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ABSTRACT

Eetu Pulkkinen: Forecasting Emergency Department Arrivals
Bachelor of Science Thesis
Tampere University
Information technology
December 2020

Emergency departments often suffer from chronic overloading as well as seasonal spikes in
number of arrivals. In this study three different Deep learning based models are used to try to
predict the next days arrivals to the Pirkanmaa Hospital Districts emergency department. First
one is a simple Recurrent Neural Network (RNN) which uses Long short-term memory (LSTM)
cells for temporal relations. The latter two use a newly developed Temporal Fusion Transformer
(TFT) architecture specifically made for multi-horizon time series forecasting.

The dataset used to train the three different models contains a mix of variables thought to have
effect on the end results predictions. The dataset is split into a training set and a validation set.
The models learn from the data in the training set and their performance is measured using the
validation set. The LSTM model is implemented using TensorFlow python library and the TFT
model with PyTorch Forecasting.

The results show that all three models perform better than the measured baseline. Although
much faster to train, The LSTM model falls behind of the TFT architecture in terms of prediction
accuracy. From the two TFT based models the hourly frequency model performs the best as
it has access to more data. The TFT model achieves this performance advantage due to its
more sophisticated network architecture and from the usage of temporal self-attention layers for
learning long term dependencies. Due to the nature of its architecture the TFT model has better
interpretability. From the Variable Selection Network we can deduce which variables contribute
the most to the end results prediction and possibly even remove those that do not bring much
value. The weights from the self-attention layer tells us which parts of the time series the model is
focusing on.

The use of machine learning, especially Neural Networks, is still quite a new phenomena in
applications like in this study. The results from this study are promising and indicate that further
research of the subject matter is warranted. Experimenting with different datasets and a wider
range of ML methods could shed more light into the future of ED forecasting.

Keywords: machine learning, deep learning, Neural Network, time series forecasting, Temporal
Fusion Transformer

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.
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TIIVISTELMÄ

Eetu Pulkkinen: Ensiapupoliklinikalle saapuvien aikasarjaennustaminen
Kandidaatintutkinto
Tampereen yliopisto
Tietotekniikka
Joulukuu 2020

Ensiapupoliklinikat kärsivät usein kroonisesta ylikuormituksesta sekä kausittaisista piikeistä
ensiapuun saapuvien määrissä. Tässä tutkimuksessa käytetään kolmea erilaista Syväoppimiseen
pohjautuvaa mallia, joilla ennustetaan seuraavan päivän saapuvien määrää Pirkanmaan sairaan-
hoitopiirin ensiapupoliklinikalle. Ensimmäinen malleista on yksinkertainen takaisinkytkeytyvä neu-
roverkko (engl. Recurrent Neural Network, RNN), joka käyttää pitkä-lyhytkestomuistisoluja (engl.
long short-term memory, LSTM) aikasuhteisiin. Jälkimmäiset kaksi mallia käyttävät vastikään kek-
sittyä Temporal Fusion Transformer (TFT) -arkkitehtuuria, joka on kehitetty varta vasten aikasar-
jaennustamiseen.

Koneoppimismallien kouluttamiseen käytetty tietoaineisto sisältää joukon muuttujia, joilla us-
kotaan olevan merkitystä loppuennustuksien suhteen. Tietoaineisto jaetaan erilliseen mallien kou-
luttamisaineistoon ja validointiaineistoon. Mallit oppivat kouluttamisaineistosta ja niiden suoritus-
kykyä mitataan validointiaineiston avulla. Takaisinkytkeytyvä neuroverkko toteutettiin TensorFlow
Python kirjaston avulla ja TFT taas PyTorch Forecasting kirjastolla.

Tulokset osoittavat, että kaikki kolme mallia tuottavat parempia tuloksia vertailumalliin verrattu-
na. Takaisinkytkeytyvä neuroverkko on nopea kouluttaa, mutta se häviää ennustustarkkuudes-
sa TFT -mallille. Kahdesta TFT -arkkitehtuuria käytettävästä mallista tuntitarkkuudella toimiva
saavuttaa parhaan ennustustarkkuuden, johtuen sen saamasta suuremmasta aineistosta. TFT
-mallit saavuttavat paremman ennustustarkkuuden arkkitehtuurin hienostuneempien ominaisuuk-
sien myötä. Yksi tällainen on TFT:n Temporal Self-Attention -kerrokset, joiden avulla malli oppii
pitkäaikaisia aikasuhteita. Hienostuneemman arkkitehtuurinsa ansiosta TFT -mallia on helpompi
tulkita. Muuttujavalintaverkosta voidaan päätellä, mitkä tietoaineiston muuttujat vaikuttavat eniten
loppuennustukseen. Sen myötä lopputuloksen kannalta turhia muuttujia voidaan jopa poistaa ai-
neistosta. Self-Attention -kerroksen painoista voidaan myös tulkita, mihinkä kohtiin aikasarjassa
mallin huomio kohdentuu.

Koneoppimisen käyttö, varsinkin Neuroverkkojen osalta, on varsin uusi ilmiö tämän tutkimuk-
sen kaltaisissa sovelluksissa. Tämän tutkimuksen tulokset ovat lupaavia ja osoittavat, että jatko-
tutkimus aiheesta on perusteltua. Kokeet erilaisilla aineistoilla ja laajemmalla valikoimalla koneop-
pimismetodeja voisi tuoda enemmän valoa ensiapuennusteiden tulevaisuuten.

Avainsanat: koneoppiminen, syväoppiminen, neuroverkko, aikasarjaennustaminen, Temporal Fusion
Transformer

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.
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1 INTRODUCTION

Emergency Departments serve a crucial purpose in society providing critical care to peo-

ple in need. Being able to provide high quality care to patients presenting with different

conditions varying from non-severe to life threatening in a timely manner is at the utmost

importance. However, most emergency departments all over the world suffer from chronic

overcrowding as well as regular and irregular seasonal spikes in number of arrivals. The

objective of this thesis is to predict the number of visits to emergency departments using

data from the Pirkanmaa hospital district (PHSP).

The PHSP dataset contains a comprehensive mix of inputs from exogenous time series

that are only observed in the past (e.g. weather) to known future inputs (e.g. day of the

week). Time series prediction can be done with numerous different methods from the

more traditional statistical methods to newer, often more complex, Deep learning solu-

tions. This thesis proposes the usage of Temporal Fusion Transformer (TFT) architecture

which uses Deep learning for local processing and self-attention layers for long term de-

pendencies.

The research questions can be formulated as three separate questions.

1. To what accuracy can future arrivals be predicted using neural networks?

2. Does a more complex predefined network architecture provide better results than a

simpler model?

3. Which input features are the most important for the end result prediction?

This thesis is structured followingly. Chapter 2 presents the theoretical background behind

the study and reviews other publications related to time series forecasting and emergency

department forecasting. The third chapter goes over the methodology and machine learn-

ing details as well as the metrics used to measure model performance. The fourth chapter

details the experiments conducted, reviews the dataset used and presents the used hy-

perparameter optimization methods. Chapter 5 presents the results and findings from the

experiments. The final chapter summarizes the results and their meaning for the study.
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2 BACKGROUND

In the classical statistical handling of time series data making predictions about the future

is called extrapolation. In more modern context it is often referred as time series fore-

casting. Time series forecasting models fit on historical data and use it to predict future

observations. The crucial component in time series data is an explicit order of depen-

dence between observations: a time dimension. A time series can be decomposed into

4 constituent parts described in [1] as:

1. Level. "The baseline value for the series if it were a straight line."

2. Trend. "The optional and often linear increasing or decreasing behavior of the

series over time."

3. Seasonality. "The optional repeating patterns or cycles of behavior over time."

4. Noise. "The optional variability in the observations that cannot be explained by the

model."

Not all time series have trend or seasonality. Most time series have noise and all have a

level. [1] A time series can be though of as a combination of these 4 constituent compo-

nents. As an example a model can be formed as follows:

y = level + trend+ seasonality + noise, (2.1)

where y is the output of the model. An important part of time series are the trends and

seasonal variations. Another important feature is that often times observations close

together in time tend to be correlated. [2]

Usually time series forecasts have access to multiple sources of data as shown in fig-

ure 2.1. Known inputs are known information about the future (e.g. dates of upcoming

holidays). Observed inputs are other exogenous time series (e.g. past weather). Static

covariates do not have a time component and instead denote some constant (e.g. loca-

tion). These different inputs are suspected to have impact on the end results. Later in the

process it can sometimes be determined that a certain input in fact does not contribute

to the end result in any meaningful way. In this case often times the input in question is

better left out of the equation as unhelpful data creates more noise and ultimately hinders

the end results. The prediction model is often application specific as different models
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Figure 2.1. Multi-horizon forecasting illustration with multiple data sources [3].

work well with different problems.

2.1 Machine learning

Machine learning is a subset of artificial intelligence where algorithms learn from data and

improve their performance in the tasks they are designed for. In the context of this thesis

the object is to most accurately predict the future arrivals to the emergency department

using a mix of machine learning techniques. A wide array of different methodologies exist

for time series forecasting. The classical methods use a more of a statistical approach

while the newer machine learning methods often rely on deep learning. It is debatable

which of these methods suits time series forecasting the best as results and opinions vary

from study to study. A consistent finding among different forecasting competitions is that

combining these different methodologies yields better results instead of using a singular

one. In general combining several methods/models reduces the amount of random errors

resulting in more accurate forecasts. [4]

The models used in this study are based on Deep learning. One of the models is a

basic Recurrent Neural Network (RNN) which uses long short-term memory (LSTM) cells

for temporal relations. The more advanced Machine learning model used in this study
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expands this further and combines the LSTM architecture with a wide range of machine

learning methods to make predictions more accurate. The models used are explained

more thoroughly in the methodologies chapter.

2.2 Related work

Time series forecasting has found variety of use cases in many fields. Stock market

prediction [5][6] in its many forms continues to be of interest to many for its lucrative appli-

cations. Other use case examples are Web traffic prediction [7], health care expenditure

prediction [8] as well as earthquake prediction [9]. Different forecasting methods are used

for different purposes ranging from the tried and tested linear methods (e.g. ARIMA [10])

to the newer yet unproven non-linear deep learning solutions.

Even though there have been many studies in ED arrival prediction [11][12] and patient

flow forecasting [13][14], opportunities remain for future improvement. In a more recent

study (2019) by Whitt et. al. [15] 5 different prediction models were used including rolling

averages, highly structured time series models and a neural network model. In this study

they found that a SARIMAX model had the best predicting power.

Compared to Whitt et. al. the dataset used in this thesis contains many more exogenous

variables which could help a neural network produce better results. The Neural Network in

Whitt et. al. is simple multilayer Perceptron (MLP). Compared to the architecture used in

this thesis it lacks many of the advanced features that could make the prediction prowess

of a Deep Learning model the better solution. Whitt et. al. attributes the shortcomings of

the Neural Network to low dimension of the problem and the sample size being small.

Many of the older studies did not have the computational power or the newly invented

methodologies to consider a Neural Network as a viable solution. With the help of modern

computational prowess (especially the use of GPUs and cloud computing) and the newly

invented models, like the Temporal Fusion Transformer used in this thesis, could give

merit to Deep Learning as a viable solution.
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3 METHODOLOGY

Deep learning has been extensively used in many areas of machine learning like image

recognition and natural language processing etc. However in the realm of time series

forecasting Deep learning has not yet proved itself as the prevalent solution. In December

2019 a new type of architecture, called Temporal Fusion Transformer, was introduced by

Lim et al.[16]

Temporal Fusion Transformer (TFT) is an attention based Deep Neural Network (DNN)

architecture for time series forecasting. It enables high performance and provides new

forms interpretability. TFT has the ability to learn both long- and short-term temporal

relationships (e.g. seasonality) from both observed and known time-varying inputs. [3]

The architecture of the Temporal Fusion Transformer is relatively complex as seen in sec-

tion 3.3. To begin understanding the network as a whole it needs to be broken down in

to a more digestible format. However this thesis won’t go into all the details and mathe-

matics behind each component and merely presents more of a general overview of the

architecture used.

3.1 Neural Networks

Neural networks, a beautiful biologically-inspired programming paradigm which enables

a computer to learn from observational data [17].

The base unit of a Neural Network is called a perceptron. A perceptron can be thought as

an artificial neuron. A perceptron takes several inputs and produces a single output. Each

input has a weight which express the importance of the input in respect to the output. It

is a basic mathematical model which can be thought of as a device that makes decision

by weighing up evidence. The structure of a single neuron is presented in figure 3.1.

Many perceptons organized into layers formulate a Multilayer percepton (MLP) which is a

class of feedforward Artificial Neural Network. Commonly MLPs are structured followingly:

1. Input layer

2. Hidden layer(s)

3. Output.
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Figure 3.1. Example of a perceptron - the base unit of a Neural Network.
∑︁

is the
weighted sum of the inputs. This is then fed to the activation function

∫︁
which decides the

output for the perceptron.

Example structure of a MLP network with 2 hidden layers is presented in figure 3.2. Here

the weights can be thought as connections between the neurons. In each neuron these

weighted inputs are summed and passed through an activation function (e.g. sigmoid).

An activation function simply maps the inputs into an output of the neuron [18]. The

activation function resides in every neuron except the input layer. In this example the final

output layer is a singular neuron. In the context of time series forecasting this could be

the prediction our model makes about the future.

A neural network needs to be trained. In this case a technique is used called supervised

learning. In supervised learning the algorithm learns by example. This learning occurs in

the perceptron by changing the weights after each piece of data is processed. Changing

of the weights is based on the error produced when comparing the output to the expected

result. [19]

3.2 Long short-term memory

Traditional Neural Networks suffer from a problem - they lack context and memory. This

is addressed with a type of Neural Network called Recurrent Neural Network (RNN).

RNNs allow information to persists across the network through the usage of loops. These

cycles feed the network activations of previous time steps as context for the current time

step. This internal state of the network can in principle hold long-term temporal contextual

information. [20]

Long short-term memory (LSTM) is a type of a cell that can offer solutions to problems
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Figure 3.2. Example structure of a Multilayer percepton with 2 hidden layers.

a traditional RNN has. Standard RNNs often fail to take into account time steps that lag

more than 5-10 steps behind [20]. A model which uses these LSTM cells does not suffer

from this problem. Through its internal mechanisms the LSTM cell learns which past

information it keeps and which it forgets. [21] LSTM is an important component of the

TFT architecture as seen in figure 3.3. It allows the network to create and keep long and

short-term dependencies in temporal data.

In the TFT architecture LSTMs are used a bit differently. Here the LSTM’s job is to identify

points of interest in relation to their surrounding values. The output of the LSTM encoder-

decoder is not the "final answer". Instead it generates a set of uniform temporal features

from each input and feeds them onwards into the temporal fusion decoder. The long-term

dependencies between the different sets of the time series data is done with a multi-head

attention layer.

3.3 Temporal Self-Attention

The self-attention layer allows TFT to detect long-range dependencies which are chal-

lenging for RNN based architectures. The attention layer prioritizes patterns which pro-

vide the most predicative power [22]. For example in this thesis the model comes to a

conclusion that focusing on the peak hours of arrivals yields the best results. The self-

attention layer has multiple heads where each of them can focus on learning different
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Figure 3.3. High level architecture of Temporal Fusion Transformer (TFT). Originally pro-
posed by Lim et al. Adapted from source [3].

temporal patterns [3].

An attention mechanism gives the model new forms of interpretability. Input variables can

be ranked according to their magnitude of attitude weights. [3] This allows us to compare

the importance of inputs and detect underperforming variables. Removing them reduces

noise which increases prediction accuracy and reduces computational complexity [23].

From the attention mechanism we can also see which parts of the times series the model

is focusing on.

3.4 Other features of the Temporal Fusion Transformer

Gating mechanism is done with a Gated Residual Network (GRN) shown in figure 3.4.

GRN provides flexibility to skip parts of the architecture that are not required for a given

dataset. Often when a dataset is small or noisy this is necessary for increased perfor-

mance. GRN also has a dropout mechanism where some of the neurons in the network

are randomly ignored or "dropped". This is used to prevent overfitting.

Overfitting means that the model learns the training data too well and does not generalize

resulting in poor out-of-sample performance in a "real world" scenario as new data is

introduced. Often in medical applications (like this thesis) datasets tend to be on the
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Figure 3.4. Closer look into the Gated Residual Network (GRN) and the Variable Selec-
tion Network. Adapted from source [3].

smaller side. Both GRN and dropout are needed to combat problems that occur when

huge datasets are not available.

A variable selection network as seen in figure 3.4 allows the selection of relevant variables

at each time step. Noisy or otherwise unnecessary inputs can be given less importance

or removed all together from the equation. This also improves interpretability compared

to other DNN solutions which often tend to be black boxes.

Static covariate encoders integrate static (i.e. Time-invariant) metadata into various dif-

ferent parts of the TFT architecture. Special GRN encoders produce context vectors c

that are then wired into various locations in the TFT. For example static variables can pro-

vide context for better variable selection or improvements in local processing of temporal

features.

3.5 Metrics

Mean absolute percentage error (MAPE) is a commonly used metric in time series fore-

casting. It measures the percentage error of the forecast in relation to the actual values.

[24] MAPE is calculated as follows:

MAPE =
1

n

n∑︂
t=1

⃓⃓⃓⃓
At − Ft

At

⃓⃓⃓⃓
∗ 100%, (3.1)

Where At is the actual value, Ft the prediction and n is the number of samples. Mean

average absolute error (MAE) expresses average model prediction error in units [25]. This
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is useful as the results are absolute differences and not percentages. MAE is defined as:

MAE =
1

n

n∑︂
t=1

|Ft − At|. (3.2)

Root mean squared error (RMSE) is similar to MAE where they are both positive and

indifferent to the direction of errors. RMSE however gives higher weight to large errors.

[25]

RMSE =

⌜⃓⃓⎷ 1

n

n∑︂
t=1

(Ft − At)2. (3.3)

All three metrics are negatively oriented scores, which means lower values are better.
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4 EXPERIMENTS

The main experiment is to take a slice of history (e.g. the past 60 days) and try to predict

the the total arrivals to the ED in the next 24 hours. The dataset used is divided into a

training set (the first ∼1200 days) and a test set (last ∼400 days). The training set is

used to train the models and the test set to measure and validate their performance. It

is highly imperative that the training and test set are kept separate and the samples are

not shuffled as the point of the test set is to simulate real world performance on data the

models have not seen and learned from before.

The same experiment is done with three different implementations. First implementation

is a Recurrent Neural Network relying purely on LSTM for temporal relations. The model

is built using TensorFlow [26] - a Python library by Google. This is a very basic model as

it lacks most of the advanced features (e.g. temporal self-attention) that the TFT model

has.

The second and third implementations are done using the Temporal Fusion Transformer.

PyTorch forecasting [27] is a newly released Python library which utilizes the TFT architec-

ture. Both PyTorch implementations also predict the next days arrivals. Implementation

2 uses the same daily frequency as the pure LSTM model. The third implementation

instead uses hourly data and outputs a prediction for each hour for the next 24 hours.

These hourly predictions are then summed up to be comparable with the other 2 imple-

mentations.

All three models are compared to a baseline model and to each other using few metrics

(e.g mean absolute percentage error). The baseline model uses the last known target

value to make a prediction. All three models should at the very least perform better than

this baseline.

Model training is done using a single NVIDIA GTX 1080 GPU. For pure LSTM network

using TensorFlow and optimizing for GPU usage the training process for 50 epochs takes

under a minute. Similar run on the TFT architecture requires significantly more resources

as it takes 15 minutes for a 50 epoch run. Changing to hourly frequency requires the

network to handle much more data which transfers to higher costs. a 50 epoch run with

hourly frequency takes upwards of 3 hours to complete. For the hourly model some

restrictions are also needed to ensure a mid range GPU can handle the increased data
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rates and higher memory requirements. However, for all 3 of the models, once the training

is complete making new predictions can be done virtually instantaneously.

4.1 Data

The dataset contains hourly data from the Pirkanmaa hospital district (PHSP). In total

there is over 35 000 hours of data from May 2015 to September 2019. From this dataset

30 different variables are used to train the models. These include calendar variables (e.g.

holidays), past weather and a collection of internet variables (e.g. website visits).

Before training the models some preprocessing of the data is needed. With the PyTorch

library most of the preprocessing is done to get the dataset from hourly frequency into

daily format. Doing this also reduces the computational complexity as training time for the

2 daily frequency implementations is significantly lower than when done with hourly data.

The PyTorch forecasting has many normalization and variable transformation features

that the LSTM implementation lacks where they need to be done manually. For the LSTM

model all variables are converted into float values (decimal numbers) and scaled to be

between 0.0 and 1.0. For example true - false variables are transformed to correspond

0.0 for false and 1.0 for true. This step is not needed in the TFT implementation as it can

handle categorical values natively. Full code for all 3 of the models can be found from the

reference GitHub repository [28].

4.2 Hyperparameter optimization

Hyperparameters are properties of the model that govern the entire training process and

largely define the model structure. Finding a good combination of hyperparameters for

the network is crucial for the success of the model. [29] Following list introduces the

hyperparameters for the LSTM and TFT models. Values used for these hyperparameters

are presented in table 4.1.

1. Hidden layers. Number of hidden layers in the network.

2. Hidden units. Number of hidden units (i.e. neurons) in each layer.

3. Loss function. Output of a loss function represents how well the model is perform-

ing during training. The network seeks to minimize the error produced by the loss

function.

4. Dropout. Percentage of ignored neurons.

5. Epochs. Number of times the model sees the whole dataset from start to finish.

6. Window size. How much history the network is given when it makes a prediction.

Larger window size might increase accuracy while always increasing the computa-

tional complexity (i.e. time and/or money spent on training the model).
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7. Learning rate. How quickly the network updates its parameters (e.g. weights). Of-

ten a decaying learning rate works best meaning the model makes big adjustments

at start and slows down towards the end of the training.

8. Batch size. The dataset is divided into batches and each batch is processed as

a seperate instance. Between each batch the model makes adjustments to the

network according to the error produced by the loss function.

9. Attention head size. Number of attention heads. TFT specific.

10. Hidden continuous size. Size of the network for processing continuous variables.

TFT specific.

Hyperparameter LSTM TFT daily TFT hourly

Hidden layers 1 2 2

Hidden units 4 15 20

Loss function MAE QuantileLoss QuantileLoss

Dropout 0.18 0.27 0.13

Epochs 50 50 30

Window size 60 60 168

Learning rate 0.003 0.0024 0.0042

Batch size 64 64 128

Attention head size x 1 9

Hidden continuous size x 14 4

Table 4.1. Hyperparameters for LSTM and TFT models.

PyTorch forecasting has an inbuilt implementation for optimizing hyperparameters (op-

tuna) [30]. It uses a bayesian optimization process [31] to find the best combination of

values for the hyperparameters. Compared to grid search or random search it finds proper

values much faster as it has the ability to learn each time a different set of hyperparameter

values are used. The LSTM model uses a random search for hyperparameter optimiza-

tion. For each parameter a minimum and a maximum value is set and before training a

value is chosen in-between for that run. This is a common and valid approach as with

time it also finds better and better values for the parameters albeit more inefficiently.
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5 RESULTS

Table 5.1 presents the values of the 3 different metrics used to measure the performance

of each model. All 3 models perform better than the baseline. This shows that a neural

network approach could be used for this type of a problem. These results also show that

using a more sophisticated network architecture tuned specifically for time series fore-

casting improves the prediction capabilities by a significant margin. Figure 5.1 presents

these results in a more visual format.

It is clear that the pure LSTM network cannot match the TFTs performance. During

traning the LSTM model begins to overfit to the training data much faster than the TFT

models. Overfitting to training data is a concern in any machine learning solution and its

presence in this experiment is prevalent. Even with the many tricks used in the LSTM

model to combat overfitting, due to the relatively small size of the dataset, overfitting

happens regardless. The smaller size of the dataset is not such a problem for the TFT

models as seen from the results. The TFT model with its internal mechanisms (e.g. gating

layer) manages overfitting better with smaller datasets.

The dataset used has a sudden shift in trend in 2018 as seen in figure 5.1. This is due

to an institutional reorganization of the emergency department. A similar event is not

present in the training data. The LSTM model fails to accommodate and the results are

worse as a result. The TFT model in comparison quite quickly sees this change and tunes

itself accordingly. This is even more obvious in the hourly model. Even though the LSTM

model performs better than the baseline its usefulness in this application is questionable.

Method MAPE MAE RMSE

Baseline 8.50% 21.59 26.81

Pure LSTM 7.96% 20.27 25.10

TFT Daily 6.68% 17.10 21.43

TFT Hourly 6.37% 16.28 20.37

Table 5.1. Comparison table of best measured metric (validation set) for each model
used. The metrics used (introduced in chapter 3.5) are negatively oriented meaning lower
values are better.
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Figure 5.1. Sample predictions for the validation set. Pure LSTM at the top. TFT daily in
the middle and TFT hourly summed into daily format for comparison at the bottom.
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All 3 models can accurately detect the seasonality present in the dataset. However pre-

dicting the absolute peaks in either direction becomes problematic. If the model is not

confident in its ability to predict accurately it tends to make only small adjustments to

each prediction. This model confidence can be built in many ways. Easiest is just to train

it more. With more training it starts to make more volatile shifts in its predictions. Unless

the training dataset is grown, at some point the model validation performance begins to

worsen with more training. The model starts to confidently making more and more incor-

rect predictions based on its findings from the training data. Again the better solution is to

introduce more reliable data. Both longer history and more variables could build up model

confidence without the downsides of overfitting.

5.1 Variable importance and model attention

The TFT model provides better interpretability compared to the LSTM model. Figure 5.2

presents the encoder and decoder variable importance from an example run. What the

model thinks is important varies a bit between each run as it might focus on different

things each time. This means that definite conclusion can’t be made from just a singular

example. In this example the model came to the conclusion that visits to the hospital web-

site the day before has great relevance. Other notable variables for this example run were

some weather variables (e.g. temperature), calendar variables (e.g. weekday/holiday) as

well as the historical arrivals to the emergency department. The decoder has access only

to the variables that we know in advance (e.g. the day of the week tomorrow). Here the

day of the week played an important role in the prediction as well.

The model attention graph gives us a bit of an idea what the model is focusing on. For both

the hourly and daily frequency model the attention, after some time of training, interprets

that the peak values in the dataset are what it should focus on. The attention graph in

figure 5.2 resembles quite closely to what the hourly arrivals to the emergency department

are. This makes sense as focusing on the peak hours where most people arrive to the

ED has the most significance to the end result prediction. The attention graph also often

shows that events closer to the date we’re prediction carry more significance.
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Figure 5.2. Encoder (left) and decoder (top right) variable importance from the TFTs
variable selection network. On bottom right the model attention graph from the Temporal
Self-Attention layer (hourly frequency). Attention is focused on the daily peak hours for
each day.
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6 CONCLUSIONS

Emergency departments suffer from chronic overloading. Being able to predict and re-

spond to seasonal spikes in arrivals means better care for those in need. This study

attempted to provide a possible solution for emergency department forecasting. The

dataset used in this study is provided by the Pirkanmaa hospital district and it contains

over 35 000 hours of data from 2015 to 2019.

Time series forecasting is a complex problem with a long history of different method-

ologies. This study used a newly invented machine learning model called the Temporal

Fusion Transformer and compared its performance to a more traditional Neural Network.

The Temporal Fusion Transformer itself is an attention based Deep Neural Network archi-

tecture made specifically for Multi-horizon time series forecasting. This architecture also

provides new forms of interpretability which shed light on how the model makes decisions.

With the experiments conducted all three of the models used to predict the next days

arrivals provided better results than the measured baseline. The more traditional Neural

Network using LSTM cells for detecting temporal relations fell short compared to the more

advanced capabilities of the Temporal Fusion Transformer. From the two different data

frequencies tested the hourly model provided better results overall. With the Variable

Selection Network and the Temporal Self-Attention layer we can deduce which of the

many inputs proved to be more useful than others when making predictions.

All in all, the field of machine learning, especially the use of Neural Networks, is still in its

very beginnings in many medical applications. With the growing rate of data being pro-

duced and the ever increasing computational prowess, Neural Networks, in conjunction

with more traditional machine learning methods, could prove to be of significant impor-

tance in many applications across the medical field. Specifically in ED forecasting, a more

thorough study is needed with more data from different sources and using a wider range

of different forecasting methods for best results.
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