

Riku Pääkkönen

AN APPROACH FOR MATURE
SOFTWARE TESTING IN INDUSTRIAL

SYSTEMS

Factory Automation

Examiners: Professor Jose Martinez Lastra,
University Instructor Luis Gonzalez Moctezuma

Master of Science Thesis
Feb 2021

i

ABSTRACT

Riku Pääkkönen: An approach for mature software testing in industrial systems

Master of Science Thesis

Tampere University

Master’s Degree Programme in Automation Engineering

February 2021

The role of software in industrial systems is constantly increasing: there is more software, the

complexity of the software increases and there are more dependencies between different soft-
ware. As the role of software increases, so does the number of software errors and the adverse
impact of the errors. This creates a growing need for software testing. The importance of testing
is often neglected, and testing is often the first phase of work that gets overlooked when schedules
are tight or resources run out. This does not make the need for testing disappear and can backfire
when the project is mature and should be released.

The literature review indicates that industrial software testing does suffer from low automati-
zation levels, lack of regression testing, and poor organization of testing. The testing of industrial
systems has some special characteristics that should be covered when testing is planned for
industrial systems.

This thesis describes a three-phase approach for implementing testing as a mature software
project in industrial systems. The first phase considers the project before testing: economic fea-
sibility, resource mapping, and management support. The second phase includes project analy-
sis, planning of tests and test prioritization, and development of tests. The main component of
this phase is a model for analyzing the project by feature and assign priority for the testing of each
feature. The third phase concludes the approach to maintenance and continuity of testing in both
technical and organizational standpoints.

The approach was used in practice in an industrial software project that is in a mature phase
of development. With the help of the approach, the project was successfully analyzed and an
initial testing plan with prioritization was created. The implementation of testing based on the plan
was started during the writing of this thesis.

Keywords: software design, industrial software, software testing, automated testing, project

management

The originality of this thesishas been checked using the Turnitin OriginalityCheck service.

ii

TIIVISTELMÄ

Riku Pääkkönen: Lähestymistapa kypsien teollisuusympäristössä toimivien ohjelmistojen tes-

taamiseen

Diplomityö

Tampereen yliopisto

Automaatiotekniikan diplomi-insinöörin tutkinto-ohjelma

Helmikuu 2021

Ohjelmistojen rooli teollisuusympäristössä kasvaa jatkuvasti: ohjelmistoja on enemmän ja ne

ovat monimutkaisempia sekä riippuvaisempia toisistaan. Ohjelmistojen roolin kasvaessa myös
ohjelmistovirheiden määrä sekä niiden vaikuttavuus ovat kasvava ongelma, mikä luo tarvetta pa-
remmalle ohjelmistojen testaamiselle. Testaamista ei välttämättä aina nähdä tärkeänä ja se on
usein työvaihe, jota ei oteta vakavasti ja jota laiminlyödään ensimmäiseksi resurssi- tai aikatau-
lupaineiden alla. Tarve testaamiselle ei kuitenkaan katoa ja testaamisen tärkeys voi korostua
vasta projektin julkaisuvaiheessa.

Aiempi kirjallisuus aiheeseen liittyen osoittaa, että teollisuusohjelmistojen testaus kärsii alhai-
sesta automatisaatioasteesta, regressiotestauksen puutteesta ja huonosta testauksen organi-
soinnista. Teollisuusohjelmistojen testaamiseen liittyy myös tiettyjä erityispiirteitä, joita on otettava
huomioon testauksen suunnittelussa.

Tämä diplomityö luo kolmivaiheisen lähestymistavan, jolla testaus voidaan tuoda osaksi jo
olemassa olevaa ohjelmistoprojektia. Lähestymistavan ensimmäinen osa koostuu tilanteesta en-
nen testaamista: projektin taloudellinen analyysi, resurssikartoitus ja johdon tuki. Toinen vaihe
käsittelee projektin analysointia, testaamisen suunnittelua ja priorisointia sekä testien kehitystä.
Tämän vaiheen pääkomponenttina esitellään malli, jonka avulla projekti voidaan käydä läpi omi-
naisuus kerrallaan ja määritellä testien prioriteetti. Kolmannessa vaiheessa käsitellään testaami-
sen jatkuvuutta: ylläpitoa sekä teknisestä että organisaation näkökulmasta.

Esiteltyä lähestymistapaa sovellettiin käytännössä teollisuusohjelmistoprojektissa, joka on
kypsässä kehitysvaiheessa. Lähestymistavan avulla projekti pystyttiin analysoimaan ja luomaan
suunnitelma testauksen implementointia varten sekä implementoimaan ensimmäisiä testejä
suunnitelman pohjalta.

Avainsanat: ohjelmistosuunnittelu, teollisuusohjelmistot, ohjelmistojen testaus,

automaattinen testaus, projektihallinta

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck –ohjelmalla.

iii

PREFACE

I’ve been waiting for this moment since spring 2017. That’s when I finished my studies

besides the Master’s thesis and thought that graduation was just around the corner.

That was not the case. The writing of this thesis begun in January of 2020. The pro-

cess had some hindrances, like the global pandemic and self-isolation, but nothing ma-

jor. It was frustrating and challenging, took longer than expected, but as a whole, the

process was interesting and also quite rewarding.

I am grateful for the support from my examiners Professor Jose Martinez Lastra and

University instructor Luis Gonzalez Moctezuma. Especially the structure of this thesis,

posed by Prof. Jose Lastra, was clear and easy to follow. I only had to worry about the

research and writing.

I also want to thank Atostek Oy for giving me the possibility to write this thesis as a part

of my daily work and Mitsubishi Logisnext Europe Oy for the support and ideas. Special

thanks to Klaus Förger and Antti Anttonen for the guidance through the process.

Thanks to my loved ones for the support throughout my studies.

Nokia, 19.2.2021

iv

CONTENTS

1. INTRODUCTION .. 1

1.1 Background .. 1

1.2 Problem definition .. 2

1.3 Objectives .. 3

1.4 Limitations .. 4

1.5 Outline ... 4

2. STATE OF THE ART .. 5

2.1 Software testing approaches and methods .. 6

2.1.1 Black-box testing... 6
2.1.2 White-box testing .. 7
2.1.3 Manual testing .. 7
2.1.4 Automated testing ... 9
2.1.5 Software testing types ... 12
2.1.6 Testing plan .. 14

2.2 Economics and management of software testing 15

2.3 Software testing implementation .. 19

2.3.1 Testing methods and approach ... 19
2.3.2 Test prioritization... 21

2.4 Maintaining software testing and result analysis 23

2.5 The current state of software testing in safety-critical industrial systems

 24

3. PROPOSED TESTING PRACTICES .. 29

3.1 Feasibility analysis economics and management 29

3.2 Implementing the tests ... 31

3.2.1 Planning the testing .. 31
3.2.2 Designing the tests ... 40

3.3 Test maintenance .. 43

4. IMPLEMENTATION .. 45

4.1 Configurator background .. 45

4.2 Setting up the testing practices for Configurator 47

4.3 Planning the testing for Configurator .. 49

4.4 Designing the tests .. 53

4.5 Implementation of the tests .. 56

5. RESULTS AND CONCLUSIONS .. 57

5.1 Results of applying the approach ... 57

5.2 Effects on the development .. 58

5.3 Discussion ... 58

REFERENCES... 60

v

vi

LIST OF SYMBOLS AND ABBREVIATIONS

AGV Automated guided vehicle
API Application programming interface
E2E End to end (testing)
ERP Enterprise resource planning
GUI Graphical user interface
LTP Level test plan
MES Manufacturing execution system
MTP Master test plan
OTA Over the air
ROI Return of investment
SUT Software under test
SAFe Scaled Agile Framework
UI User interface

.

1

1. INTRODUCTION

1.1 Background

During the last few decades, software has become a critical part of industrial systems.

The use of software has grown rapidly in each part of the ISA-95 automation pyramid

(Figure 1) model and the levels have become more dependent on each other. It is also

expected that the use of software will become even more common as the industry

seeks effectiveness from automation.

Figure 1. Automation pyramid (Hollender 2010)

At the same time, the complexity of the software has also increased. This provides

unique challenges to maintain the integrity of the connected software in different levels

of production systems. For example, the configurations made at the MES level have a

direct impact on the devices at the field level. The nature of modern, directly connected

systems means that even minor errors, such as misspellings or wrong datatypes at the

high level can cause major issues at the field level.

This problem has created a growing need for testing and quality assurance. A 2011

study by Pierre Audoin Consultants found out that companies invest up to 50 billion

2

dollars in testing and quality assurance annually and it one of the fastest-growing areas

in IT services (Pierre Audoin Consultants GmbH 2011). Also, a 2013 study by the Uni-

versity of Cambridge estimated that the total cost of debugging software accumulated

to $312 billion per year and that failure to adopt proper debugging tools cost the econ-

omy $41 billion worth of programming time annually (University of Cambridge 2013).

Testing can be done manually or with automated tools. In manual testing, the tests are

executed by humans according to some set of actions and expected results and by

general visual observation of the interfaces. With complex and interconnected views,

manual testing can require a lot of work and can lead to false-positive results, if the

tester forgets or fails to identify deficiencies. Automated testing is done with tools such

as scripting and testing frameworks tests a pre-written to perform the same set of ac-

tions and to expect the same set of results each time. This eliminates human errors,

omission errors, and leaves more time for developers to focus on other tasks. Auto-

mated testing requires planning. Creating a testing plan requires defining the coverage,

testing technologies, test cases, and testing methods. (Ammann and Offutt 2008)

1.2 Problem definition

Ideally, the testing practices are crafted at the beginning of a new software project. This

way tests can be developed gradually along with the software, allowing developers to

refine test cases and learn to prioritize the most critical areas to test, thus making the

development of the software easier to maintain. However, this is always not possible,

and testing might be neglected for different reasons e.g. when prioritizing feature devel-

opment or when lacking a coherent testing plan. According to a survey study by Torkar

and Mankefors, 60% of developers said that testing (verification and validation) was the

first neglected thing when something had to be discarded due to timeline restrictions

(Torkar and Mankefors-Christiernin 2003, 164-173).

The lack of automated testing becomes an especially heavy burden if the software is

released as a stand-alone software with an offline installer, which is often the case for

industrial systems. Providing software updates and bugfixes to an offline application

can be difficult and usually requires installing a new version. Also, as the complexity of

the software accumulates, so does the risk of creating a bug and not catching it before

the release. This usually requires help from technical support and is very cost-intensive

(Figure 2). The severity of a bug can also be difficult to measure. A bug can for exam-

ple complicate or block the use of software, but it can also be cause physical damage

to people or the environment.

3

Figure 2. Cost of a bug (S.M.K and Farooq 2010)

This thesis focuses on creating an approach for adopting testing practices, efficiently

developing tests, and maintaining the testing practices in a mature industrial software

project.

1.3 Objectives

The objective of this thesis is to answer questions related to the development and im-

plementation of a testing plan for software that is in a mature stage of development as

well as considering the benefits of testing on the related systems in the software eco-

system. The research work aims to answer the following questions which also define

the scope of this thesis:

• How the testing can be introduced to be a persistent and maintainable feature

of development to a mature project?

• How to identify the most critical parts of the software that should be tested in in-

dustrial systems?

• What are the factors that affect the overall design and efficiency of the tests and

what are the challenges in the industrial context?

4

1.4 Limitations

The scope of this thesis is to provide an approach for adopting testing practices in a

software project. The technical details regarding test development are out of scope for

this thesis.

The testing in the scope of this thesis is limited to functional testing. Usability-, scalabil-

ity-, performance-, accessibility-, security- and other forms of non-functional testing are

not discussed in this thesis.

1.5 Outline

The structure of this thesis is as follows; Chapter 1 introduces this document and es-

tablished the problem and the objectives as well as the limitations of the thesis work.

Chapter 2 defines the background and defines the current state of the art in software

testing. Chapter 3 presents a proposed method for the problems discussed in chapter

1. Chapter 4 describes the implementation of the methods proposed in Chapter 3. In

chapter 5 the results and conclusions are reviewed and some reflections and possible

further work are considered.

5

2. STATE OF THE ART

In the current field of software development, testing is seen as an integral part of the

development process. Testing is a large field that includes everything from unit-testing

of a simple function to an acceptance testing of the whole software. It is a cost-inten-

sive process, done either manually or automatically. The goal is to execute the soft-

ware with the intent of finding defects, which is important because the goal steers our

actions. A goal of not finding errors would lead towards testing with data that would

likely not produce errors. The goal is to find the errors, but the main purpose of testing

is not to find all existing defects but to provide value to the bottom line. Everything can-

not be tested, so the approaches, methods, etc. should be selected to make a fitting

testing plan for the program which is to be tested. If the testing is not demonstrated to

be adding value, it will most likely be overlooked. (Myers and Sandler 2004)

The ten principles of software testing according to The Art of Software Testing (2nd edi-

tion) by Glenford Myers (Myers and Sandler 2004) are:

1. A necessary part of a test case is a definition of the expected output or result.

2. A programmer should avoid attempting to test his or her program.

3. A programming organization should not test its programs.

4. Thoroughly inspect the results of each test.

5. Test cases must be written for input conditions that are invalid and unexpected,

as well as for those that are valid and expected.

6. Examining a program to see if it does not do what it is supposed to do is only

half the battle; the other half is seeing whether the program does what it is not

supposed to do.

7. Avoid throwaway test cases unless the program is truly a throwaway program.

8. Do not plan a testing effort under the tacit assumption that no errors will be

found.

9. The probability of the existence of more errors in a section of a program is pro-

portional to the number of errors already found in that section.

10. Testing is an extremely creative and intellectually challenging task.

6

This set of principles gives some general guidelines on how testing should be ap-

proached in any organization in an ideal environment. But the reality is often limited

with time and resources that dictate the actual approach. For example, the number 2:

“A programmer should avoid attempting to test his or her program”, is often not feasible

for the white-box type of automated tests.

2.1 Software testing approaches and methods

The testing approach considers how the program that is meant to be tested is viewed.

There are many ways to categorize the field of testing approaches, but in general, the

types of testing approaches can be divided into black-box testing and white-box testing.

The testing method considers the way tests are performed: which is either manually or

automatically. (Myers and Sandler 2004; Sawant, Bari, and Chawan 2012, 980-986)

2.1.1 Black-box testing

Black-box testing is a data-driven approach: the program to be tested is viewed as a

black box and the tests only focus on the inputs and outputs without considering the

structure or any internal functionalities of the program. (Figure 3)

Figure 3. Black-box principle.

The purpose of this approach is to find if the inputs are accepted and result in outputs

that meet the requirements. The advantages of this approach link with the principles of

software testing: the writer of the test can be anyone and independent from the devel-

opment of the code. This approach is also useful for larger entities of code and to code

that relies on third-party software because the internal functions can become very com-

plex or not be available at all. (Myers and Sandler 2004; Sawant, Bari, and Chawan

2012, 980-986)

7

The issue with black-box testing is that it creates a problem called exhaustive input

testing: to ensure correct functionality of the program, not only valid inputs, but all pos-

sible inputs should be tested. To avert this issue, an equivalence partitioning methodol-

ogy is used to define the test cases. The two considerations for a good test case

should be:

1. It should reduce the number of other test cases that need to be developed to

cover a test scenario.

2. The selected inputs should cover a wide set of test cases. Both the presence

and the absence of errors in the outputs should be examined. (Myers and

Sandler 2004)

2.1.2 White-box testing

White-box testing is a logic-driven approach: it involves analyzing how the system pro-

cesses the input to create an output. This is beneficial because the code can be also

validated to meet design patterns and possible bugs can be found before they cause

any issues. (Sawant, Bari, and Chawan 2012, 980-986)

White-box testing can be static or structured. The static testing is done with code in-

spections and walkthroughs, in which the programmers or lint-tools analyze the code

for errors. Structural tests, like coverage testing, path testing, or flow testing aim to

identify errors in the decision logic in the code. (Nidhra and Dondeti 2012, 29-50; Myers

and Sandler 2004)

2.1.3 Manual testing

In manual testing, the execution and validation of tests and results are done by a hu-

man. The field of manual testing is wide and the main methods could be categorized

into formal and informal methods. In a study by Ramler and Wolfmaier, manual testing

methods were found to be effective in situations where the software is tested for novel

errors (Ramler and Wolfmaier 2006, 85–91). These scenarios could be for example:

• the project is still in the early stages of development when the code mutates a

lot and maintaining automated tests would be difficult.

• Complex testing scenarios like acceptance tests.

Manual testing exists in many different forms. Some manual testing methods are ex-

plained in The Art of Software Testing (Myers and Sandler 2004), which describes

methods like code inspections, walkthroughs, desk checking, and peer ratings. But the

field of manual testing is much wider than this and often the methods depend on the

8

testers and local practices. A special case of manual testing is pull requests, which are

an important peer review-based manual testing method in the pull-based development

model.

Inspections and walkthroughs usually revolve around a team of three to five people and

follow a set of error-detection techniques and guidelines for a group code reviewing

session. In both methods, the team members are given roles (moderator, programmer,

tester, senior/junior developer, etc.) and the session is structured to revolve around

these roles. In inspections, the code is reviewed against a checklist. Walkthroughs are

more focused on the use cases of the software and the cases are walked through the

logic of the code. Both methods are effective tools to find errors but are quite time-con-

suming as they require a dedicated session of several people and reading the material

in advance before the session. (Myers and Sandler 2004)

Desk checking is not as structured as the inspections and walkthroughs and can be

done ad-hoc. Desk checking is usually performed by the programmer or by his/her

peer. This method is can be less productive because of the lack of discipline and espe-

cially if the programmer is testing his/her software, which is against the principles of

testing. Peer reviews, where the programmer self-evaluates his/her work and random-

ized peers review can provide indirect help for testing. The peer-reviewing process

does not help with the testing itself but allows programmers to self-assess their skills.

(Myers and Sandler 2004)

A study by Itkonen, Mäntylä, and Lassenius describes how testers approach manual

testing tasks. They identified that most of the different practices the testers used to

manage the testing session management and testing execution were exploratory and

relied largely on experience and tacit knowledge. Most of the strategies to manage the

session (the overall structure of testing work) were exploratory: e.g. browsing through

the UI trough, but testing an individual feature based on subjective evaluation or identi-

fying weak areas based on tacit knowledge about potentially weak points of the soft-

ware. The documentation-based session management relied on e.g. checklists and

pre-set lists of tests to perform. Most of the test execution strategies (testing an indi-

vidual feature) were also exploratory, where the testing was based on hypotheses and

assumptions on how the feature might cause errors. The other execution strategies

were comparison (e.g. comparing the performance of similar functions) and input (e.g.

testing boundaries). (J. Itkonen, M. V. Mantyla, and C. Lassenius 2009, 494-497)

9

Pull requests are a widely used mechanism in the pull-based software development

model to make changes to the codebase. Pull requests combine manual testing meth-

ods from the desk checking and peer-reviewing process: the pull request, which can be

e.g. a new feature to the software, is first sent to be reviewed by other developers. The

reviewers can run the code, make remarks, or update the code. Eventually, the code is

either rejected or accepted to be merged to the main software (Figure 4). The pull re-

quest process is therefore also an iterative desk checking and peer-reviewing testing

method.

Figure 4. Pull request mechanism. (Y. Yu et al. 2014, 609-612)

The problem with manual testing methods is that these methods can leave systematic

errors even tests are done with discipline because human error is always present. The

second problem is the scale: as the software grows, the number of tests accumulates

and becomes unpractical to do manually. (Sahaf et al. 2014, 149–158)

2.1.4 Automated testing

In automated testing, once the test has been set up, the test execution and result vali-

dation are done by testing software (script runner, testing framework, etc.) without any

human intervention. Automated tests are particularly useful in repetitive testing cases,

like unit tests or in scenarios that are difficult to execute manually, which could be for

example a time-critical test scenario. Fully automated testing is usually not a desirable

scenario: 94% of developers do not agree that automated testing can fully replace

manual testing. (Varma 2000; Dudekula Mohammad Rafi et al. 2012, 36-42)

10

In contrast to manual testing, automated tests require a lot of work setting up but run-

ning the tests requires little or no action. Automated tests are run with script runners or

testing frameworks and can be set up to run periodically or related to any activity. This

is useful as the software can be tested often with little or no effort. The tools required to

run the scripts and frameworks depend on the software that is being tested: while some

of the more common programming languages have readily available tools, support, and

documentation often for free, proprietary languages may require very specific testing

software and training. This is also explained in the survey study by Ng et al. where the

main hindrances in adopting automated testing tools were found to be the monetary

cost of use and time consumption (Ng et al. 2004, 116).

Automated testing methods can be generalized into two types: end-to-end testing

(E2E) and API/component testing. In end-to-end testing, the execution and validation

are done by simulating the use of the program GUI usually without considering at all

what is happening in the internal system. It can be described as a black-box type of

testing. The point of end-to-end testing is to ensure that the end-users’ point of view

functions correctly. These tests are usually created with testing frameworks that must

be able to interpret and interact with the GUI. API testing methods use directly the in-

ternal modules, classes, and functions of the program and can be categorized as

white-box testing. These types of tests are usually written in the same language as the

main program. The tests are run by a script runner that passes pre-set or random val-

ues to the test, which inputs the values to a module/class/function and expects a cer-

tain value as an output.

Different types of tests offer a different kind of coverage. This has some implications

when the test efficiency (most coverage with minimal effort) is critical. Vice president of

Cypress (developer of testing tools) Gleb Bahmutov implied that for GUI applications,

system-level end-to-end testing is more efficient than e.g. unit testing in terms of offer-

ing testing coverage. He argued that with end-to-end testing, not only the application

logic (e.g. CRUD operations) are covered, but also the whole application and its com-

ponents need to be rendered, validating the integrity of the GUI as well. The interaction

with the full application makes the end-to-end type of tests highly efficient. (Gleb

Bahmutov 2020)

The benefits and limitations of automated software testing are described in an article by

Dudekula Mohammad Rafi et al. (Dudekula Mohammad Rafi et al. 2012, 36-42). The

study collected empirical findings and experiences of testing automation from literature

and surveyed how the found benefits and limitations of testing automation were seen in

the industry. Survey also pointed out that the overall satisfaction with the automated

11

test was high: 84% of participants were satisfied or highly satisfied with automated test-

ing. The most notable benefits of automated testing that were agreed upon in the sur-

vey were:

1. Test reusability makes automated testing productive.

2. Repeatability of tests, which allows running more tests in less time

3. Better test coverage improves product quality.

4. Automated testing saves time and cost as it can be re-run without extra effort.

5. Automated tests improve the ability to meet deadlines and provide more confi-

dence in the product.

6. Correct testing tools can reduce the effort needed by the developers.

7. Complete automation reduces the cost overall cost and facilitates continuous

test development.

8. Automated tests reduce the amount of effort but are not guaranteed to find

more complex bugs. (Dudekula Mohammad Rafi et al. 2012, 36-42)

The most agreed limitations according to the survey were:

1. Compared to manual testing, the cost is higher, especially in the beginning.

2. The design and maintenance of the tests require extra effort.

3. Test developers should be skilled enough to build automated tests.

4. Automated testing requires a high investment in tools and training.

5. Automated tests require more effort from developers but leave complex bugs

untested.

6. Testing tools can be incompatible and do not provide the needed functionalities.

7. Automated tests do not replace manual testing needs (Dudekula Mohammad

Rafi et al. 2012, 36-42)

The article by Taipale et al. also points out the observations that facilitate and hinder

the use of automated tests at an organizational level. The facilitating factors were ge-

neric or similar products, low need for human involvement, standardized technology,

and internal customers. Hindering factors were the opposite of facilitating factors: cus-

tomized or complex products, high need for human involvement, rapid changes in tech-

nology, and external customers. (Taipale et al. 2011, 114-125)

12

2.1.5 Software testing types

Different kinds of tests can be categorized into testing types. The testing type spectrum

is wide and some implementations fit both testing approaches. Table 1 presents a gen-

eral categorization of the testing type spectrum.

Table 1. Testing type spectrum. (Nidhra and Dondeti 2012, 29-50)

Testing type Opacity Specification Scope Method

Unit White-box Low-level code

structure

Small units of

code

Automated

Integration White-box and

black-box

Low- and high-

level design

Multiple clas-

ses or

Both

System Black-box Requirements For the entire

program in the

representative

environment

Both

Acceptance Black-box High-level de-

sign

For the entire

project in the

customer envi-

ronment

Usually man-

ual

Regression Black-box and

white-box

High-level de-

sign

Any of the

above

Usually auto-

mated

Unit testing is a type of testing where individual components of the software are tested.

It is the smallest testable part of the software (e.g. a single UI element or function with

few outputs and single output). (Ammann and Offutt 2008)

Integration testing is a type of testing where the single units of code are combined as a

group and the expected functionality of the group of individual components is tested.

This can be for example testing the correct functionality between two UI components or

UI components with backend services. (Ammann and Offutt 2008)

13

System testing is where the whole software is tested against the set specifications. The

assumption is, that the individual components are operating as intended and the soft-

ware is tested as a single unit. The goal is usually to find design or specification issues,

and the tests should be performed by testers, not programmers. (Ammann and Offutt

2008)

Acceptance testing is supposed to determine if the program meets the set functional

and business requirements. The testers should have a strong knowledge of the set re-

quirements and domain of the product. Acceptance testing must be done with the end

customer, as the goal of the testing is to validate that it meets the customer's needs.

(Ammann and Offutt 2008)

Regression testing is a type of testing where typically the whole system or large com-

ponents of it are tested to validate that each change made, even the small bug fixes,

etc., did not break something elsewhere in the system. Regression test cases can con-

sist of a large set of different types of tests (unit, system, integration, etc.). These test

sets are often large and can be time-consuming even when automated. Therefore, re-

gression test sets should be automated and run periodically, preferably at night when

development is halted. Maintaining regression tests can be difficult. (Ammann and Of-

futt 2008; IEEE 2008, 1-150)

The tests can also be divided into deterministic and non-deterministic tests (Figure 5).

The deterministic test has a very narrow scope, and each test run will always yield the

same set of outputs for the same set of inputs. Nondeterministic tests are the opposite

of this and can produce different outputs for the same set of inputs. (Ammann and Of-

futt 2008)

14

Figure 5. Deterministic and non-deterministic test.

An empirical study by Luo et al. points out, that non-deterministic tests should be

avoided as these tests create different results intermittently, which causes confusion

and exhaustion among developers. The study reveals that the main causes of non-de-

terminism are asynchronous functions, concurrency, and test order dependency. (Luo

et al. 2014, 643–653)

2.1.6 Testing plan

A testing plan is essentially a description of why the testing is needed, what and when

is required to be tested, and how the tests are conducted (Ammann and Offutt 2008).

The testing plan is described in ANSI/IEEE standard 829-2008 in two ways (IEEE

2008, 1-150):

• “A document describing the scope, approach, resources, and schedule of in-

tended test activities. It identifies test items, the features to be tested, the test-

ing tasks, who will do each task, and any risks requiring contingency planning”

• “A document that describes the technical and management approach to be fol-

lowed for testing a system or component. Typical contents identify the items to

be tested, tasks to be performed, responsibilities, schedules, and required re-

sources for the testing activity. The document may be a Master Test Plan or a

Level Test Plan.”

Master test plan (MTP) should provide a general test plan and test management rules

and requirements across the project or multiple projects. The role of MTP according to

ANSI/IEEE is to set the objectives for each part; manage time, resources, and interrela-

tions between parts; identify risks, assumptions, and workmanship of parts; define the

controls for test effort; to confirm the objectives set by quality assurance plan. It should

also define the integrity, the levels to test, tasks that need to be performed, and the

documentation requirements. (IEEE 2008, 1-150)

A level test plan (LTP) specifies the scope, approach, resources, and schedules for

each level of testing. Each level defined in MTP should be specified with an LTP

named after the test. For example, if MTP defines unit, integration, and acceptance

testing levels, there should be documents named “Unit test plan”, “Integration test plan”

and “Acceptance test plan”. The differentiation to individual plans derives from the fact

that the different levels of testing have a different set of requirements, methods, re-

sources, and tools. (IEEE 2008, 1-150)

15

The ANSI/IEEE 829-2008 provides outlines for the MTP and LTP. The outline provides

only a template for the document and needs to be modified to meet the needs of an in-

dividual project. The document is usually in written form, but the format may depend on

the organizational/project needs (ISO/IEC/IEEE 2013, 1-138).

Testing plans can be sometimes mixed to testing strategy, which according to Ammann

and Offutt, lacks a proper definition in testing literature (Ammann and Offutt 2008). Alt-

hough in the ISO/IEC/IEEE standard 29119-3-2013 test strategy is defined as: “Part of

the Test Plan that described the approach to testing for a specific test project or test

sub-process or sub-processes”. This is a very wide description and can be used to de-

scribe any of the following: the test practices used; the test sub-processes to be imple-

mented; the retesting and regression testing to be employed; the test design tech-

niques and corresponding test completion criteria to be used; test data; test environ-

ment and testing tool requirements; and expectations for test deliverables

(ISO/IEC/IEEE 2013, 1-138). This is why the use of the term is avoided in this thesis.

2.2 Economics and management of software testing

The economics of test automation is perhaps one of the most important things to em-

phasize in a project that is lacking sufficient (automated) testing. A study by Taipale et

al. points We found that the main disadvantages of test automation are the costs,

which include implementation, maintenance, and training costs (Taipale et al. 2011,

114-125). As described in the introduction, the economics of testing are closely linked

to the support from management, which is the most important factor to succeed in the

automatization process (Graham and Fewster 2012). If the testing is not seen to pro-

vide value, it can easily be neglected in favor of feature development. Therefore, per-

haps the best generic way to justify the investment in automated testing is to demon-

strate the return of investment (ROI) that automated tests will provide. This can be

achieved by tracking the right metrics and by using the approximation models for calcu-

lating the return of investment of different scenarios.

Graham and Fewster have collected experiences of test automation from 28 different

cases. Nine out of these cases reported collecting some metrics of ROI and almost all

results were positive. These findings are also supported by the multivocal literature re-

view by Garousi and Mäntylä, where the reported ROI for automated testing was be-

tween 40-3200%. Metrics used in the Graham and Fewster case studies were in gen-

eral:

• Time consumed

16

• Quantifiable savings

• Satisfied customers

The time consumption was mentioned in at least five cases. The reported benefits were

accelerated testing, reduced development cycles, reduced time spent on testing related

activities, and reduced the number of required testers. Several cases reported quantifi-

able savings, as costs per release, costs per test, and comparison between calculated

costs before (manual testing) and after (automated testing). Some cases also reported

that customer satisfaction increased significantly when quality improved and the devel-

opment was faster. (Graham and Fewster 2012; Garousi and Mäntylä 2016, 92-117)

The case study by Sahaf et al. assesses the ROI of different testing setups (fully man-

ual, fully automatic, and combinations of each). In the study, a system dynamics model

(SD model) of software testing was created. The model was tested using simulation for

each different testing setup. The SD model considered several important parameters,

like the number of new testing cases, testing cycle time, the productivity of design-

ing/scripting/execution/reporting/updating, fail-/pass rating, correcting, maintaining, and

the number of employees involved.

The simulation results of the study conclude that manual testing has a short set-up pe-

riod and in short term, it is more productive than automated testing (Figure 6, scenario

1). But after a setup period of automated testing, automated testing will provide better

results than manual only testing (Figure 6, scenario 2). The study also pointed out, that

the results will be improved by introducing better tools, which make reporting and eval-

uation more effective (Figure 6, scenario 3) or adding more manpower, which will re-

duce the setup time (Figure 6, scenario 4). (Sahaf et al. 2014, 149–158)

17

Figure 6. Amount of testing cases per hours worked: manual (upper left), auto-
mated (upper right), automated with tools (lower left), and automated with more
manpower (lower right). (Sahaf et al. 2014, 149–158)

Although the study points out that the specific results cannot be directly generalized,

the simulation results demonstrate that in general, automating the tests will be more

productive in the long term and that the results will depend on many outlining factors of

the project. This finding is also supported in an article by Kumar and Mishra, where

they analyze the economic side of automated testing from cost, quality, and time to

market perspectives. In their study, they analyzed three different software concerning

the three perspectives. The results of the study indicated that cost and time perspec-

tives were improved in every software and the quality (in terms of the number of fail-

ures found) was improved in most of the cases (Kumar and Mishra 2016, 8-15). The

findings regarding timing and cost are significant, but the improved quality can be de-

bated. The article only specifies the quality by the number of failures with automatic

versus manual testing. This is listed as a common pitfall of automated testing in the ar-

ticle “Establishment of automated regression testing at ABB: industrial experience re-

port on 'avoiding the pitfalls'” (C. Persson and N. Yilmazturk 2004, 112-121).

The economics of automated versus manual testing are discussed from a different per-

spective in the article by Ramler and Wolfmaier (Ramler and Wolfmaier 2006, 85–91).

The article describes a test automation opportunity cost model as well as considering

18

other influencing cost factors regarding software testing. They argue against the sim-

plistic model of “universal formula” (Figure 7), which acts as a strong argument for test

automation.

Figure 7. Break-even point for automated testing in a simplistic model. (Ramler
and Wolfmaier 2006, 85–91)

Their criticism against this model is that it only calculates the costs without considering

the different kinds of benefits of each approach. They also point out, that the manual

and automated methods are incomparable: the output of the tests are different, and the

real value of test runs are not equal; manual testing can lead to finding new defects

which is valuable. They also criticize that the project context or budget is not consid-

ered in the simplistic model as well as pointing out that the simplistic model is missing

additional cost factors, like tools and training costs.

Their alternative model aims to provide balance to the “production possibilities frontier”

in software testing, a trade-off between higher upfront costs of automating tests and the

opportunity cost of losing time to do manual testing. The proposed model suggests de-

termining the benefits of each test case based on the estimated mitigation of risk it pro-

vides, so the most critical parts should be emphasized. In their model, the benefits of

manual test cases and automated test cases are different, so those are calculated sep-

arately. The model formula (Figure 8) for finding the optimized number of tests takes to

account the budget restrictions. The model can provide support and alternative quick

sketched scenarios for a testing plan. (Ramler and Wolfmaier 2006, 85–91)

19

Figure 8. Optimizing balance between automated and manual testing. (Ramler
and Wolfmaier 2006, 85–91)

2.3 Software testing implementation

Setting objectives and planning is crucial. As described in chapter 2.1.2, the different

testing types and methods offer a different kind of testing coverage. Regression tests

are good at testing the integrity of existing features but do not offer much help in finding

new bugs or covering the edge cases. With manual testing methods, the opposite is of-

ten true. Therefore, it is important to carefully scope the testing objectives and form a

testing plan with the development and management team. The most important ques-

tions regarding the automatization are: “what tests should (and should not be) auto-

mated?”, “when a test should be automated?” and “how it should be automated?”. Alt-

hough there are no definitive answers to any of these questions, the testing literature

does good general practices to consider.

2.3.1 Testing methods and approach

The level and timing of test automatization will always depend on the environment, pro-

ject management, testing objectives, etc. A multivocal literature review by Garousi and

Mäntylä and the case studies by Graham and Fewster provide answers to these ques-

tions.

The literature review by Garousi and Mäntylä split the question of what and when into

five different categories (Figure 9): SUT-related–, test-related–, test-tool-related –, hu-

man and organizational– and cross-cutting factors. (Garousi and Mäntylä 2016, 92-

117)

• SUT-related factors: the system should be mature and stable enough before im-

plementing the automated testing. Automating tests for features under the early

20

development phase or re-implementation will cause broken tests (false nega-

tives and false positives). Test automatization is also not recommended for a

product with a short life cycle.

• Test-related factors: the focus on test automation should be on the tests that

need repetition (e.g. regression testing) are deemed critical for the SUT or that

are hard to perform manually (e.g. performance testing).

• Test tool-related factors: the selected tool should be carefully researched for

combability for the SUT. Progressing with test automatization should be halted

without suitable tools for the task.

• Human and organizational factors: maturity of the organization (being able to

adapt to change), resource allocation (prepared to invest more time upfront),

the current skill set of the team (testers should have programming skills and/or

developers should have testing skills) are the most important factors when au-

tomatization is being considered. Management is as important: being able to

communicate the benefits and handle the change resistance is crucial.

• Cross-cutting and other factors: the economical aspect, i.e. cost-benefit analy-

sis of automatization needs to be considered (more in chapter 2.2). Also, the

automatability of the SUT (how easy the automatization would be?) and the de-

velopment model should be taken into account before the decision to automate

testing.

Figure 9. Factors affecting what to-and when to automate questions. (Garousi
and Mäntylä 2016, 92-117)

21

The case studies by Graham and Fewster correspond and offer some additional points

to the findings by Garousi and Mäntylä. One of the main things these cases point out is

that the economical aspect of decision-making needs to be brought to the level of indi-

vidual tests. There is no point in automating tests that do not provide value and further,

only the tests that need to be run frequently, should be automated (Graham and Few-

ster 2012). This can be refined in terms of which types of tests are considered useful to

be automated: regression testing is mentioned in many cases as the most important

part of testing (Graham and Fewster 2012). This corresponds with the test-related fac-

tors above. The study by Rafi et al. also points out, that automation is the superior

choice especially when several regression testing rounds are needed (Dudekula Mo-

hammad Rafi et al. 2012, 36-42).

The quality and maturity of software are mentioned in one case: if the design and im-

plementation of the SUT are unstable or not well written, the automated tests will cause

chaos and high maintenance costs (Garousi and Mäntylä 2016, 92-117). This corre-

sponds with the SUT-related factors above.

Graham and Fewster emphasize that standardization of testing related issues is critical

when test automation is developed. The way tests are developed, naming conventions,

documenting the tests, etc. needs to be planned with the people involved with the test-

ing. (Graham and Fewster 2012)

The case studies by Graham and Fewster also point out, that testing and test develop-

ment should be treated as a separate skill. This does not mean that the tasks require

different individuals, but different roles for the same individual. But the development of

automated tests usually requires programming skills, depending on the level of abstrac-

tion the testing tools provide. (Graham and Fewster 2012)

The importance of planning and goals are also mentioned in the case studies by Gra-

ham and Fewster. They point out that the field of test development is never problem-

free, and the role of the testing plan should rather be a guideline that adapts to the cur-

rent situation than something permanent. The testing goals were also found out to be

helpful. A good goal has realistic expectations and a tangible schedule. Early results

were seen to promote success. (Graham and Fewster 2012)

2.3.2 Test prioritization

Prioritization is an important aspect of test development. As described in chapter 2.2,

the test development and testing always involve working with finite resources, that

need to be used as efficiently as possible. The prioritization problem can be divided

22

into two categories: what tests should be developed first, and which tests should be run

most frequently, once the number of tests grows?

A case study article by Srikanth and Banerjee describes a PORT (prioritization or re-

quirements for a test) model for testing prioritization. The model consists of four factors,

which were seen to improve the failure detection rate and business value: customer as-

signer priority, developer-perceived implementation complexity, fault proneness, and

requirements volatility.

• Customer assigned priority.

Focusing on the factors that hinder the everyday use of the software by the

end-user has been shown to improve customer perceived value and satisfac-

tion. They argue that there is a lot of potential to increase the business value by

prioritizing testing for the features with the highest priority for the customer. (Sri-

kanth and Banerjee 2012, 1176-1187)

• Developer-perceived implementation complexity.

There is evidence that the complexity of the code is related to the number of er-

rors in the code. Therefore, the developers should have the authority to priori-

tize the testing of some features over others based on the perceived complexity

of the code. (Srikanth and Banerjee 2012, 1176-1187)

• Fault proneness.

Srikanth and Banerjee argue that the testing priority should be assigned based

on the history of errors for the feature in question (Srikanth and Banerjee 2012,

1176-1187). The study by Ostrand and Weyuker also verifies this: their study

indicated that for late releases of the software, 7% of the files contained 100%

(Figure 10) of the faults (Ostrand and Weyuker 2002, 55–64). Later findings of

Ostrand, Weyuker, and Bell from two case studies concluded that 20% of the

files that were identified to be the most problematic contained 83% of the errors

in the software (Ostrand, Weyuker, and Bell 2004, 86–96).

23

Figure 10. Distribution of faults in software (Ostrand and Weyuker 2002, 55–64).

• Requirements volatility.

Several studies show that the high requirement volatility or incomplete require-

ments can be a significant cause for failures in the software. Therefore, the fea-

tures that have been subject to changing requirements, should be prioritized in

testing. (Srikanth and Banerjee 2012, 1176-1187)

2.4 Maintaining software testing and result analysis

The literature review by Garousi and Mäntylä offers some guidelines for the mainte-

nance of automated tests. They analyze the questions in SUT-related–, test-related–

and test-tool related factors (Garousi and Mäntylä 2016, 92-117):

• SUT-related factors: the complexity, customization, and 3rd party dependencies

affect the automatization effort. The tests that need to be run in customized en-

vironments or are dependent on external software are harder to maintain and

therefore the automatization should be avoided.

• Test related factors: the tests that produce unpredictable outcomes or that fail

often should not be automated. The results can be hard for a human to analyze

and hard to maintain.

• Test tool-related factors: before selecting a tool, the tool-related risks should be

mapped. Open-source tools are often a good option compared to paid options,

as the cost of using open-source tools is usually low. But the lifecycle of the

tool, suitability, and features should also be considered.

24

The case studies by Graham and Fewster correspond and offer some additional points

to the findings by Garousi and Mäntylä. The case studies emphasize the importance of

good result reporting practices: a good result should tell what was expected and what

was the outcome - a true/false result of a test can leave room for zombie-tests that do

not explain why the test has passed or failed (caused by non-determinism, chapter

2.1.5). Some cases also reported positive outcomes on making the testing reports visi-

ble for management as well: this links to the economic aspects of testing (chapter 2.2).

Keeping the results visible demonstrates the usefulness of testing by itself. The report-

ing should be tailored to the people viewing the results: a less technical report is better

for the management level and a detailed version for the developers. The case studies

point out, that it is important to invest the time to create understandable and consistent

result reports. This helps with the maintenance of the tests and decreases the time

needed for briefing new developers. Graham and Fewster emphasize the continuous

development of testing practices. The tools used, development style, documentation,

reporting, etc. are important to re-evaluated occasionally. (Graham and Fewster 2012)

2.5 The current state of software testing in safety-critical indus-
trial systems

Industrial software in general can be described as a system of systems. These systems

often consist of multiple independent but connected systems that need to collaborate,

creating dependencies between the software (Crnkovic 2008, 57–60; Boehm 2006, 12–

29; Carlshamre et al. 2001, 84-91). Considering the interdependencies between soft-

ware requirements, an industrial survey by Carlshamre et al. concluded that the was

majority (75%) of interdependencies was caused by 20% of requirements and only

20% of requirements did not have interdependencies. (Carlshamre et al. 2001, 84-91)

The dependencies among the safety-criticality requirements caused by high-risk envi-

ronments are the two main things that define industrial software development. This also

affects the testing of industrial software.

The study by Taipale et al. explored the current state of testing in five different compa-

nies in different industries and sizes. Company A, -C, and -D in the study were large in-

ternational organizations that were operating with MES systems (Company A), process

automation (Company C), and electronics manufacturing (Company D). The state of

testing in Company A was focused on integration and system testing. The products

were mainly tested manually because the customers required customized products that

were hard to simulate and test automatically. Internal products, like development tools,

were partly being tested automatically. Company A reported that the development of

25

automatization was part of their testing plan, but lack of time and resources was a hin-

drance. Company C also reported problems with automatization. Automated testing

was seen to be difficult to develop and maintain for their products and manual testing

was the primary method in their testing plan, which involved mostly system testing and

end-to-end testing. The testing plan at Company D emphasized automated testing

mostly at the system testing level. Automated testing was seen to improve the quality

of products but also caused some problems because the tests required frequent

maintenance and a comprehensive test set was hard to create due to lack of specifica-

tions. (Taipale et al. 2011, 114-125)

An industrial survey by Causevic et al. mapped contemporary aspects of testing among

software developers and testers. The goal of this survey was to find differences in test-

ing practices among five different categories: development process (agile vs. other),

distribution of development, safety-criticality, amount of testing performed, and product

domain. The main findings of this study were:

• The domain of the product (e.g. web vs. embedded/industrial software) did not

affect the available time for testing much. The types of tests emphasized varied

among the domains: web development emphasizing unit testing, embedded de-

velopment emphasizing system testing.

• The developers using agile methods were unhappier with the testing practices

and the non-agile developers were unknowingly using agile testing practices.

• The developers creating safety-critical software were more resistant to interact

with the customer during the development of the software.

• Most of the organizations reported to have defined types of testing: unit, inte-

gration, regression, and system testing were the most preferred types of testing.

The responsibility of developers was usually the white-box testing and the re-

sponsibility of the tester was the black-box testing.

• In general, open-source tools were used for unit testing and proprietary tools

were used for higher-level testing. Some respondents reported using in-house

developed tools. (A. Causevic, D. Sundmark, and S. Punnekkat 2010, 393-401)

One important finding to highlight from Causevic et al. is the fact that automatization

was not widely adopted according to the open questions in the survey. This is also sup-

ported by a survey study by Lee et al. where they found out that 74% of participants re-

ported automatization level below 50%. The test execution, test reporting, and defect

management were the only parts of testing that were automated to even some extent.

26

(Figure 11) (J. Lee, S. Kang, and D. Lee 2012, 275-282; A. Causevic, D. Sundmark,

and S. Punnekkat 2010, 393-401)

Figure 11. Level of test automation. (J. Lee, S. Kang, and D. Lee 2012, 275-282)

Another industrial survey by Mohammed Kassab compared testing practices between

safety-critical and non-safety-critical systems. The key findings from this study were:

• Compared to non-safety-critical systems, testing is regarded more as a distinct

phase in development.

• Testing practices in safety-critical systems were more applicable in the later

stages of development.

• The effectiveness of testing is seen to be higher in safety-critical systems. (Kas-

sab 2018, 359-367)

The survey also verifies the findings that system, integration, unit, acceptance, and re-

gression testing are widely used types of testing in the industry (Figure 12).

27

Figure 12. Types of testing implemented. (Kassab 2018, 359-367)

The main differences between safety-critical and non-safety-critical systems are, that

acceptance testing is not seen as useful in safety-critical systems, but all other types of

testing are more used in safety-critical systems than in non-safety-critical systems.

(Kassab 2018, 359-367)

A study by Mäntylä, Itkonen, and Ivonen analyzed testing practices in three different

companies that developed industrial software (business software with customer inte-

grations, engineering software with customer integrations, and engineering software

with directly safety-critical properties). The study reviewed how testing-related practices

were distributed in the organizations of these two companies: who does the testing,

how effective they are etc. The key findings were:

• Testing is not a specialist task, but a team effort. A significant proportion of the

defects was found by non-testers and non-developers (management, sales,

etc.). (Mäntylä, Itkonen, and Iivonen 2012, 145-172)

• The end-user is experience is more important than aiming for zero-defects. In a

highly specialized field of engineering, the experiences from actual users were

indispensable knowledge for testing purposes. (Mäntylä, Itkonen, and Iivonen

2012, 145-172)

28

One additional finding was linked to the organization of testing. Their results indicated

that delegating the testing for a specialized group of testers was linked to the product

development model: the testing group was seen necessary to ensure the integrity of

the periodical internal mainline releases to offer a reliable baseline for customer pro-

jects. In contrast, if the external product releases were periodical, the testing was done

by the project development team. (Mäntylä, Itkonen, and Iivonen 2012, 145-172)

A literature review on testing of embedded software by Garousi et al. mapped out what

are the domain-specific characteristics for testing embedded software. The key findings

that are related to the scope of this thesis were:

• Level of testing. System testing was the most used level by far, followed by unit

and integration testing. Regression testing was mentioned in some papers, but

not very often (Garousi et al. 2018).

• Testing activities. Test automatization was mentioned in 47% of the papers, but

the management of testing was mentioned only in 8% of the papers, although

according to Graham and Fewster, management is the most important factor to

succeed in the automatization of testing (Graham and Fewster 2012; Garousi et

al. 2018).

The findings by Garousi et al. indicate that embedded software, a subset of industrial

software, is most often tested as a whole in the representative environment (system

testing), but there is a lack of discussion about regression testing and management of

testing in the industry.

29

3. PROPOSED TESTING PRACTICES

The research points that that test automation is a powerful testing tool. In many cases,

it is often cheaper in the long run, more efficient in finding errors, and improves the

overall quality of the software. But determining when, what and how to automate, find-

ing out the correct level of automation, managing the automatization process, analyzing

the results, and maintaining the testing are complex subjects. These subjects are

talked about a lot in testing literature, but there is a lack of guidelines on how to ap-

proach the problem in mature industrial systems efficiently. This chapter is divided into

three sub-chapters which aim to provide a general approach to the testing process

from the beginning to implementation of tests and maintaining the tests.

Developing tests for mature industrial systems has some caveats that the test develop-

ers and testers should be aware of. Safety-criticality, along with interdependencies be-

tween different systems are aspects that often define testing challenges with industrial

software. The goal of this proposal is to allow the efficient and fast implementation of

testing with good coverage and longevity with a balanced ROI. Comprehensive tech-

nical guidelines for test (case) design, in general, are out of scope for this thesis.

3.1 Feasibility analysis economics and management

Testing - especially automated testing - is a cost-intensive process and needs support

from the management. Lots of time and resources need to be allocated towards testing

related development which is why it is important to recognize if and where the automa-

tization can provide value.

The rationality for test automatization is highly dependent on project details: life cycle,

the resources available, and technical details of the project. Some programming envi-

ronments have proprietary and expensive solutions as others have free and general

tools available. The development team might have expertise on the subject or need ad-

ditional training. The only general way to approach the problem is to research the topic

and available tools in the context of the specific project. At least the following topics

should be mapped before beginning the process (Figure 13):

• Product life cycle.

The life cycle of the product should be the first thing to recognize. Automating

testing for software that has a short life cycle can be unprofitable and even for a

30

long-term project, there are always has some opportunity costs involved (chap-

ter 2.2). Approximating with the SD model scenarios 2 and 3 compared to sce-

nario 1 (chapter 2.2), it can be roughly estimated that automating the testing will

become profitable if the amount of time used for manual testing is used towards

automating 3 - 7 times (depending on the tools and talented manpower availa-

ble). For example, A project where 10 hours/month time is allocated for testing is

likely to be profitable to automate if the project lasts more than 5 months.

• Resources available and resources needed.

The current available manpower and knowledge must be mapped before pro-

ceeding with planning. Testing and test development are separate skillsets

(chapter 2, 2.1.3, 2.1.4) that need to be present in the team to perform compre-

hensive automated and manual testing. Testers need to be available to perform

manual testing tasks (usually at least acceptance testing). Developers who do

not have any experience in test scripting, result analysis, etc. need training on

the tools and techniques to become test developers. This could have a prolong-

ing effect on the time the automatization becomes profitable. If the tools needed

are also undefined, it adds complexity to the equation as the time needed to

train test development can be difficult to estimate.

Figure 13. Feasibility of setting up testing

If automatization is seen as a rational investment in general, The best way to get the

full management support is to start by collecting metrics from present development

31

practices and sketching estimates based on the current situation and what could be ar-

chived with better test automation (e.g. SD model or another modeling). The metrics

could be, for example, calculating the amount of time spent on manual testing, tests

run daily, errors discovered, bugs found from SUT, etc.

The good way going forward with the sketching is carrying out proof-of-concept type

experimental setups which are good at demonstrating the ROI value of better testing.

This could be e.g. developing a minor automatized test set for some features in the de-

veloped software that were previously relying on manual testing. The sketching could

also be a model for estimating the cost of a bug in the released version of the SUT.

This is an especially valid argument in industrial systems, where a software bug in the

released version of the software can cause major downtime or even fatal accidents.

Based on chapter 2.1, the sketches and metrics are valuable data to make an argu-

ment that automating the tests is financially a good idea: communicating the benefits to

the management level is easier with tangible data. In smaller organizations, this might

not be as necessary because the management is usually closely linked in the develop-

ment process and are often more educated in the subject. I also suggest, that even if

not needed by management, gathering metrics can be a beneficial task to carry out and

continue indefinitely. Metrics are a great way to prove (or disprove) which things have

improved the situation (e.g. when later comparing the situation before and after auto-

mated tests were implemented) and to find out which things did not work for the current

problem. This can help the organization to learn and make better decisions in the fu-

ture. This data is also useful when test development is in the maintenance phase

(chapter 3.3).

3.2 Implementing the tests

Once the organization is committed to set up testing practices, the implementation

phase can be started. The most important phase when setting up the testing infrastruc-

ture is planning. The whole process should iterative and needs to be re-evaluated

when organizational or technical changes occur.

3.2.1 Planning the testing

Planning can be divided into several sub-phases: SUT review, human resourcing, tool

selection, and writing the plans (MTP and LTP). Any sketches and proof-of-concept

work made in the before testing -phase (chapter 3.1) is valuable and should be revis-

ited.

32

The planning phase should always begin by evaluating the SUT environment and set-

ting the goals for testing. This is important because the external and project-specific

factors like the development phase, safety-criticality, dependencies, and customization

needs affect the testing implementation. These factors can be overlooked but will mate-

rialize when tests are being implemented. This step can be started by evaluating the

following points which affect the decision of what to test automatically and what should

be tested manually (Figure 17). These factors should be noted when writing the MTP

and affect the decisions on LTP (feature level test planning). Especially in industrial

software projects, the second part of the analysis should also involve the end-user or

someone else who has experience in the specific field of engineering (chapter 2.5) and

can offer invaluable information regarding the features of the SUT.

• Development phase.

The implementation of automated testing is most efficient when the SUT is in a

mature enough development phase. The testing effort should be primarily man-

ual testing for a novel SUT (or new feature of SUT) because it is still in the rapid

development phase. This phase is known for frequent braking changes and au-

tomated testing would lead to testing errors (false negatives and false positives),

which requires high test maintenance. Automatization of testing should be

started when there are features of the software that are not going under large

structural or breaking changes. Unit testing is the exception to this rule as it

helps to catch errors already in the early development phase. Unit tests are also

relatively quick to implement, and because of the narrow scope of the test, unit

tests rarely break unexpectedly.

• Safety-criticality.

The safety-criticality of the software must be mapped with a risk analysis to be

aware of the potential risks and how the software can affect its environment. The

depth of analysis should correlate with the complexity of the software and the

environment it affects. Basic risk analysis for a small or intermediate project can

be made using a risk assessment matrix with the development team but more

complex systems should be analyzed using professional risk assessment ser-

vices. The object is to discover which are the most harmful and frequent errors

the software can cause. Errors in the released version of SUT which can lead to

fatalities or serious injuries (with a moderate probability) must be prioritized at

testing. This information should later be used when the feature level testing is

planned. Safety criticality can be direct or indirect (Figure 14). Mapping out the

33

indirectly safety-critical parts requires a lot of knowledge about the role of the

SUT in its actual operational context. The most common case is shared data be-

tween different software.

Figure 14. Direct (up) and indirect (below) way features affect e.g. machinery.

• Dependency on third-party applications.

Dependencies on 3rd party applications (Figure 15) should be evaluated before

making the move for broader automatization of testing. If the software has fea-

tures that require 3rd party applications to function, it is important to investigate if

and how these applications can be tested in a realistic environment or mocked.

Researching this before beginning will prevent deadlock situations later as there

is a risk that these features cannot be tested at all or will require proprietary

tools, which affects adversely the maintainability of the tests. Also, the 3rd party

features can be subject to sudden changes from outside actors, which can also

cause issues with the maintenance of the tests.

Figure 15. The testability of SUT is affected by the dependencies.

• Customization needs.

Possible software customization needs should also be recognized. Testing cus-

tomized features usually require customized testing tools and testing scripts

(Figure 16), even though modular development does allow testing of software in

smaller, standardized chunks. But e.g. regression and integration testing will be

34

harder if the software has customized features. Extensive automatization of a

widely customized software can lead to high maintenance costs (chapter 2.4)

which is why customization usually induces a need for manual testing.

Figure 16. Customization of software can affect the testability.

• Distribution of the software.

The method of distribution should affect the type and amount of testing needed

and the schedule of testing. If the software is distributed with a standalone in-

staller, a bug in the software can have a significant and persisting effect on the

use and the rollback of the software can be difficult or even impossible. A web-

based software or software that can be updated over the air is generally more

tolerant to bugs in released versions, as the updates can be distributed quickly.

The time needed for testing should increase when the difficulty of rollback or

patching increases and the role of acceptance testing should be emphasized.

• Testing goals.

Setting testing related goals is a way to make the implementation process more

tangible. Based on the research in chapter 2.3.1, the goals should be easily

measurable and appropriately sized. Unreachable goals cause disgorgement

and will be easily neglected.

Once the external and project-specific factors have been distinguished, the software

should be reviewed on a feature specific level. The batch of questions along with the

process charts (Figures 17, 19, and 20) creates an approach to find out what and when

the features should be tested, what method of testing should be considered, and

whether to include the test into a regression test set. Because test development is a

time-consuming process, there must also be a prioritization system for developing the

tests. This approach uses aspects of the PORT-model (chapter 2.3.2) along with the

industrial aspect to create a simplistic model for assigning priority for tests. This creates

the base for writing the LTP and forming the test cases.

35

• Feature maturity and testability.

If the feature falls into any of the pitfalls of automatization (3rd party dependen-

cies or customization), the testing should be done manually. Spending lots of

time-solving problems with customization or 3rd party applications involves a sig-

nificant opportunity cost. Also, if the feature is still undergoing probable breaking

changes, testing should be limited to manual testing only (Figure 17). Automati-

zation of testing for a feature that is still under development would very likely be

a waste of resources.

Figure 17. The method for testing.

• Release and development cycle.

The speed of development is an important factor to consider when testing is be-

ing planned because it affects the need, type, and method of testing. The need

for acceptance testing is dependent on the frequency of releases as well as on

the schedule of a release. Rapid release cycle and short notice time on releases

promote the need for automated testing. This is also true for development

speed: a rapidly changing source code increases the risk of breaking features

that should not have been affected. The most effective way to detect this kind of

error is regression testing with broad coverage. Regression test runs are almost

impossible to do effectively without automatization in a rapidly changing source

code. Ideally, there would be a 100% regression test coverage, but in practice,

the order in which the tests are developed needs to be prioritized. The im-

portance of tests should be judged in a case by case approach to save time at

36

the beginning of test implementation: how critical the feature is and/or how likely

it is to fail?

This also relates to the PORT-model fourth theory (requirements volatility),

which roots from the fact that changing requirements is one of the main causes

for errors.

• Feature criticality.

This should be looked at from two different perspectives: operational and safety

criticality, which relates to the PORT-model first theory (customer-assigned pri-

ority).

The operationally critical feature is a feature that must be working properly to en-

able the use of the software. These could be e.g. GUI rendering, back-end ser-

vices running, and connections between the two workings. Operationally critical

errors should not end up in the development or released versions of the software

and therefore should be tested every time a change is made to the source code,

creating a need for automated regression testing.

The directly safety-critical features (Figure 14) are important for every version of

the SUT and promote the need for automated regression testing. The indirectly

safety-critical features may not be as critical in the development version of the

software but depending on the distribution method, can be extremely critical.

These features need to be tested at least in acceptance testing, but the need for

a rapid release cycle promotes the need for automated regression testing of the

indirectly safety-critical features as well.

• Effect on other features.

This corresponds with the second and third theories of the PORT-model (devel-

oper perceived implementation complexity). It is important to map out the fea-

tures that have interdependencies (Figure X). These could be e.g. functionalities

that use the same data in a shared state or nested structures where the child af-

fects the parent or vice versa. As the complexity of the software increases and

the amount of interdependencies grows, testing quickly becomes unpractical to

perform manually, which is why the dependent features should be tested with

automated regression testing. These features should also be prioritized on test

development, as an error in a feature with shared data, interface, etc. will likely

cause errors elsewhere as well. (Figure 18).

37

Figure 18. Features can have dependencies through shared data or directly.

• History of errors.

As mentioned in PORT-model theory three, the development history and real-

world user stories are an important source for prioritization, because some fea-

tures are more likely to contain errors than others. Emphasis should be given to

the features which have been found out to cause errors in history. This source of

information is especially important to consider in mature projects. It also adds

validity to chapter 3.3 and verifies why it is important to collect metrics and re-

sults from testing.

As described in chapter 2.5, finding errors is a team effort. Especially in highly

specialized industrial applications, where the usage of the application requires

expertise in e.g. mechanical engineering, the experiences of actual users are in-

dispensable information for testers and developers who may not be familiar with

mechanical engineering. There should be a way to collect and document the er-

rors and defects that users other than developers or testers (sales, marketing,

customer, etc.) find.

38

Figure 19. Factors affecting the need and prioritizing of regression testing.

Based on the factors above, I propose a model to form a level test plan quickly. This

model does not create an in-depth testing plan nor does it specify the level of testing

each feature needs to be included in but offers a fast way to proceed to the implemen-

tation of testing coverage for the most important parts of the software. The model helps

to decide how the feature should be tested and when it should be tested: it is based on

two general yes/no -questions about the project and seven yes/no -questions about the

feature which results in a proposal about the testing method (automatic/manual), test-

ing priority (0-3) and the need for regression testing. The questions are:

a. Is the feature mature?

b. Is the feature operationally critical?

c. Is the feature safety-critical?

d. Does the feature have dependencies with other features?

e. Does the feature have 3rd party dependencies?

f. Does the feature have customized properties?

g. Does the feature have a history of bugs?

h. Is the project released often?

i. Does the source code of the project change often?

39

Figure 20. Model for forming a basis for LTP and assign priority.

Tools selection is an important decision in the testing implementation and usually re-

quires some compromises with the coverage, costs, ease of use, etc. and often more

than one tool is needed. The selected tools must meet the requirements mapped in the

first phase of planning and cover the needs for feature testing planned in the second

phase. The maintainability of the testing tool must also be considered, as the selection

can have repercussions for the whole life cycle of the project (chapter 2.4). The deci-

sion of which tool is the best is always situational and the tool should be evaluated for

at least the following points (Figure 21):

1. How well does the tool cover the needed functionalities?

The most important aspect is to select a tool that meets the requirements. The

most common pitfalls in tool selection are related to insufficient functionalities.

Testing the possible 3rd party dependencies must also be evaluated. If multiple

tools are needed, the aspect of code reusability and other synergy benefits

should be considered.

2. Does the tool have longevity and technical support?

There are a lot of examples of software projects where the support and/or devel-

opment has been suddenly been deprecated. This is also a risk with testing

tools. The safe option is to choose an open-source tool that has an active com-

munity or a tool that is backed up by a stable company. Open-source solutions

are a safer option in regards to possible customization needs or continued use

after the deprecation.

3. How much does this tool require additional training?

40

The comparison should be made against the current skill set of the team, the

SUT, and other considered testing tools. Automated test development especially

is essentially software development and using tools with similar development

practices is beneficial.

Figure 21. Factors affecting testing tool selection.

3.2.2 Designing the tests

The characteristics of a good test vary between the method and the type of test in

question. The need for coverage for a single test is always dependent on the bigger

picture and decisions made during planning. Technical details of a test development

are not in the scope of this thesis, but the aim is to provide guidelines for test develop-

ment practices in general and to cover test design caveats in industrial systems. The

scale of coverage among the different types of tests is large. This should also be noted

in the terms of prioritization to offer as wide as possible coverage with minimal effort.

Based on chapter 2.1.5, there is a valid argument that end-to-end type system level

tests can be the most efficient way of testing multiple features of code at once. There-

fore, at least in GUI applications, the development of end-to-end testing should be the

preferred method for creating tests if the goal is to achieve test coverage as efficiently

as possible.

The test development should follow the basic principles: the use of standards, report-

ing, and reusability.

1. Standards and documentation.

The studies show that at least in the case of manual testing (chapter 2.1.3), the

testing practices largely rely upon tacit knowledge, which is against the basic

rules of testing (chapter 2). Test development and testing are important to write

41

and perform using standards and documented properly: naming conventions, file

locations, documentation, etc. need to be discussed and agreed with between

the team. This will be critical as the project grows and/or new people are joining

the team: using proprietary or divergent techniques will require more training and

are harder to maintain (chapter 2.1.4). As with software development in general,

well-written tests (descriptive variable/function/etc. names and readable struc-

tures) may not need additional documentation, but the testing environment, run-

ning the tests, etc. needs to be documented properly.

2. Reporting.

The tests should always be written to support easily understandable and config-

urable reporting or in the case of manual testing, documented properly. The test

result should indicate what has been tested, what kind of inputs has been used,

what kind of outputs were expected, what was the actual outcome and in the

case of an error, what was the part that failed (Figure 22). The use of determinis-

tic tests (chapter 2.1.5) should be preferred whenever possible as it allows for a

much more explicit output validation. For a non-deterministic test, the expected

versus actual output validation should be done by a human.

Figure 22. Test design practices to allow good result reporting.

3. Reusability.

Especially with automated testing, creating tests that are usable in different sce-

narios is beneficial and increases the profitability of the testing. I would also sug-

gest that the reusability must not be forced with the cost of losing coverage or

determinism. The risks of having a false-positive or false-negative test results

outweigh the potential profitability benefits.

42

Based on general knowledge about software development, it can be hypothesized that

requiring good reporting practices is also beneficial in the sense that it directs the test

development to better practices by forcing the developer/tester to view the problem

more broadly. Describing the test case and its results also require thinking about how

the test connects to the system and what could cause the test case to fail. This, along

with using deterministic testing functions, prevents creating tests that will result in false-

negative and false-positive results (the latter potentially being especially harmful in an

industrial context).

Testing in an industrial context may have some challenges compared to e.g., web-

based software. The industrial systems often consist of several different software with

interdependencies – often from different vendors. An additional challenge, safety-criti-

cality, is created by parts of the system that interact with the physical environment by

controlling machinery. The possible interaction with the physical environment also af-

fects the input data. Based on the findings in chapters 2.1.5, 2.3.1, and 2.5, These re-

quirements should be considered with each testing type (Figure 23).

Unit testing in industrial software does not differ much from unit testing software in gen-

eral. The scope of the tests is very narrow, and tests affect a low-level structure. Test-

ing features that depend on e.g. sensor data from the physical environment, requires

some research on the possible scope of input data.

Like unit testing, integration testing in an industrial context does not have any major or

specific challenges to consider. An integration test case that includes safety-critical fea-

tures, or has dependencies to a safety-critical function, should be designed with a nar-

row scope. This is to avoid complexity, which can obstruct the determinism of the test.

The possible interactions with the physical environment should also be recognized as

with unit tests.

In system testing and acceptance testing, dependencies with other software, and the

safety-criticality context across the whole system needs to be considered. The test

case needs to be as realistic as possible for the features that are safety-critical or have

an impact on the safety-critical features on the dependent systems. Mocking input data

or functionalities should be avoided, especially in acceptance testing.

43

Figure 23. Testing caveats in the industrial context.

3.3 Test maintenance

Testing should be a long-term commitment. Automated testing, as well as manual test-

ing, needs to be maintained and although the maintainability of the tests is largely de-

pendent on the tool selection (chapter 3.2.1) and test design (chapter 3.2.2), some

post-implementation practices help to avoid pitfalls with the long-term commitment.

Based on chapters 2.2 and 2.4, the most important things to consider are result report-

ing, collection of metrics, and revisiting tools, techniques, and plans.

• Result reporting.

Based on chapter 2.4, the results of the test runs should be made and kept visi-

ble. This practice not only keeps the test results accessible and helps to speed

up the acknowledgment and fixing of errors but also highlights the effort put into

testing.

• Collection of metrics.

The continuous collection of metrics has been found out to be beneficial (chapter

2.2). The purpose is to form a feedback loop for testing development and the

benefits of testing (time and resource savings, time to market, customer satisfac-

tion, etc.).

• Revisiting tools, techniques, and plans.

44

Software development is by default under continuous change. There will be

changes in teams, development and testing tools, languages, etc. Therefore, it is

vital to also make revisits to the testing related tools and practices.

45

4. IMPLEMENTATION

This chapter presents the implementation of the testing approach presented in chapter

3. This chapter is divided into four sections. The first section describes the background

of the Configurator project. The second describes the feasibility and economic analysis

of testing practices for the Configurator. The third consists of test planning and testing

implementation for the Configurator. The fourth describes the testing maintenance work

with Configurator.

4.1 Configurator background

The Configurator is an industrial tool used by specially trained system engineers to

configure a fleet of AGVs and connect the fleet with related systems, like controller

dashboards and runtime environment. It is also used to manage interface-settings, cre-

ate tasks for AGVs, setting up error handling, etc. The software is a part of a larger

context of industrial software. In terms of the Automation pyramid (Figure 1) the config-

urator falls into the MES level.

The Configurator project is currently in the stage where the second release candidate

has been published and the first stable release is being planned. It is in a stage where

the software is mostly quite mature and the features are stable, but the development is

still continuous and new features are also being developed.

The Configurator is stand-alone software that uses cloud services for some administra-

tive features. The front-end of the software is built with the Electron framework which

acts as a container for the software. It is developed using the Vue.js JavaScript frame-

work using TypeScript as the main language (some parts also developed with vanilla

JavaScript). The software also uses a locally run backend, which acts as an interface

between other systems and offers some background functionalities. The backend is de-

veloped with C#. The full architecture of the Configurator is presented in Figure 24

46

Figure 24. Configurator architecture (some parts masked due to company poli-
cies).

The project is developed using the Scaled Agile Framework (SAFe) approach, where

the development is planned in increments, and increments are divided into sprints of

two weeks. The project is part of a mono repository which includes the Configurator

and other related software.

The testing of the Configurator is mostly manual testing done by developers (pull-

based development). There is also an existing set of automatically run unit tests that

mostly test the validity of the configurations that are made with the Configurator and

some integration tests that validate the basic functionalities needed between the Con-

figurator and runtime systems. Some proof-of-concept work has also been done to au-

tomatize GUI testing. Initial work on available testing tools has also been mapped.

The development of Configurator has been rapid, and the testing of the software has

not been up to the speed of the development. There have also been some unsuccess-

ful attempts setting up automated integration-/system level testing which failed due to

incompatible testing tools. This, along with the built-up complexity, has led up to the sit-

uation where the team must use an ever-increasing amount of time for manual testing

47

of the software to keep the functionalities validated, which is a repetitive but time-con-

suming practice and is quite prone to human error.

The SAFe development approach also requires keeping the project ready to be re-

leased, which amplifies the need for retaining the development branch of the software

stable. This compounds the need for automated testing with as much coverage as pos-

sible, but at least to keep the critical features always validated.

4.2 Setting up the testing practices for Configurator

The Configurator is a part of a larger software ecosystem, which serves projects with a

long lifecycle. This means that the software needs to offer support to the projects for a

long time. The development of the software ecosystem is also still in a relatively early

phase. Therefore, it is reasonable to expect that the lifecycle of the software is long (at

least years). This means that the economical fundaments for automatization of the test-

ing exist.

The Configurator team currently consists of three full-time developers, who currently

also perform the majority of the testing and develop the tests. But some designated

testers are currently being introduced to the project, who will mainly be responsible for

acceptance level testing. The developers are experienced in test development, but it is

not the main field expertise for any of the developers. The team also has some formal

knowledge in testing. The designated testers have enough expertise and training in for-

mal testing methods. Currently, testing is mostly done on-demand based on the need

along with the feature development. Although the overall situation is in terms of skillset

and resources is decent, there still is some shortage of manpower and lack of system-

atical approach on testing.

To create a baseline before the study, the development team collected metrics to esti-

mate the time used for manual testing (pull request reviews). The test period was an

interval between 12.5.2020 – 4.6.2020 (roughly 1,5 sprints). The time used for testing

was estimated by the developers themselves with a sensitivity of 15 minutes (Figure

25).

48

Figure 25. Time used for testing (in minutes) for each developer.

On average, the developers used 36 minutes per day for testing (the weekends ig-

nored). The variation between developers ranging from 24,16 minutes to 46,38

minutes. Based on this value, the approximate amount of time used for manual testing

per month (21 working days) is 12,6 hours.

With a rough approximation of the SD model scenario 3, it can be estimated that the

time needed for automatization to become profitable in this scenario is 4 months. The

approximation is not entirely valid, because this would require a full-time commitment

to testing development and the pull-based development will always include some man-

ual testing and cannot be fully automatized. But it does demonstrate that the ROI of

testing will likely be positive in this project.

The emergence of the dedicated testing team is one indication that there is a long-term

commitment from the management to support the test development and testing is cur-

rently seen as an important part of development. But although the general support is

good, there is still some lack of resources: none of the developers or testers can com-

mit full time for test development for the Configurator. This creates a need to empha-

size the importance of testing, but mainly to prioritize the testing and test development

to offer good coverage for the most critical features and fast as possible. During the

writing of this thesis, a designated team of testers has also been introduced to the pro-

ject to take part of the testing responsibilities. The role of the testing team is mainly in

developing acceptance level tests to always keep the product ready for release.

0

50

100

150

200

250

300

1
2

.5
.2

0
2

0

1
3

.5
.2

0
2

0

1
4

.5
.2

0
2

0

1
5

.5
.2

0
2

0

1
6

.5
.2

0
2

0

1
7

.5
.2

0
2

0

1
8

.5
.2

0
2

0

1
9

.5
.2

0
2

0

2
0

.5
.2

0
2

0

2
1

.5
.2

0
2

0

2
2

.5
.2

0
2

0

2
3

.5
.2

0
2

0

2
4

.5
.2

0
2

0

2
5

.5
.2

0
2

0

2
6

.5
.2

0
2

0

2
7

.5
.2

0
2

0

2
8

.5
.2

0
2

0

2
9

.5
.2

0
2

0

3
0

.5
.2

0
2

0

3
1

.5
.2

0
2

0

1
.6

.2
0

2
0

2
.6

.2
0

2
0

3
.6

.2
0

2
0

4
.6

.2
0

2
0

Time used for testing

Developer 1 Developer 2 Developer 3

49

4.3 Planning the testing for Configurator

The Configurator currently lacks formal plans for testing. There are some developer

guidelines written on the development documentation, but the information is mostly in-

cidental or technical details. The plan is developed using the approach for planning the

testing (chapter 3.2).

The first step is to map the general testability and demand for testing for the Configura-

tor. The general factors are the development phase, safety-criticality, 3rd party applica-

tions, customization, and distribution of the software.

1. Development phase.

The Configurator is in the semi-mature phase. The first pre-release -versions for

a closed group of users have been published and the first release candidate is

currently in development. The structure of the software has been quite stable

since the first pre-release-version was published. There are also no plans to

make big breaking changes to existing features but develop new features and

improve the old features.

In terms of the development phase, there are no major hindrances for expanding

the automatization of testing. Rather, the situation promotes the need for more

automatized testing coverage, especially for regression testing, to verify the in-

tegrity of the old features as new features are added, and for acceptance testing,

to verify the released versions. For the new features, manual testing should still

be the primary method of testing.

2. Safety-criticality.

The Configurator is a tool used to configure fleets of AGVs and the supporting

systems. It does not have a direct impact on the physical environment, but there

are some potentially harmful indirect effects if the configurations are defective.

The most critical risks with the Configurator are related to the exported files that

are used by the runtime- and other control systems. The potential outcome of

the critical risks ranges from physical damage to the environment to production

halts and economical damage.

3. Third-party applications.

The Configurator does have some dependencies with 3rd party applications and

services. It uses a .NET based external executable to create, read, and update a

narrow part of the configuration. Two external executables are also used for

50

read-only purposes. Some features require local windows services that are not

included in the installer to work properly and some features rely on cloud-based

services. These dependencies have some effects on the testability of the Config-

urator.

Based on previous research done in early 2020, some of the third-party depend-

encies cannot be tested with the Configurator automatically with the testing tools

that the developers currently use. The testing is also limited to black-box testing

methods only, as there is no direct access to the source code of these applica-

tions. Although some of the 3rd party applications and services can be mocked

and automatized with the current tools, most of these features still rely on man-

ual testing on system and acceptance levels. The proof-of-concept work is done

later (third step: tool selection) will determine the actual testability of the 3rd party

applications.

4. Customization needs.

Currently, there are no major needs for customer-specific versions of the soft-

ware. Some features are controlled with user access levels which are granted

based on the login data. This does not hinder the automatization as they do not

require customized versions of the software.

But although there are no customer-specific versions of the software, the chal-

lenge is that there can potentially be incompatible versions between the different

software in the environment. This has a potentially adverse effect on testing, as

the possible combinations of the different versions can grow out of hand. This

promotes the need for automated regression tests.

5. Distribution of the software.

The Configurator is distributed as a stand-alone desktop installer for Windows-

based systems. The software does not support OTA (over the air) updates and

everything from bug fixes to new features must be delivered with a new installer

package.

The current situation promotes the need for better overall testing coverage as

the cost of fixing a bug in a released version can be high.

6. Goals.

The short-term goal is to keep the current features validated with automated re-

gression testing. This would improve the confidence among the developers if the

51

testing would ensure that the development work will not break the basic function-

alities of the software. It would also allow more frequent releases of the software

on shorter notice. In the long term, the aim is to also minimize the time spent on

manual testing.

Based on the general analysis, the testability of the Configurator is good and there is

readiness and a need for extensive automatization of testing. The biggest hindrances

are related to the 3rd party dependencies. Although the Configurator does not directly

affect any safety-critical systems, there are some features on the Configurator that

have an indirect effect on safety-critical systems.

The second phase of the approach is to make the level test plans by breaking the fea-

tures into adequately sized entities for the testing level in question. The features of the

Configurator have a high emphasis on the GUI. This means that a logical place to start

breaking down the features is by examining the different views and the functionalities in

the views. Special emphasis is given to the features that were found to hold a risk af-

fecting safety-critical systems.

Using the model for forming a basis for LTP and assign priority (chapter 3.2.1) the Con-

figurator features were evaluated in a table format (Table 2, Appendix A). The result of

the evaluation revealed eight features with a priority value of three that need regression

testing and can be automatized. There was only one feature that based on the analy-

sis, is not possible to test automatically, but needs regression testing with a priority

value of three. The first set of tests are developed to cover these features and the plan

is to continue implementation gradually in the order by priority. The full list of features

to test is included in Appendix X.

Table 2. Features to be tested in the first set of regression tests.

FEATURE

TEST-
ING
MTD

Regres-
sion

Dependen-
cies?

Historical er-
rors?

Is criti-
cal?

Priority value
(0-3)

Data import AUTO Yes 1 1 1 3

Feature switch AUTO Yes 1 1 1 3

Editing a model AUTO Yes 1 1 1 3

Data import AUTO Yes 1 1 1 3

Data generate AUTO Yes 1 1 1 3

Edit system rule AUTO Yes 1 1 1 3

Enable/disable
maintenance order

AUTO
Yes 1 1 1 3

Export configuration AUTO Yes 1 1 1 3

Edit workflow MAN Yes 1 1 1 3

52

The third step in the planning phase of this approach is to select the tools for testing.

The framework for unit testing already exists: Mocha has been used to execute unit

tests and some integration level tests. It uses the same language as the main project

(JavaScript/TypeScript) and is easy to set up with current knowledge. It is also an

open-source project that is popular among JavaScript developers. For regression test-

ing, the project already has an existing framework to execute scheduled test runs for

different test sets with Jenkins. Manual tests are carried out without any specific tools.

Some proof-of-concept studies have been conducted to find good solutions for integra-

tion-/system testing. Based on the previously made studies on integration-, system-

and acceptance testing, the possible candidates are:

• Spectron.

Automated end-to-end testing framework for Electron applications that offer

good coverage for both integration and system testing levels: the scope of the

tests can be small entities of UI (integration tests) or larger tests that verify the

integrity of the whole UI (system tests). It is an open-source project that is main-

tained by the community, but the project is quite mature and has an active us-

erbase. It is also the most used end-to-end testing solution for Electron applica-

tions and likely will be maintained in the future. The tests for Spectron can be

written with JavaScript and run with Mocha, which is familiar with the current de-

velopment team.

• Robot framework

The Robot framework is a generic test automation tool that is used by the testing

team in previous projects. It has a long lifespan and has been used since 2008

and has remained active ever since. The most recent release is from 2019. It of-

fers wide coverage and is suitable for different types of software and could po-

tentially solve some of the issues with 3rd party dependencies (accessing back-

ground software during the test), but there is still a lack of proof of concept work

with this tool in this project.

• Vue Test Utils

Vue test utils is an automated unit testing framework for Vue.js. It offers unit

and integration testing capabilities for Vue-based projects. It is an official tool

backed up by Vue-organization and is, therefore, a good tool in the perspective

of longevity and maturity. The development team has some experience in using

it, so the learning curve should be relatively low. There is a potential issue with

53

the testing coverage in the Configurator context: because it is a Vue testing

tool, it would narrow the non-Vue parts out of the testing scope. Currently,

Spectron is seen as a better option because it offers wider coverage.

• Cypress

Cypress testing was used for system-level end-to-end testing at the beginning

of the project, but it was not suitable for the Electron framework. It required a lot

of mocking which made the tests unstable.

Based on the research and previous knowledge, Spectron is chosen as a tool for inte-

gration- and system-level testing in the development environment. The testing team,

who are mainly responsible for acceptance testing, has made some initial research on

the suitability of the Robot framework for the Configurator and will develop a proof-of-

concept test set with it.

The chosen tools for testing are:

• Unit testing: Mocha

• Integration testing: Mocha and Spectron with Mocha

• System testing: Spectron with Mocha

• Acceptance testing: Robot framework and Spectron

Some other things were also considered during the analysis phase. The importance of

collecting errors from different sources and harness the end-user experiences has

been noted. Currently, the majority of the reported errors and defects are found by de-

velopers and other stakeholders that are directly related to the development of the soft-

ware. They already have a direct channel to report errors and defects. Other stakehold-

ers rely on indirect messaging or support tickets. There are currently plans to imple-

ment a method for creating error/defect reports directly from the Configurator and it is

likely to be implemented as a feature in the near future.

4.4 Designing the tests

Developing the system- and acceptance level automated end-to-end testing was priori-

tized in the initial phase of test implementation. This was partly due to the lack of such

tests (previously testing was done only on unit-/integration level) and partly because of

the wide coverage offered by end-to-end tests (chapter 3.2.2).

As the tests for the Spectron testing framework can be written with the same language

and ran with the same script runner as the existing unit tests (JavaScript/TypeScript

54

and Mocha), the standards and conventions for the Spectron tests were therefore al-

ready mostly agreed upon among the developers and testers. The Spectron end-to-end

tests were possible to develop with the same format as the old unit tests (Figure 26).

Figure 26. The similarity of the new end-to-end tests (below) and old unit tests
(above).

The acceptance tests, which are developed with the Robot framework, are not compati-

ble with any of the existing tests. But these tests are solely the responsibility of the test-

ing team and therefore do not need to comply with the standards and conventions of

the development team.

The reporting of the test results for the Spectron (and unit) tests is based on the script

runners (Mocha) way of running the test. For a large set of tests (like unit tests), the

55

tests are divided under a header, which describes the category of the tests. For the ac-

tual test, what is being tested and possible input values are written as a sub-header.

The result of each test is either pass (green checkmark) or fail (red highlight) and the

summary of results are shown at the end of the test run (figure x).

Figure 27. Set of passing (right) and failing (left) tests.

The tests are written with a deterministic style by making specific assertions about the

output of tests (Figure 26). This style also helps to interpret the results of tests: an as-

sertion error is shown if the expected result did not match the actual result of the test

(Figure 27).

The industrial system caveats were also considered, and the tests were able to be cre-

ated using realistic input data. The project files used were real project files and all im-

ported files were imported using the actual filesystem of the Configurator. The test

cases for the safety-critical features were designed to cover as realistic use cases as

possible with all of the dependencies. The dependencies were mainly due to shared

data, so the test case was created to use the same data in different views.

The reusability aspect of test design is considered by creating e.g. setup functions, that

create a similar startup scenario for each test. Besides the setup functions, the devel-

opment of reused functions is still quite limited, but the technical similarity of the unit

and Spectron end-to-end tests could offer some potential cohesion benefits.

56

4.5 Implementation of the tests

During the writing of this thesis, the development team and the testing team were able

to implement the first set of end-to-end tests for the Configurator. The first set of tests

was based on the features that were listed in table 2 (chapter 4.3). Some of the fea-

tures that were initially planned to be tested on the first set were excluded (feature

switch and enable/disable maintenance order) after later considerations. On the other

hand, some features that were not included in the initial list were included in the test

set. This was mainly due to the proof-of-concept work done before and during (chapter

4.3) the writing of this thesis. The results of the proof-of-concept work done by the test-

ing team also proved that some of the features with 3rd party dependencies (login user,

workflow edit) were possible to test automatically with the Robot framework. The long-

term maintainability of these tests is still unclear and will partly be suspect to sudden

changes from outside actors.

There was also some uncertainty with the test development roles between the develop-

ers and the new testing team. This caused some overlapping with the test development

and some confusion about the testing level responsibilities. This is mainly due to the

novelty of the new situation and most likely will balance out in the future.

The set of tests were automated to run as regression tests by attaching the tests to a

script that runs in Jenkins every day. This also provides automatic and daily result re-

ports from the tests.

57

5. RESULTS AND CONCLUSIONS

5.1 Results of applying the approach

Before the implementation of testing practices described in chapter 3, the Configurator

project was seen to be lacking proper testing practices. Although the project did include

some automated testing, it still mainly relied on manual testing methods, which were

starting to be inefficient as the project has grown. Because of the maturity and the rela-

tively large size of the project, there was also a need to find out the most important

parts to be tested and get good test coverage efficiently.

RQ1. The approach helps to analyze the feasibility of testing in a mature software pro-

ject: the objective is to identify whether testing is economically more sensible to auto-

mate or perform manually. The approach identifies management support as a key com-

ponent of success for introducing testing to a project and proposes some practices to

get the support needed for testing from the management. The maintainability of testing

was identified to be highly dependent on: tool selection, test design, and reporting prac-

tices The Configurator project was analyzed with the feasibility analysis and was seen

ready for extensive test automation. The management support towards testing was al-

ready good, and there was no need for justifying the investment towards testing, but

the approximated ROI indicated that the investment would be profitable in 4 months.

The success in regards to the maintainability of the tests cannot be evaluated in the

time-scope of this thesis.

RQ2. The most critical parts of the software could be identified by analyzing the SUT

using the two-phase analysis and the model for forming a basis for LTP and assign pri-

ority, which highlights the most critical features of the software and indicates how the

features should be tested efficiently and to identify where to start testing in a mature

project to archive the best possible coverage. This approach was used for the Configu-

rator. Although there is a lack of reference, because of the uniqueness of each soft-

ware project, the initial results indicate that the methods of testing and priorities identi-

fied for each feature by this model were relevant and also act as a good platform for

opening a discussion about the testing priorities. The possible improvements to this

model are discussed in chapter 5.3.

58

RQ3. The approach identified several factors that affect how the tests should be de-

signed to be efficient and appropriate in an industrial context. The main factors affect-

ing test design, in general, were related to standards and documentation, reusability,

and reporting. There were also identified to be some caveats related to industrial sys-

tems, mainly caused by the nature of industrial software (a system of systems) and the

safety-criticality of the software. This was applied to the implementation of tests for the

Configurator. The results of the initial (only the first set of tests were implemented dur-

ing the writing of this thesis) implementation indicate that this approach was able to

identify relevant factors and guided the test design towards good design practices.

5.2 Effects on the development

One of the main issues was that the developers had to use a lot of time repetitively vali-

dating basic functionalities with every pull request and to keep the software ready for

release. This was inefficient and still caused some lack of confidence in the validity of

the software.

At the time of writing this thesis, the development of tests using the methods described

in chapter 4 is still an ongoing process. The initial results indicate that the implementa-

tion of the first set of tests is promising: the most critical set of features (chapter 4.3)

have been covered and the coverage will be improved incrementally.

With only the current limited set of tests, it is still too early to evaluate the effects on the

time used for manual testing (chapter 4.2) and evaluate the ROI from the perspective

of saved time, but based on the initial experiences among the developers, the confi-

dence towards the validity of the software has increased.

5.3 Discussion

This approach presented a general approach to introduce testing to a mature project in

industrial systems which covered the whole process from the beginning (economic fea-

sibility and management) to the deployment (planning and design) and the mainte-

nance of testing. In this chapter, the possible future work and improvements to the ap-

proach are analyzed.

The most beneficial possible improvements to this process could be improving the

model for forming a basis for LTP and assign priority by adding more and a larger scale

of parameters to decide the testing method and assigned priority. It could also be im-

proved to provide some proposal about the testing type for a feature, but this would re-

quire a much more detailed analysis of the feature.

59

Another topic that was left out of the scope of this thesis, is the organizational level

planning of testing and developing a general approach/model for creating MTP. This is

a major challenge, because each organization is unique, and the needs and require-

ments for testing can be vastly different depending on the size, maturity, skills of the or-

ganization, and the software that is being tested.

The future work on this topic could also be extended to cover more technical topics of

test design. One of the main points of this thesis was to find out an efficient way to im-

plement testing practices to a project. In this generalized approach, a lot of technical

details were left out of scope. The work could be extended to e.g. research test design

efficiency and more in-depth analysis of test design in industrial systems.

60

REFERENCES

A. Causevic, D. Sundmark, and S. Punnekkat. 2010. "An Industrial Survey on Contempo-
rary Aspects of Software Testing.". doi:10.1109/ICST.2010.52.

Ammann, Paul and Jeff Offutt. 2008. Introduction to Software Testing. Cambridge: Cam-
bridge University Press. doi:10.1017/CBO9780511809163. https://www.cam-
bridge.org/core/books/introduction-to-software-test-
ing/EE74986D7F75690F6E08532775D64DDF.

Boehm, Barry. 2006. "A View of 20th and 21st Century Software Engineering." Shanghai,
China, Association for Computing Machinery, . doi:10.1145/1134285.1134288.
https://doi.org/10.1145/1134285.1134288.

C. Persson and N. Yilmazturk. 2004. Establishment of Automated Regression Testing at
ABB: Industrial Experience Report on 'Avoiding the Pitfalls'. doi:10.1109/ASE.2004.1342729.

Carlshamre, P., K. Sandahl, M. Lindvall, B. Regnell, and J. Natt och Dag. 2001. "An Indus-
trial Survey of Requirements Interdependencies in Software Product Release Planning."Aug.
doi:10.1109/ISRE.2001.948547.

Crnkovic, Ivica. 2008. "Are Ultra-Large Systems Systems of Systems?" Leipzig, Germany,
Association for Computing Machinery, . doi:10.1145/1370700.1370716.
https://doi.org/10.1145/1370700.1370716.

Dudekula Mohammad Rafi, Katam Reddy Kiran Moses, K. Petersen, and M. V. Mäntylä.
2012. Benefits and Limitations of Automated Software Testing: Systematic Literature Review
and Practitioner Survey. doi:10.1109/IWAST.2012.6228988.

Garousi, Vahid, Michael Felderer, Cagri Karapicak, and Uğur Yılmaz. 2018. "Testing Em-
bedded Software: A Survey of the Literature." Information and Software Technology 104.
doi:10.1016/j.infsof.2018.06.016.

Garousi, Vahid and Mika V. Mäntylä. 2016. When and what to Automate in Software Test-
ing? A Multi-Vocal Literature Review. Vol. 76. doi:https://doi.org/10.1016/j.infsof.2016.04.015.
http://www.sciencedirect.com/science/article/pii/S0950584916300702.

Gleb Bahmutov. 2020. Why End-to-End Test using Cypress with Gleb Bahmutov. Vol.
Dev.to.

Graham, Dorothy and Mark Fewster. 2012. Experiences of Test Automation: Case Studies
of Software Test Automation. 1st ed. Addison-Wesley Professional.

Hollender, M. 2010. Collaborative Process Automation Systems ISA.
https://books.google.fi/books?id=DamUz1oxs9QC.

IEEE. 2008. IEEE Standard for Software and System Test Documentation.

ISO/IEC/IEEE. 2013. ISO/IEC/IEEE International Standard - Software and Systems Engi-
neering -- Software Testing --Part 3: Test Documentation.

J. Itkonen, M. V. Mantyla, and C. Lassenius. 2009. "How do Testers do it? an Exploratory
Study on Manual Testing Practices.". doi:10.1109/ESEM.2009.5314240.

61

J. Lee, S. Kang, and D. Lee. 2012. Survey on Software Testing Practices. Vol. 6.
doi:10.1049/iet-sen.2011.0066.

Kassab, Mohamad. 2018. "Testing Practices of Software in Safety Critical Systems: Indus-
trial Survey.".

Kumar, Divya and K. K. Mishra. 2016. The Impacts of Test Automation on Software's Cost,
Quality and Time to Market. Vol. 79 Elsevier.

Luo, Qingzhou, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. "An Empirical
Analysis of Flaky Tests." Hong Kong, China, Association for Computing Machinery, .
doi:10.1145/2635868.2635920. https://doi.org/10.1145/2635868.2635920.

Mäntylä, Mika V., Juha Itkonen, and Joonas Iivonen. 2012. "Who Tested My Software?
Testing as an Organizationally Cross-Cutting Activity." Software Quality Journal 20 (1): 145-172.
doi:10.1007/s11219-011-9157-4. https://doi.org/10.1007/s11219-011-9157-4.

Myers, Glenford J. and Corey Sandler. 2004. The Art of Software Testing. Hoboken, NJ,
USA: John Wiley & Sons, Inc.

Ng, S. P., T. Murnane, Karl Reed, Doug Grant, and T. Y. Chen. 2004. "A Preliminary Sur-
vey on Software Testing Practices in Australia."02. doi:10.1109/ASWEC.2004.1290464.

Nidhra, Srinivas and Jagruthi Dondeti. 2012. "Black Box and White Box Testing Tech-
niques-a Literature Review." International Journal of Embedded Systems and Applications
(IJESA) 2 (2): 29-50.

Ostrand, Thomas J. and Elaine J. Weyuker. 2002. "The Distribution of Faults in a Large In-
dustrial Software System." SIGSOFT Softw.Eng.Notes 27 (4): 55–64.
doi:10.1145/566171.566181. https://doi.org/10.1145/566171.566181.

Ostrand, Thomas J., Elaine J. Weyuker, and Robert M. Bell. 2004. "Where the Bugs Are."
SIGSOFT Softw.Eng.Notes 29 (4): 86–96. doi:10.1145/1013886.1007524.
https://doi.org/10.1145/1013886.1007524.

Pierre Audoin Consultants GmbH. 2011. "Growth Market
Software-Testing." . https://www.pac-online.com/download/7194/121155.

Ramler, Rudolf and Klaus Wolfmaier. 2006. "Economic Perspectives in Test Automation:
Balancing Automated and Manual Testing with Opportunity Cost." Shanghai, China, Association
for Computing Machinery, . doi:10.1145/1138929.1138946.
https://doi.org/10.1145/1138929.1138946.

S.M.K, Quadri and Sheikh Umar Farooq. 2010. "Software Testing – Goals, Principles, and
Limitations." International Journal of Computer Applications 6. doi:10.5120/1343-1448.

Sahaf, Zahra, Vahid Garousi, Dietmar Pfahl, Rob Irving, and Yasaman Amannejad. 2014.
"When to Automate Software Testing? Decision Support Based on System Dynamics: An Indus-
trial Case Study." Nanjing, China, Association for Computing Machinery, .
doi:10.1145/2600821.2600832. https://doi.org/10.1145/2600821.2600832.

Sawant, Abhijit, Pranit Bari, and Pramila Chawan. 2012. "Software Testing Techniques and
Strategies." International Journal of Engineering Research and Applications(IJERA) 2: 980-986.

Srikanth, Hema and Sean Banerjee. 2012. "Improving Test Efficiency through System Test
Prioritization." Journal of Systems and Software 85 (5): 1176-1187.

62

doi:https://doi.org/10.1016/j.jss.2012.01.007. http://www.sciencedirect.com/science/arti-
cle/pii/S0164121212000027.

Taipale, Ossi, Jussi Kasurinen, Katja Karhu, and Kari Smolander. 2011. "Trade-Off be-
tween Automated and Manual Software Testing." International Journal of System Assurance
Engineering and Management 2 (2): 114-125. doi:10.1007/s13198-011-0065-6.
https://doi.org/10.1007/s13198-011-0065-6.

Torkar, Richard and Stefan Mankefors-Christiernin. 2003. "A Survey on Testing and Re-
use."12. doi:10.1109/SWSTE.2003.1245437.

University of Cambridge. 2013. "Failure to Adopt Reverse Debugging Costs Global Econ-
omy $41 Billion Annually." . https://totalview.io/press-releases/university-cambridge-study-fail-
ure-adopt-reverse-debugging-costs-global-economy-41.

Varma, Tathagat. 2000. "Automated Software Testing: Introduction, Management and Per-
formance." ACM Sigsoft Software Engineering Notes 25. doi:10.1145/505863.505890.

Y. Yu, H. Wang, G. Yin, and C. X. Ling. 2014. "Reviewer Recommender of Pull-Requests
in GitHub.". doi:10.1109/ICSME.2014.107.

1

APPENDIX A: FEATURE LEVEL TEST PLAN

FEATURE Scope
Ma-
ture

Ope-
rat C

De-
pendc

Sa-
fety C

His-
tory

Rel
Freq

Upd
Freq

3rd part
dep

Custo-
mized

TESTING
MTD

Reg-
res-
sion

Depen-
den-
cies?

Histori-
cal er-
rors?

Is cri-
tical?

Pirority value
(0-3)

Start page View 1 1 0 0 0 0 1 0 0 AUTO Yes 0 0 1 1

Creating a
new pro-
ject

Functi-
onality 1 1 1 0 0 0 1 0 0

AUTO

Yes 1 0 1 2

Opening a
project

Functi-
onality 1 1 0 0 0 0 1 0 0

AUTO
Yes 0 0 1 1

Data im-
port

Functi-
onality 1 1 1 1 1 0 1 0 0

AUTO
Yes 1 1 1 3

Data ex-
port

Functi-
onality 1 0 1 1 0 0 1 0 0

AUTO
Yes 1 0 1 2

Login user
Functi-
onality 1 1 1 0 0 0 1 1 0

MAN
No 1 0 1 2

Feature
switch

Functi-
onality 1 1 1 1 1 0 1 0 0

AUTO
Yes 1 1 1 3

Logout
user

Functi-
onality 1 0 0 0 0 0 1 0 0

AUTO
Yes 0 0 0 0

Model
page View 1 1 1 0 0 1 0 0

AUTO
Yes 1 0 1 2

Editing a
model

Functi-
onality 1 1 1 1 1 0 1 0 0

AUTO
Yes 1 1 1 3

Exporting
a model

Functi-
onality 1 1 1 1 0 0 1 0 0

AUTO
Yes 1 0 1 2

Selecting a
model

Functi-
onality 1 0 1 0 0 0 1 0 0

AUTO
Yes 1 0 0 1

Adding agv
operation

Functi-
onality 1 0 1 1 0 1 0 0

AUTO
Yes 1 0 1 2

Editing agv
operation

Functi-
onality 1 0 1 1 0 0 1 0 0

AUTO
Yes 1 0 1 2

https://exceljet.net/excel-functions/excel-if-function
https://exceljet.net/excel-functions/excel-if-function

2

Adding er-
ror

Functi-
onality 1 1 0 0 0 0 1 0 0

AUTO
Yes 0 0 1 1

Editing er-
ror

Functi-
onality 1 0 0 0 0 0 1 0 0

AUTO
Yes 0 0 0 0

Editing
energy
setting

Functi-
onality 1 0 0 1 1 0 1 0 0

AUTO
Yes 0 1 1 2

Editing
settings

Functi-
onality 1 0 0 0 0 0 1 0 0

AUTO
Yes 0 0 0 0

Battery
manage-
ment View 1 1 1 0 0 0 1 0 0

AUTO
Yes 1 0 1 2

Battery
settings

Functi-
onality 1 0 0 1 0 0 1 0 0

AUTO
Yes 0 0 1 1

Group se-
lect

Functi-
onality 1 0 0 0 0 0 1 0 0

AUTO
Yes 0 0 0 0

Battery
table

Functi-
onality 0 0 0 1 0 0 1 0 0

MAN
No 0 0 1 1

Blocking
gropups View 0 1 0 1 0 0 1 0 0

MAN
No 0 0 1 1

Data im-
port

Functi-
onality 0 1 1 1 0 0 1 0 0

MAN
No 1 0 1 2

Virtual io View 0 1 0 0 0 0 1 0 0 MAN No 0 0 1 1

Adding io
Functi-
onality 0 0 1 1 0 0 1 0 0

MAN
No 1 0 1 2

Editing io
Functi-
onality 0 0 1 1 0 0 1 0 0

MAN
No 1 0 1 2

Data im-
port

Functi-
onality 0 1 1 1 0 0 1 0 0

MAN
No 1 0 1 2

Data ex-
port

Functi-
onality 0 1 0 1 0 0 1 0 0

MAN
No 0 0 1 1

Escape
stations View 0 1 1 1 0 0 1 0 0

MAN
No 1 0 1 2

Commu-
nication
page View 1 1 0 0 0 0 1 0 0

AUTO
Yes 0 0 1 1

3

Adding a
host

Functi-
onality 1 1 1 0 0 0 1 0 0

AUTO
Yes 1 0 1 2

Edit host
settings

Functi-
onality 1 0 1 0 0 0 1 0 0

AUTO
Yes 1 0 0 1

Add host
operation

Functi-
onality 1 0 1 0 0 0 1 0 0

AUTO
Yes 1 0 0 1

Edit host
operation

Functi-
onality 1 0 1 0 0 0 1 0 0

AUTO
Yes 1 0 0 1

Add host
error

Functi-
onality 1 0 1 0 0 0 1 0 0

AUTO
Yes 1 0 0 1

Edit host
error

Functi-
onality 1 0 1 0 0 0 1 0 0

AUTO
Yes 1 0 0 1

Add host
transport
unit type

Functi-
onality 1 0 1 0 0 0 1 0 0

AUTO
Yes 1 0 0 1

Edit host
transport
unit type

Functi-
onality 1 0 1 0 0 0 1 0 0

AUTO
Yes 1 0 0 1

Host
addresses View 1 1 0 0 1 0 1 0 0

AUTO
Yes 0 1 1 2

Data im-
port

Functi-
onality 1 1 1 1 1 0 1 0 0

AUTO
Yes 1 1 1 3

Data ex-
port

Functi-
onality 1 1 0 0 1 0 1 0 0

AUTO
Yes 0 1 1 2

Data gene-
rate

Functi-
onality 1 1 1 1 1 0 1 0 0

AUTO
Yes 1 1 1 3

Data de-
lete

Functi-
onality 1 1 1 0 0 0 1 0 0

AUTO
Yes 1 0 1 2

View rows
Functi-
onality 1 1 1 0 0 0 1 0 0

AUTO
Yes 1 0 1 2

Add row
Functi-
onality 1 0 1 1 0 0 1 0 0

AUTO
Yes 1 0 1 2

Edit row
Functi-
onality 1 0 1 1 0 0 1 0 0

AUTO
Yes 1 0 1 2

Apply fil-
ters

Functi-
onality 1 0 0 0 0 0 1 0 0

AUTO
Yes 0 0 0 0

4

Map inter-
action

Functi-
onality 1 1 0 0 0 0 1 0 0

AUTO
Yes 0 0 1 1

Table sca-
ling

Functi-
onality 1 0 0 0 0 0 1 0 0

AUTO
Yes 0 0 0 0

Workflow
manage-
ment View 1 1 0 0 0 0 1 0 0

AUTO
Yes 0 0 1 1

Open
workflow

Functi-
onality 1 1 0 0 0 0 1 1 0

MAN
No 0 0 1 1

Add work-
flow

Functi-
onality 1 0 1 1 0 0 1 0 0

AUTO
Yes 1 0 1 2

Import
workflow

Functi-
onality 1 0 1 1 0 0 1 0 0

AUTO
Yes 1 0 1 2

Edit work-
flow

Functi-
onality 1 0 1 1 1 0 1 1 0

MAN
No 1 1 1 3

Workflow
rules View 1 1 0 1 0 0 1 0 0

AUTO
Yes 0 0 1 1

Add host
rule

Functi-
onality 1 0 1 1 0 0 1 0 0

AUTO
Yes 1 0 1 2

Edit host
rule

Functi-
onality 1 0 1 1 0 0 1 0 0

AUTO
Yes 1 0 1 2

Add char-
ging rule

Functi-
onality 1 0 1 1 0 0 1 0 0

AUTO
Yes 1 0 1 2

Edit char-
ging rule

Functi-
onality 1 0 1 1 0 0 1 0 0

AUTO
Yes 1 0 1 2

Error rules View 1 1 1 1 0 0 1 0 0 AUTO Yes 1 0 1 2

Add ope-
ration rule

Functi-
onality 1 0 1 1 0 0 1 0 0

AUTO
Yes 1 0 1 2

Edit opera-
tion rule

Functi-
onality 1 0 1 1 0 0 1 0 0

AUTO
Yes 1 0 1 2

Add sys-
tem rule

Functi-
onality 1 0 1 1 0 0 1 0 0

AUTO
Yes 1 0 1 2

Edit sys-
tem rule

Functi-
onality 1 0 1 1 1 0 1 0 0

AUTO
Yes 1 1 1 3

Internal
addresses View 1 1 0 1 0 0 1 0 0

AUTO
Yes 0 0 1 1

5

Data im-
port

Functi-
onality 1 1 1 1 1 0 1 0 0

AUTO
Yes 1 1 1 3

Data ex-
port

Functi-
onality 1 1 0 0 1 0 1 0 0

AUTO
Yes 0 1 1 2

Data gene-
rate

Functi-
onality 1 1 1 1 1 0 1 0 0

AUTO
Yes 1 1 1 3

Data de-
lete

Functi-
onality 1 1 1 0 0 0 1 0 0

AUTO
Yes 1 0 1 2

View rows
Functi-
onality 1 1 1 0 0 0 1 0 0

AUTO
Yes 1 0 1 2

Add row
Functi-
onality 1 0 1 1 0 0 1 0 0

AUTO
Yes 1 0 1 2

Edit row
Functi-
onality 1 0 1 1 0 0 1 0 0

AUTO
Yes 1 0 1 2

Apply fil-
ters

Functi-
onality 1 0 0 0 0 0 1 0 0

AUTO
Yes 0 0 0 0

Map inter-
action

Functi-
onality 1 1 0 0 0 0 1 0 0

AUTO
Yes 0 0 1 1

Table sca-
ling

Functi-
onality 1 0 0 0 0 0 1 0 0

AUTO
Yes 0 0 0 0

Bookable
resources View 1 1 0 0 0 0 1 0 0

AUTO
Yes 0 0 1 1

Add re-
source

Functi-
onality 1 0 0 0 0 0 1 0 0

AUTO
Yes 0 0 0 0

Edit re-
source

Functi-
onality 1 0 1 0 0 0 1 0 0

AUTO
Yes 1 0 0 1

Workflow
data View 1 1 0 0 0 0 1 0 0

AUTO
Yes 0 0 1 1

Add table
Functi-
onality 1 1 0 0 0 0 1 0 0

AUTO
Yes 0 0 1 1

Delete
table

Functi-
onality 1 1 0 0 0 0 1 0 0

AUTO
Yes 0 0 1 1

Data im-
port

Functi-
onality 1 1 1 0 0 0 1 0 0

AUTO
Yes 1 0 1 2

Data ex-
port

Functi-
onality 1 1 0 0 0 0 1 0 0

AUTO
Yes 0 0 1 1

6

Dashboard
settings View 1 1 0 0 0 0 1 0 0

AUTO
Yes 0 0 1 1

Enable /
disable

Functi-
onality 1 1 1 0 1 0 1 0 0

AUTO
Yes 1 1 1 3

Edit set-
tings

Functi-
onality 1 0 0 0 0 0 1 0 0

AUTO
Yes 0 0 0 0

Layout
page View 0 1 0 0 0 0 1 0 0

MAN
No 0 0 1 1

Data im-
port

Functi-
onality 1 1 1 0 0 0 1 0 0

AUTO
Yes 1 0 1 2

Positio-
ning cont-
rols

Functi-
onality 1 0 1 0 0 0 1 0 0

AUTO
Yes 1 0 0 1

Import
symbol

Functi-
onality 1 0 1 0 1 0 1 0 0

AUTO
Yes 1 1 0 2

Add sym-
bol

Functi-
onality 0 0 0 0 0 0 1 0 0

MAN
No 0 0 0 0

Edit sym-
bol

Functi-
onality 0 0 1 0 0 0 1 0 0

MAN
No 1 0 0 1

Map inter-
action

Functi-
onality 1 1 0 0 1 0 1 0 0

AUTO
Yes 0 1 1 2

Mainte-
nance or-
ders View 1 1 0 0 0 0 1 0 0

AUTO
Yes 0 0 1 1

Data im-
port

Functi-
onality 1 1 1 0 1 0 1 0 0

AUTO
Yes 1 1 1 3

Data ex-
port

Functi-
onality 1 1 0 0 1 0 1 0 0

AUTO
Yes 0 1 1 2

Data copy
Functi-
onality 1 1 1 0 0 0 1 0 0

AUTO
Yes 1 0 1 2

Data gene-
rate

Functi-
onality 1 1 1 0 1 0 1 0 0

AUTO
Yes 1 1 1 3

Data de-
lete

Functi-
onality 1 1 1 0 0 0 1 0 0

AUTO
Yes 1 0 1 2

View rows
Functi-
onality 1 1 1 0 0 0 1 0 0

AUTO
Yes 1 0 1 2

7

Add row
Functi-
onality 1 0 1 0 0 0 1 0 0

AUTO
Yes 1 0 0 1

Edit row
Functi-
onality 1 0 1 0 0 0 1 0 0

AUTO
Yes 1 0 0 1

Apply fil-
ters

Functi-
onality 1 0 0 0 0 0 1 0 0

AUTO
Yes 0 0 0 0

Map inter-
action

Functi-
onality 1 1 0 0 0 0 1 0 0

AUTO
Yes 0 0 1 1

Add ope-
ration rule

Functi-
onality 1 0 1 0 0 0 1 0 0

AUTO
Yes 1 0 0 1

Edit opera-
tion rule

Functi-
onality 1 0 1 0 0 0 1 0 0

AUTO
Yes 1 0 0 1

Add main-
tance or-
der

Functi-
onality 1 0 1 1 0 0 1 0 0

AUTO
Yes 1 0 1 2

Edit main-
tance or-
der

Functi-
onality 1 0 1 1 0 0 1 0 0

AUTO
Yes 1 0 1 2

Events View 1 1 0 0 0 0 1 0 0 AUTO Yes 0 0 1 1

Add event
Functi-
onality 1 1 1 0 0 0 1 0 0

AUTO
Yes 1 0 1 2

Edit event
Functi-
onality 1 1 1 0 0 0 1 0 0

AUTO
Yes 1 0 1 2

Edit event
gropups

Functi-
onality 1 0 0 0 0 0 1 0 0

AUTO
Yes 0 0 0 0

Export
view View 1 1 0 0 0 0 1 0 0

AUTO
Yes 0 0 1 1

Check con-
figuration

Functi-
onality 1 1 1 1 1 0 1 0 0

AUTO
Yes 1 1 1 3

Export
configura-
tion

Functi-
onality 1 1 1 1 0 0 1 0 0

AUTO
Yes 1 0 1 2

Blackbox
view View 1 1 0 0 0 0 1 0 0

AUTO
Yes 0 0 1 1

Data im-
port

Functi-
onality 1 1 0 0 1 0 1 0 0

AUTO
Yes 0 1 1 2

8

Log view
Functi-
onality 1 0 0 0 0 0 1 1 0

MAN
No 0 0 0 0

Video view
Functi-
onality 1 0 0 0 0 0 1 1 0

MAN
No 0 0 0 0

Documen-
tation
view View 1 1 0 1 0 0 1 0 0

AUTO
Yes 0 0 1 1

