

Anh Nguyen

AUTOMATIC TEXT GENERATION USING
SUPERVISED PRE-TRAINING AND

REINFORCEMENT LEARNING BASED
ADAPTATION

Bachelor's Thesis
Science and Engineering

Okko Räsänen
Joni Pajarinen

February 25th 2021

i

ABSTRACT

Anh Nguyen: Text Generation using LSTM and Reinforcement Learning

Bachelor of Science Thesis

Tampere University

International Degree of Science and Engineering

February 25th 2021

Text generation tasks are becoming more and more prominent in applications such as
machine translation, image captioning, dialogue systems, etc. While text generation systems
often require an extremely large amount of data, the lack of data can be compensated by using
certain machine learning algorithms. This Bachelor’s thesis introduces an approach of building a
text generation system that utilizes reinforcement learning to control its output. The thesis first
discusses training a small text dataset using supervised learning. The thesis then discusses the
application of a deep reinforcement learning algorithm to make the generated text adapt to
specific criteria. The result shows that the system adapts well to different conditions. The system
adapts well to reward functions that depend on temporal modelling of the data, as well as validity
of each individual word produced. However, the system was unable to improve the text’s
grammaticality or diversity.

Keywords: deep learning, LSTM, RNN, reinforcement learning, deep Q-learning, Keras,

TensorFlow, text generation

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

PREFACE

I would like to thank my thesis supervisors, assistant professors Okko Räsänen and Joni

Pajarinen, for suggesting the topic and guiding me through my research progress and

writing process. I would like to also thank Mrs. Laeticia Petit for pushing and helping me

keep track of my progress and providing useful resources for tasks such as information

retrieval or thesis writing guide.

Tampere, Finland, 25th February 2021

Anh Nguyen

iii

CONTENTS

1. INTRODUCTION .. 1

2. BACKGROUND .. 2

2.1 Text generation .. 2

2.2 Deep learning .. 2

2.3 Recurrent neural network and Long short-term memory RNN 4

2.4 Reinforcement Learning .. 8

2.4.1 Deep Q-Learning .. 10
3. IMPLEMENTATION .. 12

3.1 Important frameworks .. 12

3.2 Dataset and pre-processing ... 12

3.3 Defining the supervised model ... 13

3.4 Adapting the model using Reinforcement Learning 13

3.4.1 Deep Q-learning ... 14
3.4.2 Experimental setup ... 14

4. RESULTS AND DISCUSSION .. 17

4.1 Simple reward function .. 17

4.2 Negative distance reward function ... 18

4.3 Producing meaningful English words (a more complex reward function)

 19

5. CONCLUSION .. 21

REFERENCES... 23

iv

LIST OF FIGURES

Figure 2-1 Repeating structure of a standard RNN ... 5
Figure 2-2 Notation ... 5
Figure 2-3 Structure of an LSTM cell .. 6
Figure 2-4 The cell state in an LSTM cell .. 6
Figure 2-5 Structure of the forget gate in an LSTM cell ... 7
Figure 2-6 Structure of the "new information" gate in an LSTM cell............................... 7
Figure 2-7 Structure of the output gate in an LSTM cell .. 8
Figure 2-8 Key concepts of Reinforcement Learning (Agent performs actions

based on its internal state and the observed environment.
Environment then processes the action, updates the environment
state accordingly and provides a reward to the agent) 10

Figure 3-1 The last outputted word was defined in terms of whitespaces then
verified by NLTK-based critic whether it was an English word or
not .. 16

Figure 4-2 Task's rewards after 100 training episodes (x-axis is the episodes
trained, y-axis is the total reward of each episode trained) 18

Figure 4-3 Negative distance reward of 100 episodes (x-axis is the episodes
trained, while y-axis is the negative distance between the last two
outputted characters, which was mathematically defined in Section
3.4.2.2) .. 19

Figure 4-4 Rewards after 60 episodes for NLTK validity reward function (x-axis is
the episodes trained, while y-axis is the reward of each episode
trained). For this reward function, only 60 episodes were trained
due to computational limitations. .. 20

v

LIST OF SYMBOLS AND ABBREVIATIONS

BERT Bidirectional Encoder Representations from Transformers
CNN Convolutional Neural Networks
DQN Deep Q-Learning
JSD Jensen-Shannon divergence
KLD Kullback-Leibler divergence
LSTM Long Short-Term Memory
NLTK Natural Language Toolkit
RL Reinforcement Learning
RNN Recurrent Neural Networks
SGD Stochastic Gradient Descent
SOTA State Of The Art

.

1

1. INTRODUCTION

Natural Language Processing (NLP) is a subfield of artificial intelligence, which defines

a set of tools to process natural language data such as text or speech. Useful

applications of NLP include machine translation, which has the ability to translate from a

language to another, speech recognition, sentiment analysis, which analyses human’s

emotions based on their input text, and text generation.

This research will be focusing on text generation application of NLP. In particular, the

system designed and implemented will be able to generate useful text based on its model

trained on an existing text database. Since most NLP applications rely heavily on the use

of machine learning algorithms, the aforementioned system will also be utilizing machine

learning algorithms, particularly deep learning models. Deep learning is a branch of

machine learning which uses neural networks to solve problems such as feature

extraction or classification. Moreover, besides building a deep learning model, the

system also implements reinforcement learning algorithms in order to improve the quality

of the text generated. Reinforcement learning is also a subfield of machine learning

whose principle is to have a software-defined agent taking a set of actions, known as

policy, in an environment so as to maximize a specific reward schema. Finally, the whole

system is evaluated using a custom evaluation function which measures the accuracy of

the text generated.

Chapter 2 presents the history of text generation and some of the popular text generation

models, as well as key concepts or theoretical background of deep learning,

reinforcement learning and its algorithms. Chapter 3 explains the implementation of the

whole system, from data gathering, data preprocessing, to building the deep learning

model and the reinforcement learning architecture needed to train the text database.

Chapter 4 discusses the result obtained from chapter 3 and evaluates the system’s

quality, along with data visualization for better insights. Last but not least, chapter 5

concludes the research with generalized claims and findings from chapter 3 and 4.

2

2. BACKGROUND

This chapter explains key concepts of the research: deep learning as well as

reinforcement learning concepts. In terms of deep learning, the structure of the Recurrent

Neural Network (RNN), particularly Long Short-term Memory RNN [2], will be elaborated.

Deep learning frameworks used in the research will also be mentioned and explained

briefly. As regards reinforcement learning, key definitions such as policy, environment

and reinforcement learning algorithms are prerequisites to understanding: i) how

reinforcement learning works and ii) the mechanics of the solution model presented in

later chapters.

2.1 Text generation

Text generation is one of many tasks in the field of NLP. One of the earlier models for

text generation was the Seq2Seq [10] language model, which uses two RNNs to predict

the next text sequence from a previous one. However, there were certain limitations to

the quality of the text produced by a Seq2Seq: the generated text is often nonsense and

incorrectly spelled. A more efficient model later introduced was the Word2Vec model

[11], which treats sequences of words as vectors. The aforementioned models served

as a basis for most State Of The Art (SOTA) text generation models nowadays [7]. One

of the most notable text generation models is GPT-3 [8], which has approximately 175

billion parameters, 10 times more than a regular model. GPT-3 has the ability to produce

newspaper articles that are nearly indistinguishable when compared to human written

articles [8]. Another popular text generation model worth mentioning is the Bidirectional

Encoder Representations from Transformers, also known as BERT [17], which was

developed by Google in 2018. BERT achieved SOTA performances on tasks such as

questions answering as well as language inference (language inference means

determining if a "hypothesis" is true or false) [17].

2.2 Deep learning

Deep learning is a subset of machine learning and one of its algorithms. Applications of

deep learning include machine translation, self-driving cars, digital marketing, and so on.

At the most fundamental level, deep learning models are artificial neural networks with

3

multiple layers. While traditional neural networks often consist of 2-3 layers, the number

of layers in a deep learning model can go up to 150.

An artificial neural network consists of an input layer, a number of hidden layers and an

output layer. Each layer’s output (excluding output layer’s) is fed through an activation

function. An activation function is defined as a weighted function of an input neuron and

the bias term which has the purpose of eliminating unnecessary neurons in a neural

network layer [9]. Activation functions can be either linear or non-linear. The activation

functions used in the supervised model which will be defined in Section 3.2 are ReLU

and Softmax. Both ReLU and Softmax are non-linear activation functions and can be

defined as Equation 2.1 and 2.2 respectively:

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (2.1)

𝑓(𝑥𝑖) =
𝑒𝑥𝑝 (𝑥𝑖)

∑ 𝑒𝑥𝑝 (𝑥𝑗)𝑗
 (2.2)

In terms of performance, loss function is used to evaluate a model, as well as the error

between the actual label 𝑦 and predicted label 𝑦̂. The loss function which will be used in

the model defined in Section 3.2 is the categorical crossentropy loss function, which can

be expressed as Equation 2.3:

𝐿(𝑦, 𝑦̂) = ∑ ∑ (𝑦𝑖𝑗 ∗ 𝑙𝑜𝑔(𝑦𝑖𝑗̂))𝑁
𝑖=0

𝑀
𝑗=0 (2.3)

where 𝑦̂ is a one-hot encoded prediction vector and 𝑦 is the actual ground truth

distribution. One-hot encoding is a process where categorical data is transformed into a

binary label matrix. The purpose of one-hot encoding is to convert categorical data into

numeric data, making it easier for machine learning algorithms to process.

To train a model, we use optimizers. Optimizers are algorithms or methods used to

update a model’s weight or learning rate in order to reduce a model’s loss. The optimizer

which will be used in the model defined in Section 3.2 is the Adaptive Moment Estimation

(ADAM) [12] optimizer. ADAM is an optimization algorithm which is considered an

upgraded version of the Stochastic Gradient Descent (SGD) algorithm. ADAM is effective

and often outperforms other optimization algorithms in deep learning applications [12].

4

2.3 Recurrent neural network and Long short-term memory
RNN

A recurrent neural network (RNN) is a type of artificial neural networks that has a more

complex structure than traditional neural networks. It is often used for natural language

processing problems such as speech recognition, text classification, and so on. In an

RNN architecture, neurons that are connected to each other form a loop, which means

that the RNN utilizes both feedforward and feedback structure of a neural network.

Hence, unlike traditional feed-forward neural networks, recurrent neural networks store

their states after processing a sequence of input and thus use their internal states to

process future inputs [5].

The supervised model which will be defined in Section 3.2 uses a special type of RNN:

Long short-term memory RNNs (LSTM) [2]. Therefore, understanding how standard

RNNs work is the prerequisite to understanding the structure of LSTMs. The architecture

of an RNN is dynamic, thus, it keeps track of an internal state within each step of the

network. The principle of each hidden layer in RNN is that after getting put into the

activation function, the outputs will be saved in “context cells”, which will be fed back to

the corresponding hidden neuron of the previous layer.

In principle, having loops inside an RNN means that it has access to the previous state

of the model. For example, when training a character-based text generation model,

having access to previous output characters increases meaningfulness of the generated

text. However, there are limitations to standard recurrent neural networks. In terms of

solving problems that require learning long-term temporal dependencies, such as text

generation where the gap between the context and the output is considerably large,

recurrent neural networks are proved to be incapable [18]. While training a neural

network, gradient descent is used to optimize the network’s parameters. As the gradients

get backpropagated across multiple timesteps, they explode, causing a problem called

vanishing gradient. Vanishing gradient problem makes the process of optimizing the

network parameters more difficult and sometimes impossible when gradients are close

towards zero.

Thus, a new RNN structure was made to solve the vanishing gradient problem, as well

as provide the capability to learn long-term dependencies. Long Short Term Memory

5

recurrent neural networks (LSTM) were introduced by Hochreiter and Schmidhuber in

1997 [2]. In principle, LSTMs are able to solve vanishing gradients by giving access to

the forget gate’s activation, thus having more control of the network’s gradients at each

time step.

In terms of RNN and LSTM’s structures, based on Figure 2-1 and 2-3, it can be seen

that LSTMs have a more complex structure than standard RNNs.

Figure 2-1 Repeating structure of a standard RNN

Figure 2-2 Notation

As regards recurrent neural networks, their structures are relatively simple. According to

Figure 2-1, their repeating module consists of a single layer, usually a tanh layer, which

maps the output to the range from -1 to 1. This helps to control the amount of new

information that the network can absorb.

6

Figure 2-3 Structure of an LSTM cell

On the other hand, an LSTM cell contains many more operations than a standard RNN

cell, which enables long-term dependencies. There are two parts in an LSTM cell: cell

state and activation gates. The cell state is the layer controlling the flow of information

within the cell, which can be seen as the line in Figure 2-4.

Figure 2-4 The cell state in an LSTM cell

An LSTM cell consists of three gates. The first gate is considered the “forget gate”, which

determines how much previous information is kept when outputting new information. A

sigmoid layer maps the input to the range from 0 to 1, thus calculates the forget rate of

previous information according to Equation 2.4 [2]:

𝑓𝑡 = 𝜎(𝑊𝑡. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓, (2.4)

where 𝜎 is the sigmoid function, [ℎ𝑡−1, 𝑥𝑡] are the inputs and 𝑊𝑡 , 𝑏𝑓 are the parameters.

The output of this gate is a scalar ranging from 0 to 1, where 1 means keeping all the

information and 0 means keeping none of the previous information [2].

7

Figure 2-5 Structure of the forget gate in an LSTM cell

After passing the information through the “forget gate”, new information needs to be

processed. This new information processing gate consists of two parts. Firstly, a sigmoid

layer is needed in order to determine the amount of information that will be updated.

Secondly, a tanh layer will be used to create a candidate vector 𝐶̃𝑡. Generally, the gate

equations can be expressed in Equation 2.5 and 2.6 [2]:

𝑖𝑡 = 𝜎(𝑊𝑖. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖 (2.5)

𝐶̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (2.6)

Figure 2-6 Structure of the "new information" gate in an LSTM cell

Last but not least, an output gate determines the output of the cell state. The structure

of the output gate is relatively similar to that of the aforementioned second gate, with a

sigmoid activation layer and a tanh layer to control which part of information is kept.

However, the cell state 𝐶𝑡−1 is fed through the tanh layer instead of the output of the

8

sigmoid layer, which is eventually pointwise multiplied by the gate’s sigmoid layer to get

the output ℎ𝑡 [2]:

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (2.7)

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡) (2.8)

Figure 2-7 Structure of the output gate in an LSTM cell

2.4 Reinforcement Learning

Reinforcement learning is a subset of machine learning, one of three machine learning

problems, including supervised and unsupervised learning. The objective of

reinforcement learning is to utilize an agent in a specific environment and use it to

optimize a certain cumulative reward by learning a good strategy to perform actions.

Understanding key concepts of reinforcement learning is the prerequisite to

understanding how the system this research will propose can be improved using virtual

feedback. In a reinforcement learning problem, there is an environment, which can be

defined by an arbitrary model. An agent which acts on an environment has information

about its state and an array of actions it can take. Based on the agent’s chosen action,

it receives a scalar reward from the environment known as feedback. However, the agent

may fully understand the environment, or does not have any information about the

environment model at all. Hence, it is essential that the agent balances between

exploration and exploitation.

Policies can be developed with respect to an agent and the environment it acts on. A

policy 𝜋(𝑠) can be defined as a set of actions for an agent to take in order to maximize

9

the feedback reward [6]. Mathematically, a deterministic policy can be expressed as a

function of state 𝑠 which outputs action a:

𝜋(𝑠) = 𝑎 (2.9)

In the case of stochastic policy:

𝜋(𝑎|𝑠) = 𝑃𝜋[𝐴 = 𝑎 | 𝑆 = 𝑠] (2.10)

A value function is used to assess the current state – to see if the current state is good

or not. Basically, the value function predicts future reward and is expressed by Equation

2.11:

𝑣𝜋(𝑠) = 𝐸𝜋[𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + ⋯ | 𝑆 = 𝑠], (2.11)

where 𝑣𝜋(𝑠) is the value function, 𝐸𝜋 is the environment in which the policy 𝜋 is used and

𝑅𝑡 is the reward the agent receives at timestep 𝑡. This is used to select a suitable action

for the agent to take next.

In terms of reinforcement learning agents, there are numerous types of agents: policy-

based, value-based, actor critic, model-free and model-based. A model is defined as a

prediction of the environment, which can be split into two functions, 𝑃 and 𝑅. 𝑃 is a

probability function of a next state given the current state and action, whereas 𝑅 is a

probability of a reward given the current state and action:

𝑃𝑠𝑠′
𝑎 = 𝑃[𝑆𝑡+1 = 𝑠′| 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (2.12)

𝑅𝑠
𝑎 = 𝐸[𝑅𝑡+1 | 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (2.13)

In general, reinforcement learning can be seen as a method of trial and error. There are

two phases of this method of learning: exploration and exploitation. Combining these two

phases will help agents to find a better policy to maximize the obtained reward.

Particularly, exploration means obtaining information from the environment; it is usually

done when an agent has no prior or little information about the environment. On the other

hand, exploitation means taking advantage of known information in order to optimize the

reward. These two phases are critical in the task of discovering the optimal policy.

10

Figure 2-8 Key concepts of Reinforcement Learning (Agent performs actions based
on its internal state and the observed environment. Environment then processes the

action, updates the environment state accordingly and provides a reward to the agent)

2.4.1 Deep Q-Learning

There are two types of reinforcement learning algorithms: model-free and model-based.

A model-free algorithm learns solely from rewarded actions, meaning that unrewarded

experiences have no impact to the agent’s learning process. On the other hand, a model-

based algorithm takes into account both rewarded and unrewarded experiences, which

is proved to be more efficient most of the time [14]. One of the most widely applied RL

algorithms is Q-learning. Q-learning is a model-free RL algorithm, whose main objective

is to estimate Q-values so as to form an optimal policy [15]. The learning method of Q-

learning utilizes the concept of temporal differences. Temporal difference (TD) is defined

as a form of learning in which the agent tries to learn different actions for a specific state

and evaluate the consequences of each action in order to choose the best action for

each state. To evaluate the value of each action, the concept of Q-value was introduced.

A Q-value 𝑄𝜋(𝑠, 𝑎) is the expected discounted value that an agent following a policy 𝜋

can be rewarded at state 𝑠 if it takes action 𝑎. Mathematically, the Q-value can be

updated using Equation 2.14:

𝑄𝜋(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾 𝑚𝑎𝑥
𝑎

𝑄(𝑠′, 𝑎), (2.14)

where 𝑟(𝒔, 𝒂) is the immediate reward that the agent receives after taking action 𝑎 at

state 𝑠, 𝛾 is the discount factor and 𝑚𝑎𝑥
𝑎

𝑄(𝑠′, 𝑎) is the maximum reward that the agent

can receive by taking action 𝑎 at next state 𝑠′. The discount factor 𝛾 determines the

importance of future rewards, in which case 𝑚𝑎𝑥
𝑎

𝑄(𝑠′, 𝑎), to the current state 𝑠.

11

In order to use Q-learning in more complex tasks such as NLP or dealing with high

dimensional data, the Deep Q-learning algorithm was introduced, which applies Q-

learning to neural networks [16]. While traditional Q-learning algorithms normally used

low dimensional state spaces and handcrafted data, Deep Q-learning has been proved

to work well with high dimensional sensory inputs. [16]. During training, the

environment’s state is processed by the model, producing a Q-value for each action that

can be taken. The current state 𝑠, next state 𝑠′, action 𝑎 and reward 𝑟(𝑠, 𝑎) from each

timestep are stored in a replay buffer. During the algorithm training process, minibatches

of the replay buffer are sampled, then Q-learning updates are applied to the sampled

experience. This is called ‘experience replay’, which has some advantages over

traditional Q-learning algorithm. First of all, the former is more data efficient, since each

experience is used in multiple updates. Second, that the experiences are randomly

sampled, the variance of the Q-learning updates is reduced. Generally, the DQN

algorithm can be written as in Algorithm 1:

Algorithm 1 Deep Q-Learning algorithm

Initialize replay memory D to capacity N

Initialize Q-table Q with random weights

for episode = 1, E do

 Initialize state S1

 for timestep t = 1, T do

 Select action a based on probability 𝜖 or select a = 𝑚𝑎𝑥𝑎𝑄(𝑆1′, 𝑎)

 Execute step function for action a and evaluate reward r

 Store state S1, next state S2, reward r, action a in D

 Sample random minibatch of transitions (S1, S2, r, a) from D

 Update Q using Equation 2.11

 Perform Gradient Descent step

 end for

end for

12

3. IMPLEMENTATION

This chapter will explain the procedure of building a text generation model from a

database and apply reinforcement learning algorithms onto it. Generally, the process can

be outlined as the following: i) Building a DNN-based text generator using a large text

database) and ii) Adapting the model to another dataset in order to produce specific type

of text using reinforcement learning-based model adaptation.

3.1 Important frameworks

The programming language used in the research was Python. The frameworks used in

order to train our text generation model are Tensorflow and Keras. Tensorflow is a

framework providing tools for machine learning applications [3], while Keras is a high-

level API for building neural networks, which runs on top of Tensorflow [4]. Keras was

used for the creation of the LSTM model for generating text. Additionally, Keras also

provided helper built-in functions for data preprocessing such as to_categorical function

to one-hot encode the data labels, or functions to configure the text generation model.

On building a reinforcement learning system to improve text generation quality, Keras

was used to implement the DQN algorithm.

3.2 Dataset and pre-processing

Before constructing an LSTM model using Keras, a text database must be prepared and

processed. For this research, two novels’ text from Project Gutenberg were used: ‘Alice’s

Adventures in Wonderland’ by Lewis Carroll and ‘Pride and Prejudice’ by Jane Austen.

The text can be found on the respective website, collected into a text file for Python to

easily read and process.

In terms of data preprocessing, after being read by Python, the text string will be filtered

by omitting all punctuations and symbols so that only alphanumerical characters are

chosen. Hence, there were a total of 39 unique characters in the text database.

13

Furthermore, the text was transformed into lowercase. To fit the model onto the

processed text database, data must be split into a training set and a test set. Our

proposed LSTM model takes a sequence of text as an input. Hence, for each training

and test set, the input data (known as x) are a sequence of 40 characters, whereas their

labels (known as y) will be the next character of the following sequence. However, since

neural networks are unable to process characters or strings as inputs, characters were

one-hot encoded.

3.3 Defining the supervised model

Our text generation model first consists of two LSTM layers of 128 hidden units each.

The output of the LSTM layers will be put into a fully connected layer with 50 neurons,

with the ReLU activation function. Finally, the activated neurons from the fully connected

layer will be put into a classification layer which has the number of neurons equal to the

number of distinct characters found in the text database. The activation function used in

the classification layer was softmax. However, instead of choosing the highest probability

class as the output character, temperature-based sampling was used to increase the

variability of the outputted text. In terms of optimization methods, categorical

crossentropy loss function was used to evaluate the model, along with the ADAM

optimizer algorithm to update the model’s weights.

Finally, the model was fit onto the training dataset and trained for 200 epochs with batch

size of 128. Batch size is defined as the number of samples that are used in the process

of gradient calculation simultaneously, which can then be used as a basis for one weights

update. On the other hand, the number of epochs is defined as a number of times the

training dataset is passed through the model.

3.4 Adapting the model using Reinforcement Learning

This section discusses how a supervised LSTM model trained on a relatively large text

dataset, was adapted to generate text that satisfies different criteria using reinforcement

learning algorithms.

14

3.4.1 Deep Q-learning

For this experiment, the derivation of our Deep Q-Learning algorithm was based on the

algorithm described in Algorithm 1. However, the action selection method during each

timestep was not 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦, but instead to use temperature-based sampling from the

output of our supervised model. In terms of hyperparameter, the number of episodes of

training and the number of timesteps in each episode were 100 and 1000 respectively.

The interval between each experience replay process was 40, which means that the

algorithm performed Q-learning updates every 40 timesteps. The DQN algorithm for the

experiment can be described in Algorithm 2:

Algorithm 2 Deep Q-Learning to improve text generation from supervised model

Initialize replay memory D to capacity N

Initialize Q-table Q with random weights

Initialize reference model

for episode = 1,100 do

 Initialize state S1

 for timestep t = 1,1000 do

 Select action a = argmax(model.predict(S1))

 Execute step function for action a and evaluate reward r

 Store state S1, next state S1’, reward r, action a in D

 if t divisible by 40 do

 Sample random minibatch of transitions (S1, S1’, r, a) from D

 Update Q using Equation 2.10

 Perform Gradient Descent step

 update model weights

 end if

 end for

end for

3.4.2 Experimental setup

To test the efficiency of the described reinforcement learning algorithm, several

experiments with different reward functions were conducted, along with different values

of discount factor gamma.

The model whose weights were updated was taken directly from the supervised model

which was introduced and trained in Section 3.3.

15

In terms of the reinforcement learning training process, weights of all the supervised

model’s layers were updated after each training episode, which consists of 1000

timesteps, corresponding to 1000 actions produced. The Huber loss was used to perform

gradient descent on the model, whereas the ADAM optimizer was used to update the

model’s weights.

Before each training process, the reset function was called in order to determine the

initial state of the environment. For each reward condition, the agent was trained for 100

episodes. This section mathematically defines the reward functions used in the

experiments.

3.4.2.1 Simple reward function

For the simplest reward function, the agent learned to only generate one specific

character. Assume the character that would be generated is ‘c’, which corresponds to

action number 12 in the present character encoding scheme, the reward can be defined

as Equation 3.1:

𝑅𝑠
𝑎 = {

5 𝑖𝑓 𝑎 = 12
0 𝑖𝑓 𝑎 ≠ 12

, (3.1)

where 𝑅𝑠
𝑎 is the reward at state 𝑠 for action 𝑎.The aim of this reward function was to test

whether the proposed Algorithm 2 works fundamentally. This reward function also served

as a basis for more complex reward functions defined in Section 3.4.2.2 and 3.4.2.3.

3.4.2.2 Negative distance reward function

Like the condition presented in Section 3.4.2.1, the reward function can be defined as

the negative distance between the last two generated character in the environment’s

state. The ‘distance’ is defined as the difference between the mapped integer values of

the characters. The equation for this reward function can be expressed as Equation 3.2:

𝑅𝑠
𝑎𝑡 = −(𝑎𝑏𝑠(𝑎𝑡 − 𝑎𝑡−1)), (3.2)

where 𝑅𝑠
𝑎𝑡 is the reward at state 𝑠 for action 𝑎 at timestep 𝑡 and 𝑎𝑡 and 𝑎𝑡−1 are actions

at timestep 𝑡 and 𝑡 − 1 respectively. It can be easily seen that the agent’s goal for this

reward function is similar to that of Section 3.4.2.1. Specifically, this reward function

implies that, in order to maximize the reward, the agent learns to output the same

character every timestep. Hence, the highest reward obtained would be 0. This reward

16

function was implemented to evaluate the ability of the RL agent to process reward

conditions that depend on temporal structure of the produced character strings.

3.4.2.3 Producing meaningful English words

The main objective of this experiment was to improve the quality of text generation

obtained from Section 3.3. Hence, in order to test the text generation quality, the agent

was rewarded for producing meaningful English words. The evaluated word was

determined by first converting the environment’s state into a string (or sentence), then

extracting the last word from the converted string.

Figure 3-1 The last outputted word was defined in terms of whitespaces then
verified by NLTK-based critic whether it was an English word or not

In terms of reward evaluation, the agent was rewarded if the last produced word was a

valid English word. Particularly, the NLTK framework was used to check for valid English

words. NLTK is a Python framework mainly used to build applications in order to work

with human language data [13]. For this experiment, the environment rewarded the agent

if the last produced word belongs in the NLTK words database. The reward function can

be defined mathematically in Equation 3.3:

𝑅𝑠
𝑎 = {

5 𝑖𝑓 𝑙𝑎𝑠𝑡 𝑤𝑜𝑟𝑑 ∈ 𝑁𝐿𝑇𝐾 𝑤𝑜𝑟𝑑𝑠 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒
0, 𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (3.3)

where 𝑅𝑠
𝑎 is the reward at state 𝑠 for action 𝑎.

17

4. RESULTS AND DISCUSSION

A sample of text generated from the supervised model defined in Section 3.1 can be

quoted: ‘in the refuse, she was a time to see her at the convenient any of yourself and a

most agreeably, that it was now as she could not have and the match for them, when i

have not at all i hade not the bread teasures about it it is well. i wish yoo, you won an

all this with, said the evently and then alice waited a confidence and after sitthing about

the professions, and all the mock turtle settled a short, and i am sure you will not have

the seeing on the subject and these informed that it was a very strong of the subject, in

a sort of the whole party, whose elizabeth had been greated all consideration. i am sure,

said alice i had all that she much as sear the probation of the subject of the family is the

rest of the subject’. This will be used for comparison to the experiments’ outcome in order

to evaluate the quality of reinforcement learning algorithm introduced in Section 3.3.1.

For each reward function defined in Section 3.3.2, general observations after training will

be discussed, followed by a reward graph throughout episodes trained and the text

generated after training is completed.

4.1 Simple reward function

The first reward function is to reward the agent when it produces just a specific character

such as the letter ‘a’. Particularly, during the training process, each time the agent, in

which case the model, produces the character ‘a’, a reward value of 10 is given to the

system, and -1 if the model outputs another character. After 100 training episodes, the

training reward is described as the following:

18

Figure 4-1 Task's rewards after 100 training episodes (x-axis is the episodes
trained, y-axis is the total reward of each episode trained)

Generally, there is a significant increase in training reward during the training process,

from 2750 to a maximum of 5000, which means that all the characters outputted in a

training episode is the letter ‘a’. In terms of the training time, it took a small amount of

time to train the agent since this is only a simple reward function.

4.2 Negative distance reward function

19

Figure 4-2 Negative distance reward of 100 episodes (x-axis is the episodes
trained, while y-axis is the negative distance between the last two outputted characters,

which was mathematically defined in Section 3.4.2.2)

Results for the experiment using the second reward function, which was mathematically

defined in Section 3.4.2.2, can be found in Figure 4-3. Overall, the total reward at the

beginning of the training process was relatively low, as the agent was still producing text

similar to our text database. However, after approximately 10 episodes, the reward

skyrocketed to 0, which means that the agent learned to maximise the environment’s

reward well, as seen in Figure 4-3. Hence, this experiment proves that the agent adapts

well to reward functions that depend on temporal modelling of the data.

4.3 Producing meaningful English words (a more complex
reward function)

The starting reward of the agent is already relatively high, since the supervised model is

considered sufficiently well-trained. It can be seen from Figure 4-4 that the episode

reward throughout the training process fluctuates around 5000 which is the maximum

reward. The outputted text after the training process, despite producing correct English

words, is rather repetitive and nonsense. A sample of the generated text after training is

‘to the the the the tabte on the the the tabble the the the the the tan tabby the tabmy tabt

the the the the tabby tabuts and the the the the thost to the tabby the the the the tabbed’.

However, the experiment tested the feasibility of the RL algorithm by tackling one sub-

problem, which is checking and improving the validity of individual words. This approach

came at the cost of reducing the quality of other aspects such as grammaticality or

diversity of words.

20

Figure 4-3 Rewards after 60 episodes for NLTK validity reward function (x-axis is
the episodes trained, while y-axis is the reward of each episode trained). For this
reward function, only 60 episodes were trained due to computational limitations.

Other minor reward criteria were introduced into the reward function. For example, the

RL agent can learn not to produce the same words twice or not to produce the word ‘the’.

Their reward graphs are similar to Figure 4-4; thus, the agent adapted well to both reward

functions.

21

5. CONCLUSION

The present study introduced and evaluated a text generation system which utilized both

supervised and reinforcement learning. Results obtained from Chapter 4 shows that the

LSTM model defined in Chapter 3 adapts well to different RL reward functions,

generating text that satisfies specific criteria. However, that the episode reward went up

during the training process did not imply that the quality of the generated text improved.

Particularly, for the reward function defined in Section 3.4.2.3, the outputted text after

training, despite most words are English, was far from meaningful. This was because the

RL agent approached the problem by evaluating and received rewards one word at a

time, which came at the cost of reducing the quality of the generated text overall.

The main challenge during the study was to design a suitable reward function for the RL

agent. Hopefully, in the future, we can design an optimal reward function for the RL agent

in different tasks, or design a loss function that can compensate for the quality reduction

of the generated text as a whole, while the supervised model still adapts well to reward

criteria.

22

23

REFERENCES

[1] Stephenson, I. Understanding Deep Learning. [online] methods.blog. Available

at: https://methodsblog.com/2019/11/13/understanding-deep-learning/, 2019.

[Accessed 14 Mar. 2020].

[2] Hochreiter, S. and Schmidhuber, J. Long short-term memory. Neural
Computation, 9(8), pp.1735–1780, 1997. (See https://colah.github.io/posts/2015-
08-Understanding-LSTMs/ for simple explanation).

[3] TensorFlow. (n.d.). TensorFlow. [online] Available at: https://tensorflow.org.

[4] Keras.io. (2019). Home - Keras Documentation. [online] Available at:
https://keras.io.

[5] Schuster, M. and Paliwal, K.K. Bidirectional recurrent neural networks. IEEE
Transactions on Signal Processing, 45(11), pp.2673–2681, 1997.

[6] Silver, D. (n.d.). Lecture 1: Introduction to Reinforcement Learning Lecture 1:
Introduction to Reinforcement Learning. [online] Available at:
https://www.davidsilver.uk/wp-content/uploads/2020/03/intro_RL.pdf [Accessed
12 Jan. 2021].

[7] Montesinos, D.M. Modern Methods for Text Generation. arXiv preprint
arXiv:2009.04968, 2020.

[8] Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P.,
Neelakantan, A., Shyam, P., Sastry, G., Askell, A. and Agarwal, S.. Language
models are few-shot learners. Advances in Neural Information Processing
Systems 33 (NeurIPS), 2020.

[9] Nwankpa, C., Ijomah, W., Gachagan, A. and Marshall, S. Activation functions:
Comparison of trends in practice and research for deep learning. 2nd International
Conference on Computational Sciences and Technologies (INCCST 20), 2020.

[10] Sutskever, I., Vinyals, O. and Le, Q.V. Sequence to sequence learning with
neural networks. Advances in Neural Information Processing Systems, 3104–
3112, 2014.

[11] Mikolov, T., Chen, K., Corrado, G. and Dean, J. Efficient estimation of word
representations in vector space. ICLR, 2013.

[12] Kingma, D.P. and Ba, J. Adam: A method for stochastic optimization. ICLR, 2015.

[13] Nltk.org. Natural Language Toolkit — NLTK 3.4.4 documentation. [online]
Available at: https://www.nltk.org/. 2019 [Accessed 27 Jul. 2020]

[14] Pong, V., Gu, S., Dalal, M. and Levine, S.. Temporal difference models: Model-
free deep rl for model-based control. ICLR, 2018.

[15] Watkins, C.J. and Dayan, P. Q-learning. Machine learning, 8(3–4), pp.279–292,
1992.

24

[16] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D. and
Riedmiller, M. Playing Atari with deep reinforcement learning. NIPS Deep
Learning Workshop, 2013.

[17] Devlin, J., Chang, M.W., Lee, K. and Toutanova, K.. Bert: Pre-training of deep
bidirectional transformers for language understanding. NAACL, 2018.

[18] Bengio, Y., Simard, P. and Frasconi, P.. Learning long-term dependencies with
gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2),
pp.157–166, 1994.

