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ABSTRACT

Aashish Sah: Implementation of quantum driving of superconducting qubit for gate error analysis
Master’s thesis
Tampere University
Science and Engineering, M.Sc.
December 2020

Quantum computers possesses an inherent parallelism that allows for an exponential speedup
in carrying out certain tasks compared to classical computers. Superconducting-circuit, a promis-
ing candidate for the physical implementation of a qubit from a non-linear LC oscillator, where
the nonlinearity is introduced by the Josephson junction. The state of the qubit is controlled by
a single-mode electromagnetic field, which is stored in a coplanar waveguide resonator. Con-
sequently, desired gate operation can be performed on the qubit by applying microwave pulse
through the drive resonator for a certain interaction time. The quality of the gate operation, mea-
sured by the gate error, depends on the properties of the microwave pulse such as amplitude,
phase and interaction time.

Essentially, the goal is to build a fault-tolerant quantum computer, which employs a large num-
ber of physical qubits for the implementation of error correction codes, in particular surface codes.
Consequently, large number of physical qubits consumes significant amount of energy. However,
by minimizing the intrinsic sources of error such as state preparation, measurement errors and
imperfect gate operation, one can significantly decrease the required number of physical qubits
for the execution of surface codes.

In this thesis, we focus on improving the error from the Pauli-X gate operation by optimizing the
drive state of the resonator. Traditionally, a classical drive is used to implement the Pauli-X gate
rotation. Alternatively, we propose a quantum driving of the qubit, where the description of the
classical field is replaced by the quantum approximation of the classical field, namely, coherent
drive state. A coherent state is characterized by the average photon number n̄, thus we investi-
gate a relationship between average photon number and the performance of the gate operation,
numerically and experimentally.

We observe from numerical simulations that by increasing the average photon number in the
drive resonator, the gate error is significantly reduced. With an average photon occupation n̄ =
120, we obtain a gate error of ε = 0.41%. Additionally, we further improve the gate error by
decreasing the coupling strength g between the qubit and the drive.

For quantum driving experiments, we design a superconducting-circuit with a qubit–resonator
coupling of g/2π = 7.5MHz. The experimental characterization of the sample yields a enhanced
qubit lifetime T1 ∼ 26 µs and dephasing time T2 ∼ 5 µs. Furthermore, a photon number cal-
ibration is carried out using power spectroscopy of the qubit. The results of photon calibration
measurement are essential for the implementation of the full gate operation protocol, which will be
conducted in the future.

Keywords: Quantum computing, superconducting circuit, quantum driving, gate error
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Ĥ
I

int interaction Hamiltonian in the interaction picture

CJ Josephson Junction capacitance

EJ Josephson coupling energy

LJ Josephson inductance



vi

JC Jaynes–Cummings

JJ Josephson junction

n̄ average photon number

σ̂x Pauli-X gate,

⎡⎣0 1

1 0

⎤⎦
σ̂y Pauli-Y gate,

⎡⎣0 −i

i 0

⎤⎦
σ̂z Pauli-Z gate,

⎡⎣1 0

0 −1

⎤⎦
TrE partial trace

tπ π-pulse length

ω(t) microwave pulse amplitude in Hz

ng normal state resistance measured at room temperature

ωr readout resonator frequency

RF radio frequency

IS super-current of the Josephson Junction

SS sweet spot

Tr(A) trace of a matrix A, Tr(A) =
∑︁

iAii

Tr(O)ˆ trace of an operator O, Tr(Ô) =
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1 INTRODUCTION

At first, information may sound a very abstract concept, but at a fundamental level, it is

represented by physical devices that are governed by the laws of physics [1]. All computa-

tions are carried out on a physical entity by manipulating the associated physical degrees

of freedom. Naturally, an inevitable quest for a physical system that implements large

amount of computations by requiring a minimum amount of energy possible was pursued

by scientists from all fields alike. Physicist Rolf Landauer approached the problem from

the thermodynamics standpoint by studying the minimum energy needed to store a bit of

information [2]. Following the work established by Landauer, Paul Benioff and Charles

Bennett formalized the theory of computation in the framework of thermodynamics and

proposed a quantum system for computation and information processing in their seminal

papers [3, 4], respectively. Thus, the idea of quantum computers came to existence for

the first time around 1980.

Around the same time, Richard Feynman contributed to the on-going discussions on

quantum computers with a slightly different perspective. Feynman puts forward an in-

sightful idea of simulating the evolution of a quantum system by mapping the problem

to another quantum system realized as an universal quantum computer [5]. Accordingly,

the need for a quantum computer is stemmed from an exponential complexity that comes

about when simulating a Hilbert space of even an elementary problem in quantum me-

chanics. Therefore, by harnessing the quantum degrees of freedom like superposition,

in principle, computations on a quantum computer can outperform a classical computer.

This gave rise to a novel field of quantum computation and information processing.

Astonishingly, a simple algorithm exploiting the inherent advantages of quantum mechan-

ics proved to perform substantially faster than an equivalent classical algorithm in solving

a hypothetical problem [6]. This raised interest in researchers of different backgrounds for

testing the performance of quantum algorithms. Quantum algorithm that offers an expo-

nential speedup in taking discrete logarithms and factoring of large numbers [7], and an

algorithm offering a quadratic speedup in searching an unstructured large dataset were

soon introduced [8]. Furthermore, Shor’s factoring algorithm culminated a rich field of re-

search in quantum cryptography, offering an inherently secure communications compared

to an existing classical cryptography protocols [9, 10].
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The quantum algorithms discussed above are only the manifestation of a rigorous math-

ematical studies and must be validated experimentally. Surely, we require a physical

hardware implemented as a quantum computer to perform and validate these algorithms.

A suitable candidate for the physical implementation of a quantum computer must satisfy

the DiVincenzo criteria listed in ref. [11]. There are numerous promising candidates for

the realization of a physical quantum computer, where the unit of a quantum information

(qubit) is implemented as trapped ions [12] and anyons [13, 14], quantum dots [15], nu-

clear spin [16], photon polarization [17], and superconducting circuit [18, 19, 20] to name

a few. Each of these physical systems have some advantages and disadvantages over

the others.

While researchers have demonstrated a simplified version of Shor’s algorithm using a nu-

clear spin quantum computer [21], there has not yet been much progress otherwise in the

experimental implementation of aforementioned algorithms. Recently, Google achieved

a so-called quantum supremacy by sampling the output of a pseudo-random quantum

circuit in 200 s, where a classical computer would have taken approximately 10,000 y

[22]. Even though the tackled problem did not bear much practical significance to the

real-world applications, the achievement does serve as a testimony to the strength of

quantum computers.

Superconducting quantum computers have attracted a significant interest from both in-

dustries and academia. They offer tremendous advantage over many other candidates

in terms of scalability and reproducibility, owing it to an existing state-of-the-art micro-

fabrication technology. In addition, superconducting circuits allow for a good measure-

ment and control of the qubits. However, there are certain weaknesses, such as limita-

tions in identification and characterization of the decoherence sources in the supercon-

ducting circuit and non-uniformity in the design of the qubit introduced by the fabrication

processes. These issues need to be addressed in order for superconducting quantum

computer to succeed as a viable candidate.

In order to perform basic quantum operations for computational purposes, a qubit must

be coupled to a system that can prepare, control and measure the state of the qubit.

Consequently, the coupling of the qubit to an external system also induces decoherence

that makes the qubit inherently a very fragile entity, despite its underlying physical im-

plementation. As a result, when performing a quantum operation, decoherence induced

by the system may contribute to drastic errors. In addition, the errors may originate from

an imprecise control of the qubit, imperfect state preparation or the measurement of the

state of the qubit. For a quantum computer to be able to perform any arbitrary computa-

tions, the quantum operations must be below certain error threshold such that the error

correction codes may be applied to facilitate fault-tolerant quantum computation [23, 24].

In recent years, a tremendous amount of work has been carried out to perfect a su-
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perconducting circuit, where decoherence-induced relaxation and dephasing time have

improved significantly compared to its earlier versions [25, 26]. In this thesis, we have

utilized one such widely used superconducting qubit, a transmon qubit, that allowed us

to obtain the relaxation time of approximately 26 µs and the dephasing time of about 5 µs.

This is a substantial enhancement compared to the 2-ns lifetime of the Cooper pair box,

which was the first type of a superconducting qubit [27].

The enhanced lifetime of the transmon has allowed for a fault-tolerant quantum computa-

tion using the surface codes, an error correction code for superconducting qubits [28]. The

physical implementation of the surface code requires a large number of physical qubits.

Therefore, it consumes a significant amount of energy. However, one can essentially de-

crease the number of physical qubits remarkably by further improving the error resulting

from the quantum operation. In this thesis, we attempt to minimize the error by optimizing

the methods that allow for a precise control of the qubit. To that extent, we outline the

theoretical framework used in the course of this thesis in chapters 2 and 3. The methods

developed for a comprehensive study of the task at hand are described in chapter 4. The

results and the discussions are presented in chapters 5 and 6, respectively.

In chapter 2, we provide a set of mathematical tools necessary for a quantum-mechanical

description of superconducting circuits. In particular, we adopt the density operator for-

malism of the quantum mechanics to describe an interacting quantum system, and present

a recipe for the quantization of a harmonic oscillator. Additionally, we briefly layout the

important concepts of quantum computation and information processing. Chapter 3 in-

troduces a quantum theory of superconducting circuits, often called circuit quantum elec-

trodynamics (cQED). cQED, essentially, is a study of light–matter interaction, where the

matter corresponds to a superconducting qubit and light refers to a single-mode electro-

magnetic field sustained inside a coplanar waveguide resonator. The interaction between

the qubit and the waveguide facilitates a quantum (gate) operation, which we are aiming

to optimize for the minimization of the gate error. Therefore, we study the coupled Hamil-

tonian under different approximations to obtain an optimal interaction time for the Pauli-X

gate rotation, corresponding to a bit flip quantum operation.

In chapter 4, we present numerical schemes for the implementation of the Pauli-X gate

and devise methods to minimize the gate error. For experiments, we design a super-

conducting circuit using an electromagnetic simulation software. We briefly discuss the

measurement setup and propose a gate protocol for quantum driving experiments. In

chapter 5, we examine the numerical results and observe an improvement in the gate

error with a higher photon occupation in the drive resonator and a smaller coupling of the

drive to the qubit. Additionally, experimental results from the sample characterization and

photon calibration measurements are presented. Finally, in chapter 6, the work carried

out during the course of the thesis is summarized and remarks on future development are

briefly discussed.
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2 GENERAL THEORETICAL BACKGROUND

In this section, we present the theoretical background in the framework of cavity and

circuit quantum electrodynamics. At first, we briefly outline the density operator formalism

of quantum mechanics as opposed to the state vector formalism. Then, we describe the

quantization procedure for a harmonic oscillator, which turned out to be an essential tool

in this thesis work. Finally, we introduce some important concepts on quantum information

theory that are central to the theme of this thesis.

2.1 Density operator formalism

The predictions of quantum mechanics go beyond the classical intuition that we inherit

from the observations we make in our everyday life. Therefore, instead of relying on our

intuition, we resort to the postulates of quantum mechanics to provide us a set of math-

ematical rules to study quantum systems. However, there exist different formulations of

postulates of quantum theory that lead to same mathematical idea but introduce differ-

ent physical interpretation [29]. In this thesis, we adopt the postulates formulated by the

Copenhagen interpretation. We introduce the postulate for both closed and open quan-

tum system as it is needed to describe interacting and non-interacting quantum systems.

The postulates are formulated in the following way: (i) a physical state of an isolated

quantum system is represented by a unit vector in a Hilbert space H, a complex vector

space equipped with a scalar inner product, and (ii) the dynamics of the quantum state is

governed by the Schrödinger equation [30].

These postulates described in terms of a state vector only prescribe a closed quantum

system, one that does not interact with the environment. For all practical purposes, we

require an open quantum system, one that can be examined through the environment for

information processing. This is true for all quantum systems under experimental investi-

gation.

Density operator formalism introduced by John von Neumann provides an excellent de-

scription of an open system. The density operator formalism describes the dynamics of

a pure state, which represents a complete information about a physical state as well as

mixed state that corresponds to an incomplete information of a physical state [31]. We
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present the mathematical formulation of the postulates in the density operator formalism.

The density operator of a system is defined as [30]

ρ̂ =
∑︂
i

pi |ψi⟩ ⟨ψi| , (2.1)

where {pi} are the probabilities of the system being in the states {|ψi⟩} upon a measure-

ment. The density operator must: be self-adjoint, have non-negative spectrum and have a

unit trace. The density operator formalism also allows us to quantify degree of "pureness"

of a physical state. The density operator agrees with the inequality Tr(ρ̂2) ≤ 1, yielding

equality if and only if ρ̂ is a pure state. A completely mixed state has equal probabilities

for all the states {|ψi⟩}.

In density operator formalism, the expected value of an operator A is given by

⟨Â⟩ = Tr(ρ̂A). (2.2)

The temporal evolution of the density operator is given by the Liouville–von Neumann

equation [32]

iℏ
d

dt
ρ̂(t) = [Ĥ(t), ρ̂(t)], (2.3)

where the self-adjoint Ĥ is a Hamiltonian operator. For a time-independent Hamiltonian,

the solution of the Liouville–von Neumann yields unitary evolution

ρ̂(t) = Û(t)ρ(0)Û
†
(t), (2.4)

with the unitary operator

Û(t) = exp

[︃
− i

h

∫︂ t

0

Ĥ(t′)dt′
]︃
. (2.5)

In the framework of open quantum systems, we consider a quantum system and the

environment together as a closed system. In our discussion, we regard the system to be

open because we are only interested in the detailed description of the evolution of the

system and not the environment. Thus, we average out the degrees of freedom of the

environment and study the resulting effective evolution of the system.

We present a quantum operation namely, partial trace to implement the averaging of

the environmental degrees of freedom and define the reduced density operator of the

bipartite system H = HS ⊗HE for the description of the system of interest. For ρ̂ ∈ H,

the reduced density operator describing the system is given by ρ̂S = TrE(ρ̂). Partial trace
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TrE is the trace averaging out environmental degrees of freedom and is defined by [32]

TrE(ρ̂) =
∑︂
j

(︁
1̂⊗ ⟨j|

)︁
ρ̂
(︁
1̂⊗ |j⟩

)︁
. (2.6)

where {|j⟩} ∈ HE are the basis states of the environment and the identity operator

1̂ ∈ HS.

2.2 Quantum harmonic oscillator

In our discussion above, we have kept the definition of a quantum system and the envi-

ronment to an abstract level. In this thesis, we are utilizing a superconducting-circuit to

physically realize a two-level quantum system as a qubit and a quantized electromagnetic

field as the environment. Interestingly, both the qubit and the quantized electromagnetic

field are described as harmonic oscillators but in a quantum regime. Thus, motivated by

this necessity, we provide a recipe to quantize a harmonic oscillator and use the recipe

later to describe both the system and its environment.

The Hamiltonian formalism1 is central to the discussion of a quantum system, especially

when it comes to the quantization procedure given that the eigenfrequency of the Hamil-

tonian is known. Hamiltonian of an harmonic oscillator in the classical case is well-known

and given by

H =
p2

2m
+
x2

2
mω2. (2.7)

Equation (2.7) manifests itself into simple harmonic motion of a particle with mass m in a

quadratic potential with an angular frequency ω. In order to describe quantum harmonic

oscillator instead of a classical one, we promote the coordinate x and its conjugate mo-

mentum p to operators through canonical quantization x −→ x̂; p −→ p̂ = ℏ
i

∂
∂x̂

. Substituting

these changes into equation (2.7) yields

Ĥ =
p̂2

2m
+
x̂2

2
mω2, (2.8)

which is a standard form for a quantum harmonic oscillator with the commutation relation

[x̂, p̂] = iℏ. The eigenvalue spectrum of equation (2.8) can typically be obtained from

the Schrödinger equation using a wavefunction either in the position or momentum rep-

resentation. Alternatively, we can study and produce the same eigenvalue spectrum in a

representation-free manner by adopting the Dirac formalism [34].

To generate the spectrum of a quantum harmonic oscillator in the Dirac formalism, we

introduce dimensionless operators X̂ =
√︁

mω
ℏ x̂ and P̂ =

√︂
1

ℏmω
p̂ with the commutation

1A detailed discussion of the Hamiltonian formalism can be found in any classical mechanics textbook
such as [33].
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relation [X̂, P̂ ] = i and express the Hamiltonian in terms of X̂ and P̂ : Ĥ = 1
2
ℏω(X̂

2
+

P̂
2
). Then, by introducing the annihilation and creation operators â = 1√

2
(X̂ + iP̂ ) and

â† = 1√
2
(X̂ − iP̂ ) with the commutation relation [â, â†] = 1, we obtain the Hamiltonian of

a quantum harmonic oscillator

Ĥ = ℏω
(︃
â†â+

1

2

)︃
. (2.9)

The annihilation and creation operators â and â† respectively are non-Hermitian operators

and therefore, do not correspond to any physical observables. However, all physical

observables can be expressed in terms of â and â†. The eigenvalue spectrum of the

Hamiltonian is thus simplified to the spectrum of the number operator N̂ ≡ â†â. The

spectrum of N̂ is obtained from the commutation relations [N̂ , â] = −â and [N̂ , â†] = â†

and is given by [34]

N̂ |n⟩ = n |n⟩ , n = 0, 1, 2 . . . , (2.10)

where {|n⟩} represents the Fock or number states. By limiting the discussion to number

states, we successfully attain a discrete eigenenergy spectrum for the quantum harmonic

oscillator

Ĥ |n⟩ = En |n⟩ , (2.11)

where En = ℏω(n+ 1
2
). It is important to observe that the energy spacing of the adjacent

levels is equal. This observation will play an important role in the design of the qubit.

The apparent naming convention for the creation and the annihilation operators can read-

ily be seen from their actions on the Fock state

â |n⟩ =
√
n |n− 1⟩ , (2.12)

â† |n⟩ =
√
n+ 1 |n+ 1⟩ . (2.13)

We observe that the annihilation operator destroys an excitation, whereas the creation

operator promotes an excitation. Additionally, the equation (2.13) reflects that the number

states |n⟩ can be generated from the vacuum state through the repeated action of the

creation operator [35]

|n⟩ = â†√
n!

|0⟩ . (2.14)

2.3 Quantum information

In classical information theory, the formulation of algorithms and gate operations does not

rely on the exact physical implementation of a Boolean bit. Similarly, quantum informa-
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tion theory disregards the intricate details of a physical qubit in order to describe simple

quantum operations or complex algorithms. In this section, we tailor our discussion of

this dense field to fit the necessary details required to follow this thesis. In particular, we

introduce a mathematical description of a single qubit, and also provide a tool, namely,

Bloch sphere for the visualization of the state of the qubit. Furthermore, we briefly discuss

single quantum gates and the fidelity of the gate operation.

2.3.1 Qubits

In quantum information theory, an equivalent description of a boolean bit is given by a

qubit. While a bit only takes values in {0, 1}, a qubit is essentially defined in a two-

dimensional complex vector space C2 and can take infinitely many distinct states. Math-

ematically, we observe this in Dirac notation as

|ψ⟩ = α |0⟩+ β |1⟩ , (2.15)

where {|0⟩ , |1⟩} are the computational basis states that may correspond to, for example,

the ground and the excited state of a truncated two-level system, and α, β ∈ C are

the coefficients and often called probability amplitudes. When the qubit is measured, it

collapses to either state |0⟩ or state |1⟩ with probabilities |α|2 or |β|2, respectively. The

probability amplitude must satisfy the condition |α|2+ |β|2 = 1. Mathematically speaking,

the superposition allows an infinite amount of information to be stored on a qubit, since

there are infinite possibilities to form a superposition state. However, the measurement

of the qubit collapses it to either |0⟩ or |1⟩, thus preventing any apparent paradoxes that

may arise from such a description [30].

2.3.2 Bloch sphere

One can build a nice intuition of operations performed on a single qubit using a graphical

representation. Utilizing the condition |α|2 + |β|2 = 1, one can parameterize the qubit

state up to an irrelevant global phase factor using polar (θ) and azimuthal (φ) angles on a

three-dimensional coordinate system. This can readily be expressed as

|ψ⟩ = cos

(︃
θ

2

)︃
|0⟩+ eiφ sin

(︃
θ

2

)︃
|1⟩ , (2.16)

where the angles (θ, φ) define a point on the unit sphere, also known as Bloch sphere.

In addition to aiding in a nice visual representation of a single qubit state, Bloch sphere

provides a powerful tool to represent simple gate operations through rotations around the

principle coordinate axes, see figure 3.8b.

It is useful to express the qubit in the density operator form to accommodate the discus-
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sion of pure and mixed states. Thus, we write the state in the density operator form [30]

ρ̂q =
1

2

(︃
1̂+

∑︂
i=x,y,z

σ̂iui

)︃
, (2.17)

where 1̂ is the identity operator, σ̂i represent Pauli operators, and ui are the components

of a real vector u ∈ R3, which is referred to as Bloch vector. The Bloch vector satisfies

the condition u ≤ 1, where the equality corresponds to the pure state and the inequality

defines a mixed state. Thus, one can visualize the pure state as points on the surface of

the Bloch sphere, while the mixed states as points inside of the sphere.

One of the most important results that we obtain from the discussion of the Bloch sphere

and the qubit in density operator form is the relationship between the expected value of

the Pauli vector σ̂ = [σ̂x, σ̂y, σ̂z] and the Bloch vector, which is given by [32]

⟨σ̂⟩ = Tr(ρ̂qσ̂) = u. (2.18)

2.3.3 Single-qubit gate

Any complex computation performed on a classical or a quantum computer can be broken

down to a series of simple gate operations. It is therefore necessary to study the details of

a single qubit gate in order to facilitate intricate computations. Typically, a gate operation

manipulates the state of the qubit to perform some logical operation. Mathematically, we

write the action of a probability conserving gate operation on a qubit as [36]

χ̂(ρ̂q) =
∑︂
i

K̂iρ̂qK̂
†
i , (2.19)

where {K̂i} are the collection of Kraus operators, obeying the completeness relation∑︁
i = K̂iK̂

†
i = 1̂. For example, a quantum NOT gate operation on a qubit results in

swapping of the basis states and is given by

χ̂NOT(ρ̂q) = σ̂xρ̂qσ̂x. (2.20)

A quantum NOT gate is usually referred to as a Pauli-X gate or simply a X gate operation.

The resulting operation is conveniently visualized on the Bloch sphere as a π-rotation of

the Bloch vector around the x-axis. Similarly, there are quantum gates such as Pauli-Y

and Pauli-Z, which are obtained by an equivalent π-rotation around the y- and z- axes,

respectively.
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2.3.4 Gate fidelity and error

It is important to establish a measure to quantify the quality of gate operations. A widely

used measure is the fidelity F , which is defined as [37, 38]

F (ρ̂exp, ρ̂ideal) = Tr(ρ̂exp, ρ̂ideal), (2.21)

where ρ̂exp and ρ̂ideal are the resulting quantum states from experimental and ideal gate

operations, respectively. Consequently, the gate fidelity measures an overlap between

two quantum states. For a perfect gate operation, the fidelity takes the value of 1, while

the worst possible gate operation yields F = 0.

An alternative measure of the performance of a gate operation is given by the gate error

ε(ρ̂exp, ρ̂ideal) = 1− F (ρ̂exp, ρ̂ideal), (2.22)

which is also sometimes referred to as infidelity.
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3 THEORETICAL BACKGROUND ON CIRCUIT

QUANTUM ELECTRODYNAMICS

The study of the light–matter interaction led to the invention of a laser, a prominent dis-

covery of 21st century. Not long after, an emerging theory of cavity quantum electrody-

namics (CQED) pushed the frontier of light–matter interaction to an unparalleled direction.

CQED studies the interaction of quantized electromagnetic field with atoms confined in

high finesse optical cavities. This opened up a wide range of opportunities to experimen-

tally demonstrate quantum effects like superposition, entanglement of atoms with pho-

tons, quantum teleportation, generation of non-classical states of light and many purely

quantum-mechanical phenomena [39, 40, 41]. Recently, CQED has spawned numerous

fields studying similar interactions. In particular, for quantum computing and informa-

tion processing related tasks [42, 43]. One such field is circuit quantum electrodynamics

(cQED) [44].

In this chapter, we present methods to describe light–matter interaction with supercon-

ducting circuits and study the associated CQED-like physics in a different light. We utilize

existing circuit elements and use it to describe an atom and an optical cavity. Not sur-

prisingly, one can argue how classical circuit elements could be used to demonstrate

quantum phenomena. To tackle this, we make a transition from the classical description

of electrical circuits to quantum-mechanical through a quantization procedure discussed

in chapter 2. In doing so, we reveal unique quantum behaviour of an electrical circuit and

use the associated quantum degrees of freedom to demonstrate quantum information

processing related tasks.

We start with the description of a coplanar waveguide (CPW) resonator as a single-mode

harmonic LC oscillator, resembling an optical cavity and an anharmonic LC oscillator

realized from a non-linear element referred to as the Josephson junction, replacing an

atom, which we call a qubit or a two-level system. We present resonator-qubit interac-

tion by borrowing the concepts from CQED, precisely by investigating the spectrum of

the Jaynes–Cummings Hamiltonian with a few approximations. Finally, we will describe

methods to implement a quantum NOT gate and to minimize the error resulting from the

gate operation.
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3.1 Microwave resonators

In CQED, an optical cavity stores quantized electromagnetic excitations, i.e., photons of

the visible spectrum of electromagnetic radiation. Usually, two highly reflecting mirrors

form an optical cavity. In cQED, CPW resonator functions as an optical cavity but stores

microwave photons. In this section, we present the quantum-mechanical description of a

CPW resonator.

3.1.1 Quantum LC oscillator

In section 2.2, we presented the recipe for the quantization of a harmonic oscillator and

we make use of this in the quantum-mechanical description of a simple LC oscillator. The

discussion of a LC oscillator is important in order to describe a CPW resonator, which is

treated as a sequence of coupled LC oscillators [45], see figure 3.2c.

Figure 3.1. Quantum LC oscillator. a) Lumped-element model, Capacitor (capacitance
C) and inductor (inductance L) connected in parallel makes up a LC oscillator with reso-
nant frequency ω0 =

1√
LC

. The voltage V applied at the node creates a charge q = CV

on the capacitor and the current I = −dq
dt

flowing through the inductor gives rise to a
magnetic flux ϕ = LI . b) Equally spaced, non-degenerate discrete eigenenergies of a
quantum LC oscillator.

The charge oscillation in the circuit induces the oscillation of electric and magnetic fields

between the plates of the capacitor and inside the inductor, respectively. Both electric

and magnetic fields have energy density associated with them, which give rise to the total

energy of the LC oscillator as the sum of the capacitive q2

2C
and the inductive LI2

2
energy.

Furthermore, we utilize the definition of the flux ϕ and the resonant frequency ω0 in the

inductive energy term to construct the classical Hamiltonian for the LC oscillator

H =
q2

2C
+
ϕ2

2
Cω2

0. (3.1)

We immediately recognize the form of equation (3.1) resembling equation (2.7) describ-
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ing a mechanical oscillator, where C represents the mass, q the momentum and ϕ the

position. Following the recipe outlined in section 2.2, we attain discrete energy levels of

the quantum LC oscillator

Ĥ = ℏω0

(︂
â†â+

1

2

)︂
= ℏω0

(︂
N̂ +

1

2

)︂
, (3.2)

where as before the commutation relations yield [ϕ̂, q̂] = iℏ and [â, â†] = 1. The quan-

tized charge q̂ and flux ϕ̂ operators in terms of the ladder operators are given by

q̂ = i

√︃
ℏω0C

2
(â† − â), (3.3) ϕ̂ =

√︃
ℏ

2ω0C
(â† + â), (3.4)

with Z0 =
√︂

L
C

as the characteristic impedance of the circuit. This is an example of

a zero-mode resonator, since there is only one frequency ω0 allowed by the oscillator.

Similar to a quantized electromagnetic field in an optical cavity, the eigenenergy spectrum

of a quantum LC oscillator is equally-spaced by ℏω0 and non-degenerate as shown in

figure 3.1b. Thus, we call these discrete excitations of the electromagnetic field in a LC

oscillator, microwave photons. However, we will use the terms microwave photons and

photons interchangeably.

In addition, we observe that the ground state |n = 0⟩ corresponds to the case where

there is no photons in the oscillator. We can inject photons from the environment to the

oscillator and therefore, create an excitation in the LC oscillator. Mathematically, this

scenario is represented by an operation â† |0⟩ = |1⟩. Similarly, we can remove a photon

from the oscillator to the environment through operation â |1⟩ = |0⟩, leaving the oscillator

at the ground state. The physical realization of injecting and removing photons to and

from the oscillator can be different. However, the mathematical description of the process

remains unique.

3.1.2 Coplanar waveguide resonator

In order to observe quantum effects in an electrical circuit, certain factors need to be taken

into consideration. Coupling of an electrical circuit to the dissipative environment and

thermal noise being the most common ones. Thus, we require high-quality LC resonator

with a very low photon loss rate and must be operated at sub-millikelvin temperatures.

Transmission line resonator realized as CPW structure (see figure 3.2) fulfills both condi-

tions. Furthermore, it can be physically realized with the state-of-the-art microfabrication

techniques.

In the treatment of the quantum LC oscillator as a simple LC circuit, we employed the

lumped-element model, that is, when the physical dimensions of the circuit elements are

much smaller than the wavelength of microwave frequencies. In the case of a CPW, this is
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no longer true since the length of the resonator is comparable to used wavelength. Thus,

it is required for us to resort to the distributed-element model [45].

Figure 3.2. Schematic representation of a two-dimensional CPW resonator. a) Top view
of a CPW resonator with the center conductor width w, the spacing between the conductor
and ground plane s and the length of the resonator d. The CPW forms a λ

4
resonator

realized with one closed end (short-circuit at x = 0) and one open end (open-circuit at x =
d). b) Cross-section of the waveguide realized as a thin superconducting metal (Niobium)
islands on top of a thick dielectric substrate (Si wafer). The adjacent planes are grounded
while the center conductor is set to a floating potential. c) Equivalent distributed-element
model. At x = d, the waveguide is coupled to external feedlines through the capacitor Cκ.

In the distributed-element model, CPW is divided into a discrete number of lumped-

element LC oscillators, see figure 3.2c. CPWs have uniform capacitance c and induc-

tance l per unit length, which are dictated by the geometry of the waveguide, i.e., values

of w and s and material parameters [46]. Thus, the capacitances and inductances for

each discrete LC oscillators are Ci = Cr = c∆x and Li = Lr = l∆x, respectively.

We observe that at each node i, we have the charge qi on the capacitor Ci and the flux

ϕi+1 − ϕi on the inductor Li. Putting this all together, we write the classical Hamiltonian

of the CPW as

HR =
N−1∑︂
i=0

1

2Cr

q2i +
1

2Lr

(ϕi+1 − ϕi)
2. (3.5)

To utilize the quantization procedure discussed in section 2.2, we require discrete eigen-

modes of CPW in the approximation of the distributed-element method. To this end, we

express the Hamiltonian from equation (3.5) in the continuum limit by replacing the charge

with a charge density field ρ(xi) = qi
∆x

and the flux with a flux field ϕ(xi) = ϕi. With

lim∆x→0
ϕi+1−ϕi

∆x
= ∂xϕi and replacing

∑︁N−1
i=0 →

∫︁ d

0
, we get the massless Klein–Gordon
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quantum field theory [47]

HR =

∫︂ d

0

[︃
1

2c
ρ(x)2 +

1

2l
[∂xϕ(x)]

2

]︃
dx. (3.6)

In general, the voltage V (x, t) is between the center conductor and the ground plane.

Thus, the generalized coordinate flux field is a function of both time t and position x,

since it is defined as ϕ(x, t) =
∫︁ t

−∞ V (x, t′)dt′. As a result, the charge density field being

canonical momentum of the flux field satisfies ρ(x, t) = c∂tϕ(x, t). By employing the

Hamilton’s principle in equation (3.6), we reduce the description of the field theory to just

the flux field and recognize that it satisfies the wave-equation(︃
∂2t − v2∂2x

)︃
ϕ(x, t) = 0, (3.7)

where v = 1√
lc

is the speed of microwave photons in the CPW. By writing the solution to

equation (3.7) as the product of separable spatial and temporal eigenmodes

ϕ(x, t) =
∞∑︂
k=0

uk(x)ϕk(t) (3.8)

with temporal eigenmodes obeying ϕk̈ = −ω2
kϕk, we attain a second-order homogeneous

ordinary differential equation for spatial wavefunction

∂2xuk(x) = −k2kuk(x), (3.9)

where temporal mode frequency ωk dictates oscillation in time and the spatial mode

wavenumber kk = ωk

v
- oscillation in space. The solution to equation (3.9) takes the

form

uk(x) = Uk cos(kkx+ φk), (3.10)

whereUk and φk are the amplitude and phase corresponding to the spatial eigenmode uk,

respectively. By imposing the boundary condition for λ
4
-resonator, i.e., vanishing voltage

at the short-circuit end ϕ(0, t) = 0 and maximal current at the open end ∂ϕ(x,t)
∂x

⃓⃓⃓
x=d

= 0,

we attain

kk = (2k + 1)
π

2d
, (3.11)

ωk = vkk = (2k + 1)
π

2
√
LrCr

. (3.12)

The amplitude Uk is chosen in a such a way that the spatial mode function is normalized,

i.e., it satisfies 1
d

∫︁ d

0
uk(x)um(x)dx = δkm. With this discrete eigenmode solution, we
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express the continuum limit of the Hamiltonian in equation (3.6) as

HR =
∞∑︂
k=0

q2k
2Cr

+
ϕ2
k

2
Crω

2
k. (3.13)

We notice that the inductance of the CPW is treated to be mode dependent since Lk =
1

ω2
kCr

= 4Lr

(2k+1)2π2 . Now, the Hamiltonian in equation (3.13) assumes exactly the form

required for us to employ the quantization procedure. We promote the conjugate variables

(qk, ϕk) to quantum operators (q̂k, ϕ̂k) with commutation relations [qk̂, ϕ̂k′ ] = iℏδkk′ and

[âk, â
†
k′ ] = δkk′ . The resulting eigenenergy spectrum of equation (3.13) yields

ĤR =
∞∑︂
k=0

ℏωk

(︂
â†kâk +

1

2

)︂
. (3.14)

The mode dependent quantized charge q̂k and flux ϕ̂k operators read

q̂k = i

√︃
ℏωkCr

2
(â†k − âk) (3.15) ϕ̂k =

√︃
ℏ

2ωkCr

(â†k + âk). (3.16)

where Zk =
√︂

Lk

Cr
is mode-specific characteristic impedance of the CPW. The diagonal-

ized Hamiltonian in equation (3.14) is sometimes referred to as the bath of independent

harmonic oscillators. Consequently, CPWs are multi-mode LC resonators. In general, the

harmonic frequency modes ωk can be selectively chosen for excitation and usually it is

the fundamental mode, i.e., k = 0. Thus, it allows us to replace the sum with just a single

term ĤR = ℏωr

(︂
â†â+ 1

2

)︂
, where ω0 = ωr uniquely defines resonator frequency. This is

known as single-mode approximation, which we will make use of in rest of the discussion

of CPW resonator. It is also relevant that the higher modes k > 0 won’t get thermally

excited due to low temperature.

3.1.3 Coherent states

The Fock states used earlier to describe the quantum LC oscillators do not have any

classical counterpart, since even in the presence of photons, the expected value of the

electric field between the center conductor and the ground plane is 0. Thus, the Fock

states do not represent a classical field with non-zero amplitude. Coherent states provide

the best approximation to classical fields, however with the hint of some non-classical be-

haviour including quantum fluctuations in the coherent states. A coherent state is formed

from superposition of the Fock states [35]

|α⟩ = e−|α|2/2
∑︂
n

αn

√
n!

|n⟩ . (3.17)
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Consequently, they are the eigenstates of the annihilation operator â |α⟩ = α |α⟩, which

results in average photon occupation of n̄ = ⟨α| n̂ |α⟩ = |α|2 in a given coherent state

|α⟩. The probability of finding n photons in a coherent state |α⟩ is given by the Poisson’s

distribution

p(n) = e−n̄ n̄
n

n!
, (3.18)

with the standard deviation relative to the photon number given by ∆n/n̄ = 1/
√
n̄. This

results in a decrease of quantum fluctuations as the photon number increases, suggesting

mapping to a Gaussian distribution as seen in most classical fields. Often, we require a

procedure to construct the quantum description from the classical ones. In the case of

generating coherent states from classical fields, we do so by applying the displacement

operator

D̂(α) = exp(αâ† − α∗â), (3.19)

to the vacuum state and attain the coherent state |α⟩ = D̂(α) |0⟩. This operation can

be thought as shifting vacuum state by a vector α in the phase space, which essentially

trades off uncertainty in quadrature components to produce classical fields. One can play

with these uncertainty relations and produce exotic states of the microwave field, namely

squeezed states [39].

3.2 Superconducting qubit

So far, we have successfully replaced an optical cavity by a CPW in our route to de-

vise CQED-like experiments in the spirit of circuit-QED (cQED). Now, we would like to

find similar description for an atom using an electrical circuit. To be more precise, this

electrical circuit does not need to exhibit all the properties of an atom but one, i.e., the

anharmonic energy spectrum. We wish to use the atom for storing quantum information,

which requires any two states to be uniquely defined. Consequently, a LC oscillator fails

this requirement as a candidate for an atom since the transition frequency is always the

same for all the states. However, if one could introduce non-linearity in the LC oscillator

then one can successfully make the spectrum of a LC oscillator anharmonic and there-

fore, construct a suitable candidate for a qubit. As it happens, this non-linearity can be

introduced in a circuit by employing a Josephson junction.

3.2.1 Josephson junction

Josephson junctions are nonlinear superconducting-circuit elements realized as two su-

perconducting electrodes separated by a thin insulting barrier, see figures 3.3a and 3.3b.

Both of these superconductors can be effectively described by macroscopic wave func-

tions Ψ1 and Ψ2 and associated gauge-invariant phases φ1 and φ2 [48, 49]. The abso-

lute value of the wave function contains information about the density of Cooper pairs,
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whereas the phase of the wave function essentially encodes all the necessary details we

need to study the nonlinear behaviour we are interested in.

Figure 3.3. Josephson junction. a) Superconductor-Insulator-Superconductor (SIS) in-
terface forming a typical Josephson junction, facilitating quantum tunneling of Cooper
pairs through a thin insulating tunnel barrier (weak link). b) SEM image of a SIS junc-
tion realized from electron-beam lithography in conjunction with the shadow evaporation
technique. c) Circuit representation of a Josephson junction, considered as a LC oscilla-
tor with a junction capacitance CJ and an inductance LJ. The short-hand notation with
symbol EJ indicates the junction energy.

Quantum tunneling of Cooper pairs in the absence of an external dc bias (V) leads to

a non-zero DC supercurrent flowing through the insulating barrier; this is known as the

DC Josephson effect. On the contrary, if a DC bias is applied, it leads to a non-zero

AC supercurrent due to the AC Josephson effect. This non-classical behaviour manifests

itself into a set of Josephson equations relating the voltage, the current and the phase

difference φ = φ2 − φ1,

IS = IC sin(φ) , (3.20)

dφ

dt
=

2π

ϕ0

V , (3.21)

where IC is the critical current sustained by the junction that depends on material param-

eters, and ϕ0 =
h
2e

is the flux quantum. The current-phase relationship in equation (3.20)

signifies the DC Josephson effect. The AC Josephson effect comes from a more funda-

mental prediction that the evolution of the phase difference depends on the bias voltage

as specified by equation (3.21). In the presence of a constant DC bias voltage, we find

φ(t) = φ(0)+ 2π
ϕ0
V t, revealing a very important relationship between the phase difference

and the external flux. Furthermore, since the relationship between the flux and the volt-

age is defined as ϕ(t) =
∫︁ t

0
V (t′)dt′, we get the AC supercurrent IS(t) = IC sin

(︂
2π ϕ(t)

ϕ0

)︂
by setting φ(0) = 0.

As we have established the relationship between the voltage and the current for a Joseph-
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son junction, we find the energy stored in the junction to be

E =

∫︂ t

0

ISV (t′)dt′ , (3.22a)

= IC

∫︂ ϕ

0

sin
(︂
2π
ϕ′

ϕ0

)︂
dϕ′ , (3.22b)

=
ϕ0IC
2π

[︂
1− cos

(︂
2π

ϕ

ϕ0

)︂]︂
= EJ

[︂
1− cos

(︂
2π

ϕ

ϕ0

)︂]︂
, (3.22c)

where EJ =
ϕ0IC
2π

is the Josephson coupling energy, which is the energy associated with

the tunneling rate of Cooper pairs. Additionally, we recognize that the energy stored in

the junction depends on the external flux ϕ, similar to the inductive energy in a LC circuit.

Thus, we define the Josephson inductance LJ from the relation ϕ = LJIS and observe

V =
dϕ

dt
= LJ

dIS
dt

=⇒ LJ(ϕ) =
LC

cos
(︂
2π ϕ

ϕ0

)︂ , (3.23)

where LC = ϕ0

2πIC
is the Josephson inductance at zero flux. We acknowledge that LJ

is a nonlinear function of the external flux ϕ, which is exactly what we hoped to achieve.

Josephson junction also has a capacitance CJ, since the junction resembles a typical ca-

pacitor with two superconducting metal islands separated by an insulating barrier. Con-

sequently, a Josephson junction can be regarded as a nonlinear LC oscillator, see figure

3.3c, with the Hamiltonian

HJJ =
q2

2CJ

+ EJ

[︂
1− cos

(︂
2π

ϕ

ϕ0

)︂]︂
. (3.24)

3.2.2 Charge qubit

Equipped with the Josephson junction as a non-linear LC oscillator, we begin our exposi-

tion of the first of a kind superconducting qubit, a charge qubit [18]. A charge qubit can

be physically realized in the form of Cooper pair box (CPB), that is, a Josephson junction

connected to a DC voltage source through a gate capacitor CG as depicted in figure 3.4a.

Due to the unequally spaced energy spectrum of a Josephson junction (fig. 3.4b), the

qubit space can be formed by limiting the eigenmodes to the ground state |g⟩ and the

excited state |e⟩. The truncation of the higher modes can be done by selectively driving

transition frequency ωge. In a charge qubit, this is done by applying a bias voltage to the

junction through the gate capacitor. To see this, we express the Hamiltonian of a CPB in

the so-called number-phase representation [18, 50] by defining the number operator as
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Figure 3.4. Cooper pair box. a) Lumped-circuit model of a charge qubit. A Josephson
junction connected to an external voltage source through gate capacitor CG. b) Eigenen-
ergy spectrum of a Josephson junction with an unequal transition frequency of the ad-
jacent states, labelled |g⟩ , |e⟩ , |f⟩ , ... to make a distinction from the number states of a
harmonic LC oscillator. c) Energy spectrum of Cooper-pair box.

q̂ |n⟩ = −2en |n⟩, yielding

HCPB = 4EC(n− ng)
2 + EJ

[︂
1− cos

(︂
2π

ϕ

ϕ0

)︂]︂
, (3.25)

where EC = e2

2CΣ
is the charging energy (energy required to put an electron on the island)

with the total capacitance CΣ = CJ + CG, n represents the number of Cooper pairs on

the island and ng = CGVg

2e
is the gate charge used to control the state of the charge

qubit. Consequently, we yield the same commutation relationship [n̂, ϕ̂] = iℏ as in the

charge–phase representation.

The energy spectrum of equation (3.25) is computed by solving the Schrödinger equation

ĤCPB |ϕ⟩ = Ek |ϕ⟩ in phase basis and is shown in figure 3.4c. In case EJ = 0, the

spectrum consists of a bunch of parabolas corresponding to the number of Cooper pairs

on the junction as a function of the gate charge ng (dashed lines in figure 3.4c). For

EJ ≪ EC, the charge degeneracy at odd multiples of ng = 1
2

splits up and thus yields

avoided crossings. By confining the gate charge in the range 0 < ng < 1, we effectively

create a two level system marked with |g⟩ and |e⟩ as the ground and the excited state,

respectively, see figure 3.4c.

3.2.3 Transmon qubit

Charge qubit introduces an excellent anharmonicity to the energy levels. However, the

charge dispersion, i.e., the dependence of the energy on the gate charge is significant as

well. This leads to a very small dephasing time, which renders a charge qubit less useful

in quantum information processing related tasks. This can be circumvented by increasing

the Josephson coupling energy such that 40 < EJ

EC
< 100. In doing so, we increase the

fluctuation of the number of Cooper pairs on the junction and thus make the qubit less

susceptible to charge noise as indicated by flat energy bands (fig. 3.5c). Practically, this
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is done by adding a large capacitor in parallel with the junction as shown in figure 3.5a.

Such type of qubits are called transmons [25].

Figure 3.5. Transmon qubit. a) Lumped-element model of a transmon qubit. Two Joseph-
son junctions connected in parallel forming a DC SQUID. The DC SQUID is connected in
parallel with a large shunting capacitance CS. This parallel combination of a DC SQUID
and a shunt capacitance is coupled to a CPW resonator through the gate capacitance
CG. b) SEM image of a physically realized transmon qubit, where the qubit island (purple
cross) represents the shunt capacitance with a SQUID fabricated on the left arm. The
qubit island is coupled to the CPW resonator through a coupler (light-blue horseshoe) is-
land. c) Energy spectrum of a transmon, where the Bloch bands are flat due to increased
capacitance (decreased charging energy).

Additionally, a single Josephson junction is replaced by a parallel combination of two

Josephson junctions forming direct current superconducting quantum interference device

(DC SQUID) [48], see figure 3.5a. The parallel junctions form a loop, where incoming

supercurrent splits at the input port and interferes at the exit port. The flow of supercur-

rent and resulting intereference depends on the external flux ϕext applied to the junction

consequently, making the Josephson coupling energy tunable as a function of external

flux [25]

EJ(ϕext) = EJΣ cos
(︂πϕext

ϕ0

)︂√︄
1 + d2 tan2

(︂πϕext

ϕ0

)︂
, (3.26)

where EJΣ is the sum of the Josephson coupling energy of both junctions and d = ∆EJ

EJΣ

with ∆EJ being the difference in the Josephson coupling energy of both junctions. For

the maximum range of flux tunability, it is preferred to make both junctions symmetric

such that EJΣ = 2EJ and d = 0, resulting in EJ(ϕext) = EJΣ cos
(︂

πϕext

Φ0

)︂
. In practice,

there is always some asymmetricity introduced when fabricating the junction. With these

additions to the Hamiltonian of a CPB, we express the Hamiltonian of the transmon as

HQ = 4EC(n− ng)
2 + EJ

[︂
1− cos

(︂
2π

ϕ

ϕ0

)︂]︂
, (3.27)

where the sum capacitance CΣ = 2CJ + CG + CS in charging energy EC now includes

contributions from a large shunting capacitor CS and capacitance from two Josephson

junctions, and the Josephson coupling energy EJ = EJ(ϕext) is thus flux-dependent.

Having the classical Hamiltonian ready, we move on to the quantization procedure. How-
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ever to do this, we make few observations regarding the cosine potential of the Josephson

junction. The ground |g⟩ and excited |e⟩ states are confined deep in the lower energy lev-

els compared to the height (EJ) of the potential well. Additionally, due to flat lowest energy

levels, we set ng = 0 since, essentially there is no charge dispersion present at these lev-

els. With these observations and δ = 2π ϕ
ϕ0

, we Taylor expand cos δ = 1− δ2

2
+ δ4

24
−O(δ6)

and rewrite the Hamiltonian from equation (3.27) as

HQ =
n2

2C ′ +
δ2

2L′ − EJ
δ4

24
+O(δ6), (3.28)

where C ′ = 1
8EC

and L′ = 1
EJ

. The first two terms of the equation (3.28) take the

similar form as a harmonic oscillator. Thus, by defining the Josephson plasma frequency

Ep = ℏωp = 1√
L′C′ =

√
8EJEC, we write

HQ =
n2

2C ′ +
δ2

2
C ′E2

p − EJ
δ4

24
+O(δ6). (3.29)

By limiting the equation (3.29) to the first two terms, we observe that the resulting equa-

tion resembles quantum harmonic oscillator. With the recipe outlined in section 2.2, we

quantize equation (3.29) by promoting conjugate variables (n, δ) to quantum operators,

obeying the commutation relationship [n̂, δ̂] = i. This yields

n̂ =
(︂ EJ

8EC

)︂ 1
4 i√

2
(b̂

†
− b̂) (3.30) δ̂ =

(︂8EC

EJ

)︂ 1
4 1√

2
(b̂

†
+ b̂), (3.31)

where creation and annihilation operators satisfy usual commutation relation [b̂, b̂
†
] = 1.

Plugging equations (3.30) and (3.31) into the Hamiltonian in equation (3.29) and disre-

garding higher order terms, we get

ĤQ = ℏωp(b
†̂b̂+

1

2
)− EC

12
(b̂

†
+ b̂)4. (3.32)

Under the rotating wave approximation (RWA), i.e, only taking the terms that have equal

number of b̂
†

and b̂ in (b̂
†
+ b̂)4, we attain

ĤQ = ℏωgeb̂
†
b̂+

1

2
ℏωp −

EC

2
b̂
†
b̂
†
b̂b̂, (3.33)

where ωq = ωge = (
√
8EJEC − EC)/ℏ is the transition frequency from |g⟩ to |e⟩, com-

monly referred to as qubit frequency. The RWA approximation is valid because when the

frame is rotating at ωq ≫ EC/ℏ, terms that have unequal amount of b̂
†

and b̂ will average

out if they oscillate at higher frequencies [51].

We make two observations here: first, the qubit frequency is a result of a correction to

the Josephson plasma frequency by EC, this frequency shift is known as Lamb shift, and

second, the third term in equation (3.33) is referred to as Kerr nonlinearity, which results
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in a shift of EC/ℏ in the transition frequency between adjacent states |k⟩ and |k + 1⟩.
For example, transition frequency between |e⟩ to |f⟩ is given by ωef = ωge − EC/ℏ.

Since the Josephson coupling energy is flux-tunable, the qubit frequency ωq(ϕext) =

(
√︁
8EJ(ϕext)EC − EC)/ℏ can be tuned to the desired value by changing external flux.

This will turn out to be a very important property in demonstrating quantum gate opera-

tions.

3.3 Transmon–resonator interaction

Having replaced the role of an optical cavity and an atom by a CPW and a transmon qubit,

respectively, we move forward to introduce the coupled interaction of a resonator with an

artificial atom. Essentially, we are interested in reproducing the results of quantized light-

matter interaction, first demonstrated in CQED, with superconducting-circuits, while using

the results in a different light to develop unique techniques for implementing quantum

information processing related tasks.

3.3.1 Coupling between the transmon and the resonator

Drawing parallelism from an atom coupled to an optical cavity, we describe coupling of a

transmon to the waveguide resonator in a similar manner as shown in figures 3.6a and

3.6b.

Figure 3.6. Light–matter interaction. a) A schematic illustration of an atom coupled to
an optical cavity. The atom is effectively modelled as a two-level system with transition
frequency ωq between states |g⟩ and |e⟩. The coherent coupling between the optical
cavity and the atom is quantified by the vacuum Rabi coupling g. The incoherent coupling
of an atom to the outside environment is dictated by spontaneous emission rate γ and
transmission loss rate κ. b) SEM image of a transmon coupled to a resonator, conveying
similar coupling scheme as in (a). c) Lumped-element model of a coupled transmon–
resonator system.

The coupling of an atom to a cavity is influenced by dipole interaction [39] in CQED, whose

details are encapsulated in the interaction Hamiltonian Ĥ int = −d̂ · Ê(t). In cQED, the

interaction arises from capacitive coupling of a transmon to a resonator, facilitated by

horseshoe-like coupler as depicted in figure 3.6b. The other factor contributing to this

interaction is due to a purely quantum-mechanical effect known as zero-point voltage
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fluctuations [35]. In the absence of a microwave photon in the transmon or the resonator,

i.e., in a vacuum state n = 0, there are non-zero voltage fluctuations induced at the

nodes. To observe this, we first recognize the voltage operator is dictated by

V̂ Q = − 2e

CΣ

n̂ = − 2e

CΣ

(︂ EJ

8EC

)︂ 1
4 i√

2
(b̂

†
− b̂) , (3.34)

V̂ R =
q̂

Cr

=
i

Cr

√︃
ℏωrCr

2
(â† − â) , (3.35)

where n̂ and q̂ are given by equations (3.30) and (3.15), respectively. Utilizing this, we

obtain

V q,0
rms =

√︂
⟨0| V̂

2

Q |0⟩ − ⟨0| V̂ Q |0⟩2 =
√︂

⟨0| V̂
2

Q |0⟩ =
√
2e

CΣ

(︂ EJ

8EC

)︂ 1
4
, (3.36)

V r,0
rms =

√︂
⟨0| V̂

2

R |0⟩ − ⟨0| V̂ R |0⟩2 =
√︂

⟨0| V̂
2

R |0⟩ =
√︃

ℏωr

2Cr

. (3.37)

where V q,0
rms and V r,0

rms are the zero-point voltage fluctuations induced at the transmon and

resonator nodes, respectively. Voltage fluctuations in the resonator give rise to strong

electric field fluctuations between the center conductor and the ground plane, establishing

close analogy with the dipole interaction observed in CQED. Combining all this together,

the coupling of a transmon to a resonator is described by the interaction Hamiltonian [52]

Ĥ I = −CGV̂ Q ⊗ V̂ R , (3.38)

= −CGV
q,0
rmsV

r,0
rms(b̂

†
− b̂)⊗ (â† − â) , (3.39)

= −ℏg(b̂
†
− b̂)⊗ (â† − â) , (3.40)

where voltage fluctuations and the gate capacitance are absorbed in a single term

g = CGV
q,0
rmsV

r,0
rms/ℏ called the vacuum Rabi coupling constant.

3.3.2 Jaynes–Cummings model

The dynamics of a transmon coupled to a resonator can be effectively studied by con-

structing the Hamiltonian of transmon, resonator and their coupled interaction. Thus, we

obtain

Ĥ = ĤR + ĤQ + Ĥ int , (3.41)

= ℏωrâ
†â+ ℏωqb̂

†
b̂− EC

2
b̂
†
b̂
†
b̂b̂− ℏg(b̂

†
− b̂)⊗ (â† − â) , (3.42)

where we have disregarded the zero-point energy by a suitable choice of energy refer-

ence. By expressing the transmon and the interaction Hamiltonian in the qubit eigenbasis

with completeness relation
∑︁

j |j⟩ ⟨j| = 1Q and invoking RWA since the prefactor satis-
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fies the relation g ≪ ωr, ωq, we obtain [25]

Ĥg−JC ≈ ℏωrâ
†â+ ℏ

∑︂
j

ωj |j⟩ ⟨j|+ ℏ
∑︂
j

gj,j+1

(︁
|j⟩ ⟨j + 1| ⊗ â† + |j + 1⟩ ⟨j| ⊗ â

)︁
,

(3.43)

where gj,j+1 = g
√
j + 1 is the Rabi coupling constant associated with eigenstates |j⟩

and |j + 1⟩. Equation (3.43) is a generalized Jaynes–Cummings (JC) Hamiltonian that

describes a multi-level transmon qubit interacting with single-mode resonator. For a two-

level approximation, we truncate higher levels and attain the standard JC Hamiltonian [53]

ĤJC = ℏωrâ
†â+

ℏωq

2
σ̂z + ℏg(σ̂− ⊗ â† + σ̂+ ⊗ â) , (3.44)

where we have used the fact that g01 = g
√
0 + 1 = g. The interaction Hamiltonian in

the standard JC model leads us to a very important observation that the term σ̂− ⊗ â†

signifies emission of a photon to the resonator due to the relaxation of the transmon from

|e⟩ to |g⟩ state, whereas the term σ̂+ ⊗ â indicates the absorption of a photon from the

resonator to create an excitation from |g⟩ to |e⟩ in the transmon.

Figure 3.7. Dressed states. a) Individual eigenstates of an uncoupled Hamiltonian. The
eigenstates of a transmon are truncated to the ground and the excited states with transi-
tion frequency wq (left). Eigenstates of a single-mode resonator with transition frequency
ωr (right). b) Eigenstates (dressed) of the coupled Hamiltonian, where the eigenstates
are grouped into natural manifolds E(n) with equal energy spacing given by ℏωq and ℏωr.

The combined state of an uncoupled Hamiltonian HQ̂ + HR̂ is described by the product

state |j, n⟩ = |j⟩ ⊗ |n⟩ of the transmon and the resonator, where the transmon can

either be in state |g⟩ or |e⟩ and the resonator can be in any of the number state as

depicted in figure 3.7a. However when the transmon–resonator interaction takes place,

the eigenstates (dressed states) of the coupled Hamiltonian HQ̂ +HR̂ + Ĥ int are formed

out of the superposition states of manifolds E(n) grouped in the energy space as shown

in figure 3.7b. The eigenstate corresponding to a manifold E(n) is a superposition of

product states |e, n⟩ and |g, n+ 1⟩, which has an energy difference of ℏ(ωr − ωq) = ℏ∆
between the product states.
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3.3.3 Temporal evolution

The standard JC Hamiltonian in equation (3.44) does not contain any incoherent cou-

pling to the environment, thus the Hamiltonian describing the system can be considered

closed. Temporal dynamics of such system are dictated by unitary evolution. As such,

the dynamics of the JC model can be solved in numerous ways [35, 53]: by construct-

ing time-dependent Schrödinger equation for the product state of the transmon and the

resonator, by first finding the dressed states as eigenstates of the coupled Hamiltonian,

and, finally, by employing state-operator approach as outlined in section 2.1. We utilize

the state-operator scheme to solve the dynamics of the JC model for the resonant case,

i.e, detuning ∆ = ωr − ωq = 0. To this end, we write

Ĥ = Ĥ0 + Ĥ int (3.45)

= ℏω(â†â+
σ̂z

2
) + ℏg(σ̂− ⊗ â† + σ̂+ ⊗ â), (3.46)

where ω = ωr = ωq. Writing the JC Hamiltonian in the form of equation (3.45) allows

us to think of the interaction term Ĥ
I

int as a perturbation to the uncoupled hamiltonian

Ĥ0. Additionally, this form hints us at solving the dynamics in the interaction picture,

where the evolution of the observables are described by Ĥ0 and evolution of the states

are determined by Ĥ
I

int = eiĤ0/ℏĤ inte
−iĤ0/ℏ [31]. In doing so, we attain the interaction

Hamiltonian in the interaction picture

Ĥ
I

int = ℏg(σ̂− ⊗ â† + σ̂+ ⊗ â) . (3.47)

We define the density operator ρ̂ = ρ̂Q ⊗ ρ̂R of transmon–resonator system with ρ̂Q and

ρ̂R describing the density operators of the transmon and the resontor, respectively. The

evolution of the system in the interaction picture is given by the Liouville von–Neumann

equation (2.3)

iℏ
dρ̂(t)

dt
= [Ĥ

I

int, ρ̂(t)], (3.48)

whose solution takes the form of equation (2.4) with unitary operator

Û(t) = exp
[︂
− igt(σ̂− ⊗ â† + σ̂+ ⊗ â)

]︂
. (3.49)

With operators σ̂+ =
(︁
0 1
0 0

)︁
and σ̂− =

(︁
0 0
1 0

)︁
in a matrix form, the unitary operator can be

expanded in the qubit space as [35]

U(t)ˆ =

(︄
cos
(︁
gt
√
ââ†
)︁

−iâ
sin
(︁
gt
√

â†â
)︁

√
â†â

−iâ†
sin
(︁
gt
√

ââ†
)︁

√
ââ†

cos
(︁
gt
√
â†â
)︁
)︄
. (3.50)
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For a given initial state ρ̂(0) = ρ̂Q(0)⊗ ρ̂R(0), the temporal evolution takes the form

ρ̂(t) = Û(t)
[︁
ρ̂Q(0)⊗ ρ̂R(0)

]︁
Û

†
(t). (3.51)

Note that the evolution described by equation (3.51) is unitary only for the system as a

whole, and does not prescribe any such unitary evolution for the transmon or the res-

onator density operators. Despite initially being in the pure state, the transmon and the

resonator may be described by entangled states during the evolution. Thus, it is required

for us to resort to the reduced density operator description of the transmon and the res-

onator by taking partial traces ρ̂Q(t) = TrRρ̂(t) and ρ̂R(t) = TrQρ̂(t), respectively, as

described in section 2.1.

3.3.4 Rabi oscillation: Recipe for NOT gate

One of the important results stemming from the temporal evolution of eq. (3.51) is the

so-called Rabi oscillation [35], that is the oscillatory nature of the population inversion of

qubit states. This becomes evident by considering the initial state of the resonator to be

ρ̂R(0) =
∑︁∞

n=0 p(n) |n⟩ ⟨n| and the transmon to be in the ground state, i.e., ρ̂Q(0) =

|g⟩ ⟨g|.

Figure 3.8. Rabi oscillations. a) Probability of the excited state population seen as a
Rabi oscillation, resulting from the temporal evolution under a resonant JC Hamiltonian.
A perfect periodic oscillation (orange dashed line) comes about when the initial state of
the resonator is described by a Fock state n = 50. Damped Rabi oscillations occur when
the resonator is in a coherent state with average photon number n̄ = 5 (red) and n̄ = 50
(blue). b) A visualization of a NOT gate operation on a Bloch sphere. The qubit is initially
in the ground state |g⟩ (red arrow) makes π-rotation around y-axis to end up at the excited
state |e⟩.

With these initial conditions and unitary operator from equation (3.50), we obtain [35]
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Pe(t) =
∞∑︂
n=0

p(n) sin2(gt
√
n+ 1) , (3.52)

Pg(t) =
∞∑︂
n=0

p(n) cos2(gt
√
n+ 1) , (3.53)

where p(n) is the probability density of photon states in the resonator, Pe and Pg are the

occupation probability of the excited and the ground state of the transmon, respectively.

For a non-classical Fock state, the probability density p(n) = δ(n) is essentially a delta

function, yielding excited state population probability Pe(t) = sin2(gt
√
n+ 1). We ob-

serve that even in the absence of a photon in the resonator, the excited state would

evolve in time. This purely quantum-mechanical phenomenon is called the vacuum-

field Rabi oscillation. In addition, we observe that the frequency of the Rabi oscillation

Ω(n) = 2g
√
n+ 1 depends on the number of photons present in the resonator. An ex-

ample evolution of the excited state probability with photon number n = 50 results in

perfect periodic oscillation between |e⟩ and |g⟩ similar to the semi-classical model [35],

see figure 3.8a.

As discussed in section 3.1.3, a number state does not have any classical counterpart

and thus, it is difficult to generate number states in the lab. Coherent states, on the

other hand, are the most classical of all the other quantum states and approximately

describe the interaction in the classical limit. Coherent states with the probability density

from equation (3.18) substituted in equation (3.52) result in an excited state probability

Pe(t) = e−n̄
∑︁∞

n=0
n̄n

n!
sin2(gt

√
n+ 1). Rabi oscillations with average photon number

n̄ = 5&50 are depicted in figure 3.8a. Surprisingly, we observe damped oscillation in

the coherent state model and recognize that we recover semi-classical Rabi oscillation in

the limit n̄ −→ ∞.

The most fruitful outcome from the discussion of Rabi oscillations is the recipe it provides

us to implement a quantum version of the NOT gate, i.e, the swapping of the states

|g⟩ ↔ |e⟩. We recognize that the population inversion with coherent states takes place at

tπ =
π

2g
√
n̄
, (3.54)

where tπ is naturally referred to as a π-pulse length, given the π-phase shift during the

population inversion. Thus, a transmon prepared in the ground state is led to interact

with a resonator occupied with an average photon number n̄ for the duration of tπ. This

results in the transmon occupying excited state and hence, demonstrating a NOT gate

operation. The whole operation can be easily visualized as π-rotation on the Bloch sphere

as illustrated in figure 3.8b.
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It is customary to quantify the error resulting from a gate operation as discussed in section

2.3.4. This is facilitated by first estimating the fidelity F of the gate operation. In general,

fidelity depends on the initial states of the transmon and the resonator and is given by

F (ρ̂Q, ρ̂R) = Tr
[︂
χ̂U(tπ)χ̂K

]︂
, (3.55)

where χ̂U(tπ) = TrR[U(tπ)ˆ (ρ̂Q(0)⊗ ρ̂R(0))U †(tπ)
ˆ ] is the state resulting from implemen-

tation of the NOT gate described earlier and χ̂K = σ̂xρ̂Qσ̂
†
x is the targeted ideal swapped

state. The error resulting from the NOT gate operation is thus given by ε(ρ̂Q, ρ̂R) =

1 − F (ρ̂Q, ρ̂R). We immediately recognize that the gate error decreases as the average

photon number in the resonator increases (see figure 3.8a).

3.4 Quantum driving

Experimentally, we demonstrate transmon–resonator interaction by introducing a classical

microwave drive into the system. The drive is used to generate coherent states in the

resonator from the vacuum state [35] and thus, controlling the state of the transmon.

This process of controlling the state of the transmon via coherent states generated from

classical drive is called quantum driving. The external drive is modelled as a QHO with

the Hamiltonian ĤD = ℏωdd̂
†
d̂. The description of a resonator coupled to an external

drive is encapsulated in the Hamiltonian [54]

ĤDR =
(︁
E(t)eiωdt + E∗(t)e−iωdt

)︁
⊗ (â+ â†), (3.57)

where E(t) and ωd are the complex amplitude and the frequency of the drive, respectively.

The total Hamiltonian including the effect of drive now reads

Ĥ = ĤJC + ĤD + ĤDR , (3.58)

where ĤJC is the standard JC Hamiltonian from equation (3.44). The external drive is

operated with very large amplitude fields, where quantum fluctuations are considered

negligible. Therefore, the drive is considered to be in a highly coherent state and is

described by classical fields. To incorporate this, we make use of the time-dependent

displacement operator in equation (3.19) and employ the displacement transformation

[54, 55]

Ĥ
′
= D̂

†
ĤD̂ − iD̂

†
(∂tD̂), (3.59)

= ℏωrâ
†â+

ℏ
2
ωqσ̂z + ℏg(σ̂− ⊗ â† + σ̂+ ⊗ â) + ℏg(α∗σ̂− + ασ̂+), (3.60)
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where α(t) is chosen to satisfy α̇ = −i(ωrα + E(t)e−iωdt), eliminating direct driving of

the resonator. The displaced Hamiltonian in equation (3.59) can be further simplified by

moving to a rotating frame of the drive through an unitary transformation, yielding the

driven JC Hamiltonian

Ĥ
′′
= Û

†
dĤ

′
Û

†
d − i(∂tÛd)Û

†
d , (3.61)

= ℏ∆râ
†â+

ℏ
2
∆qσ̂z + ℏg(σ̂− ⊗ â† + σ̂+ ⊗ â) +

ℏ
2
(Ω∗

r (t)σ̂− + Ωr(t)σ̂+), (3.62)

where Ûd = exp[iωdt(â
†â + σ̂z/2)], ∆r = ωr − ωd and ∆q = ωq − ωd are the detuning

of the resonator and transmon from the drive frequency, and Ωr(t) = 2gα(t) is the Rabi

frequency in the coherent state regime. For a constant drive amplitude E −→ α = E/∆r,

the Rabi frequency becomes Ωr = 2gE/∆R. In the limit ∆R ≫ κ/2, the average pho-

ton number in the resonator can be estimated to be n̄ ≈ (E/∆R)
2. Thus, we are able

to generate coherent states with photon number n̄ by simply connecting a classical RF

source to the driving resonator. Utilizing this, we can perform a NOT gate operation with

the desired average number of photons in the resonator.

This section provides us with a tool to generate coherent states from classical fields. Ex-

perimentally, the transition from classical fields to quantum-mechanical coherent states

is facilitated by the use of a drive resonator that only takes discrete eigenmodes, that is,

microwave photons. The drive resonator is connected to an external microwave source

that injects RF pulses at the fundamental frequency of the drive resonator. The average

photon number can be optimized by choosing a suitable pulse amplitude and length as

described above. In the absence of the drive resonator, we recover the classical descrip-

tion of the microwave electromagnetic field.

3.5 Dispersive regime: off-resonant interaction

On resonance, interaction leads to maximally entangled states of the qubit, which are

not ideal for quantum information processing tasks [54]. In addition, the control of the

transmon states is limited in speed due to the high finesse of the resonator. To circumvent

this, the interaction is modelled in the dispersive regime, where detuning ∆ = |ωq − ωr|
between the transmon and the resonator is large compared to coupling strength g ≪
∆. To encapsulate this, we apply unitary transformation to the driven JC Hamiltonian in

equation (3.61) [25]

ĤUT = Û
†
dispĤ

′′
Û

†
disp, (3.63)

with unitary operator Ûdisp = exp
[︁
g
∆
(σ̂− ⊗ â† + σ̂+ ⊗ â)

]︁
. After expanding the result

to the second order correction in g/∆, we attain the driven dispersive Hamiltonian in the



31

moving frame with the drive as

Ĥdisp = ℏ∆′
râ

†â+
ℏ
2
(∆′

q + 2χâ†â)σ̂z + ℏ(Ω∗
r (t)σ̂− + Ωr(t)σ̂+), (3.64)

where χ = −g2

∆
is referred to as the dispersive shift, ∆′

r = ∆r − g2

∆
and ∆′

q = ∆q +
g2

∆
are the dressed frequencies for the resonator and the transmon, respectively. One

can obtain a slightly more accurate results for the dispersive shift and the shift in the

resonator frequency by employing the generalized JC Hamiltonian (3.43) in eq. (3.58).

In the multi-level transmon approximation, the correction to the dispersive shift yields

χ = − g2EC/ℏ
∆(∆−EC/ℏ)

and the shift in the resonator frequency ∆′
r = ∆r − g2

∆−EC/ℏ
.

In the dispersive regime, transmon–resonator interaction offers two distinct interpreta-

tions: shift of the dressed qubit frequency (ac Stark shift) as a function of the average

photon number in the resonator, or the dispersive shift of the dressed resonator frequency

as a function of the transmon state. Depending on the task, one of these interpretations

will be employed. For example, quantum nondemolition measurement (QND) [56, 57] of

the transmon state will require the dispersive shift of the dressed resonator frequency,

whereas calibrating the average photon number in the resonator will make use of the ac

Stark shift of the qubit frequency.

In our discussion of the transmon–resonator system, we have assumed a dissipation-

free time evolution of the coupled interaction. In a general discussion of an interacting

quantum system, it is very important to include the effects of the dissipation introduced by

resonator transmission losses κ, transmon spontaneous emission γ, and the dephasing

γϕ, which is caused by the random fluctation of transmon eigenenergies [58, 59]. This is

usually referred to as pure dephasing, which leads to loss of information of relative phase

between the transmon eigenstates [60]. To describe the evolution of such system, one

employs Lindblad master equation under Markovian-Born approximation [36]. However,

the Pauli-X gate is implemented in a time frame much smaller than the relaxation or the

dephasing times and thus, can be regarded as a unitary evolution.
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4 METHODS

In this chapter, we put forward the numerical and the experimental techniques employed

during the development of this thesis. Particularly, we make use of Quantum Toolbox in

Python (QuTiP) library for the numerical study of the transmon–resonator interaction, and

SONNET electromagnetic suites for the designing of the superconducting-circuit used

in the experiments. We discuss briefly the cryogenics and the radio frequency control

lines used for experiments in the measurement setup section. Finally, we conclude with

the sample characterization schemes and methods for the implementation of the Pauli-X

gate under the quantum driving experiments section.

4.1 Numerical study

In chapter 3, we looked at some of the analytical results of the JC Hamiltonian. In particu-

lar, on-resonant interaction in a standard JC Hamiltonian, resulting from the truncation of

the transmon energy levels to the first two eigenstates. Consequently, we observed the

Rabi oscillations that gave us a recipe to implement the Pauli-X gate operation. Addition-

ally, we recognized that the error resulting from this operation goes down as we increase

the average photon number in the resonator. However, the two-level approximation does

not reveal the exact behavior that we observe in the experiments. Thus, we resort to

numerical schemes to include the effect of the higher energy levels of the transmon in the

description of the transmon–resonator interaction.

We take advantage of an open-source quantum toolbox built on Python’s object-oriented

framework, namely QuTiP [62, 63] for simulating the transmon–resonator interaction.

QuTiP makes use of the standard scientific libraries like NumPy, Scipy, and optimization

library Cython to efficiently simulate tasks that otherwise would take considerable amount

of time due to exponential increase in computational parameters resulting from the in-

crease in the size of the Hilbert space. Supplemented by the use of Matplotlib library,

QuTiP offers a number of tools that aid in visualization of the quantum states, coherent

superposition of the different basis states, and including, but not limited to, the qubit gate

rotations on the Bloch sphere. All the available functionality required for a comprehensive

study of an interacting quantum systems are shown in figure 4.1a.

With the help of the QuTiP library, one can build a description of an open or a closed
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Figure 4.1. QuTiP framework [61] a) An overview of the available functionality in the
QuTiP library. The inner circle represents submodules of the library, whereas the outer
circle displays all the functions and classes each submodule contains. b) A schematic
description of object classes and the properties each object inherits when defined, along-
side a few of the standard operations that can be done on the object.

quantum system in matrix representations of the state vectors, density operators and

relevant operators (Pauli, creation, annihilation, . . . ), which are defined as object classes

Qobj. Associated with each Qobj, there are class specific properties that describe a

quantum state or an operator as depicted in figure 4.1b. In addition, QuTiP provides a

dense library of standard functions and operations like partial trace ptrace() and tensor

product tensor() to name a few [61].

As we have adopted density operator formalism for the discussion of an interacting quan-

tum system, we choose operator-class objects to construct the quantum system describ-

ing the transmon–resonator interaction that we introduced in chapter 3. To facilitate this,

we set up a time-dependent Hamiltonian (equation 3.61) in the rotating frame with the

drive by using the associated set of operator objects. The time dependence in the Hamil-

tonian is introduced by simply adding the time-dependent drive Hamiltonian to the time-

independent part in a Python list.

Once the Hamiltonian is constructed, we employ the master equation solver mesolve()

in a finite dimensional Hilbert space setting, where the transmon and the resonator are

truncated to j = 3 and N = 200 energy levels, respectively. This introduces an upper

bound on the average number of photons (
√
n̄ ≪ N − n̄) that could be used for the

implementation of the Pauli-X gate operation numerically. Furthermore, the inclusion of

the first excited state |f⟩ results into an additional interaction term ℏ
√
2g
(︁
|e⟩ ⟨f| ⊗ â† +

|f⟩ ⟨e| ⊗ â
)︁

in the Hamiltonian (3.61) as suggested by the equation (3.43).
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4.2 Superconducting-circuit design

In this section, we introduce the steps involved in the design process of the superconduct-

ing circuit used for the quantum driving experiments. The layout of the circuit correspond-

ing to the desired parameters involves a few iterations of building the circuit layout and

simulating it with an electromagnetic simulation software suite. We make use of an open-

source layout editor KLayout for generating the circuit layout and commercial software

Sonnet suites [64] for simulation of the circuit.

Figure 4.2. Superconducting-circuit design scheme requiring a few iterations of generat-
ing circuit layout and its simulation. a) A schematic layout of a quantum driving sample
with 1 transmon, 2 resonators, and 8 contact pads for control and readout use. In addi-
tion, each of the resonators, readout and driving, are weakly capacitively coupled to the
Purcell filters to suppress the transmon decay rate. Due to relatively large size of the cir-
cuit and the memory cost of simulating such a large structure, only certain area (green) is
exported to Sonnet for the estimation of the circuit parameters. b) A schematic illustration
of the Sonnet simulation environment consisting of the superconducting-circuit inside a
metal box, acting as a shield from an external electromagnetic field. The four sidewalls of
the box are lossless metals and can be used for port connections as they provide perfect
ground reference. The top and the bottom of the box can be freely chosen to correspond
to any metal type, allowing modelling of the distinct loss mechanisms in the dielectric lay-
ers. After the simulation, the circuit layout is adjusted if the simulated results do not match
with the expected design parameters.

Sonnet performs an electromagnetic analysis of a 3D planar circuit enclosed in a shielded

metal box by solving the Maxwell’s equations using techniques like the method of mo-

ments and FFT (Fast Fourier Transform) [65, 66]. The analysis involves subdivision of a

planar circuit into small rectangular subsections. Due to the voltage applied at the input

port, a current distribution is expected on the planar surface of the circuit. Consequently,

each subsection is analysed individually by keeping track of the current in section. Cur-

rent induces tangential electric fields at the boundaries of each subsection. Having built a

network of the tangential electric fields, resulting from each subsection, the current is ad-
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justed such that the total tangential electric field vanishes for all metal surfaces in a planar

circuit. Once the adjusted surface currents are known, the result of the analysis comes

out as a N-port scattering matrix [45], which is processed further with either Matlab or

Python.

We generate the circuit model using the layout editor and export it to Sonnet for electro-

magnetic simulation as discussed in figure 4.2. The size of the circuit is relatively large

and takes long to simulate, thus we divide the circuit into smaller simulation regions and

analyse them one at a time. The superconducting-circuit is modelled as a zero-thickness

planar metal structure supported on a 500 µm thick silicon substrate and with 2mm thick

air layer on top of the circuit. In practice, the metal structure is fabricated with 200 nm

thin superconducting Niobium layer. Since the circuit is implemented as CPW structure,

ground planes are assigned with negative port numbers and the center conductor with

the positive ones, see figure 4.2b. The frequency response of the circuit is studied by

analysing a 2x2 scattering matrix, in particular with the S21 parameter, as the circuit de-

sign is a transmission-type setup.

Since the superconducting-circuit is operated inside a dilution refrigerator, where temper-

ature goes well below 20mK, we set the material parameters such that they correspond

to cryogenic temperatures. In this scenario, Niobium exhibits superconductivity and thus,

requires us to consider kinetic inductance as its only material parameter. We do so by ap-

proximating the London penetration depth λL using the Ref. [67] and estimating sheet in-

ductance ofLsh ≈ 50 fH at sub-kelvin temperature. As for the silicon substrate, we use the

following standard parameters: ϵr = 11.45, µr = 1, tan δe = 10−6, and tan δm = 10−6,

corresponding to relative permittivity, permeability and their loss tangents respectively.

Quantum driving sample

To demonstrate quantum driving of the transmon for gate error analysis, we require two

resonators coupled to the transmon (see figure 4.2a). One of these resonator will be used

for reading out the state of the transmon. Thus, we shall call this resonator naturally, a

readout resonator. The transmon and the readout resonator interaction is modelled in

a dispersive regime as discussed in section 3.5. We address the second resonator as

a driving resonator, since it will be utilized to generate coherent states with n̄ average

photons by means of a classical drive as mentioned in section 3.4. The interaction of the

transmon coupled to a driving resonator is required to take place in both on-resonant and

off-resonant regime, the exact details of which are discussed in section 4.5.

The resonator frequency can be designed to any desired value by selectively choosing

the center conductor width w and spacing s between the ground plane and the center

conductor, and length d (see figures 3.2a and 3.2b) as established by the conformal map-

ping technique described in full details in Ref. [46] and briefly in section 3.1.2. There
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is also a contribution from the kinetic inductance [68], however it is two orders of mag-

nitude smaller than the geometrical inductance arising from the conformal mapping and

therefore, can be disregarded. In addition to the Sonnet simulations, we employ Quite

Universal Circuit Simulator (QUCS) - an intergrated circuit simulator and the methods

presented in Ref. [69] for the estimation of the resonator frequency.

The qubit frequency cannot be rigorously simulated with Sonnet as there aren’t any circuit

elements that can effectively describe a non-linear Josephson junction. We can however,

use the Josephson inductance relation (3.23) and define an ideal linear inductance sweep

that will approximately simulate the flux behaviour of a Josephson junction in Sonnet.

Furthermore, equation (3.23) in conjunction with Ambegaokar–Baratoff relation [70, 71]

ICRN =
π

2

∆(t)

e
tanh

∆(t)

2KBT
(4.1)

yields the Josephson energy and inductance

EJ =
ϕ0

4RN

∆(t)

e
tanh

∆(t)

2KBT
, (4.2)

LJ(ϕ) =
ϕ0

π2 cos
(︁
2πϕ
ϕ0

)︁ RN

∆(t)

e

tanh ∆(t)
2KBT

, (4.3)

respectively. Here IC is the critical current of the junction, RN is the normal state re-

sistance of the junction, i.e., at room temperature, and ∆(t) is the superconducting gap

energy as a function of time. This relationship allows us to design the qubit frequency

by fabricating a junction with an appropriate room temperature resistance, which can be

controlled very precisely with electron-beam lithography (EBL) technique. In our case, we

use superconducting aluminium for the fabrication of the junction. Additionally, we can

disregard the contribution from the junction capacitance in Sonnet simulations as it will be

very small compared to the parallel shunt capacitance.

In section 3.5 we briefly discussed the source of decoherence in a superconducting-

circuit, which led to the reduced lifetime of the transmon. The resonators coupled to the

transmon are one decay channel introducing enhanced relaxation rates. To minimize the

relaxation rate (often called the Purcell decay rate) imposed by a resonator, we capac-

itively couple (weakly) both the readout and the driving resonators to the Purcell filters

(figure 4.2a) to suppress the transmon decay rates [72, 73].

Purcell filters introduce impedance mismatch at the transmon frequency, while allowing

signals to be transmitted at the resonator frequency [74]. In quantum driving samples,

both the resonator and the Purcell filter are fabricated as λ/4- CPW resonators with a

matching resonant frequency.
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4.3 Measurement setup

In this section, we discuss the use of the dilution refrigerator to create a cryogenic tem-

perature environment needed for the operation of a superconducting-circuit and present

the measurement setup used for the sample characterization and the quantum driving

experiments.

Figure 4.3. Schematic depiction of a dilution refrigerator with several cooling stages
marked with different colors and are annotated with attained base temperatures. Control
lines are connected through each of these stages to the sample, allowing transmitting
and receiving signals to/from the sample. These signals are passed through a series
of electrical components like attenuators, isolators, amplifiers, and couplers, aiding in
the minimization of the signal noise. The quantum driving sample (blue rectangle) is kept
inside a sample holder, which itself is placed inside a magnetic shield (red rectangle) at 10
mK. The sample holder is marked with the port details, facilitating an ease of connecting
them to the control and the output lines (top right). An optical microscope image of a
quantum driving sample with corresponding color marked ports (bottom right).
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Dilution refrigerator

A typical working frequency of a resonator or a transmon is in the range of 3GHz to

10GHz, which corresponds to a temperature range of 140mK to 480mK. If the super-

conducting circuits were to operate at the room temperature (T = 300K), we would not

observe any quantum mechanical phenomena due to large thermal fluctuations in the

circuit. Consequently, inhibiting us to exploit the associated quantum degrees of freedom

offered by superconducting-circuits. Luckily, with the significant development in low tem-

perature physics in the last 50 years, we are able to utilize commercially available dilution

refrigerators that reach temperatures well in cryogenic region. We will not discuss in de-

tails the working principle of a dilution refrigerator as the subject is very rich and dense in

itself.

In this thesis, we have utilized a commercial dilution refrigerator from BlueFors that does

reach a base temperature of 10mK. The dilution refrigerator consists of five distinct

cooling stages, starting from 50K at the very top (hidden inside the outer cylinder of the

cryostat) down to 10mK at the very bottom, where the sample is placed inside a magnetic

shielding container. The details of the different cooling stages, control lines, and sample

installation are briefly mentioned in figure 4.3.

Microwave control setup

In order to generate the coherent states, we apply the displacement operator on a vac-

uum state. Experimentally, this is done by connecting the input ports of the resonators

to an external time-dependent voltage source E(t) = E0 cos(ωdt + φd), which cre-

ates continuously oscillating microwave signal at the desired frequency ωd. Addition-

ally, we require a microwave pulse rather than a continuous signal for the fast control

and measurement of the transmon. Thus, we synthesize the desired microwave pulse

Ω(t) = Ω0(t) cos(ωdt+ φd) with the pulse envelope Ω0(t) = E0f(t), where f(t) defines

the pulse shape. We generate the pulse envelopes using an arbitrary waveform generator

(AWG), which is implemented with field-programmable gate arrays (FPGA).

For all practical purposes, the microwave pulse is expressed in the complex representa-

tion Ω̃(t) = Ω0(t)e
iφdeiωdt, where the original pulse is recovered by taking the real compo-

nent. As a result, we are able to further separate the phasor term Ω0(t)e
iφd = I(t)+iQ(t)

into in-phase component I(t) = Ω0(t) cos(φd) and π-shifted quadrature component

Q(t) = Ω0(t) sin(φd). This facilitates the characterization of the microwave signal in

the phase space that is described by the in-phase and the quadrature components. In

addition, the pulse envelopes for both IQ quadratures can be generated separately by

choosing a desired phase φd, which can be effectively attained by utilizing the FPGAs.

Pauli-X and Pauli-Y gates are implemented by setting the phase φd = 0 and φd = π/2,
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respectively.

Figure 4.4. A schematic representation of the heterodyne measurement setup, detailing
the routing of control lines to the sample. Two RF lines are directed to the readout and
driving input ports, marked with Rin and Din, respectively. The flux behaviour of the
Josephson junction is controlled by supplying bias current to it through the flux line Fl. A
classical RF drive line Td is used to control the state of the transmon independently from
the readout/driving resonator and is mainly used for sample characterization. The output
signal from the sample is transmitted through line Rout. To enhance the SNR of output
signal, quantum-limited amplifier Josephson TWPA is used, which is controlled through
TWPA pump line. In addition, attenuators distributed throughout the cooling stages and
at room temperature are utilized to minimize the thermal noise coming from input lines.
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For quantum driving experiments, we require three sets of microwave pulse generators,

each of which utilize a continuous microwave source, an AWG realized by a FPGA, and

a mixer as shown in figure 4.4. We use a mixer to create for example, a readout pulse,

where a microwave source generated continuous signal at ωr is multiplied with readout

pulse envelope ΩR(t) produced by a FPGA. Similarly, we create pulses separately for the

classical transmon drive at ωq and for driving resonator at ωdr with pulse envelopes Ωq

and Ωdr respectively. Each of these pulses are sent to their corresponding input ports on

the sample via their own RF lines (see figure 4.4).

All the input lines are connected to a series of attenuators at each cooling stage inside

the dilution refrigerator. These attenuators help to minimize the thermal noise introduced

from the outside environment. Thus, we have used 60 dB attenuation for both readoutRin

and driving Din input lines, and 50 dB for transmon drive line Td. In addition to these fixed

attenuators installed inside the cryostat, we have also connected variable attenuators at

room temperature to these lines.

The output signal from the readout resonator is transmitted through the line Rout, which

is amplified by the quantum-limited nonlinear amplifier - Josephson traveling wave para-

metric amplifier (TWPA) - at 10mK. Additionally, we have also used a linear amplifier at

4K. The Josephson TWPA amplifier is controlled by a RF TWPA pump line, with 40 dB

attenuation contributing directly from attenuators and 20 dB from the directional coupler.

We have installed cryogenic isolators to prevent the reflection and thermal noise entering

the sample from the output line. Furthermore, we have added a flux line Fl, which is con-

nected to a DC current source. The flux line biases the Josephson junction, thus making

the transmon frequency flux tunable. A full measurement setup, detailing the microwave

control of the superconducting-circuit is presented in figure 4.4.

4.4 Sample characterization

The quantum driving sample needs to be characterized before proceeding with the exper-

iments. The characterization of the sample helps us extract important parameters such

as the readout and the driving resonator frequencies, the transition frequency ωge of the

transmon, and in particular the π-pulse length for the implementation of the Pauli-X gate.

In this section, we utilize standardized schemes presented in Ref. [75] for the character-

ization of a superconducting-circuit. Since the transmon is coupled to both the readout

and the driving resonators, we start out with the characterization of the readout side and

after that, we move on to the driving side of the sample.

The first step in the characterization process involves resonator spectroscopy, which is es-

sentially carried out by employing the single-tone spectroscopy technique. In the single-

tone spectroscopy, the resonator is continuously driven with a coherent tone at a probe

frequency ωp and either the reflected or transmitted signal is recorded; in our case, we
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study the transmission spectrum. If the probe frequency is near to the resonator fre-

quency, we see a peak in the transmission spectrum, since the resonator is brought in

resonance by the probe tone. Note that the recorded resonator frequency includes the

dispersive shift and does not correspond to the bare resonator frequency, as we are work-

ing in the dispersive regime.

Additionally, a flux sweep is introduced in the single-tone spectroscopy by applying a

range of bias currents through the flux line. This causes the transition frequency of the

transmon to shift as a function of an applied bias current Iϕ as described in section 3.2.3.

As a result, the observed resonator frequency shifts as a function of a bias current as [75]

ω′
r(Iϕ) =

ωr + ωge(Iϕ)

2
±

√︄
(2πg)2+

[︃
ωge(Iϕ)− ωr

4

]︃2
, (4.4)

where ω′
r is the resonator frequency with a dispersive shift introduced by the ground

state of the transmon and ωr is a bare resonator frequency in an uncoupled environment.

The flux dependent transition frequency of the transmon with a symmetrical SQUID is

described by

ωge(Iϕ) = ωmax
ge

⃓⃓⃓⃓
cos

(︃
π(Iϕ − Iss)

Π

)︃⃓⃓⃓⃓ 1
2

, (4.5)

where ωmax
ge is the maximum transition frequency attained at bias current Iss, usually re-

ferred to as the sweet-spot, and Π is the periodicity of the transmon in current. The

maximum transmon frequency occurs exactly at an integer multiple of the normalized flux

ϕ/ϕ0. This gives us a one-to-one mapping between the bias current and the normal-

ized flux. The conversion relation is extracted from the fitting of the measured resonator

frequency with theoretical model dictated by equation (4.4). For the rest of the characteri-

zation, we make use of the normalized flux value instead of the bias current. In addition to

the current–flux relationship, we also get an estimation for the bare transmon frequency

and the coupling constant g from the fitting.

Having extracted the parameters from the fitting, we again measure the resonator fre-

quency around the sweet-spot with a 2-µs-long readout pulse. With this measurement,

we set the resonator frequency and normalized flux corresponding to the sweet-spot for

the rest of the characterization process. In order to characterize the transmon frequency,

we adopt a two-tone spectroscopy method, where we probe the resonator transmission

at a frequency ω′
r(ϕ), while driving the transmon at a frequency ωd with a pulse length

of 10 µs. Consequently, when the drive frequency is far from the transmon frequency for

a given flux value, the resonator transmission will be unaffected. However, when driven

at resonance, the resonator transmission will experience a dispersive shift and will result

in a lower transmission amplitude. Therefore, we locate the dip in the spectrum when

performing the two-tone spectroscopy. This process is again repeated for a range of flux

values thus, yielding us a flux behaviour of a transmon frequency. We remind that the
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measured transmon frequency includes the dispersive shift.

Next, we calibrate the π-pulse length for the excitation of the transmon from the ground

state. This is accomplished by driving the transmon at the measured transition frequency

through the line Td with a pulse envelope

Ωq(t) =

⎧⎨⎩E0 sin2
(︁
π t−t0

te−t0

)︁
, t ∈ [t0, te] ,

0 , otherwise ,

where E0 is the amplitude of the pulse and te−t0 is the pulse length. For the estimation of

the π-pulse, the amplitude is kept constant, while the length is varied until a proper Rabi

oscillation is observed. Note that this π-pulse length is not the same as the one that will

be used for the quantum driving experiments, where the π-pulse length is calibrated for

the driving resonator and is discussed in details in the next section.

It is customary and most of the times very useful to report the experimental values of the

dissipation parameters that were introduced in section 3.5. In order to estimate the trans-

mon lifetime T1, the transmon is driven to the excited state with the previously calibrated

π-pulse [76]. During the decay of the transmon to the ground state, the resonator trans-

mission is probed at the measured resonator frequency by sweeping the readout pulse

delay. On the other hand, the dephasing time T2 is obtained through the Ramsey inter-

ferometry [77, 78], where two π/2-pulses are applied at a certain interval apart. During

this time interval, the transmon precesses freely on the equator of the Bloch sphere, thus

quantifying the dephasing time.

Lastly, we measure the dispersive shift χ by exciting the transmon with a π-pulse and

immediately probing the resonator transmission to measure the resonator frequency with

the dispersive shift introduced by the excited state.

4.5 Quantum driving with coherent states

In this thesis, we are attempting to minimize the error resulting from the implementation

of a Pauli-X gate operation. Keeping this in mind, we recognize the observation we made

in section 3.3.4, that is, the inverse dependence of the π-pulse length on the fluctuation

of the photon number ∆n =
√
n̄. Immediately, we realize that by increasing the number

of average coherent photons in the resonator, we shorten the π-pulse length and thus,

make the gate operation faster. A fast gate operation is always preferred as it allows us to

perform many operations before the dissipation comes into effect. Furthermore, we will

see in the numerical results section that the error from the gate operation also decreases

as the average photon number is increased in the driving resonator.

For the experimental implementation, we propose the following gate operation protocol:
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(i) The resonator is initialized in the ground state |g⟩ by simply blocking any signal

going to the driving resonator.

(ii) An average photon number n̄ is pumped to the driving resonator.

(iii) The transmon is immediately tuned to the driving resonator frequency through the

flux pulse.

(iv) The transmon–resonator interaction takes place for the duration of the π-pulse

length in the resonant picture.

(v) The transmon is detuned back to the frequency at the sweet spot.

(vi) The state of the transmon is measured by probing the readout resonator at its

measured frequency corresponding to the excited state.

(vii) For a given n̄, steps (ii)-(vi) are repeated to calculate an ensemble average of the

resulting error from the Pauli-X gate operation.

(viii) Steps (i)-(vii) are repeated by varying the average photon number in the driving

resonator.

As required by step (ii), we establish an empirical method that allows us to pump a desired

average photon number to the driving resonator. To achieve this, we first consider the

interaction of the transmon and driving resonator in the dispersive regime, where the

transmon frequency acquires an ac Stark shift. In the limit, κ > χ, i.e., the driving

resonator linewidth being larger than the dispersive shift, the ac Stark shift is given by

∆Stark = 2χn̄ , (4.6)

which tells us that the transmon frequency acquires a frequency shift of 2χ per photon

in the driving resonator. This allows us to calibrate the photon number in the driving

resonator by performing the power spectroscopy of the transmon. In power spectroscopy,

we vary the input power sent to the input line of the driving resonator and measure the

Stark shift induced in the transmon frequency.

In our setup, we change the input power to the driving resonator by varying the attenuation

of the variable attenuator installed outside of the dilution refrigerator as shown in figure

4.4. For a given attenuation value, we excite the transmon through the drive line Td, while

the driving resonator is driven simultaneously. Immediately after the drive pulse ends, the

resonator is probed to measure the shift in the transmon frequency. Having repeated the

measurement with a range of attenuation values, we extract the conversion rate between

the attenuation and the photon number. This allows us to pump any number of coherent

photons in the driving resonator by setting the variable attenuator to a value given by the

conversion rate.

Since the driving resonator and the transmon are initially far-detuned, we need to bring



44

Figure 4.5. Flux pulse sequence. The transmon is brought to the driving frequency
ωdr = ωd

ge from the maximum frequency ωmax
ge . The flux values corresponding to these

frequencies are extracted from the sample characterization process. The pulse sequence
describes the steps (iii)-(v) of the gate protocol.

the transmon to the driving resonator frequency by applying a sequence of flux pulses to

the flux line Fl. These sequences are generated using a FPGA. Mathematically, the flux

pulse is written as (see figure 4.5 for the visualization of the pulse sequence)

ϕ(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ϕd sin
2
(︁
π t−t0

2trd

)︁
, t ∈ [t0, trd] ,

ϕd , t ∈ [trd, trd + tπ] ,

ϕd cos
2

(︃
π t−(trd+tπ)

2tru

)︃
, t ∈ [trd + tπ, trd + tπ + tru] ,

0 , t ∈ [trd + tπ + tru, trd + tπ + tru + tor] .

As described in step (iv) of the protocol, we require a calibration of the π-pulse length

for the driving resonator. To this end, we choose the pulse envelope as described in

section 3.4. Having extracted the transmon–resonator coupling constant gdr for the driving

resonator, we define a rectangular pulse Ωdr(t) = 2gdr
√
n̄ for some t ∈ [t0, t1] and 0

elsewhere. With rectangular pulse, we can easily choose the average number of photons

by setting the pulse length t1 − t0 to a desired value.
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5 RESULTS AND ANALYSIS

We devote this chapter in presenting the numerical and the experimental results that

were gathered during the course of this thesis. All the results are obtained using the tools

discussed in chapter 4.

5.1 Numerical simulations

In this section, we produce the outcomes of the numerical study of the Jaynes–Cummings

Hamiltonian in the resonant picture. In addition, we also numerically investigate the Pauli-

X gate operation under the full gate protocol as outlined in section 4.5.

Resonant interaction

It is necessary for any numerical study to start with a simpler model that can be validated

by a corresponding analytical results and afterwards build the complexity gradually for

a comprehensive study of the cases that do not have any analytical solutions. To that

extent, we begin with the resonant interaction between the transmon and the resonator,

where both the transmon and the resonator are truncated to j = 3 and N = 200 energy

levels, respectively. In all of the simulations, we have initialized the transmon in the ground

state, marked by a red arrow pointing to the north pole of the Bloch sphere (figure 5.1).

We start by analyzing the results presented in figure 5.1, where the solutions of the reso-

nant JC Hamiltonian are expressed in terms of the expected value of the Pauli operators

and the projection operator to the first excited state as a function of time. The time evo-

lution of the Pauli operators can be effectively visualized as the trajectory traced by a

Bloch vector in the Bloch sphere. We observe that both the Pauli-Y and Pauli-Z operators

oscillate between their eigenvalues, whereas the Pauli-X operator remains fairly close to

0, resulting in π-rotation around the x-axis. Thus, performing the desired Pauli-X gate

operation. As expected, we also recognize the n̄-dependence in the resulting oscillations

of the operators depicted in figure 5.1(a,b), similar to the Rabi oscillations seen in figure

3.8. Thus, by increasing the average photon number in the resonator, we make the gate

operation faster and higher in fidelity. Lastly, we note the tilting of the trajectory of the

Bloch vector with respect to the z-axis, resulting in a quantifiable error induced from the
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gate operation.

Figure 5.1. Resonant interaction. The time evolution of the expected value of the Pauli
operators and the projection operator to the first excited state. Visualization of the Pauli-X
gate rotation on the Bloch sphere, where the trajectory of the rotation is given by the Pauli
operators. The figures are obtained with conditions: a) n̄ = 10 and g/2π = 1MHz, b)
n̄ = 100 and g/2π = 1MHz, and c) n̄ = 100 and g/2π = 100MHz with resulting gate
error of 5.91%, 1.05%, and 66.56%, respectively.
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Additionally, we also examine the affect of the vacuum Rabi coupling strength g on the

temporal evolution of the pauli-operators and the projection operator. For an average pho-

ton number n̄ = 100, we obtain the figures 5.1b and 5.1c corresponding to the coupling

strength g/2π = 1MHz and g/2π = 100MHz, respectively. We notice that the large in-

crease in the coupling strength leads to the occupation of the second excited state with a

substantial probability, thus indicating a failure of the two-level approximation in the stan-

dard JC Hamiltonian. Consequently, we fail to perform the desired Pauli-X gate operation

as the rotation of the Bloch vector is confined between the top half of the Bloch sphere,

and thus resulting in a large gate error.

The π-pulse length is inversely proportional to both the coupling strength and the average

photon number. Thus, it is only reasonable to make both larger in order to implement a

faster gate operation. However, as seen earlier, increasing the coupling constant leads to

a large gate error. As a result, we need to find an optimal value for the coupling strength

that will keep the gate error small, while reducing the π-pulse length simultaneously. Mo-

tivated by this, we perform a simulation by varying both the average photon number in the

resonator and the coupling strength and present the results in figure 5.2.

Figure 5.2. Dependence of the gate error on the coupling strength g and the average
photon number n̄. The transmon is initialized a) in the excited state and b) in the ground
state.

The results depicted in figure 5.2 are acquired by varying the average photon number

and the coupling strength in the range n̄ ∈ [0, 100] and g/2π ∈ [0.1, 100]MHz, respec-

tively. For each combination of the coupling strength and the average photon number,

we compute the gate error ε for each time step and record the minimum error resulting

at the π-pulse length. As expected, we observe that the gate error gets better as the

average photon number is increased in the resonator. However, we notice that the error

does not improve with the increasing average photon number for larger coupling strength

values. With this observation, we target the coupling strength g/2π ≤ 10MHz between

the driving resonator and the transmon.
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Figure 5.3. Comparison of the gate error resulting from the numerical and the theoretical
models. The gate error ε is plotted as a function of the average photon number n̄, where
the errors εmax and εavg are given by the analytical expressions [37]. Numerical gate error
εnum corresponds to the slice at g/2π = 1MHz from figure 5.2b.

Finally, we conclude the discussion of the resonant interaction by comparing the gate error

resulting from the numerical simulations with the analytical expressions derived in Ref.

[37]. We contrast the numerical gate error εnum taken from the slice at g/2π = 1MHz in

figure 5.2b with the analytical expressions of the average gate error εavg and the maximum

gate error εmax. Here, εavg = (4 + π2)/24n̄ is the ensemble average of the gate error

over an uniformly distributed initial states of the transmon on the Bloch sphere, whereas

εmax = (4 + 4π + π2)/16n̄ corresponds to the maximum error arising from one of the

states in the uniformly distributed ensemble. We notice that the numerical results are

in agreement with the analytical expression given by the average gate error. Note, that

these analytical expressions are only valid for the Pauli-X gate rotation performed with the

coherent photon states.

Full gate protocol

The resonant interaction does not describe the exact Pauli-X gate operation protocol out-

lined in section 4.5. The transmon frequency is initially detuned (ωq > ωdr) far from

the driving resonator frequency and thus requires us to tune the transmon frequency by

applying a flux bias in the SQUID. Following the steps from the protocol, we apply a

drive pulse with the pulse amplitude Ωdr/2π = 90MHz and the pulse length of 12 ns,

which corresponds to an average photon occupation of roughly n̄ = 81 in the driving res-

onator. Immediately, we apply a flux pulse with the characteristic pulse sequence lengths

trd = tru = 4 ns, tπ = π/18 ns, and tor = 20 ns (see figure 4.5 for the detailed description
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of the flux pulse envelope); thus, resulting in the implementation of the full gate protocol.

We compute the gate error at the end of the non-resonant interaction, which simulates

the effect of the readout pulse on the Pauli-X gate operation.

Figure 5.4. Full gate protocol. The time evolution of the expected value of the Pauli
operators and the projection operator to the first excited state. Visualization of the Pauli
X-gate rotation on the Bloch sphere, where the trajectory of the rotation is given by the
Pauli operators. The figures are obtained with the conditions: Ωdr/2π = 90MHz and
g/2π = 1MHz and detuning a) ∆/2π = 0, and b) ∆/2π = −1MHz between the
transmon and the resonator during the resonant interaction with resulting gate error of
2.83%, and 0.96%, respectively.

As one would expect, the transmon and the resonator stay unperturbed during the tuning

of the transmon frequency. This is easily visualized in figure 5.4, where the expectation

value of the Pauli operators remain constant in time. As soon as the transmon is tuned

to the drive frequency, we observe an expected π-rotation of the Bloch vector, taking it

from the ground state to the excited state. Additionally, we notice a large oscillation in

the trajectory of the Bloch vector near the south pole of the Bloch sphere as shown in

figure 5.4a, which results in a large gate error. This is minimized by introducing a slight

detuning of 1MHz as depicted in figure 5.4b. Note that we have not included the effect of

dissipation in any of the simulations, since the time scale of the gate operation is assumed

to be much smaller compared to the transmon lifetime and the dephasing time.
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5.2 Superconducting-circuit design

In this section, we present the optimized design parameters for the quantum driving sam-

ple obtained from the Sonnet simulations. We begin by setting up the simulation for both

the readout and driving side separately as mentioned in section 4.2. The geometry of a

typical transmon–resonator system is defined in the simulation box and shown in figure

5.5a. The outcome of the simulation is processed with Matlab and is presented in figure

5.5b.

Figure 5.5. a) A geometry of the transmon coupled to a resonator, which itself is weakly
coupled to a Purcell filter. b) The frequency response of the coupled transmon–resonator
system as a function of the Josephson inductance LJJ. The bright yellow lines correspond
to the resonant frequency of the resonator and the Purcell filter. The tunable transmon
frequency leads to the avoided crossing at both the resonator and Purcell filter resonant
frequencies. The avoided crossing corresponding to the resonator (larger separation) is
fitted to a diagonalized standard JC Hamiltonian and the results are plotted against c) the
Josephson inductance LJJ, and d) an equivalent normalized flux ϕ/ϕ0.

We extract the essential parameters for the simulated design by fitting the frequency

response of the transmon–resonator system to a standard JC Hamiltonian (3.44). As a
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result, we attain the plot for eigenfrequencies of the JC Hamiltonian as a function of the

Josephson inductance LJJ and the normalized flux ϕ/ϕ0 as shown in figure 5.5c and 5.5d,

respectively. The most important parameter that we obtain from the fitting is the coupling

strength of the transmon to the drive resonator. For the results presented in figure 5.5, the

coupling strength is found to be g/2π = 157.5MHz, which indicates a strong coupling of

the resonator to the transmon.

Figure 5.6. Quantum driving sample. a) Sonnet geometry of the transmon island coupled
to a weak driving coupler and a strong readout coupler. b) SEM image of the fabricated
design. c) Frequency response of the driving resonator with a weak coupler as a function
of the Josephson inductance LJJ. A tunable transmon frequency (faint trace) introduc-
ing a negligible separation at the avoided crossing, as expected from a weakly coupled
resonator. d) JC Hamiltonian fit to the simulated results, yielding fit parameters including
coupling strength.

For the quantum driving sample, we require a strongly coupled resonator for readout

purpose and a weakly coupled resonator for driving the transmon as discussed in section

5.1. In section 3.3.1, we observed that the coupling strength depends on the ratio g ∼
CG/CΣ. Thus, by changing the ratio, we can effectively attain a desired value for the

coupling strength. The design of the transmon island for the quantum driving sample
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that fulfils the required criteria is shown in figure 5.6, alongside the SEM image of the

fabricated sample and the simulated results. All the extracted parameters are recorded in

table 5.1.

Simulation results.

Parameters Symbol Value

Readout resonator ωr/2π 6.15GHz

Driving resonator ωdr/2π 6.19GHz

Coupling strength (Readout) gr/2π 150MHz

Coupling strength (Driving) gdr/2π 7.50MHz

Charging energy EC/ℏ 70MHz

Table 5.1. Extracted parameters for the quantum driving sample.

5.3 Sample characterization

This section includes the results from the characterization of the quantum driving sample.

After the fabrication, the sample is installed inside of the dilution refrigeration with properly

connected control lines, the details of which are discussed in section 4.3.

Figure 5.7. Single-tone spectroscopy. a) Frequency response of the resonator as a
function of the applied bias current Iϕ and the probe frequency. b) Obtained resonant
frequencies (red circle) corresponding to the peak in the transmission spectra for a given
bias current. The resonant frequencies are fitted (green line) to extract the flux conversion
rate corresponding to the sweet spot.

Since there are two resonators coupled to the transmon, one could characterize the sam-

ple using either of the resonators. We use the readout resonator for the characterization

of the sample for convenience, as the driving resonator is weakly coupled to the trans-

mon. The characterization follows sequential steps as described in section 4.4, starting

with a single-tone spectroscopy of the resonator as shown in figure 5.7a.
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The resonant frequency of the resonator is obtained from the spectroscopy data by locat-

ing the transmission peak for each bias current Iϕ and is fitted using the equation (4.4).

The fitting yields the flux conversion rate, which is taken at the sweet spot. Additionally, the

fit also gives an estimation for the transmon frequency and the coupling strength. With

these estimations, we perform two-tone spectroscopy of the transmon near the sweet

spot. The resulting frequency response of the transmon as a function of the probe fre-

quency and the normalized flux ϕ/ϕ0 is shown in figure 5.8a. Thus, we obtain the readout

resonator and the transmon frequencies ωr/2π = 6.063GHz and ωge/2π = 3.5525GHz,

respectively. The flux is set to the sweet spot corresponding to the maximum of the trans-

mon frequency for the rest of the characterization. Next, we carry out the measurement of

the Rabi oscillation to obtain the π-pulse length by driving the transmon at the frequency

ωge/2π = 3.5525GHz as described in section 4.4. The measured Rabi oscillation with a

π-pulse length tπ = 64 ns is shown in figure 5.8b.

Figure 5.8. a) Two-tone spectroscopy, yielding the frequency response of the transmon as
a function of the normalized flux ϕ/ϕ0 and the probe frequency. The resonant frequencies
of the transmon are obtained by locating the dip in the transmission spectrum for each
flux points and are fitted (red line) to extract the flux value corresponding to the sweet
spot. b) Measured Rabi oscillation for the calibration of the π-pulse length. Each data
point is obtained by taking an average of 104 repeated measurements.

In order to obtain the dephasing time, we perform Ramsey interferometry by varying the

precession time between two successive π/2-pulses and measuring the state of the

transmon. As the precession time increases, the excited state population experiences

a decay with a characteristic decay rate equal to the dephasing time T2. Additionally,

we obtain a precise transition frequency of the transmon from the Ramsey spectroscopy.

Furthermore, Ramsey measurement for the second transition between states |e⟩–|f⟩ is

also carried out to measure the anharmonicity of the transmon, which is found to be

EC/ℏ = 70MHz. Results from the Ramsey measurement of the first and the second

transition frequencies of the transmon are shown in figure 5.9a and b, respectively.
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Figure 5.9. Decoherence and dephasing characterization. Ramsey interferometry cor-
responding to the transition between states a) |g⟩–|e⟩, and b) |e⟩–|f⟩. c) Fitting of the
Ramsey oscillation taken at the probe frequency ωq/2π = 3.553GHz to an exponen-
tially decaying envelope, yielding the dephasing time. d) Fitting of the data corresponding
to the excited state population as a function of pulse delay. The decay constant of the
exponential fit characterizes the relaxation time.

We obtain the value for the dephasing time by fitting the data corresponding to the slice

taken at the probe frequency ωq/2π = 3.553GHz in figure 5.9a to an exponentially de-

caying oscillation as shown in figure 5.9c. Each of the data points in 5.9c is acquired by

iterating the measurement 50 times, resulting in a dephasing time T2 = 5.02 µs. For the

relaxation time T1, we drive the transmon to the excited state through the transmon drive

line Fl and probe the resonator to study the evolution of the excited state of the transmon

with varying readout pulse delays. The measurement is repeated several times and the

average amplitude is plotted against the readout pulse delay as presented in figure 5.9d.

We fit the data to an exponential curve and obtain the relaxation time T1 = 26.37 µs. In

general, the dephasing time should be twice as large as the relaxation time. However,

due to the presence of other sources of decoherence, we obtain a small value for the

dephasing time compared to the relaxation time.

Having the readout side of the sample characterized, we obtain the resonant frequency of

the driving resonator by using a vector network analyser (VNA). After obtaining the rele-
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vant characterization results, we encounter two of the major limitations making the quan-

tum driving experiment unfeasible. First, the transmon frequency ωge < ωdr = 5.01GHz

must be larger than the frequency of the driving resonator, since we are required by the

gate protocol to bring the transmon in resonance with the resonator for resonant interac-

tion. Secondly, the anharmonicity of the transmon is quite small, which makes it difficult

to fabricate a Josephson junction corresponding to a large transmon frequency, as the

junction will have to be quite large as well. Additionally, small anharmonicity leads to the

occupation of higher excited states as the transmon energy level resembles a harmonic

oscillator.

Figure 5.10. Single-tone spectroscopy of the strongly coupled quantum driving sample.
a) Frequency response of the resonator as a function of the applied bias current Iϕ and
the probe frequency. The tunable transmon frequency leads to an avoided crossing at the
resonator frequency. b) Obtained resonant frequencies (red circles) correspond to the
peak in the transmission spectra for a given bias current. The resonant frequencies are
fitted (green line) to extract the flux conversion rate corresponding to the sweet spot.

Despite the limitations introduced by the quantum driving sample, we perform some of

the experimental tasks required in the implementation of the gate protocol for future study.

Thus, we make use of an alternative sample, which has the exact same features as the

quantum driving sample with a notable exception of a strongly coupled driving resonator.

That is, both the readout and the driving resonator are strongly coupled to the transmon.

Furthermore, the intention is to also test the numerical results corresponding to the large

coupling strength of the strongly coupled driving resonator. We follow the similar steps

and obtain the essential parameters for the strongly coupled quantum driving sample.

Almost all of the characterization results of the strongly coupled sample exhibit similar

features as the weakly coupled quantum driving sample, except for the outcome of the

resonator spectroscopy. Since the transmon frequency in the strongly coupled sample is

larger than both of the resonators, we observe an avoided crossing when the transmon

frequency is tuned to the resonator frequency as depicted in figure 5.10a. Similar fitting

process is adopted to extract the flux conversion rate as shown in figure 5.10b. The
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results from the characterization of both samples are presented in table 5.2.

Sample characterization results.

Parameters Symbol Value: S1 Value: S2

Resonator frequency (Readout) ωr/2π 6.063GHz 5.205GHz

Resonator frequency (Driving) ωdr/2π 5.01GHz 5.59GHz

Coupling strength (Readout) gr/2π 206.31MHz 114.26MHz

Coupling strength (Driving) gdr/2π 8.5MHz 77.57MHz

Transmon frequency ωge/2π 3.5525GHz 8.851GHz

Transmon anharmonicity EC/ℏ 70MHz 285MHz

π-pulse length tπ 64 ns 100 ns

Relaxation time T1 26.37 µs 1.883 µs

Dephasing time T2 5.02 µs 0.245 µs

Dispersive shift χ/2π 0.46MHz 0.0078MHz

Table 5.2. Essential parameters obtained from the measurements. Samples S1 and S2
correspond to the weakly and strongly coupled quantum driving samples, respectively.

5.4 Quantum driving experiments

We utilize a strongly coupled sample to demonstrate two of the most important steps

required for the implementation of a full gate protocol: photon number calibration and

tunability of the transmon, so to match the resonant frequency of the driving resonator.

In this section, we investigate and analyse the results associated with these two steps.

We begin by examining the photon number calibration in the resonator using a power

spectroscopy scheme as discussed in section 4.5. Before performing the power spec-

troscopy, we inspect the frequency response of the resonator as a function of the drive

power, which is controlled by varying the attenuation of the variable attenuator, see figure

4.4.

Figure 5.11. Nonlinear vacuum Rabi splitting. a) Measured transmission spectra of the
resonator as a function of an applied attenuation to the drive power. b) Supersplitting of
a single transmission peak at 30 dB into a doublet at 20 dB attenuation.
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A transmon–resonator system exhibits the vacuum Rabi splitting, where a transmission

peak of an uncoupled resonator splits into two in the presence of the transmon [44].

The separation of the resulting peaks is given by 2g, which is a linear-response effect.

Remarkably, we observe a further splitting of the transmission peak when the coupled

two-level system is driven at high drive powers, corresponding to lower attenuation values

as shown in figure 5.11. This nonlinear response is only obtained with a heterodyne

measurement setup [79].

Figure 5.12. Photon number calibration. a) Measured frequency response of the trans-
mon as a function of an applied attenuation to the input line. b) Extracted transmon
frequencies (blue circles) by locating the dip in the transmon spectra for each attenu-
ation value. An exponential curve (red line) is fit to the extracted data. c) Transmon
frequency response, taken at 25 dB (red circles) and 27 dB attenuation values, are fit to
the Lorentzian (purple) and the Gaussian curves (green). The dip in the fittings is used
to calculate the ac Stark shift of 4.5MHz. d) Photon number is computed using equation
(4.6) and plotted against attenuation (red) and ac Stark shift (blue).

We perform the power spectroscopy in the linear regime by limiting the variable attenuator

to only take values larger than 25 dB. We obtain the frequency response of the transmon

as a function of the applied attenuation to the drive line as depicted in figure 5.12a. By

changing the attenuation, we are effectively controlling the average number of photons in

the resonator. This leads to a photon dependent shift (ac Stark effect) of the transmon
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frequency. Thus, by studying the shift in the transition frequency, we calibrate the photon

number in the resonator as a function of the attenuation.

Following the power spectroscopy, we extract the transmon frequencies by locating the

dip in the spectra for each attenuation value and fit an exponentially decaying curve to

the extracted data as presented in figure 5.12b. We obtain the average photon number

by employing the equation (4.6), where the Stark shift is computed from the fitted expo-

nential curve. For the strongly coupled quantum driving sample, we have experimentally

found the dispersive shift to be χ/2π = 0.0078MHz. Thus, the transmon must acquire a

frequency shift of 2χ per photon, see figure 5.12d. Note that the variable attenuation is

applied on top of the fixed 60 dB attenuation, which is installed inside the cryostat.

Finally, we conclude this section by briefly discussing the possible difficulties that may

arise when bringing the transmon in resonance with the driving resonator via flux spec-

troscopy. From figure 5.13, we realize that the transmon trace gets dimmer when moving

away from the sweet spot. Operating the transmon far from the sweet spot will result into

drastic flux noise as the slope gets rapidly steeper. Especially, in this case where we

wish to bring the transmon frequency from ωdr/2π = 8.85GHz to the drive resonator fre-

quency ωdr/2π = 5.59GHz. Therefore, the bare transmon frequency must be designed

such that we stay within the dispersive regime and are able to tune the transmon to the

resonator frequency by setting the flux as close as possible to the the sweet spot flux

value.

Figure 5.13. Measured frequency response of the transmon as a function of the flux.
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6 CONCLUSIONS AND OUTLOOK

In this thesis, we set out to investigate both numerically and experimentally, a single-

qubit gate operation scheme that minimizes the error resulting from the operation. In

particular, we implement a Pauli-X gate, an equivalent operation to a classical NOT gate,

on a superconducting transmon qubit. Traditionally, the gate operation is performed by

directly driving the qubit with a classical field for the duration of a π-pulse in a dispersive

regime. Alternatively, we propose a gate operation protocol that involves the quantum

driving of the qubit, where the classical drive of the qubit is replaced by a coherent drive.

Additionally, the gate operation is mediated by a resonant interaction between the qubit

and the resonator, followed by an off-resonant interaction.

From the numerical simulations, we observed 1/n̄ - dependence of the gate error as pre-

dicted by the theory. Thus, by increasing the average photon number in the simulations,

we effectively saw the reduction in the obtained error per gate operation. In addition, we

also noticed an improvement in the gate error for smaller values of the coupling strength

between the qubit and the resonator. For large coupling strength values, the occupation

of the higher excited states were observed, which resulted in an incomplete implementa-

tion of the Pauli-X gate operation. Finally, in the simulations of the full gate protocol, we

discovered large residual oscillations at the end of the gate operation for a fully resonant

interaction. However, when introduced to a small detuning of ∆/2π = 1MHz between

the qubit and the resonator frequencies, we obtained small residual oscillations, which

further improved the gate error results.

To facilitate the quantum driving experiments, we designed the layout of the supercon-

ducting circuit using a layout editor and optimized the parameters by performing an elec-

tromagnetic analysis with the Sonnet software. The superconducting-circuit consisted of

a transmon qubit, strongly coupled to a readout resonator for the measurement of the

qubit state, and a weakly coupled driving resonator for controlling the state of the qubit.

Guided by the results from the numerical simulations, we targeted a coupling strength

of gdr/2π = 7.5MHz for the driving resonator and gdr/2π = 150MHz for the readout

resonator. The designed layout was imprinted on a photomask for the fabrication of the

superconducting-circuit using the optical lithography process.

The fabricated sample was characterized to extract the parameters that were essential for
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carrying out the quantum driving experiments. While targeting a lower coupling strength

for the driving resonator, we significantly reduced the charging energy of the transmon

qubit. Unfortunately, the charging energy also dictates the transmon frequency and the

anharmonicity between the adjacent transition frequencies. Consequently, this rendered

the sample unfeasible for the quantum driving experiments. However, we have utilized

an alternative sample with the similar design as the quantum driving sample for carrying

out the photon calibration measurement. The alternative sample provides an increased

anharmonicity but strongly coupled transmon to the driving resonator.

First, we carried out the power spectroscopy of the resonator by varying the attenuation in

the drive line, while probing the resonator transmission. We observed a nonlinear vacuum

Rabi splitting at lower values of the attenuation. We performed a similar measurement

for the calibration of the photon occupation in the resonator by studying the ac Stark shift

of the transmon frequency as a function of the attenuation. In the dispersive regime, the

transmon frequency acquires a shift of 2χ per photon, thus giving us a measure of the

average photon occupation in the resonator as a function of the attenuation values.

Although we still haven’t managed to experimentally demonstrate the proposed gate pro-

tocol, the work carried out during the course of this thesis provides a concrete foundation

for the future work. Firstly, we have already designed and fabricated a second version of

the quantum driving sample by resolving the low charging energy issue present in the first

version. Secondly, we have also identified some of the details in the current measurement

setup that require modifications for the execution of the quantum driving experiments. In

particular, the current setup does not allow to work with a microwave pulse of lengths

larger than 4 µs for the resonator drive line. We require a long drive pulse for an im-

proved photon calibration measurement, as the long pulse to the resonator ensures that

the transmon occupies an excited state.

Finally, we make couple of remarks about the possible issues that may arise in the practi-

cal implementations of the quantum driving experiments. The flux spectroscopy mediating

the resonant interaction may not work if the resonator is far-detuned from the transmon.

Since, operating the transmon far from the sweet spot may lead to a drastic flux noise.

We also acknowledge that there is an upper bound for the average photon occupation in

the resonator set by the strong drive limit. Since the strongly driven transmon–resonator

system can no longer be described by a two-level system, we are required to operate

in the linear regime to avoid the nonlinear Rabi splitting of the transmission peak of the

resonator. The imposed restriction on the photon occupation also sets a limit on the gate

error that can be obtained experimentally.
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parinetti, S., Besse, J. C., Potočnik, A., Wallraff, A. and Eichler, C. Rapid High-

fidelity Multiplexed Readout of Superconducting Qubits. Physical Review Applied

(2018). ISSN: 23317019. DOI: 10.1103/PhysRevApplied.10.034040. arXiv:

1801.07904.

[70] Ambegaokar, V. and Baratoff, A. Tunneling between superconductors. Physical Re-

view Letters (1963). ISSN: 00319007. DOI: 10.1103/PhysRevLett.11.104.

[71] Likharev, K. K. Superconducting weak links. Reviews of Modern Physics (1979).

ISSN: 00346861. DOI: 10.1103/RevModPhys.51.101.

[72] Bronn, N. T., Magesan, E., Masluk, N. A., Chow, J. M., Gambetta, J. M. and Stef-

fen, M. Reducing Spontaneous Emission in Circuit Quantum Electrodynamics by

a Combined Readout/Filter Technique. IEEE Transactions on Applied Supercon-

ductivity (2015). ISSN: 10518223. DOI: 10.1109/TASC.2015.2456109. arXiv:

1504.04353.

[73] Cleland, A. Y., Pechal, M., Stas, P. J. C., Sarabalis, C. J., Wollack, E. A. and Safavi-

Naeini, A. H. Mechanical Purcell filters for microwave quantum machines. Applied

Physics Letters (2019). ISSN: 00036951. DOI: 10.1063/1.5111151. arXiv: 1905.
08403.

[74] Bronn, N. T., Liu, Y., Hertzberg, J. B., Córcoles, A. D., Houck, A. A., Gambetta, J. M.

and Chow, J. M. Broadband filters for abatement of spontaneous emission in circuit

https://doi.org/10.1016/j.cpc.2012.02.021
https://arxiv.org/abs/1110.0573
https://doi.org/10.1016/j.cpc.2012.11.019
https://arxiv.org/abs/1211.6518
https://doi.org/10.1109/9780470544631
https://doi.org/10.1109/TMTT.1987.1133738
https://doi.org/10.1103/PhysRevB.72.064503
https://doi.org/10.1143/JJAP.33.5708
https://doi.org/10.1103/PhysRevApplied.10.034040
https://arxiv.org/abs/1801.07904
https://doi.org/10.1103/PhysRevLett.11.104
https://doi.org/10.1103/RevModPhys.51.101
https://doi.org/10.1109/TASC.2015.2456109
https://arxiv.org/abs/1504.04353
https://doi.org/10.1063/1.5111151
https://arxiv.org/abs/1905.08403
https://arxiv.org/abs/1905.08403


67

quantum electrodynamics. Applied Physics Letters (2015). ISSN: 00036951. DOI:

10.1063/1.4934867. arXiv: 1508.01743.

[75] Fedorov, G. P. and Ustinov, A. V. Automated analysis of single-tone spectroscopic

data for cQED systems. Quantum Science and Technology (2019). ISSN: 20589565.

DOI: 10.1088/2058-9565/ab478b. arXiv: 1907.05198.

[76] Burnett, J. J., Bengtsson, A., Scigliuzzo, M., Niepce, D., Kudra, M., Delsing, P. and

Bylander, J. Decoherence benchmarking of superconducting qubits. npj Quantum

Information (2019). ISSN: 20566387. DOI: 10.1038/s41534-019-0168-5. arXiv:

1901.04417.

[77] Ramsey, N. F. A molecular beam resonance method with separated oscillating

fields. Physical Review (1950). ISSN: 0031899X. DOI: 10.1103/PhysRev.78.695.

[78] Clemmen, S., Farsi, A., Ramelow, S. and Gaeta, A. L. Ramsey Interference with

Single Photons. Physical Review Letters (2016). ISSN: 10797114. DOI: 10.1103/
PhysRevLett.117.223601.

[79] Bishop, L. S., Chow, J. M., Koch, J., Houck, A. A., Devoret, M. H., Thuneberg,

E., Girvin, S. M. and Schoelkopf, R. J. Nonlinear response of the vacuum Rabi

resonance. Nature Physics (2009). ISSN: 17452481. DOI: 10.1038/nphys1154.

arXiv: 0807.2882.

https://doi.org/10.1063/1.4934867
https://arxiv.org/abs/1508.01743
https://doi.org/10.1088/2058-9565/ab478b
https://arxiv.org/abs/1907.05198
https://doi.org/10.1038/s41534-019-0168-5
https://arxiv.org/abs/1901.04417
https://doi.org/10.1103/PhysRev.78.695
https://doi.org/10.1103/PhysRevLett.117.223601
https://doi.org/10.1103/PhysRevLett.117.223601
https://doi.org/10.1038/nphys1154
https://arxiv.org/abs/0807.2882

	Introduction
	General theoretical background
	Density operator formalism
	Quantum harmonic oscillator
	Quantum information
	Qubits
	Bloch sphere
	Single-qubit gate
	Gate fidelity and error


	Theoretical background on circuit quantum electrodynamics
	Microwave resonators
	Quantum LC oscillator
	Coplanar waveguide resonator
	Coherent states

	Superconducting qubit
	Josephson junction
	Charge qubit
	Transmon qubit

	Transmon–resonator interaction
	Coupling between the transmon and the resonator
	Jaynes–Cummings model
	Temporal evolution
	Rabi oscillation: Recipe for NOT gate

	Quantum driving
	Dispersive regime: off-resonant interaction

	Methods
	Numerical study
	Superconducting-circuit design
	Measurement setup
	Sample characterization
	Quantum driving with coherent states

	Results and analysis
	Numerical simulations
	Superconducting-circuit design
	Sample characterization
	Quantum driving experiments

	Conclusions and outlook
	References

