared to GA, NOMAD and B&B. NOMAD eventually

finds a feasible solution that is very similar (less than 4% difference) to the

one found by SO-MI, but comparing the graphs of SO-MI and NOMAD

after 100 and 200 function evaluations, for example, shows that SO-MI

performs significantly better. GA also finds improvements, but is not able

to perform nearly as well as SO-MI. B&B did not find any improvements

within 300 function evaluations for this test problem.

41

Table 2: Mean objective function values (mean) over 30 trials with 100, 200, and 300 function evaluations
for box-constrained problems. Best result of all algorithms is marked by boxes. Standard errors of means
(SEM) are given for each algorithm in italic. All problems are minimization problems. MM - multimodal,

UM - unimodal

Problem Algorithm Statistic 100 eval. 200 eval. 300 eval. dim. |ΩD| MM/UM

10

SO-MI
mean -386.33 -420.91 -432.58

5 1012 MM

SEM 16.74 14.87 15.17

GA
mean -240.21 -300.64 -306.96
SEM 18.78 18.54 18.04

B&B
mean 644.33 -120.76 -357.94
SEM 107.72 95.97 19.42

NOMAD
mean -380.20 -460.05 -479.98
SEM 14.49 12.41 9.37

11

SO-MI
mean -42.92 -42.99 -42.99

10 75 UM

SEM 0.19 0.13 0.13

GA
mean -17.00 -26.31 -33.73
SEM 0.78 0.76 0.77

B&B
mean 4.23 4.23 4.23
SEM 1.08 1.08 1.08

NOMAD
mean -26.78 -32.99 -38.26
SEM 1.03 1.01 0.87

12

SO-MI
mean -9581.32 -9584.62 -9584.62

10 975 UM

SEM 5.26 0.79 0.79

GA
mean -4931.94 -5648.29 -5825.53
SEM 170.55 168.37 172.75

B&B
mean -1513.54 -1513.54 -1513.54
SEM 131.72 131.72 131.72

NOMAD
mean -5280.95 -7436.47 -9201.87
SEM 184.13 222.49 75.23

42

13

SO-MI
mean -4.89 -8.48 –9.63

12 55 MM

SEM 0.33 0.30 0.23

GA
mean 2.69 -1.71 -3.74
SEM 0.60 0.34 0.28

B&B
mean 23.88 23.88 23.88
SEM 2.05 2.05 2.05

NOMAD
mean -7.51 -8.66 -9.27
SEM 0.43 0.19 0.31

14

SO-MI
mean 27.95 -5.78 -8.27

12 415 MM

SEM 2.85 0.27 0.34

GA
mean 816.53 510.26 376.38
SEM 40.68 26.82 22.18

B&B
mean 2802.79 2802.79 2802.79
SEM 180.28 180.28 180.28

NOMAD
mean 23.10 19.88 13.23
SEM 1.94 1.13 2.31

15

SO-MI
mean -6.59 -10.29 -11.80

30 510 MM

SEM 0.37 0.36 0.47

GA
mean 25.48 13.83 10.73
SEM 1.46 1.09 1.07

B&B
mean 62.03 62.03 62.03
SEM 3.64 3.64 3.64

NOMAD
mean -6.39 -19.27 -19.52
SEM 2.08 0.90 0.88

Score
SO-MI 9 9 8
GA 700 1550 827

in % B&B 2325 8282 5830
NOMAD 15 81 46

43

2

SO-MI
mean 0.00 0.00 0.00

8 214 UM

SEM 0.00 0.00 0.00

GA
mean 274.17 153.30 82.79
SEM 21.13 11.26 8.28

convex
B&B

mean 1471.05 1274.99 4.29
SEM 132.65 145.11 1.10

NOMAD
mean 117.70 7.36 0.14
SEM 1.23 1.68 0.05

44

Table 3: Hypothesis testing for differences in means after 100, 200, and 300 function evaluations for
box-constrained problems.

(∗∗) denotes significance at the α = 1 percentage point for H0 : µSO-MI = µA,A ∈ {GA,B&B,NOMAD},
and H1 : µSO-MI < µA;

(.) denotes significance at the α = 5 percentage point, and (..) denotes significance at the α = 1
percentage point for H0 : µSO-MI = µNOMAD, and H1 : µSO-MI > µNOMAD

Problem Algorithm A 100 evals. 200 evals. 300 evals.

10
GA (∗∗) (∗∗) (∗∗)
B&B (∗∗) (∗∗) (∗∗)
NOMAD (.) (..)

11
GA (∗∗) (∗∗) (∗∗)
B&B (∗∗) (∗∗) (∗∗)
NOMAD (∗∗) (∗∗) (∗∗)

12
GA (∗∗) (∗∗) (∗∗)
B&B (∗∗) (∗∗) (∗∗)
NOMAD (∗∗) (∗∗) (∗∗)

13
GA (∗∗) (∗∗) (∗∗)
B&B (∗∗) (∗∗) (∗∗)
NOMAD (..)

14
GA (∗∗) (∗∗) (∗∗)
B&B (∗∗) (∗∗) (∗∗)
NOMAD (∗∗) (∗∗)

15
GA (∗∗) (∗∗) (∗∗)
B&B (∗∗) (∗∗) (∗∗)
NOMAD (..) (..)

2
GA (∗∗) (∗∗) (∗∗)
B&B (∗∗) (∗∗) (∗∗)
NOMAD (∗∗) (∗∗) (∗∗)

45

0 100 200 300
−10000

−8000

−6000

−4000

−2000

Number of function evaluations

Avg.
function
value

SO−MI
GA
NOMAD
B&B

Figure 2: Objective function value for feasible points averaged over 30 trials
vs. number of function evaluations; test problem 12, box-constrained

minimization problem

7.2. Results for Constrained Problems

The numerical results for the constrained test problems are shown in

Table 4. The results show that SO-MI performs best for six out of nine

test problems after 100 evaluations, and for five out of nine test problems

after 200 and 300 evaluations, respectively. NOMAD on the other hand

had the best performance only for one of the nine test problems after 200

function evaluations, respectively, and for two of nine test problems after

300 function evaluations. These results indicate that SO-MI performs in

general better than NOMAD also for the constrained problems, and that

46

SO-MI is able to find improvements within fewer function evaluations as

compared to NOMAD.

B&B found the best results for test problems three, six, and nine, where

test problem six is in particular a convex problem, and test problems

three and nine have a linear objective function. Test problems three and

nine are essentially the same problem, but the nonlinear constraints have

been left out in test problem nine. Moreover, for test problems three

and nine the globally optimal point of the continuous relaxation is the

same as when integer constraints are imposed (the global optimum of the

continuous problem has all variable values zero), which explains the superior

performance of B&B on these problems.

For test problem eight the optimization of the relaxed subproblems in

the tree nodes of B&B did not converge and the algorithm stalled. Thus,

the reported result is the average of the function values of the initially

given feasible points for the 30 trials. Moreover, B&B was not able to

find improvements/escape from a local optimum for the remaining five test

problems (test problems 1, 4, 5, 7 and 16) within 300 evaluations, and has

for these problems the worst performance among all compared algorithms.

GA was able to improve the initially given solution for all but one test

problem, and performs in general better than B&B, but significantly worse

than SO-MI and NOMAD. Although GA has been developed for solving

multimodal optimization problems, the number of function evaluations

47

required is very large due to the number of individuals in the single

generations and the number of generations.

Also for this problem class a score has been computed that measures how

much each algorithm deviates from the best feasible average result found

after 100, 200, and 300 evaluations. Test problems 3, 6 and 9 have not been

included in the calculation because problem 6 is convex, and problems 3

and 9 have linear objective functions and the continuous relaxations lead

directly to an integer feasible solution. SO-MI has been developed for

multimodal problems and therefore these problems are left out when

computing the scores. The scores show that SO-MI performs also for this

problem class better than any of the other algorithms. NOMAD performs

better than GA and B&B, and its performance improves as the number of

function evaluations increases.

The hypothesis testing for differences in means in Table 5 shows again that

SO-MI attains significantly better results (at the level α = 0.01) than all

other algorithms for most problems. For reasons explained above, B&B

performs significantly better on the special problems 3, 6, and 9.

Figure 3 illustrates the development of the function value for feasible points

averaged over 30 trials versus the number of function evaluations for all

algorithms for test problem five. The figure shows that SO-MI is able to find

significantly better feasible solutions than the other three algorithms. It can

be seen that all B&B trials got stuck in the same point, and the algorithm

48

did not find any improvements within 300 function evaluations. NOMAD

and GA are able to find slight improvements of the initially supplied feasible

solutions, but are not able to find any more improvements after about 150

function evaluations.

0 50 100 150 200 250 300
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

Number of function evaluations

Avg.
function
value

SO−MI
GA
NOMAD
B&B

Figure 3: Objective function value for feasible points averaged over 30 trials
vs. number of function evaluations; test problem 5, constrained

minimization problem

49

Table 4: Mean objective function values (mean) over 30 trials with 100, 200, and 300 function evaluations
for problems with box-constraints and additional linear and/or nonlinear constraints. Best result of all

algorithms is marked by boxes. Standard errors of means (SEM) are given for each algorithm in italic. All
problems are minimization problems. B&B∗ means, that the subsolver for the relaxed problems in the tree
nodes did not converge and the algorithm stalled, therefore also SEM is not available. MM - multimodal,

UM - unimodal

Problem Algorithm Statistic 100 eval. 200 eval. 300 eval. dim. |ΩD| MM/UM

1

SO-MI
mean -0.50 -0.66 -0.72

11 24 MM

SEM 0.03 0.02 0.02

GA
mean 0.26 -0.31 -0.33
SEM 0.03 0.03 0.03

B&B
mean -0.09 -0.09 -0.09
SEM 0.02 0.02 0.02

NOMAD
mean -0.47 -0.53 -0.64
SEM 0.02 0.02 0.02

4

SO-MI
mean 2.99 2.95 2.93

3 2 MM

SEM 0.02 0.02 0.01

GA
mean 3.16 3.16 3.16
SEM 0.02 0.02 0.02

B&B
mean 3.18 3.18 3.18
SEM 0.02 0.02 0.02

NOMAD
mean 3.03 2.94 2.90
SEM 0.02 0.01 0.01

5

SO-MI
mean -0.18 -0.25 -0.32

25 116 MM

SEM 0.00 0.01 0.01

GA
mean -0.15 -0.15 -0.16
SEM 0.00 0.00 0.00

B&B
mean -0.09 -0.09 -0.09
SEM 0.00 0.00 0.00

NOMAD
mean -0.17 -0.19 -0.19
SEM 0.01 0.01 0.01

50

7

SO-MI
mean -4156.44 -4182.99 -4186.56

2 14 MM

SEM 14.39 9.37 8.12

GA
mean -3266.52 -3380.55 -3616.21
SEM 88.78 99.30 99.71

B&B
mean -3194.01 -3194.01 -3194.01
SEM 93.41 93.41 93.41

NOMAD
mean -3825.44 -3845.79 -3847.36
SEM 48.91 47.20 47.62

8

SO-MI
mean 1057.39 847.65 761.448

7 213 MM

SEM 17.81 15.68 8.63

GA
mean 1095045.15 874665.90 629728.43
SEM 446436.77 409890.30 368763.38

B&B∗ mean 1436981.97 1436981.97 1436981.97
SEM NA NA NA

NOMAD
mean 3830.17 1124.20 835.22
SEM 916.38 66.73 18.79

16
SO-MI

mean 8.05 6.60 6.20

11 24 MM/flat
SEM 0.22 0.10 0.06

GA
mean 10.75 10.60 10.10
SEM 0.33 0.29 0.31

B&B
mean 10.93 10.93 10.93
SEM 0.35 0.35 0.35

NOMAD
mean 9.09 8.65 7.76
SEM 0.29 0.30 0.23

Score
SO-MI 0 0 1
GA 17265 15351 12579

in % B&B 22666 25226 28700
NOMAD 50 15 11

51

3

SO-MI
mean 0.44 0.09 0.04

5 112 UM

SEM 0.06 0.02 0.01

GA
mean 3.69 2.36 1.03
SEM 0.34 0.34 0.24

B&B
mean 0.00 0.00 0.00
SEM 0.00 0.00 0.00

NOMAD
mean 0.62 0.21 0.01
SEM 0.11 0.07 0.01

6

SO-MI
mean -29767.98 -29983.69 -30078.49

5 975 UM/flat

SEM 67.99 53.92 51.23

GA
mean -28993.04 -29285.90 -29461.46
SEM 100.28 99.67 108.62

B&B
mean -30665.54 -30665.54 -30665.54
SEM 0.00 0.00 0.00

NOMAD
mean -29407.09 -29998.12 -30215.53
SEM 129.71 66.70 45.52

9

SO-MI
mean 0.67 0.35 0.17

5 112 UM

SEM 0.14 0.15 0.07

GA
mean 4.33 1.42 0.67
SEM 0.35 0.26 0.22

linear
B&B

mean 0.00 0.00 0.00
SEM 0.00 0.00 0.00

NOMAD
mean 0.41 0.16 0.00
SEM 0.09 0.06 0.00

52

Table 5: Hypothesis testing for differences in means after 100, 200, and 300 function evaluations for
box-constrained problems with additional linear and/or nonlinear constraints.

(∗) denotes significance at the α = 5 percentage point, and (∗∗) denotes significance at the α = 1
percentage point for H0 : µSO-MI = µA,A ∈ {GA,B&B,NOMAD}, and H1 : µSO-MI < µA;

(.) denotes significance at the α = 5 percentage point, and (..) denotes significance at the α = 1
percentage point for H0 : µSO-MI = µNOMAD, and H1 : µSO-MI > µNOMAD

(⊕) denotes significance at the α = 5 percentage point, and (⊕⊕) denotes significance at the α = 1
percentage point for H0 : µSO-MI = µB&B, and H1 : µSO-MI > µB&B

Problem Algorithm A 100 evals. 200 evals. 300 evals.

1
GA (∗∗) (∗∗) (∗∗)
B&B (∗∗) (∗∗) (∗∗)
NOMAD (∗∗) (∗∗)

4
GA (∗∗) (∗∗) (∗∗)
B&B (∗∗) (∗∗) (∗∗)
NOMAD (.)

5
GA (∗∗) (∗∗) (∗∗)
B&B (∗∗) (∗∗) (∗∗)
NOMAD (∗∗) (∗∗)

7
GA (∗∗) (∗∗) (∗∗)
B&B (∗∗) (∗∗) (∗∗)
NOMAD (∗∗) (∗∗) (∗∗)

8
GA (∗∗) (∗) (∗)
B&B NA NA NA
NOMAD (∗∗) (∗∗) (∗∗)

16
GA (∗∗) (∗∗) (∗∗)
B&B (∗∗) (∗∗) (∗∗)
NOMAD (∗∗) (∗∗) (∗∗)

53

3
GA (∗∗) (∗∗) (∗∗)
B&B (⊕⊕) (⊕⊕) (⊕⊕)
NOMAD

6
GA (∗∗) (∗∗) (∗∗)
B&B (⊕⊕) (⊕⊕) (⊕⊕)
NOMAD (∗∗) (.)

9
GA (∗∗) (∗∗) (∗)
B&B (⊕⊕) (⊕) (⊕⊕)
NOMAD (..)

54

7.3. Results for Structural Design Problems

The results for the structural design optimization applications are shown

in Table 6. For both problems SO-MI outperforms all other algorithms

and reaches significantly better results within the same number of func-

tion evaluations. B&B was not able to find any improvements for the

three-dimensional truss dome problem. For the two-dimensional truss the

optimization of the relaxed subproblems in the tree nodes of B&B did not

converge within the allowed 100k function evaluations, and therefore the

average of the function values of the 30 different initially provided feasible

points is given in the table, and the standard error of the mean is therefore

not available. B&B had the worst performance for both structural design

problems.

GA was able to improve the initially supplied feasible solutions and out-

performed NOMAD on the three-dimensional truss dome application (the

31-dimensional problem), but does worse than NOMAD on the smaller

problem 17. The scores at the end of the table reflect again that SO-MI

performs better than all other algorithms on this problems class. Averaging

over both structural design problems shows that GA outperforms NOMAD.

For this problem class the standard errors of the mean are for SO-MI at

almost all stages of the algorithm lower than for the other algorithms (except

for GA after 100 evaluations for test problem 18). Also the results of the

statistical tests in Table 7 show that the means of the feasible objective

function values attained by SO-MI are significantly lower than the results

55

found by the other algorithms.

The objective function value averaged over all 30 trials versus the number

of function evaluations for the three-dimensional truss dome application

problem is illustrated for all four algorithms in Figure 4. The figure shows

that SO-MI finds significantly better solutions than all other algorithms.

Figure 5 illustrates the best design obtained for the 2D truss problem.

Thicker lines illustrate truss members with larger cross sectional areas.

The arrows indicate the height of nodes 2, 4, and 6. The maximal nodal

displacement occurs at node 7 in vertical direction.

56

Table 6: Mean objective function values (mean) over 30 trials with 100, 200, and 300 function evaluations
for structural design optimization problems averaged over 30 trials after 100, 200, and 300 function

evaluations. Best result of all algorithms is marked by boxes. Standard errors of means (SEM) are given
for each algorithm in italic. B&B∗ means, that the subsolver for the relaxed problems in the tree nodes did

not converge and the algorithm stalled, and therefore also SEM is not available. Both problems are
minimization problems.

Problem Algorithm Statistic 100 eval. 200 eval. 300 eval. dim. |ΩD|

SO-MI
mean 102624.50 98099.88 95902.51

14 5111

SEM 807.45 707.95 614.30

GA
mean 112975.58 112924.52 112816.52

17 SEM 889.47 900.90 933.85
2D

B&B∗ mean 113161.21 113161.21 113161.21
truss SEM NA NA NA

NOMAD
mean 103354.72 101433.69 98484.86
SEM 815.42 858.34 932.62

SO-MI
mean 186281.11 83525.43 73010.86

31 1024

SEM 5716.76 3007.10 1640.95

GA
mean 277476.80 239829.09 212346.21

18 SEM 3942.84 4613.54 3666.28
3D

B&B
mean 355160.38 355160.38 355160.38

dome SEM 6786.15 6786.15 6786.15

NOMAD
mean 303995.43 268712.00 244911.47
SEM 9193.94 7153.09 8595.33

Score
SO-MI 0 0 0
GA 30 97 101

in % B&B 50 164 196
NOMAD 32 108 115

57

Table 7: Hypothesis testing for differences in means after 100, 200, and 300 function evaluations for
structural design optimization problems.

(∗) denotes significance at the α = 5 percentage point; (∗∗) denotes significance at the α = 1 percentage
point; H0 : µSO-MI = µA,A ∈ {GA,B&B,NOMAD}, and H1 : µSO-MI < µA

Problem Algorithm A 100 evals. 200 evals. 300 evals.

17
GA (∗∗) (∗∗) (∗∗)
B&B NA NA NA
NOMAD (∗∗) (∗)

18
GA (∗∗) (∗∗) (∗∗)
B&B (∗∗) (∗∗) (∗∗)
NOMAD (∗∗) (∗∗) (∗∗)

58

0 50 100 150 200 250 300

1

2

3

4 x 105

Number of function evaluations

Avg.
function
value

SO−MI
GA
NOMAD
B&B

Figure 4: Objective function value for feasible points averaged over 30 trials
vs. number of function evaluations; test problem 18, truss dome design

optimization, minimization problem

Figure 5: Best design of the 2D truss problem. Thicker lines symbolize
truss members with larger cross sectional areas. The largest deflection is in

vertical direction at node 7.

59

7.4. Results for Reliability-Redundancy Problems

Table 8 summarizes the results of the four compared algorithms for the

reliability-redundancy allocation application problems. The goal is here

to maximize the reliability of the system, and therefore large numbers

are better. Note that in this application area the digits after the decimal

point are important and therefore four decimals are reported. The results

show that SO-MI performs best for all three problems for over 200 function

evaluations, indicating that SO-MI is successful in finding improvements

more efficiently than all other algorithms.

NOMAD achieves only marginally better results for problem 20 after 300

function evaluations. B&B was not able to find any feasible improvements

of the initially supplied feasible points, and for the series-parallel system

(problem 21) the optimization of the relaxed problems in the tree nodes

did not converge. The reported numbers for B&B for this problem are the

average of the objective function values of the initially supplied feasible

points. GA found slight improvements for all three test problems, but was

in general not as good as SO-MI or NOMAD. This fact is also reflected by

the scores at the end of the table. SO-MI performs best on this problem

class, and the performance of NOMAD improves as the number of function

evaluations increases.

The standard errors of the means are for all algorithms very low, but again

SO-MI and NOMAD have the lowest values. The statistical test results for

differences of means are reported in Table 9, and the results show that the

60

mean of SO-MI is for all problems at almost all stages of the algorithm (100,

200, and 300 evaluations) significantly higher (maximization problem) than

for the other algorithms (at levels α = 0.01 and α = 0.05, respectively).

Figure 6 shows the objective function value for feasible points averaged over

30 trials versus the number of function evaluations for all algorithms for the

series-parallel system (test problem 21). Note that for the maximization

problem the algorithm that increases the average feasible objective function

value fastest is best. The figure shows that NOMAD finds immediately

improvements of the given feasible point because it uses only one point from

which the mesh adaptive direct search starts. SO-MI on the other hand

generates at first an initial experimental design and starts the ”systematic”

search for improvements after all points in the starting design have been

evaluated. This is reflected by the initially constant average feasible objective

function value of SO-MI (the value is constant until evaluation 2(k+1) = 22

because no other feasible points were in the initial experimental design).

After the points in the initial experimental design have been evaluated,

SO-MI immediately finds significantly better feasible results than all other

algorithms. Figure 7 shows the best reliability-redundancy allocation for

the bridge system (test problem 19). As can be seen, redundancy has been

added at various stages.

61

Table 8: Mean objective function values (mean) over 30 trials with 100, 200, and 300 function evaluations
for reliability-redundancy allocation problems averaged over 30 trials after 100, 200, and 300 function

evaluations (maximization problems). Best result of all algorithms is marked by boxes. Standard errors of
means (SEM) are given for each algorithm in italic. B&B∗ means, that the subsolver for the relaxed
problems in the tree nodes did not converge and the algorithm stalled, and therefore also SEM is not

available.

Problem Algorithm Statistic 100 eval. 200 eval. 300 eval. dim. |ΩD|

SO-MI
mean 0.9843 0.9974 0.9982

10 510

SEM 0.00 0.00 0.00

GA
mean 0.8211 0.8224 0.8369

19 SEM 0.03 0.03 0.02
bridge

B&B
mean 0.7573 0.7573 0.7573

system SEM 0.03 0.03 0.03

NOMAD
mean 0.9640 0.9849 0.9950
SEM 0.01 0.00 0.00

SO-MI
mean 0.9939 0.9988 0.9991

8 410

SEM 0.00 0.00 0.00

GA
mean 0.9588 0.9637 0.9646

20 SEM 0.01 0.00 0.00
over-

B&B
mean 0.8060 0.8060 0.8060

speed SEM 0.03 0.03 0.03

NOMAD
mean 0.9884 0.9971 0.9992
SEM 0.00 0.00 0.00

SO-MI
mean 0.9618 0.9962 0.9977

10 510

SEM 0.01 0.00 0.00

GA
mean 0.6452 0.6452 0.6539

21 SEM 0.04 0.04 0.04
series

B&B∗ mean 0.4731 0.4731 0.4731
parallel SEM NA NA NA

NOMAD
mean 0.8132 0.9388 0.9833
SEM 0.04 0.01 0.01

Score
SO-MI 0 0 0
GA 17 18 18

in % B&B∗ 31 32 32
NOMAD 6 2 0

62

Table 9: Hypothesis testing for differences in means after 100, 200, and 300 function evaluations for
reliability-redundancy allocation problems.

(∗) denotes significance at the α = 5 percentage point; (∗∗) denotes significance at the α = 1 percentage
point; H0 : µSO-MI = µA,A ∈ {GA,B&B,NOMAD}, and H1 : µSO-MI > µA (maximization problem)

Problem Algorithm A 100 evals. 200 evals. 300 evals.

19
GA (∗∗) (∗∗) (∗∗)
B&B (∗∗) (∗∗) (∗∗)
NOMAD (∗) (∗∗) (∗)

20
GA (∗∗) (∗∗) (∗∗)
B&B (∗∗) (∗∗) (∗∗)
NOMAD (∗∗)

21
GA (∗∗) (∗∗) (∗∗)
B&B NA NA NA
NOMAD (∗∗) (∗∗) (∗)

63

0 50 100 150 200 250 300
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of function evaluations

Avg.
function

value

SO−MI
GA
NOMAD
B&B

Figure 6: Objective function value for feasible points averaged over 30 trials
vs. number of function evaluations; test problem 21, reliability-redundancy

allocation for series-parallel configuration, maximization problem

Figure 7: Best reliability-redundancy allocation for the bridge system.
Redundancy has been added at components 1, 2, 3, and 4.

64

8. Conclusions

In this paper a surrogate model approach for finding (near) optimal

solutions to black-box mixed-integer global optimization problems within

a very restricted number of function evaluations has been presented. The

algorithm, SO-MI, iteratively evaluates the computationally expensive

simulation model at four chosen points of the variable domain in parallel

and updates a radial basis function surrogate model. Four perturbation

methods are used to diversify the selection of candidates for the next sample

point in every iteration, and based on scoring criteria the best point of

each group is chosen. In general, more than four points could be chosen to

make use of more processors. The algorithm SO-MI converges to the global

optimum almost surely.

SO-MI has been shown to perform very well in comparison to a branch

and bound algorithm for nonlinear problems [47], a genetic algorithm, and

the NOMAD algorithm for multimodal mixed-integer problems [17] on 16

test problems from the literature containing unconstrained, constrained,

unimodal, and multimodal problems, two application problems arising

from structural optimization, and three application problems from optimal

reliability design.

The numerical results show that SO-MI is able to find significantly better

solutions than the other algorithms for 10 out of 16 literature test problems

and all application problems when the number of function evaluations is low

(200 to 300 evaluations). On the remaining six problems, SO-MI performed

65

only slightly worse than the best algorithm which is also reflected in a

measure that is computed based on the deviation of the results obtained

by each algorithm from the best solution. This measure shows that SO-MI

performs in general better than all other algorithms for each problem group

(unconstrained, constrained, structures problems, and reliability problems).

Statistical tests on the differences of means for each problem also support

this conclusion.

The genetic algorithm and branch and bound have for almost all problems

the worst performance, whereas NOMAD is able to find competitive

solutions for some problems. Note however that the results of these

algorithms may be further improved by incorporating a surrogate model.

The test problems included also a convex test problem (problem 2) for

which SO-MI performed best, and two special unimodal problems where

the global optimum of the continuous relaxation is at an integer point

(problems 3 and 9). As may be expected, branch and bound performed very

well on problems 3 and 9, indicating that the algorithm may be preferred

if the specific problem structure is known to be mathematically tractable.

However, for black-box problems, branch and bound requires in general too

many function evaluations when computing lower bounds for the objective

function value in the tree nodes. Also, for multimodal problems these lower

bounds are not necessarily valid and pruning decisions may eventually be

wrong.

Although developed for multimodal problems, the genetic algorithm does

66

not perform well in the computational experiments. Genetic algorithms

require in general many function evaluations (=population size × number of

generations) to find good solutions. Thus, when only a very low number of

evaluations can be allowed due to restrictions on the computational expense,

either the number of individuals in each generation has to be reduced, which

restricts the diversity in the population, or the number of generations has to

be reduced, which reduces the evolutionary aspect of the algorithm.

The NOMAD algorithm is also a derivative-free method, and the C++

implementation incorporates a mixed-integer version, and the variable

neighborhood search that allows the algorithm to escape from local optima.

There are local convergence results for NOMAD, but in the numerical

experiments NOMAD is in general outperformed by SO-MI, especially on

the structural optimization problems where the difficulty was in the black-

box constraints rather than the objective function. However, compared to

branch and bound and the genetic algorithm, NOMAD performed very well.

In conclusion, the introduced algorithm SO-MI extends the research area

of using surrogate models for solving mixed-integer optimization problems.

The used candidate point approach works better than solving an auxiliary

optimization subproblem for determining the next sample site (which in gen-

eral requires a mixed-integer global optimization subsolver for the considered

problem class). The computational results indicate that SO-MI is a promis-

ing algorithm and performs significantly better than commonly used algo-

rithms for mixed-integer problems when dealing with multimodal black-box

67

functions. In addition it can be shown that the SO-MI algorithm converges

to the global optimum almost surely for multimodal mixed-integer problems

with black-box objective functions. None of the other algorithms have such a

proof for this type of problem. It is expected that the performance of SO-MI

for black-box constrained problems can be further improved by replacing the

penalty approach for example with an approach that uses a response surface

for each constraint to eliminate candidate points from consideration. A com-

parison of various ways for handling constraints exceeds however the scope

of this paper and is left for future research.

Acknowledgements

The first author thanks the Finnish Academy of Science and Letters, Vilho,

Yrjö and Kalle Väisälä Foundation for the financial support. Prof. Shoemaker

has been supported by NSF CISE: AF 1116298 and CPA-CSA-T 0811729.

Finally, we would like to thank the anonymous reviewers for their helpful

suggestions.

[1] L. Costa, P. Oliveira, Evolutionary algorithms approach to the solu-

tion of mixed integer non-linear programming problems, Computers &

Chemical Engineering 25 (2001) 257–266.

[2] V. Gantovnik, Z. Gürdal, L. Watson, C. Anderson-Cook, A genetic algo-

rithm for mixed integer nonlinear programming problems using separate

constraint approximations, AIAA Journal 43 (2005) 1844–1849.

[3] R. Haupt, Antenna design with a mixed integer genetic algorithm, IEEE

Transactions on Antennas and Propagation 55 (2007) 577–582.

68

[4] M. Schlüter, M. Gerdts, J.-J. Rückmann, MIDACO: New global

optimization software for MINLPs, 2010. Http://www.midaco-

solver.com/about.html.

[5] J. Viswanathan, I. Grossmann, A combined penalty function and outer-

approximation method for MINLP optimization, Computers & Chemi-

cal Engineering 14 (1990) 769–782.

[6] P. Bonami, L. Biegler, A. Conn, G. Cornuéjols, I. Grossmann, C. Laird,

J. Lee, A. Lodi, F. Margot, N. Sawaya, A. Wächter, An algorithmic

framework for convex mixed integer nonlinear programs, Discrete Op-

timization 5 (2008) 186–204.

[7] I. Nowak, Relaxation and Decomposition Methods for Mixed Integer

Nonlinear Programming, Birkhäuser, 2005.

[8] I. Nowak, S. Vigerske, LaGO - a (heuristic) branch and cut algorithm for

nonconvex MINLPs, Central European Journal of Operations Research

16 (2008) 127–138.

[9] E. Smith, C. Pantelides, A symbolic reformulation/spatial branch-and-

bound algorithm for the global optimization of nonconvex MINLPs,

Computers & Chemical Engineering 23 (1999) 457–478.

[10] J. Holland, Adaptation in Natural and Artificial Systems, University of

Michigan Press, Ann Arbor, 1975.

[11] M. Abramson, C. Audet, J. Chrissis, J. Walston, Mesh adaptive direct

search algorithms for mixed variable optimization, Optimization Letters

3 (2009) 35–47.

69

[12] M. Abramson, C. Audet, G. Couture, J. Dennis Jr, S. Le Digabel, The

NOMAD project. Software available at http://www.gerad.ca/nomad

(2011).

[13] M. Abramson, C. Audet, J. Dennis Jr, Filter pattern search algorithms

for mixed variable constrained optimization problems, SIAM Journal

on Optimization 11 (2004) 573–594.

[14] M. Abramson, C. Audet, Convergence of mesh adaptive direct search

to second-order stationary points, SIAM Journal on Optimization 17

(2006) 606–619.

[15] P. Hansen, N. Mladenović, Variable neighborhood search: principles

and applications, European Journal of Operational Research 130 (2001)

449–467.

[16] N. Mladenović, P. Hansen, Variable neighborhood search, Computers

and Operations Research 24 (1997) 1097–1100.

[17] C. Audet, V. Béchard, S. Le Digabel, Nonsmooth optimization through

mesh adaptive direct search and variable neighborhood search, Journal

of Global Optimization 41 (2008) 299–318.

[18] C. Audet, J. Dennis Jr, Pattern search algorithms for mixed variable

programming, SIAM Journal on Optimization 11 (2000) 573–594.

[19] G. Liuzzi, S. Lucidi, F. Rinaldi, Derivative-free methods for bound

constrained mixed-integer optimization, Computational Optimization

and Applications (2011) DOI 10.1007/s10589–011–9405–3.

70

[20] A. Booker, J. Dennis Jr, P. Frank, D. Serafini, V. Torczon, M. Tros-

set, A rigorous framework for optimization of expensive functions by

surrogates, Structural Multidisciplinary Optimization 17 (1999) 1–13.

[21] A. Forrester, A. Sóbester, A. Keane, Engineering Design via Surrogate

Modelling - A Practical Guide, Wiley, 2008.

[22] H. Gutmann, A radial basis function method for global optimization,

Journal of Global Optimization 19 (2001) 201–227.

[23] D. Jones, A taxonomy of global optimization methods based on response

surfaces, Journal of Global Optimization 21 (2001) 345–383.

[24] D. Jones, M. Schonlau, W. Welch, Efficient global optimization of ex-

pensive black-box functions, Journal of Global Optimization 13 (1998)

455–492.

[25] J. Müller, R. Piché, Mixture surrogate models based on Dempster-Shafer

theory for global optimization problems, Journal of Global Optimization

51 (2011) 79–104.

[26] R. Regis, Stochastic radial basis function algorithms for large-scale op-

timization involving expensive black-box objective and constraint func-

tions, Computers & Operations Research 38 (2011) 837–853.

[27] R. Regis, C. Shoemaker, A stochastic radial basis function method for

the global optimization of expensive functions, INFORMS Journal on

Computing 19 (2007) 497–509.

71

[28] S. Wild, R. Regis, C. Shoemaker, ORBIT: Optimization by radial ba-

sis function interpolation in trust-regions, SIAM Journal on Scientific

Computing 30 (2007) 3197–3219.

[29] B. Glaz, P. Friedmann, L. Liu, Surrogate based optimization of heli-

copter rotor blades for vibration reduction in forward flight, Structural

and Multidisciplinary Optimization 35 (2008) 341–363.

[30] J. Jouhaud, P. Sagaut, M. Montagnac, J. Laurenceau, A surrogate-

model based multidisciplinary shape optimization method with applica-

tion to a 2D subsonic airfoil, Computers & Fluids 36 (2007) 520–529.

[31] X. Lam, Y. Kim, A. Hoang, C. Park, Coupled aerostructural design

optimization using the kriging model and integrated multiobjective op-

timization algorithm, Journal of Optimization Theory and Applications

142 (2009) 533–556.

[32] C. Li, F. Wang, Y. Chang, Y. Liu, A modified global optimization

method based on surrogate model and its application in packing profile

optimization of injection molding process, The International Journal of

Advanced Manufacturing Technology 48 (2010) 505–511.

[33] E. Davis, M. Ierapetritou, Kriging based method for the solution of

mixed-integer nonlinear programs containing black-box functions, Jour-

nal of Global Optimization 43 (2009) 191–205.

[34] T. Hemker, Derivative Free Surrogate Optimization for Mixed-Integer

Nonlinear Black Box Problems in Engineering, Ph.D. thesis, TU Darm-

stadt, 2008.

72

[35] K. Holmström, N. Quttineh, M. Edvall, An adaptive radial basis algo-

rithm (ARBF) for expensive black-box mixed-integer constrained global

optimization, Journal of Global Optimization 41 (2008) 447–464.

[36] K. Rashid, S. Ambani, E. Cetinkaya, An adaptive multi-

quadric radial basis function method for expensive black-box mixed-

integer nonlinear constrained optimization, Engineering Optimization

DOI:10.1080/0305215X.2012.665450 (2012).

[37] J. Friedman, Multivariate adaptive regression splines, The Annals of

Statistics 19 (1991) 1–141.

[38] R. Myers, D. Montgomery, Response Surface Methodology, Process and

Product Optimization using Designed Experiments, Wiley-Interscience

Publication, 1995.

[39] C. Currin, T. Mitchell, M. Morris, D. Ylvisaker, A Bayesian Approach

to the Design and Analysis of Computer Experiments, Technical Report,

Oak Ridge National Laboratory, Oak Ridge, TN, 1988.

[40] J. Duchon, Constructive Theory of Functions of Several Variables,

Springer-Verlag, Berlin, 1977.

[41] R. Regis, C. Shoemaker, Constrained global optimization of expensive

black-box functions using radial basis functions, Journal of Global Op-

timization 31 (2005) 153–171.

[42] R. Regis, C. Shoemaker, Improved strategies for radial basis function

methods for global optimization, Journal of Global Optimization 37

(2007) 113–135.

73

[43] M. Powell, The Theory of Radial Basis Function Approximation in 1990,

Advances in Numerical Analysis, vol. 2: wavelets, subdivision algorithms

and radial basis functions. Oxford University Press, Oxford, pp. 105-210,

1992.

[44] A. Neumeier, Complete search in constrained global optimization, Acta

Numerica 13 (2004) 271–369.

[45] R. Regis, Convergence guarantees for generalized adaptive stochastic

search methods for continuous global optimization, European Journal

of Operational Research 207 (2010) 1187–1202.

[46] J. Spall, Introduction to Stochastic Search and Optimization, John Wi-

ley and Sons, 2003.

[47] E. Kuipers, http://www.mathworks.com/matlabcentral/fileexchange/95,

Last accessed May 31, 2011 (2000).

[48] F. Herrera, M. Lozano, J. Verdegay, Tackling real-coded genetic algo-

rithms: Operators and tools for behavioural analysis, Artificial Intelli-

gence Review 12 (1998) 265–319.

[49] M. Srinivas, L. Patnaik, Adaptive probabilities of crossover and muta-

tion in genetic algorithms, IEEE Transactions on Systems, Man and

Cybernetics 24 (1994) 565–667.

[50] J. Zhang, H. Chung, W. Lo, Clustering-based adaptive crossover and

mutation probabilities for genetic algorithms, IEEE Transactions on

Evolutionary Computation 11 (2007) 326–335.

74

[51] S. Koziel, Z. Michalewicz, Evolutionary algorithms, homomorphous

mappings, and constrained parameter optimization, Evolutionary Com-

putation 7 (1999) 19–44.

[52] M. Bussieck, A. Stolbjerg Drud, A. Meeraus, MINLPLib – a collection

of test models for mixed-integer nonlinear programming, INFORMS

Journal on Computing 15 (2003) 114–119.

[53] C. Adjiman, I. Androulakis, C. Floudas, Global optimization of mixed-

integer nonlinear problems, AIChE Journal 46 (2000) 1769–1797.

[54] O. Berman, N. Ashrafi, Optimization models for reliability of modular

software systems, IEEE Transactions on Software Engineering 19 (1993)

1119–1123.

[55] C. Floudas, O. Pardalos, C. Adjiman, W. Esposito, Z. Gumus, S. Hard-

ing, J. Klepeis, C. Meyer, C. Schweiger, Handbook of Test Problems

in Local and Global Optimization, Kluwer Academic Publishers, Dor-

drecht, 1999.

[56] X. Yuan, S. Zhang, L. Piboleau, S. Domenech, Une méthode

d’optimisation non linéaire en variables mixtes pour la conception de

procédés, R.A.I.R.O. Operation Research 22 (1988) 331–346.

[57] T. Dede, S. Bekiroğlu, Y. Ayvaz, Weight minimization of trusses with

genetic algorithm, Applied Soft Computing 11 (2011) 2565–2575.

[58] H. Jensen, J. Sepulveda, Structural optimization of uncertain dynamical

systems considering mixed-design variables, Probabilistic Engineering

Mechanics 26 (2011) 269–280.

75

[59] S. Rajan, D. Nguyen, Design optimization of discrete structural systems

using MPI-enabled genetic algorithm, Structural and Multidisciplinary

Optimization 27 (2004) 1–9.

[60] K. Schittkowski, C. Zillober, R. Zotemantel, Numerical comparison of

nonlinear programming algorithms for structural optimization, Struc-

tural Optimization 7 (1994) 1–19.

[61] R. Stocki, K. Kolanek, S. Jendo, M. Kleiber, Study on discrete opti-

mization techniques in reliability-based optimization of truss structures,

Computers and Structures 79 (2001) 2235–2247.

[62] T. Chandrupatla, A. Belegundu, Introduction to Finite Elements in En-

gineering, Prentice Hall, 2002.

[63] W. Kuo, V. Prasad, F. Tillman, C.-L. Hwang, Optimal Reliability

Design: Fundamentals and Applications, Cambridge University Press,

2001.

[64] K. Gopal, K. Aggarwal, J. Gupta, A method for solving reliability

optimization problem, IEEE Transactions on Reliability R-29 (1980)

36–38.

[65] F. Tillman, C. Hwang, W. Kuo, Determining component reliability

and redundancy for optimum system reliability, IEEE Transactions on

Reliability R-26 (1977) 162–165.

[66] W. Kuo, H. Lin, Z. Xu, W. Zhang, Reliability optimization with La-

grange multiplier and branch-and-bound technique, IEEE Transactions

on Reliability R-36 (1987) 624–630.

76

[67] D. Coit, A. Smith, Reliability optimization of series-parallel systems

using a genetic algorithm, IEEE Transactions on Reliability 45 (1996)

254–266.

[68] Y. Hsieh, T. Chen, D. Bricker, Genetic Algorithms for reliability de-

sign problems, Technical Report, Department of Industrial Engineering,

University of Iowa, 1997.

[69] T.-C. Chen, IAs based approach for reliability redundancy allocation

problems, Applied Mathematics and Computation 182 (2006) 1556–

1567.

[70] A. Dhingra, Optimal apportionment of reliability & redundancy in series

systems under multiple objectives, IEEE Transactions on Reliability 41

(1992) 576–582.

[71] M. Hikita, Y. Nakagawa, K. Nakashima, H. Narihisa, Reliability opti-

mization of systems by a surrogate-constraints algorithm, IEEE Trans-

actions on Reliability R-41 (1992) 473–480.

[72] T. Yokota, M. Gen, Y.-X. Li, Genetic algorithm for nonlinear mixed-

integer programming problems and its application, Computers & Indus-

trial Engineering 30 (1996) 905–917.

[73] C. Floudas, Nonlinear and Mixed-Integer Optimization: Fundamentals

and Applications, Oxford University Press, Oxford, 1995.

[74] A. Törn, A. Zilinskas, Global Optimization. Lecture Notes in Computer

Science, 350, Springer-Verlag, Berlin, 1989.

77

