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Text generation tasks are becoming more and more prominent in applications such as 
machine translation, image captioning, dialogue systems, etc. While text generation systems 
often require an extremely large amount of data, the lack of data can be compensated by using 
certain machine learning algorithms. This Bachelor’s thesis introduces an approach of building a 
text generation system that utilizes reinforcement learning to control its output. The thesis first 
discusses training a small text dataset using supervised learning. The thesis then discusses the 
application of a deep reinforcement learning algorithm to make the generated text adapt to 
specific criteria. The result shows that the system adapts well to different conditions. The system 
adapts well to reward functions that depend on temporal modelling of the data, as well as validity 
of each individual word produced. However, the system was unable to improve the text’s 
grammaticality or diversity. 

 
 
Keywords: deep learning, LSTM, RNN, reinforcement learning, deep Q-learning, Keras, 

TensorFlow, text generation  
 
The originality of this thesis has been checked using the Turnitin OriginalityCheck service. 
 

  



ii 

PREFACE 

I would like to thank my thesis supervisors, assistant professors Okko Räsänen and Joni 

Pajarinen, for suggesting the topic and guiding me through my research progress and 

writing process. I would like to also thank Mrs. Laeticia Petit for pushing and helping me 

keep track of my progress and providing useful resources for tasks such as information 

retrieval or thesis writing guide. 

 
 

Tampere, Finland, 25th February 2021 

 

Anh Nguyen   



iii 

CONTENTS 

1. INTRODUCTION .................................................................................................. 1 

2. BACKGROUND .................................................................................................... 2 

2.1 Text generation ...................................................................................... 2 

2.2 Deep learning ........................................................................................ 2 

2.3 Recurrent neural network and Long short-term memory RNN ............... 4 

2.4 Reinforcement Learning ........................................................................ 8 

2.4.1 Deep Q-Learning ........................................................................ 10 
3. IMPLEMENTATION ............................................................................................ 12 

3.1 Important frameworks .......................................................................... 12 

3.2 Dataset and pre-processing ................................................................. 12 

3.3 Defining the supervised model ............................................................. 13 

3.4 Adapting the model using Reinforcement Learning .............................. 13 

3.4.1 Deep Q-learning ......................................................................... 14 
3.4.2 Experimental setup ..................................................................... 14 

4. RESULTS AND DISCUSSION ............................................................................ 17 

4.1 Simple reward function ........................................................................ 17 

4.2 Negative distance reward function ....................................................... 18 

4.3 Producing meaningful English words (a more complex reward function)

 19 

5. CONCLUSION .................................................................................................... 21 

REFERENCES....................................................................................................... 23 

 

 



iv 

LIST OF FIGURES 

 
Figure 2-1 Repeating structure of a standard RNN ....................................................... 5 
Figure 2-2 Notation ....................................................................................................... 5 
Figure 2-3 Structure of an LSTM cell ............................................................................ 6 
Figure 2-4 The cell state in an LSTM cell ...................................................................... 6 
Figure 2-5 Structure of the forget gate in an LSTM cell ................................................. 7 
Figure 2-6 Structure of the "new information" gate in an LSTM cell............................... 7 
Figure 2-7 Structure of the output gate in an LSTM cell ................................................ 8 
Figure 2-8 Key concepts of Reinforcement Learning (Agent performs actions 

based on its internal state and the observed environment. 
Environment then processes the action, updates the environment 
state accordingly and provides a reward to the agent) ......................... 10 

Figure 3-1 The last outputted word was defined in terms of whitespaces then 
verified by NLTK-based critic whether it was an English word or 
not ........................................................................................................ 16 

Figure 4-2 Task's rewards after 100 training episodes (x-axis is the episodes 
trained, y-axis is the total reward of each episode trained) ................... 18 

Figure 4-3 Negative distance reward of 100 episodes (x-axis is the episodes 
trained, while y-axis is the negative distance between the last two 
outputted characters, which was mathematically defined in Section 
3.4.2.2) ................................................................................................ 19 

Figure 4-4 Rewards after 60 episodes for NLTK validity reward function (x-axis is 
the episodes trained, while y-axis is the reward of each episode 
trained). For this reward function, only 60 episodes were trained 
due to computational limitations. .......................................................... 20 

 



v 

LIST OF SYMBOLS AND ABBREVIATIONS 

 
BERT Bidirectional Encoder Representations from Transformers 
CNN   Convolutional Neural Networks 
DQN Deep Q-Learning 
JSD Jensen-Shannon divergence 
KLD Kullback-Leibler divergence 
LSTM Long Short-Term Memory 
NLTK  Natural Language Toolkit 
RL Reinforcement Learning 
RNN Recurrent Neural Networks 
SGD Stochastic Gradient Descent 
SOTA State Of The Art 
 

. 



1 
 

1. INTRODUCTION 

Natural Language Processing (NLP) is a subfield of artificial intelligence, which defines 

a set of tools to process natural language data such as text or speech. Useful 

applications of NLP include machine translation, which has the ability to translate from a 

language to another, speech recognition, sentiment analysis, which analyses human’s 

emotions based on their input text, and text generation. 

 

This research will be focusing on text generation application of NLP. In particular, the 

system designed and implemented will be able to generate useful text based on its model 

trained on an existing text database. Since most NLP applications rely heavily on the use 

of machine learning algorithms, the aforementioned system will also be utilizing machine 

learning algorithms, particularly deep learning models. Deep learning is a branch of 

machine learning which uses neural networks to solve problems such as feature 

extraction or classification. Moreover, besides building a deep learning model, the 

system also implements reinforcement learning algorithms in order to improve the quality 

of the text generated. Reinforcement learning is also a subfield of machine learning 

whose principle is to have a software-defined agent taking a set of actions, known as 

policy, in an environment so as to maximize a specific reward schema. Finally, the whole 

system is evaluated using a custom evaluation function which measures the accuracy of 

the text generated. 

 

Chapter 2 presents the history of text generation and some of the popular text generation 

models, as well as key concepts or theoretical background of deep learning, 

reinforcement learning and its algorithms. Chapter 3 explains the implementation of the 

whole system, from data gathering, data preprocessing, to building the deep learning 

model and the reinforcement learning architecture needed to train the text database. 

Chapter 4 discusses the result obtained from chapter 3 and evaluates the system’s 

quality, along with data visualization for better insights. Last but not least, chapter 5 

concludes the research with generalized claims and findings from chapter 3 and 4.  
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2. BACKGROUND 

This chapter explains key concepts of the research: deep learning as well as 

reinforcement learning concepts. In terms of deep learning, the structure of the Recurrent 

Neural Network (RNN), particularly Long Short-term Memory RNN [2], will be elaborated. 

Deep learning frameworks used in the research will also be mentioned and explained 

briefly. As regards reinforcement learning, key definitions such as policy, environment 

and reinforcement learning algorithms are prerequisites to understanding: i) how 

reinforcement learning works and ii) the mechanics of the solution model presented in 

later chapters. 

2.1 Text generation 

 

Text generation is one of many tasks in the field of NLP. One of the earlier models for 

text generation was the Seq2Seq [10] language model, which uses two RNNs to predict 

the next text sequence from a previous one. However, there were certain limitations to 

the quality of the text produced by a Seq2Seq: the generated text is often nonsense and 

incorrectly spelled. A more efficient model later introduced was the Word2Vec model 

[11], which treats sequences of words as vectors. The aforementioned models served 

as a basis for most State Of The Art (SOTA) text generation models nowadays [7]. One 

of the most notable text generation models is GPT-3 [8], which has approximately 175 

billion parameters, 10 times more than a regular model. GPT-3 has the ability to produce 

newspaper articles that are nearly indistinguishable when compared to human written 

articles [8]. Another popular text generation model worth mentioning is the Bidirectional 

Encoder Representations from Transformers, also known as BERT [17], which was 

developed by Google in 2018. BERT achieved SOTA performances on tasks such as 

questions answering as well as language inference (language inference means 

determining if a "hypothesis" is true or false) [17]. 

2.2 Deep learning 

 

Deep learning is a subset of machine learning and one of its algorithms. Applications of 

deep learning include machine translation, self-driving cars, digital marketing, and so on. 

At the most fundamental level, deep learning models are artificial neural networks with 
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multiple layers. While traditional neural networks often consist of 2-3 layers, the number 

of layers in a deep learning model can go up to 150.  

 

An artificial neural network consists of an input layer, a number of hidden layers and an 

output layer. Each layer’s output (excluding output layer’s) is fed through an activation 

function. An activation function is defined as a weighted function of an input neuron and 

the bias term which has the purpose of eliminating unnecessary neurons in a neural 

network layer [9]. Activation functions can be either linear or non-linear. The activation 

functions used in the supervised model which will be defined in Section 3.2 are ReLU 

and Softmax. Both ReLU and Softmax are non-linear activation functions and can be 

defined as Equation 2.1 and 2.2 respectively: 

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥)              (2.1) 

𝑓(𝑥𝑖) =  
𝑒𝑥𝑝 (𝑥𝑖)

∑ 𝑒𝑥𝑝 (𝑥𝑗)𝑗
     (2.2) 

In terms of performance, loss function is used to evaluate a model, as well as the error 

between the actual label 𝑦 and predicted label 𝑦̂. The loss function which will be used in 

the model defined in Section 3.2 is the categorical crossentropy loss function, which can 

be expressed as Equation 2.3: 

𝐿(𝑦, 𝑦̂) =  ∑ ∑ (𝑦𝑖𝑗 ∗ 𝑙𝑜𝑔(𝑦𝑖𝑗̂))𝑁
𝑖=0

𝑀
𝑗=0    (2.3) 

where 𝑦̂ is a one-hot encoded prediction vector and 𝑦 is the actual ground truth 

distribution. One-hot encoding is a process where categorical data is transformed into a 

binary label matrix. The purpose of one-hot encoding is to convert categorical data into 

numeric data, making it easier for machine learning algorithms to process.  

To train a model, we use optimizers. Optimizers are algorithms or methods used to 

update a model’s weight or learning rate in order to reduce a model’s loss.  The optimizer 

which will be used in the model defined in Section 3.2 is the Adaptive Moment Estimation 

(ADAM) [12] optimizer. ADAM is an optimization algorithm which is considered an 

upgraded version of the Stochastic Gradient Descent (SGD) algorithm. ADAM is effective 

and often outperforms other optimization algorithms in deep learning applications [12].  
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2.3 Recurrent neural network and Long short-term memory 
RNN 

 

A recurrent neural network (RNN) is a type of artificial neural networks that has a more 

complex structure than traditional neural networks. It is often used for natural language 

processing problems such as speech recognition, text classification, and so on. In an 

RNN architecture, neurons that are connected to each other form a loop, which means 

that the RNN utilizes both feedforward and feedback structure of a neural network. 

Hence, unlike traditional feed-forward neural networks, recurrent neural networks store 

their states after processing a sequence of input and thus use their internal states to 

process future inputs [5].  

 

The supervised model which will be defined in Section 3.2 uses a special type of RNN: 

Long short-term memory RNNs (LSTM) [2]. Therefore, understanding how standard 

RNNs work is the prerequisite to understanding the structure of LSTMs. The architecture 

of an RNN is dynamic, thus, it keeps track of an internal state within each step of the 

network. The principle of each hidden layer in RNN is that after getting put into the 

activation function, the outputs will be saved in “context cells”, which will be fed back to 

the corresponding hidden neuron of the previous layer.  

 

In principle, having loops inside an RNN means that it has access to the previous state 

of the model. For example, when training a character-based text generation model, 

having access to previous output characters increases meaningfulness of the generated 

text. However, there are limitations to standard recurrent neural networks. In terms of 

solving problems that require learning long-term temporal dependencies, such as text 

generation where the gap between the context and the output is considerably large, 

recurrent neural networks are proved to be incapable [18]. While training a neural 

network, gradient descent is used to optimize the network’s parameters. As the gradients 

get backpropagated across multiple timesteps, they explode, causing a problem called 

vanishing gradient. Vanishing gradient problem makes the process of optimizing the 

network parameters more difficult and sometimes impossible when gradients are close 

towards zero.  

 

Thus, a new RNN structure was made to solve the vanishing gradient problem, as well 

as provide the capability to learn long-term dependencies. Long Short Term Memory 
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recurrent neural networks (LSTM) were introduced by Hochreiter and Schmidhuber in 

1997 [2]. In principle, LSTMs are able to solve vanishing gradients by giving access to 

the forget gate’s activation, thus having more control of the network’s gradients at each 

time step. 

 

In terms of RNN and LSTM’s structures, based on Figure 2-1 and 2-3, it can be seen 

that LSTMs have a more complex structure than standard RNNs. 

 

 

Figure 2-1 Repeating structure of a standard RNN 

 

 

Figure 2-2 Notation 

 

As regards recurrent neural networks, their structures are relatively simple. According to 

Figure 2-1, their repeating module consists of a single layer, usually a tanh layer, which 

maps the output to the range from -1 to 1. This helps to control the amount of new 

information that the network can absorb. 
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Figure 2-3 Structure of an LSTM cell 

 

On the other hand, an LSTM cell contains many more operations than a standard RNN 

cell, which enables long-term dependencies. There are two parts in an LSTM cell: cell 

state and activation gates. The cell state is the layer controlling the flow of information 

within the cell, which can be seen as the line in Figure 2-4. 

 

Figure 2-4 The cell state in an LSTM cell 

  

An LSTM cell consists of three gates. The first gate is considered the “forget gate”, which 

determines how much previous information is kept when outputting new information. A 

sigmoid layer maps the input to the range from 0 to 1, thus calculates the forget rate of 

previous information according to Equation 2.4 [2]: 

𝑓𝑡 =  𝜎(𝑊𝑡. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓,    (2.4)   

where 𝜎 is the sigmoid function, [ℎ𝑡−1, 𝑥𝑡] are the inputs and 𝑊𝑡 , 𝑏𝑓 are the parameters.  

The output of this gate is a scalar ranging from 0 to 1, where 1 means keeping all the 

information and 0 means keeping none of the previous information [2]. 
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Figure 2-5 Structure of the forget gate in an LSTM cell 

 

After passing the information through the “forget gate”, new information needs to be 

processed. This new information processing gate consists of two parts. Firstly, a sigmoid 

layer is needed in order to determine the amount of information that will be updated. 

Secondly, a tanh layer will be used to create a candidate vector 𝐶̃𝑡. Generally, the gate 

equations can be expressed in Equation 2.5 and 2.6 [2]: 

 

𝑖𝑡 =  𝜎(𝑊𝑖. [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑖     (2.5) 

𝐶̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶 ∙ [ℎ𝑡−1, 𝑥𝑡]  +  𝑏𝐶)     (2.6) 

 

Figure 2-6 Structure of the "new information" gate in an LSTM cell 

 

Last but not least, an output gate determines the output of the cell state. The structure 

of the output gate is relatively similar to that of the aforementioned second gate, with a 

sigmoid activation layer and a tanh layer to control which part of information is kept. 

However, the cell state 𝐶𝑡−1 is fed through the tanh layer instead of the output of the 
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sigmoid layer, which is eventually pointwise multiplied by the gate’s sigmoid layer to get 

the output ℎ𝑡 [2]: 

𝑜𝑡 =  𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)     (2.7) 

ℎ𝑡 =  𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡)      (2.8) 

 

Figure 2-7 Structure of the output gate in an LSTM cell 

 

2.4 Reinforcement Learning 

 

Reinforcement learning is a subset of machine learning, one of three machine learning 

problems, including supervised and unsupervised learning. The objective of 

reinforcement learning is to utilize an agent in a specific environment and use it to 

optimize a certain cumulative reward by learning a good strategy to perform actions.  

 

Understanding key concepts of reinforcement learning is the prerequisite to 

understanding how the system this research will propose can be improved using virtual 

feedback. In a reinforcement learning problem, there is an environment, which can be 

defined by an arbitrary model. An agent which acts on an environment has information 

about its state and an array of actions it can take. Based on the agent’s chosen action, 

it receives a scalar reward from the environment known as feedback. However, the agent 

may fully understand the environment, or does not have any information about the 

environment model at all. Hence, it is essential that the agent balances between 

exploration and exploitation. 

Policies can be developed with respect to an agent and the environment it acts on. A 

policy 𝜋(𝑠) can be defined as a set of actions for an agent to take in order to maximize 
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the feedback reward [6].  Mathematically, a deterministic policy can be expressed as a 

function of state 𝑠 which outputs action a: 

𝜋(𝑠) = 𝑎      (2.9) 

In the case of stochastic policy: 

𝜋(𝑎|𝑠) = 𝑃𝜋[𝐴 = 𝑎 | 𝑆 = 𝑠]     (2.10) 

A value function is used to assess the current state – to see if the current state is good 

or not. Basically, the value function predicts future reward and is expressed by Equation 

2.11: 

𝑣𝜋(𝑠) = 𝐸𝜋[𝑅𝑡+1 +  𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + ⋯ | 𝑆 = 𝑠],   (2.11) 

where 𝑣𝜋(𝑠) is the value function, 𝐸𝜋 is the environment in which the policy 𝜋 is used and 

𝑅𝑡 is the reward the agent receives at timestep 𝑡. This is used to select a suitable action 

for the agent to take next.  

In terms of reinforcement learning agents, there are numerous types of agents: policy-

based, value-based, actor critic, model-free and model-based. A model is defined as a 

prediction of the environment, which can be split into two functions, 𝑃 and 𝑅. 𝑃 is a 

probability function of a next state given the current state and action, whereas 𝑅 is a 

probability of a reward given the current state and action: 

𝑃𝑠𝑠′
𝑎 = 𝑃[𝑆𝑡+1 = 𝑠′| 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]    (2.12) 

𝑅𝑠
𝑎 = 𝐸[𝑅𝑡+1 | 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]    (2.13) 

In general, reinforcement learning can be seen as a method of trial and error. There are 

two phases of this method of learning: exploration and exploitation. Combining these two 

phases will help agents to find a better policy to maximize the obtained reward. 

Particularly, exploration means obtaining information from the environment; it is usually 

done when an agent has no prior or little information about the environment. On the other 

hand, exploitation means taking advantage of known information in order to optimize the 

reward. These two phases are critical in the task of discovering the optimal policy. 
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Figure 2-8 Key concepts of Reinforcement Learning (Agent performs actions based 
on its internal state and the observed environment. Environment then processes the 

action, updates the environment state accordingly and provides a reward to the agent) 

 
 

2.4.1 Deep Q-Learning 

 

There are two types of reinforcement learning algorithms: model-free and model-based. 

A model-free algorithm learns solely from rewarded actions, meaning that unrewarded 

experiences have no impact to the agent’s learning process. On the other hand, a model-

based algorithm takes into account both rewarded and unrewarded experiences, which 

is proved to be more efficient most of the time [14]. One of the most widely applied RL 

algorithms is Q-learning. Q-learning is a model-free RL algorithm, whose main objective 

is to estimate Q-values so as to form an optimal policy [15]. The learning method of Q-

learning utilizes the concept of temporal differences. Temporal difference (TD) is defined 

as a form of learning in which the agent tries to learn different actions for a specific state 

and evaluate the consequences of each action in order to choose the best action for 

each state. To evaluate the value of each action, the concept of Q-value was introduced. 

A Q-value 𝑄𝜋(𝑠, 𝑎) is the expected discounted value that an agent following a policy 𝜋 

can be rewarded at state 𝑠 if it takes action 𝑎. Mathematically, the Q-value can be 

updated using Equation 2.14: 

𝑄𝜋(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) +  𝛾 𝑚𝑎𝑥
𝑎

𝑄(𝑠′, 𝑎),   (2.14) 

where 𝑟(𝒔, 𝒂) is the immediate reward that the agent receives after taking action 𝑎 at 

state 𝑠, 𝛾 is the discount factor and 𝑚𝑎𝑥
𝑎

𝑄(𝑠′, 𝑎) is the maximum reward that the agent 

can receive by taking action 𝑎 at next state 𝑠′. The discount factor 𝛾 determines the 

importance of future rewards, in which case 𝑚𝑎𝑥
𝑎

𝑄(𝑠′, 𝑎), to the current state 𝑠. 
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In order to use Q-learning in more complex tasks such as NLP or dealing with high 

dimensional data, the Deep Q-learning algorithm was introduced, which applies Q-

learning to neural networks [16]. While traditional Q-learning algorithms normally used 

low dimensional state spaces and handcrafted data, Deep Q-learning has been proved 

to work well with high dimensional sensory inputs. [16]. During training, the 

environment’s state is processed by the model, producing a Q-value for each action that 

can be taken. The current state 𝑠, next state 𝑠′, action 𝑎 and reward 𝑟(𝑠, 𝑎) from each 

timestep are stored in a replay buffer. During the algorithm training process, minibatches 

of the replay buffer are sampled, then Q-learning updates are applied to the sampled 

experience. This is called ‘experience replay’, which has some advantages over 

traditional Q-learning algorithm. First of all, the former is more data efficient, since each 

experience is used in multiple updates. Second, that the experiences are randomly 

sampled, the variance of the Q-learning updates is reduced. Generally, the DQN 

algorithm can be written as in Algorithm 1: 

 

Algorithm 1 Deep Q-Learning algorithm 

Initialize replay memory D to capacity N 

Initialize Q-table Q with random weights 

for episode = 1, E do 

    Initialize state S1 

    for timestep t = 1, T do 

       Select action a based on probability 𝜖 or select a = 𝑚𝑎𝑥𝑎𝑄(𝑆1′, 𝑎) 

       Execute step function for action a and evaluate reward r 

       Store state S1, next state S2, reward r, action a in D 

       Sample random minibatch of transitions (S1, S2, r, a) from D 

       Update Q using Equation 2.11 

       Perform Gradient Descent step 

    end for 

end for        
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3. IMPLEMENTATION 

This chapter will explain the procedure of building a text generation model from a 

database and apply reinforcement learning algorithms onto it. Generally, the process can 

be outlined as the following: i) Building a DNN-based text generator using a large text 

database) and ii) Adapting the model to another dataset in order to produce specific type 

of text using reinforcement learning-based model adaptation. 

 

3.1 Important frameworks 

 

The programming language used in the research was Python. The frameworks used in 

order to train our text generation model are Tensorflow and Keras. Tensorflow is a 

framework providing tools for machine learning applications [3], while Keras is a high-

level API for building neural networks, which runs on top of Tensorflow [4]. Keras was 

used for the creation of the LSTM model for generating text. Additionally, Keras also 

provided helper built-in functions for data preprocessing such as to_categorical function 

to one-hot encode the data labels, or functions to configure the text generation model.  

 

On building a reinforcement learning system to improve text generation quality, Keras 

was used to implement the DQN algorithm.  

 

3.2 Dataset and pre-processing 

 

Before constructing an LSTM model using Keras, a text database must be prepared and 

processed. For this research, two novels’ text from Project Gutenberg were used: ‘Alice’s 

Adventures in Wonderland’ by Lewis Carroll and ‘Pride and Prejudice’ by Jane Austen. 

The text can be found on the respective website, collected into a text file for Python to 

easily read and process. 

In terms of data preprocessing, after being read by Python, the text string will be filtered 

by omitting all punctuations and symbols so that only alphanumerical characters are 

chosen. Hence, there were a total of 39 unique characters in the text database. 
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Furthermore, the text was transformed into lowercase. To fit the model onto the 

processed text database, data must be split into a training set and a test set. Our 

proposed LSTM model takes a sequence of text as an input. Hence, for each training 

and test set, the input data (known as x) are a sequence of 40 characters, whereas their 

labels (known as y) will be the next character of the following sequence. However, since 

neural networks are unable to process characters or strings as inputs, characters were 

one-hot encoded.  

 

3.3 Defining the supervised model 

 

Our text generation model first consists of two LSTM layers of 128 hidden units each. 

The output of the LSTM layers will be put into a fully connected layer with 50 neurons, 

with the ReLU activation function. Finally, the activated neurons from the fully connected 

layer will be put into a classification layer which has the number of neurons equal to the 

number of distinct characters found in the text database. The activation function used in 

the classification layer was softmax. However, instead of choosing the highest probability 

class as the output character, temperature-based sampling was used to increase the 

variability of the outputted text. In terms of optimization methods, categorical 

crossentropy loss function was used to evaluate the model, along with the ADAM 

optimizer algorithm to update the model’s weights. 

 

Finally, the model was fit onto the training dataset and trained for 200 epochs with batch 

size of 128. Batch size is defined as the number of samples that are used in the process 

of gradient calculation simultaneously, which can then be used as a basis for one weights 

update. On the other hand, the number of epochs is defined as a number of times the 

training dataset is passed through the model.   

 

 

3.4  Adapting the model using Reinforcement Learning 

This section discusses how a supervised LSTM model trained on a relatively large text 

dataset, was adapted to generate text that satisfies different criteria using reinforcement 

learning algorithms. 
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3.4.1 Deep Q-learning 

 

For this experiment, the derivation of our Deep Q-Learning algorithm was based on the 

algorithm described in Algorithm 1. However, the action selection method during each 

timestep was not 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦, but instead to use temperature-based sampling from the 

output of our supervised model. In terms of hyperparameter, the number of episodes of 

training and the number of timesteps in each episode were 100 and 1000 respectively. 

The interval between each experience replay process was 40, which means that the 

algorithm performed Q-learning updates every 40 timesteps. The DQN algorithm for the 

experiment can be described in Algorithm 2: 

 

Algorithm 2 Deep Q-Learning to improve text generation from supervised model 

Initialize replay memory D to capacity N 

Initialize Q-table Q with random weights 

Initialize reference model  

for episode = 1,100 do 

    Initialize state S1 

    for timestep t = 1,1000 do 

       Select action a = argmax(model.predict(S1)) 

       Execute step function for action a and evaluate reward r 

       Store state S1, next state S1’, reward r, action a in D 

       if t divisible by 40 do 

           Sample random minibatch of transitions (S1, S1’, r, a) from D 

           Update Q using Equation 2.10 

           Perform Gradient Descent step 

           update model weights 

      end if 

    end for 

end for        

 

 

3.4.2 Experimental setup  

 

To test the efficiency of the described reinforcement learning algorithm, several 

experiments with different reward functions were conducted, along with different values 

of discount factor gamma. 

The model whose weights were updated was taken directly from the supervised model 

which was introduced and trained in Section 3.3.  
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In terms of the reinforcement learning training process, weights of all the supervised 

model’s layers were updated after each training episode, which consists of 1000 

timesteps, corresponding to 1000 actions produced. The Huber loss was used to perform 

gradient descent on the model, whereas the ADAM optimizer was used to update the 

model’s weights. 

Before each training process, the reset function was called in order to determine the 

initial state of the environment. For each reward condition, the agent was trained for 100 

episodes. This section mathematically defines the reward functions used in the 

experiments. 

 

3.4.2.1   Simple reward function 

 

For the simplest reward function, the agent learned to only generate one specific 

character. Assume the character that would be generated is ‘c’, which corresponds to 

action number 12 in the present character encoding scheme, the reward can be defined 

as Equation 3.1: 

𝑅𝑠
𝑎 =  {

5  𝑖𝑓 𝑎 = 12 
0 𝑖𝑓 𝑎 ≠ 12

,     (3.1) 

where 𝑅𝑠
𝑎 is the reward at state 𝑠 for action 𝑎.The aim of this reward function was to test  

whether the proposed Algorithm 2 works fundamentally. This reward function also served 

as a basis for more complex reward functions defined in Section 3.4.2.2 and 3.4.2.3. 

 

3.4.2.2   Negative distance reward function 

 

Like the condition presented in Section 3.4.2.1, the reward function can be defined as 

the negative distance between the last two generated character in the environment’s 

state. The ‘distance’ is defined as the difference between the mapped integer values of 

the characters. The equation for this reward function can be expressed as Equation 3.2: 

𝑅𝑠
𝑎𝑡 =  −(𝑎𝑏𝑠(𝑎𝑡 − 𝑎𝑡−1)),    (3.2) 

where 𝑅𝑠
𝑎𝑡 is the reward at state 𝑠 for action 𝑎 at timestep 𝑡 and 𝑎𝑡 and 𝑎𝑡−1 are actions 

at timestep 𝑡 and 𝑡 − 1 respectively. It can be easily seen that the agent’s goal for this 

reward function is similar to that of Section 3.4.2.1. Specifically, this reward function 

implies that, in order to maximize the reward, the agent learns to output the same 

character every timestep. Hence, the highest reward obtained would be 0. This reward 
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function was implemented to evaluate the ability of the RL agent to process reward 

conditions that depend on temporal structure of the produced character strings.  

 

3.4.2.3   Producing meaningful English words 

 

The main objective of this experiment was to improve the quality of text generation 

obtained from Section 3.3. Hence, in order to test the text generation quality, the agent 

was rewarded for producing meaningful English words. The evaluated word was 

determined by first converting the environment’s state into a string (or sentence), then 

extracting the last word from the converted string. 

 

Figure 3-1 The last outputted word was defined in terms of whitespaces then 
verified by NLTK-based critic whether it was an English word or not 

In terms of reward evaluation, the agent was rewarded if the last produced word was a 

valid English word. Particularly, the NLTK framework was used to check for valid English 

words. NLTK is a Python framework mainly used to build applications in order to work 

with human language data [13]. For this experiment, the environment rewarded the agent 

if the last produced word belongs in the NLTK words database. The reward function can 

be defined mathematically in Equation 3.3: 

𝑅𝑠
𝑎 =  {

5 𝑖𝑓 𝑙𝑎𝑠𝑡 𝑤𝑜𝑟𝑑 ∈ 𝑁𝐿𝑇𝐾 𝑤𝑜𝑟𝑑𝑠 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒
0, 𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,   (3.3) 

where 𝑅𝑠
𝑎 is the reward at state 𝑠 for action 𝑎. 
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4. RESULTS AND DISCUSSION 

A sample of text generated from the supervised model defined in Section 3.1 can be 

quoted: ‘in the refuse, she was a time to see her at the convenient any of yourself and a 

most agreeably, that it was now as she could not have and the match for them, when i 

have not at all  i hade not the bread teasures about it  it is well. i wish yoo, you won an 

all this with,  said the evently  and then alice waited a confidence and after sitthing about 

the professions, and all the mock turtle settled a short, and i am sure you will not have 

the seeing on the subject  and these informed that it was a very strong of the subject, in 

a sort of the whole party, whose elizabeth had been greated all consideration. i am sure,  

said alice i had all that she much as sear the probation of the subject of the family is the 

rest of the subject’. This will be used for comparison to the experiments’ outcome in order 

to evaluate the quality of reinforcement learning algorithm introduced in Section 3.3.1. 

For each reward function defined in Section 3.3.2, general observations after training will 

be discussed, followed by a reward graph throughout episodes trained and the text 

generated after training is completed. 

 

4.1 Simple reward function 

 

The first reward function is to reward the agent when it produces just a specific character 

such as the letter ‘a’. Particularly, during the training process, each time the agent, in 

which case the model, produces the character ‘a’, a reward value of 10 is given to the 

system, and -1 if the model outputs another character. After 100 training episodes, the 

training reward is described as the following: 
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Figure 4-1 Task's rewards after 100 training episodes (x-axis is the episodes 
trained, y-axis is the total reward of each episode trained) 

 

Generally, there is a significant increase in training reward during the training process, 

from 2750 to a maximum of 5000, which means that all the characters outputted in a 

training episode is the letter ‘a’. In terms of the training time, it took a small amount of 

time to train the agent since this is only a simple reward function. 

4.2 Negative distance reward function 
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Figure 4-2 Negative distance reward of 100 episodes (x-axis is the episodes 
trained, while y-axis is the negative distance between the last two outputted characters, 

which was mathematically defined in Section 3.4.2.2) 

 

Results for the experiment using the second reward function, which was mathematically 

defined in Section 3.4.2.2, can be found in Figure 4-3. Overall, the total reward at the 

beginning of the training process was relatively low, as the agent was still producing text 

similar to our text database. However, after approximately 10 episodes, the reward 

skyrocketed to 0, which means that the agent learned to maximise the environment’s 

reward well, as seen in Figure 4-3. Hence, this experiment proves that the agent adapts 

well to reward functions that depend on temporal modelling of the data. 

 

4.3 Producing meaningful English words (a more complex 
reward function) 

 

The starting reward of the agent is already relatively high, since the supervised model is 

considered sufficiently well-trained. It can be seen from Figure 4-4 that the episode 

reward throughout the training process fluctuates around 5000 which is the maximum 

reward. The outputted text after the training process, despite producing correct English 

words, is rather repetitive and nonsense. A sample of the generated text after training is 

‘to the the the the tabte on the the the tabble the the the the the tan tabby the tabmy tabt 

the the the the tabby tabuts and the the the the thost to the tabby the the the the tabbed’. 

However, the experiment tested the feasibility of the RL algorithm by tackling one sub-

problem, which is checking and improving the validity of individual words. This approach 

came at the cost of reducing the quality of other aspects such as grammaticality or 

diversity of words. 
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Figure 4-3 Rewards after 60 episodes for NLTK validity reward function (x-axis is 
the episodes trained, while y-axis is the reward of each episode trained). For this 
reward function, only 60 episodes were trained due to computational limitations. 

 

Other minor reward criteria were introduced into the reward function. For example, the 

RL agent can learn not to produce the same words twice or not to produce the word ‘the’. 

Their reward graphs are similar to Figure 4-4; thus, the agent adapted well to both reward 

functions.  
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5. CONCLUSION 

The present study introduced and evaluated a text generation system which utilized both 

supervised and reinforcement learning. Results obtained from Chapter 4 shows that the 

LSTM model defined in Chapter 3 adapts well to different RL reward functions, 

generating text that satisfies specific criteria. However, that the episode reward went up 

during the training process did not imply that the quality of the generated text improved. 

Particularly, for the reward function defined in Section 3.4.2.3, the outputted text after 

training, despite most words are English, was far from meaningful. This was because the 

RL agent approached the problem by evaluating and received rewards one word at a 

time, which came at the cost of reducing the quality of the generated text overall.  

The main challenge during the study was to design a suitable reward function for the RL 

agent. Hopefully, in the future, we can design an optimal reward function for the RL agent 

in different tasks, or design a loss function that can compensate for the quality reduction 

of the generated text as a whole, while the supervised model still adapts well to reward 

criteria.   
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