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ABSTRACT 
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Master’s Thesis 

Tampere University 

Master of Science (Technology) 

December 2020 
 

The placement of navigational beacons to provide localisation is an active area of research 
with a long history. It presents problems for automated design due to the combinatorial expansion 
of the problem with increased complexity, as well as the requirement to factor in multiple aspects 
of design, such as localisation accuracy and hardware cost.  

The main goal of this thesis is to present and evaluate the usage of genetic algorithms to 
automatically design beacon placements. Additionally, the well-seen metric, its usage in optimi-
sation, and how well it compares to HDOP is presented.  

Results showed the efficacy of genetic algorithms for solving this problem, with improvements 
over a hill-climbing algorithm, as well as a random generation algorithm. The well-seen metric 
that was used during optimisation provided a computationally lighter alternative to HDOP, while 
also providing a minimisation of HDOP during optimisation. 
 
Keywords: Genetic Algorithm, Localization, Range-based, Speciation, Well-seen, Horizontal 
Dilution of Precision 
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Lähettimien sijoittaminen sijainnin määrittämistä varten on aktiivinen tutkimusalue jolla on 
pitkä historia. Näiden lähettimien automaattinen suunnittellu on ongelmallista kombinatorisesta 
kompleksisuudesta johtuen, joka etenkin tulee esille suunittelu ongelman laajentuessa. Lisäksi 
muiden asioidien huomiointi suunnittelussa, kuten lokalisaation tarkkuus ja laitteiston 
kustannukset, laajentavat ongelmaa.  

Tämän diplomityön pääasiallinen tavoite on tutkia ja esittää geneettisten algoritmien käyttö 
lähettimien automaattiseen suunnitteluun. Lisäksi hyvin-nähty metriikka, sen hyödyntäminen 
optimoinnissa ja kuinka se vertaa HDOP metriikkaan, ovat tarkastelussa. 

Tulokset esittivät geneettisten algoritmien sopivuuden ongelman ratkaisuun. Geneettisillä 
algoritmeilla saadut tulokset vertasivat hyvin muihin algoritmeihin, kuten mäen-nousuun ja 
satunnaiseen generointiin. Hyvin-nähty metriikka, jota käytettiin optimoinnissa, oli laskelmallisesti 
kevyempi ja aiheutti HDOP metriikan madaltumisen optimoinnin aikana. 
 
Avainsanat: Geneettinen algoritmi, Lokalisaatio, Etäisyyteen pohjautuva, Lajiutuminen, Hyvin-
nähty, Tarkkuuden laimennus 
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1. INTRODUCTION 

Localisation, in which the location of some object is determined, and the techniques used 

to achieve it are a diverse field of study with a long history. Different use cases, such as 

outdoor or indoor, and the distinction between internal and external localisation provide 

a wide berth for finding the right solutions to the specific use-case. The actual techniques 

used, such as range-based, direction-based, etc. will further limit the design and optimi-

sation of the system.  

In this thesis, the focus will be on range-based, line-of-sight navigation systems, where 

a large number of beacons provide range information about some target. The placement 

and geometry of these beacons can have a large impact on the accuracy of localisation, 

and other factors such as minimisation of hardware, ease of maintenance, etc. can make 

designing the placements of beacons a complex task. This often means that expert 

knowledge is required for design of an effective localisation system.  

Automating this design process with the use of various algorithms is an on-going area of 

research for many types of localisation systems. We will be taking a closer look at the 

use of genetic algorithms for designing an optimal beacon placement as well as compar-

ing it to other algorithms. The well-seen metric will be used as a computationally lighter 

alternative to the more rigorous Horizontal Dilution of Precision (HDOP) metric, which 

traces its origins to terrestrial and space-based GPS systems.  

1.1 Thesis goals 

HDOP is a widely used metric and determines how the geometry of beacons will affect 

the accuracy of any location measurements with the system. While it is a very useful 

indicator of the optimality of a beacon geometry it is computationally quite heavy to cal-

culate, which can quickly become problematic when dealing with the large number of 

solutions that need to be evaluated within heuristic algorithms. While heuristic algorithms 

avoid searching the entire problem-space to provide an optimal solution, they do evalu-

ate a large number of solutions. This is especially the case with genetic algorithms when 

the population size is large, and the number of generations required to attain a solution 

increases in relation to the number of available positions and the number of beacons to 

be placed. 
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The well-seen metric will be used as an alternative to HDOP during optimisation. Unlike 

HDOP it does not fully evaluate the geometry of all visible beacons, but instead relies on 

simply determining whether a point is inside the convex hull of those beacons visible to 

it. One of the goals of this thesis is to evaluate how closely the well-seen metric mirrors 

HDOP during optimisation. That is, during automated beacon placement with various 

algorithms, does the usage of the well-seen metric as an indicator of solution optimality 

correspond with an improved HDOP result? 

One of the algorithms that the well-seen metric can be used in is a genetic algorithm. GA 

is a meta-heuristic algorithm that can be used in a variety of situations where optimisation 

is required, and a quantitative value is definable for the goodness of a solution. The main 

goal of this thesis is to evaluate the usage of a genetic algorithm for the automated 

placement of beacons. A closer look will be taken at various modifications to the genetic 

algorithm and the various operators that it used based on previous usage in similar opti-

misation problems in existing research. The core question with these actions is whether 

a genetic algorithm can be tailored for this problem-area to provide improved results 

compared to a generic variant? 

1.2 Authors contributions 

The usage of problem-specific modifications to a generic implementation of a genetic 

algorithm were mostly based on existing research. However, within the implementation 

of speciation, the usage of normal distribution to allocate species sizes based on the 

average number of beacons used by a selected population was unique to this thesis. Its 

efficacy and various configuration values for the normal distribution are evaluated.  

Additionally, the usage of the well-seen metric in a broader optimisation situation with 

continuous non-discretized beacon placements as well as an evaluation of its relation 

the HDOP metric is presented in this thesis.  
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2. PROBLEM DEFINITION 

Designing navigation system installations to provide localisation for a specific area re-

quires consideration of a wide variety of factors, such as providing the required localisa-

tion accuracy, minimising the amount of hardware that needs to be placed, accounting 

for reliability in the case of hardware failure, etc. The search space of this problem quickly 

increases when various additional factors are accounted for such as non-discretized 

placement of navigational hardware and limited field-of-view (FOV), which limits the vi-

sion of a beacon, and thus causes the direction any beacon places to be a factor for 

optimisation. It comes as no surprise that it remains an active area of research for multi-

ple different applications. 

2.1 Localisation with Line-of-Sight beacons 

A navigational system based on line-of-sight (LOS) by definition requires a direct view 

between the object being localised, and the devices that distance is determined based 

on. These devices are referred to by a wide variety of different terms depending on the 

scientific field, problem-area, and hardware specifics. In this paper the term beacon will 

be used to refer to the devices based on which measurement information will be deter-

mined, and the term receiver for the device situated on the object being localised. This 

is similar to usage in other papers in the same problem-area [1, 2] 

From the point of view of this thesis it does not matter whether a beacon or receiver 

processes the information. The methods presented should be applicable to any LOS 

system that has beacons placed in known positions and uses range measurements from 

these beacons to determine the position of the receiver. The position is determined using 

the technique of multilateration, which is an expansion of trilateration that uses three 

points to determine position. With multilateration n measurements can be used to deter-

mine the position. Figure 1 show various examples of trilateration with different errors 

and placement positions 
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a) b) 

 

 

 

 c)  

Figure 1: a) Trilateration, 3 distance measurements b) Trilateration, 3 distance 
measurements with errors c) Trilateration, 3 distance measurements with errors 

and poor placement 

In Figure 1(a), each beacon marked in blue has taken a distance measurement which is 

represented by the surrounding circle. Since no directional information is measured, a 

single measurement only provides a circle on which the point lies. With two measure-

ments the position can already be limited to two points, that is the two points where the 

circles intersect. These points where two circles intersect are marked in red. Finally, with 

three measurements a single point can be determined, which is marked in green.  
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However, in the real world there is no such thing as an errorless measurement, and the 

impact of internal errors in each measurement on the final result is presented in Figure 

1(b). With errors applied, each measurement is now a ring defined by the area enclosed 

by the two concentric circles around each beacon. Previously, with ideal measurements 

we could determine a single point, but now we can only determine that the point is some-

where inside the area defined by the intersection of all the rings, marked in green. 

 Due to the final accuracy being a composition of all the measurement rings, the place-

ment of the beacons will also impact localisation accuracy, and this is presented in Figure 

1(c). The position of the beacons now causes a widening and increase of the intersec-

tional area. This means a decrease in the localisation accuracy. When a beacon can no 

longer provide any measurement at all – either due to the loss of the beacon, or a LOS 

obstacle blocking the view – this will also change the geometry of the beacons.  

2.2 Optimality criterion 

Designing a LOS based localisation system is a process that must consider a variety of 

different factors, ranging from operationally critical requirements to more broad require-

ments that depend on the specific application. 

The key criterion that is being optimised in this paper is the localisation accuracy of the 

system. As explained in the previous chapter, the geometry of the beacons will impact 

this, and we will attempt to minimise the intersection of the measurements. One repre-

sentation of this uncertainty in position is the Horizontal Dilution of Precision (HDOP) [3]. 

We will later provide a more detailed description of HDOP and its calculation, along with 

other metrics that provide representations of localisation accuracy. 

Reliability can be provided by designing the geometry with redundancy in mind. This 

means that beacons can be lost – due to physical problems, software problems, a large 

increase in measurement error, etc. – while remaining in whatever limitations that are 

imposed on the localisation accuracy. HDOP can be calculated while taking redundancy 

into account but this is out of the scope of this thesis. 

Cost should always be minimised while still fulfilling all other requirements. The total 

lifetime cost of is be made up of multiple different factors such as hardware, installation, 

maintenance, etc. However, in this paper we will be considering only hardware and in-

stallation.  

If the system is organised as a Wireless Sensor Network (WSN) the connectivity between 

beacons and the power usage of individual beacons and receivers can be important to 

consider during the design process [4]. In this thesis we will not be taking these into 
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consideration and will instead be assuming that the beacons have perfect connectivity 

to each other – through wired connections or some other methods – and power usage is 

not a limiting factor. 

2.3 Optimisation complexity 

Methods used to find the globally optimal solution to the beacon placement problem can 

have very high computational complexity. To illustrate this, a simple beacon placement 

problem and some example solutions are shown in Figure 2. 

 

Figure 2: Beacon placement problem and example solutions. Green dots refer 
to the possible placement positions and the blue dots to placed beacons 

In this problem we have a rectangle representing the area where localisation is required 

and the green dots representing available placement positions. Some example solutions 

are shown where beacon locations are marked in blue. There is a large number of dif-

ferent ways the beacons can be placed with reference to each other. If the beacons were 

unique there would be even more ways to place the beacons, but in this case, we can 

treat the beacons as non-unique. Thus, the problem can be treated as a combinatorial 
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optimisation problem, where the number of different solutions to any problem of this type 

is defined by 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 = (
𝑗
𝑘
) =

𝑗!

(𝑗 − 𝑘)! × 𝑘!
 , (1) 

where 𝑗 is the possible placement positions, and k is the number of that need to be placed 

in any combination. The beacon placement problem is an example of a combinatorial 

explosion and attempting to brute-force it is unrealistic for even limited examples. For 

example, finding the optimal way to place 4 beacons with the placement positions given 

in Figure 2 would give us 4845 solutions to evaluate. Now, this does not seem too large 

of a problem yet, but even if we only double the placement positions to k = 40 and attempt 

to place 𝑗 = 8 beacons, the number of unique solutions would already reach ~76 million. 

In Figure 3 the combinatorial equation from Equation 1 has been graphed with a fixed 

number of beacons, but with an increasing number of placement positions. 

 

Figure 3: Solutions to place 12 beacons by number of placement positions 

As can be seen, the number of solutions quickly increase with the addition of placement 

positions. Having 100 placement positions is still a relatively simple problem in compar-

ison to actual cases encountered during beacon placement design. Even so, in that case 

the number of solutions is already more than a quadrillion. Even using an ambitious 
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evaluation time of 1 𝑛𝑠/𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛, exhaustively evaluating all solutions would take ~31 

years.  

While these factors already create an unrealistically large search space for even some-

what large problems, additional factors make it even worse. As beacons may have a 

limited FOV, their directionality will have an impact on solution optimality, which will 

cause an expansion of the search space if this were considered. If beacons are required 

to be placed in an area instead of fixed locations, we can either discretize the area, or 

place beacons freely. Discretizing will require a good enough resolution, while free place-

ment will make searching the entire search space entirely impossible. Additionally, when 

a genetic algorithm is used for optimisation the number of beacons is not actually pre-

defined but is instead minimised by factoring it into fitness evaluation which determines 

the optimality of a solution. This will cause the search-space to increase even further, as 

evaluating it entirely would require evaluation of how each number of beacons can be 

placed into the given positions. 

Thus, it is clear that brute-force solutions or any solutions that must evaluate even a 

small portion of the search-space are not viable and it is necessary to turn to heuristic 

algorithms. This is especially the case since we will be using non-discretized placement 

for our genetic algorithm in this thesis, in which case the resolution and complexity would 

approach infinity. 

2.4 Existing research 

Automating beacon placement design for localisation applications has a long history of 

research. The solutions proposed over the years involve traditional, gradient based, heu-

ristic, and meta-heuristic algorithms.  

In the early 2000s the importance of beacon placement on localisation applications was 

identified [5, 6]. This early work focused on evaluation of beacon placement optimality in 

wireless sensor networks and developed simple algorithms to automate beacon place-

ment. The work was very general, without focusing on any specific localisation method. 

In addition, they looked at improving existing networks with beacon additions and move-

ments to improve localisation, instead of designing placements from scratch. 

Research has progressed into various directions and there is currently a wide range of 

approaches taken to solve the problem. On the more mathematically rigorous end 

Moreno-Salinas et al. [7] represent solution optimality with the Fisher Information Matrix, 

which is closely related to the concept of entropy. A solution to finding the gradient of 
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this is presented, which allows the use of simple gradient based optimisation algorithms 

to find a continuous solution.  

On the other end the usage of various heuristic and meta-heuristic algorithms has pro-

vided results in this specific problem-area as well as similar problem-areas such as wire-

less network design. Z. Fei et al. [8] evaluated a wide range of algorithms for optimising 

the design of wireless sensor networks based on various criteria. One the of the algo-

rithms was a genetic algorithm. More specifically in the problem area of this thesis, Do-

mingo-Perez et al. [9] presented the usage of an evolutionary algorithm for multi-objec-

tive optimisation of beacon design for an indoor localisation system. This work was ex-

panded upon in further research [10], in which a genetic algorithm was used to design a 

beacon placement while accounting for additional factors such as coverage, number of 

sensors, and accuracy. Some expansions to a generic genetic algorithm were presented, 

such as speciation and tournament selection, and these are also made use of in this 

thesis.  
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3. PLACEMENT OPTIMALITY 

Given a set of proposed solutions to a beacon placement problem we need to quantita-

tively rate each, while being computationally efficient. Some common metrics used in-

clude coverage, which provides information about beacon visibility, and HDOP, which is 

a scalar “amplifier” of measurement error. Due to the computational complexity of HDOP, 

some lighter metric that still closely mirrors HDOP would be useful. The well-seen metric, 

as presented by Allen et al. [1], will be used as a simpler and more computationally 

efficient metric for localisation performance.  

3.1 Coverage 

The coverage of a receiver placed on an arbitrary point can be defined as the number of 

beacons visible from the given point. This can be calculated by determining the geomet-

ric relation between the point the receiver is placed on, and all the beacons, while also 

accounting for LOS obstructions, beacon range, and directionality.  

Of course, a continuous area is different from a single point. In the best case we would 

be able to derive a continuous function that represents the coverage at any arbitrary 

point. This is a non-trivial task, and the easiest option is to calculate coverage for an area 

discretely. This is done as a grid coverage, where we first discretize the area into points, 

and then calculate the coverage individually for each point. This coverage map can then 

provide a quantitative measure of placement optimality. 

The usefulness of coverage as a representation of optimality is limited though. As hinted 

at in Section 2.1, the geometry of the beacons can have a large impact on the error of 

the measurement. Coverage is inherently a simplification of the beacon geometry with 

locational information lost, thus it is not necessarily in line with actual localisation perfor-

mance. An expanded version of coverage is however useful in the calculation of other 

metrics. If we additionally store what specific beacons were visible from a point – instead 

of just representing them with a total number – we have a map that contains complex 

geometric information for each point that considers LOS obstructions, range, and direc-

tionality.   
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3.2 Horizontal Dilution of Precision 

There is an inherent error in the range measurement produced by each beacon. A range 

measurement with no errors is called the true range. Various physical effects cause er-

rors, and with these included we get a pseudorange measurement. As previously shown 

in Figure 1, these errors compound to create an uncertainty in the determined position. 

When dealing with a more complex situation – such as in a GPS system – a commonly 

used metric is the Geometric Dilution of Precision (GDOP). It has been in use in radio 

signal positioning systems since the 1970’s [11] and remains in use in modern GPS 

systems [3]. It consists of vertical (VDOP), horizontal (HDOP) and temporal (TDOP) com-

ponents. Of these, we are only interested in the horizontal component as we are dealing 

with a two-dimensional situation. 

HDOP acts as a scalar multiplier on the ranging accuracy of each measurement and can 

be thought of as a scaling factor of the error caused by the measurement equipment. 

The case is always that 𝐻𝐷𝑂𝑃 > 0, as when 𝐻𝐷𝑂𝑃 = 0, the measurement error would 

not exist anymore, and we would have a perfect measurement.  

Since it has a direct impact on the measurement error, HDOP is a good metric for deter-

mining placement optimality. It is, for example, used in GPS receivers, where various 

algorithms use GDOP to select the best configuration of satellites for localisation [12]. 

This application is similar to our problem but limited to a small number of beacons (sat-

ellites) and with only a single point requiring localisation.  

For a given area, HDOP can be individually calculated for discretized points within it to 

provide us a HDOP map. It is calculated for each point by using geometric information 

about beacon visibilities from that point. For the calculation of HDOP values we will use 

the previously mentioned expanded coverage map, which will provide us with the bea-

cons visible from the point along with their locations. A previous implementation was 

used for calculating HDOP, so this thesis will only go over the basics of it, without delving 

too far into the mathematics or implementation specifics.  

3.2.1 HDOP computation and issues 

As previously mentioned, the computational complexity of HDOP makes its usage during 

optimisation problematic. To understand why the calculation is so complex, let us take a 

brief look at the process. We won’t derive the entire calculation of HDOP here, but will 

show some key equations presented by Kaplan et al. [13] on how HDOP is calculated 

for a single point. The general relationship between the covariance of errors and pseu-

dorange error is defined as 



12 
 

𝑐𝑜𝑣(𝑑𝑥) = σ𝑥 = (𝐻𝑡𝐻)−1𝜎𝑈𝐸𝑅𝐸
2  , (2) 

where 𝜎𝑈𝐸𝑅𝐸
2  is the pseudorange error, 𝑑𝑥 is a vector defining errors in three-dimensions 

and time, 𝑐𝑜𝑣(𝑑𝑥) and σ𝑥 are different notations for the covariance of errors, and (𝐻𝑡𝐻)−1 

is a representation of how pseudorange error maps into the components of σ𝑥. Expand-

ing these components, we begin to see where the computational complexity comes from. 

In Equation 3 below is shown the covariance matrix σ𝑥, 

σ𝑥 =

[
 
 
 
 

𝜎𝑥𝑢
2 𝜎𝑥𝑢𝑦𝑢

2 𝜎𝑥𝑢𝑧𝑢
2 𝜎𝑥𝑢𝑐𝑡𝑏

2

𝜎𝑥𝑢𝑦𝑢
2 𝜎𝑦𝑢

2 𝜎𝑦𝑢𝑧𝑢
2 𝜎𝑦𝑢𝑐𝑡𝑏

2

𝜎𝑥𝑢𝑧𝑢
2 𝜎𝑦𝑢𝑧𝑢

2 𝜎𝑧𝑢
2 𝜎𝑧𝑢𝑐𝑡𝑏

2

𝜎𝑥𝑢𝑐𝑡𝑏
2 𝜎𝑦𝑢𝑐𝑡𝑏

2 𝜎𝑧𝑢𝑐𝑡𝑏

2 𝜎𝑐𝑡𝑏
2

]
 
 
 
 

  , (3) 

where the trace – referring to the main diagonal values from the top left to the bottom 

right – of the matrix contains the values required to calculate GDOP along with its sub-

component HDOP. Since HDOP is two-dimensional, the only components we require 

are 𝜎𝑥𝑢
2  and 𝜎𝑦𝑢

2 , with the other dimensions along the trace not being relevant to our case. 

HDOP can then be defined in relation to the pseudorange error with the equation given 

below 

𝐻𝐷𝑂𝑃 × 𝜎𝑈𝐸𝑅𝐸 = √𝜎𝑥𝑢
2 + 𝜎𝑦𝑢

2   , (4) 

which was defined by Kaplan et al. in their comprehensive work “Understanding 

GPS/GNSS: principles and applications” [13]  

A naive solution for calculating HDOP would involve determination of the covariance 

matrix and then only using certain values within it. Computation can be reduced by de-

termining only the values needed from the covariance matrix σ𝑥 since HDOP is defined 

within two dimensions. Calculating the values 𝜎𝑥𝑢
2  and 𝜎𝑦𝑢

2  will require determination of 

the unit vectors between the point HDOP is being determined for, and all of the meas-

urement locations, which in our case would be beacons. For a single point, we can gen-

eralise the computational complexity of HDOP as 𝑂(𝑙), where 𝑙 is the number of beacons 

visible from that point. This generalisation is based on the definition for 𝐻 given by Kaplan 

et al., where it contains all the unit vectors from the point to each beacon. When σ𝑥 is 

determined using 𝐻, as presented in Equation 2, the only values required will be those 

for the first two dimensions. 

Further expanding HDOP to be determined for each point in the coverage map would 

then give us a complexity of 𝑂(𝑚 ∗ 𝑙), where 𝑚 is the number of points in the coverage 

map. 
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It may seem like the process of determining HDOP is not that heavy of an operation, and 

it is true that calculating an HDOP value for a single point is not a large operation. How-

ever, in the beacon placement problem we have defined this value would need to be 

calculated for every single point on our coverage map. The usage of any non-gradient 

based algorithms would require us to calculate this for a huge number of solutions to 

determine the best, and especially with a genetic algorithm, each generation would re-

quire calculating an HDOP map for possibly thousands of solutions.   

3.2.2 As a simple representation of optimality 

A map of HDOP values can be a useful tool for determining where the given beacon 

placement provides good results and what areas are problematic. This type of qualitive 

comparison is useful but makes comparing solutions a difficult and human process. Hav-

ing a single value or just a few values to represent the HDOP map would be useful when 

comparing solutions between various algorithms. Due to the computational complexity 

of HDOP it will not be used directly by any algorithms in optimisation but will instead be 

used as a final comparison value between algorithms.  

The simplest method would be an average or median of all the HDOP values. While 

simple and easy to determine, these could both be quite inaccurate representations of 

true optimality, as extreme variances in a small amount of values could cause large 

changes. In addition, points with an indeterminate HDOP cannot be used in the determi-

nation of the average and it thus it will not be truly representative of the actual localiza-

bility in the region.  

A possible solution for the first issue would be to determine the mean and standard de-

viation instead. This would allow a more robust comparison between different solutions, 

as a low mean with large variability is not necessarily a better solution that a higher 

HDOP with low variability. 

A naive solution to the second issue would be to replace indeterminable HDOP values 

with some arbitrarily decided large value. This would have a large impact on the median 

and standard deviation. A better solution would be to ignore the values entirely and rep-

resent the HDOP determinability with an additional metric called the validity ratio. This 

metric would be a ratio of the determinable points to the total points and would indicate 

how valid our actual HDOP measurements are. 
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3.3 Well-seen and Well-Heard 

These metrics were presented by Allen et al. [1] as optimality criterion for designing bea-

con placements for autonomous robot navigation. The terms well-seen and well-heard 

originate from the use of acoustic beacons in the original paper. Acoustic beacons also 

work on the principle of range-measurement, so these metrics are easily applicable to 

our problem.  

A given point can be categorised as well-seen (WS) if it falls within the convex hull cre-

ated by the beacons visible to it. A convex hull for a grouping of points is defined as the 

polygon with the smallest number of points that encompasses all other points in the 

grouping. This is visualised in Figure 4, where the convex hull for a grouping of points is 

shown. 

 

Figure 4: Convex hull for a grouping of points 

If a point falls outside the convex hull, but still has enough visible beacons to provide 

sufficient coverage it is defined as well-heard. This is presented in Figure 5 
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Figure 5: Well-seen and Well-heard visualization. Red representing areas with 
insufficient coverage, yellow for well-heard areas, and green for well-seen areas 

In this situation, each beacon can provide range-measurements within the circle sur-

rounding it. The red areas have less than 3 beacons visible, which is an insufficient 

amount to provide localisation. Points within the yellow area are well-heard, while those 

in the green area are well-seen. Well-heard points have sufficient coverage for localisa-

tion, but they are not within the convex hull created by the visible beacons. Well-seen 

points have sufficient coverage for localisation and area additionally withing the convex 

hull created by the visible beacons. 

In this thesis only the well-seen metric will be used. While the well-heard metric can 

provide additional information about areas with un-optimal coverage, we will deal with 

these in a separate manner that will be detailed later.  

A naïve solution for calculation of the WS metric would be to iterate through our coverage 

map point-by-point, while calculating a convex hull based on the visible beacons and 

determining whether the point is inside this hull. The convex hull of any set of points can 

be determined using the quickhull algorithm [14]. This method’s computational complex-

ity depends on the specific geometry of the points but can be generalised as 𝑂(𝑙 ∗
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𝑙𝑜𝑔(𝑙)), where l is the number of beacons visible from the point. Determining this for each 

point in our coverage map would then give us a complexity of 𝑂(𝑚 ∗ 𝑙 ∗ 𝑙𝑜𝑔(𝑙)). Com-

pared to the previously mentioned 𝑂(𝑚 ∗ 𝑙) complexity of HDOP this seems like a poor 

choice, but with consideration of a few redeeming factors it quickly becomes sensible.  

As previously mentioned, HDOP must be calculated for each and every point individually 

due to its calculation requiring geometric information about how that specific point relates 

to the beacons around it. However, in the case of well-seen ratio, the convex hull of the 

visible beacons is the same for each point sharing the same visible beacons, which 

means it needs to be determined only once for all points sharing the same beacons. This 

also has the benefit of mostly dissociating the computational complexity from resolution. 

As the resolution of our coverage map increases there may be new point groupings form-

ing that could not be previously determined due to a lack of points in the edge cases, but 

in general an increase in resolution will not cause a consistent increase in the amount of 

convex hulls that need to be determined.  

Determining the inclusion of some arbitrary point inside a polygon can be done in multiple 

ways, but when the points that form the polygon can be assumed to form a convex hull, 

a complexity as low as 𝑂(𝑙𝑜𝑔(𝑙)) can be reached [15], where 𝑙 is the number of beacons 

visible from the point. This will then be determined for each point in the coverage map 

for a complexity of 𝑂(𝑚 ∗ 𝑙𝑜𝑔(𝑙)). Combining this with the previously presented complex-

ity of convex hull determination, we can generalize a worst-case complexity for the cal-

culation of the well-seen metric for a whole coverage map. This complexity is presented 

in Equation 5 

𝑂(𝑚 ∗ 𝑙 ∗ log(𝑙) + 𝑚 ∗ log(𝑙)), (5) 

where 𝑙 is the number of beacons visible to each point and 𝑚 the number of points within 

our coverage map. The implicit assumption in this equation is that the convex hull will 

need to be determined for each point individually, but as was previously mentioned, the 

number of convex hulls is generally decoupled from resolution, which gives us Equation 

6  

𝑂(𝑙 ∗ log(𝑙) + 𝑚 ∗ log(𝑙)), (6) 

In addition, if we assume that the number of beacons is significantly lower than the num-

ber of points, so 𝑙 ≪ 𝑚, we can ignore its impact on the total complexity in the portion 

that represents the calculation of the convex hulls. This then gives us Equation 7 

𝑂(m ∗ log(𝑙)) (7) 



17 
 

This compares favourably to the 𝑂(𝑚 ∗ 𝑙) complexity of calculating HDOP for each point 

in a coverage map and provides our motivation in using the well-seen metric. Intuitively 

this also makes sense, as with the well-seen metric, in comparison to HDOP, we avoid 

determining a large number of vectors individually for each point in the coverage map. 

Both methods do however require information provided by the coverage map, so we will 

not go into its complexity and implementation as it is a common factor.  

Much like in the case of HDOP, a well-seen map will not allow easy comparison between 

solutions. Similarly, we can attempt to represent the whole with a single value, which due 

to the binary choice of well-seen – meaning something either is or is not well-seen – is 

very simple. The ratio of well-seen points to all points gives us a normalised value be-

tween 0 and 1, where 1 is a perfect solution and 0 is the worst possible solution.  
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4. GENETIC ALGORITHM 

The combinatorially expanding search-space of the beacon placement problem makes 

exhaustive search algorithms problematic. A genetic algorithm is an example of a meta-

heuristic algorithm, which can provide approximate results more efficiently than exhaus-

tive methods. Problem-specific modifications can lead to further improvements. 

4.1 Heuristic and meta-heuristic algorithms 

In comparison to exhaustive optimization methods, algorithms belonging to the heuristic 

or meta-heuristic classes avoid many of the common pitfalls, while also having their own 

drawbacks. Heuristic methods provide quicker results than exhaustive methods by 

avoiding a full traversal of the search-space, thus providing an approximate solution [16]. 

They are useful in situations where the exact global optimum is not required, and the 

desired level of optimality can be reached. The main drawback being that the final solu-

tion may not be the exact global optimum, as the problem is not evaluated exhaustively. 

A meta-heuristic is an expansion of the heuristic concept. While a heuristic is tailored to 

the specific problem, a meta-heuristic is general and can be applied to multiple types of 

problems with minimal adaptation. There is a large amount of different meta-heuristic 

algorithms – but many of the common ones are inspired by natural systems – such as 

biological evolution in the case of evolutionary algorithms [17], or the physics of anneal-

ing in the case of simulated annealing [18]. 

The beacon placement problem is a good candidate for heuristic and meta-heuristic 

methods due to a few key characteristics. It is combinatorial in nature, which leads to an 

exorbitantly large search-space. An exact solution is generally not required, and due to 

the generic nature of meta-heuristic algorithms, a large amount of knowledge specific to 

the problem area is not required.   

4.2 Genetic algorithm 

A genetic algorithm is a meta-heuristic optimization algorithm belonging to the family of 

evolutionary algorithms, which take their inspiration from mechanisms found in the bio-

logical process of evolution. In comparison to single-solution algorithms – which involve 

one solution being iteratively modified – evolutionary algorithms are population-based 

[19], meaning there are multiple solutions being simultaneously optimised. This may 
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avoid convergence on local minima and allows separate areas of the search-space to be 

simultaneously searched.  

At its most basic and without any problem-specific functionality, a genetic algorithm con-

sists of four operations that are iterated through after initialisation, involving fitness eval-

uation, selection, reproduction, and mutation. Before these operations, the algorithm 

needs to be initialised with a population of individuals. An individual refers to a data object 

that contains a solution to whatever optimisation problem is at hand. This solution is 

referred to as the genome of the individual and is comprised of various traits. In our case, 

the genome of a single individual would be a placement of beacons that provides locali-

sation to some predefined area. Each beacon with its position and orientation would be 

a trait. The genomes of each individual in this initial population are usually completely 

randomized but can be provided by some other process to give a head start to the itera-

tive process of the genetic algorithm.  

After initialisation of a starting population, the operations are iterated through to slowly 

improve the total fitness. These include fitness evaluation, selection, reproduction, and 

mutation. In Figure 6 is a flowchart showing the general structure of a genetic algorithm 

 

Figure 6: General structure of a genetic algorithm 

These operations can be iterated through as long as required, but a general method is 

to stop after a certain amount of generations are reached without improvement.  
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4.2.1 Fitness evaluation and selection 

Fitness must be evaluated so that individuals and the solutions they offer can be quali-

tatively compared, after which individuals can be appropriately selected from the total 

population.  

Fitness refers to the performance of a specific individual according to various metrics. 

While depending on the problem-area it can take on all sorts of values, it does need to 

be a single qualitative value that can be easily used to compare individuals. At its sim-

plest, the fitness of an individual represents only the raw utility provided by the solution 

it defines, which in our case would be the well-seen metric. Additional factors such as 

cost, complexity, or any other problem-specific requirements can be implemented into 

the fitness calculation to provide a better representation of a individuals’ optimality. Equa-

tion 5 shows the most basic fitness equation that will be used by the genetic algorithm 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑊𝑆 − 𝑐 ∙ 𝑏, (5) 

where 𝑊𝑆 is the well-seen ratio calculated from the geometry of the beacons, 𝑐 is the 

beacon cost, and 𝑏 is the number of beacons used in the solution. With this simple equa-

tion we can already optimise with regards to our key metric, the well-seen ratio, and 

prefer minimising the number of beacons by applying a small cost for each. 

When the fitness of each individual in the population has been determined, some portion 

of the individuals is selected. This is meant to approximate the concept of “survival of the 

fittest” in evolutionary theory, and only the selected individuals are allowed to proceed to 

the next phases. In its simplest form, this selection is done entirely based on fitness. For 

example, one might select all individuals above the 90th percentile. Simple methods like 

this can have serious drawbacks and can cause significant problems for the algorithm 

as a whole, such as poor convergence towards optimality due to prevention of long-term 

individual development, or low selective pressure [20]. Later we present a more problem-

specific implementation of the genetic algorithm where we will discuss other methods 

that can be used to provide a more rigorous selection.  

4.2.2 Reproduction 

Once a subset of the population has been selected, repopulation is required. Generally, 

the population size is kept constant between each iteration, so we need to create enough 

new individuals to bring it back to its previous value. This is done by applying crossover 

between individuals from the selected subset. This process consists of combining the 

genomes of two individuals to create a new individual with a unique solution compared 
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to both parents. The genome might not always be unique with respect to the entire pop-

ulation, as even with different parents since the process is stochastic in nature two indi-

viduals with identical genomes can be created from different parents. The exact process 

can vary depending on the implementation, but the end product is always a new individ-

ual.  

4.2.3 Mutation 

The newly generated population is intended to be an improvement on the original popu-

lation, since only traits from the selected individuals were allowed to pass on. However, 

none of the previous operations create new traits, but instead just randomly reshuffle 

traits that were created during initialisation of the starting population. Therefore, mutation 

is required. Much as with crossover the specific implementation can vary, but the general 

requirement is that each individual’s genome is randomly changed to provide a new so-

lution. This can take the form of modifying, removing, or adding traits.  

Applying mutation to an individual can be implemented in various ways and does require 

some specificity to – and understanding of – the problem-area as we must understand 

what defines individuality, how to change a solution, and how these impact solution op-

timality. In our problem we are attempting to place an indeterminate number of beacons 

onto a two-dimensional area. In addition, the beacons have a limited field-of-view, thus 

directionality is an extra dimension of that optimization. Taking all these factors into ac-

count we can define four mutation operators that can be applied to an individual. 

• Translate 

A randomly selected, previously existing beacon has its X and Y coordinates ran-

domly changed. This random change takes the form of adding a randomly generated 

decimal value from some range [−𝑎, 𝑎], where a is referred to as the translation 

range. A random value is generated and added to both X and Y coordinates sepa-

rately. If the translated beacon is in an invalid placement, such as inside an obstacle 

or outside the placement area, translation is retried. 

• Create 

A new, validly placed, randomly located, and randomly oriented beacon is added. 

• Delete 

An existing beacon is removed. 

• Pivot 
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The orientation of the beacon is changed by adding a randomly generated negative 

or positive value to it.  

How these operators are applied to individuals and the population as a whole can be 

defined and restricted by various hyperparameters. These are parameters that configure 

the optimisation process. For our case, we only have two of these, the mutation rate, and 

the previously mentioned translation range.  

Mutation rate defines the probability that a given individual will mutate. With our imple-

mentation, only one of the four mutation operators is then randomly selected and applied.  

4.3 Problem-specific modifications 

The basic building blocks of any genetic algorithm are the four operators described in 

the previous chapter. To improve both computational performance, and the optimality of 

the final solution, these basic operators can be implemented and expanded in various 

ways. New operators can also be made, often borrowing from some additional concepts 

and structures found in evolutionary theory. 

Modifying the existing operators and adding new ones can come at the cost of making 

the algorithm more problem specific. Some operators and modifications will not provide 

substantial improvements in all problem-areas, and care needs to be taken when decid-

ing what changes to make to a generic genetic algorithm. There are a few improvements 

we will be looking at that are of special note for our problem area.   

4.3.1 Speciation 

In a generic genetic algorithm during each generation there is a single large population 

containing all individuals. When this population reproduces to create the next generation, 

any individual can reproduce with any other individual. This can cause problems when 

solutions that are very dissimilar in their approach are merged to form new solutions that 

retain none of the traits that were resulting in optimality of each parent. 

The solution to this is the evolutionary concept of speciation which was first presented in 

the context of a parallel genetic algorithm by James Cohoon et al. in 1987 [21]. While 

their approach was done in the context of wanting to easily parallelize the computation 

of a genetic algorithm, they found improvements to solution optimality in addition to the 

performance improvements provided by parallelization. Each species is used to repre-

sents some subset of the entire search space, where solutions are more like each other 

than to those in some other species. In other words, given a search space, a species 

represents some limited region in this space.  
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The actual improvements arise from the limitations we place between species. All oper-

ators are applied internally within each species, thus limiting cross-competition, which 

can cause optimization over a wide search space and decrease the ability to converge 

on locally optimal solutions. Cross-competition refers to individuals with very different 

solutions having to compete with each other during selection. With multiple species that 

each are optimizing within a limited search space we can thus achieve local convergence 

while also avoiding getting stuck in local minima due to different species occupying dif-

ferent niches. 

This concept can be applied to multiple problem areas, where the major requirement is 

that the solutions can somehow be grouped based on their closeness with each other. 

Regardless of the method used to group individuals, the representation of the grouping 

in the search-space is arbitrary. This is because as we define groupings, we are also 

defining the search-space on its basis, which will inherently make it a perfect segmenta-

tion of the search-space. However, whether any method used in grouping is actually a 

good representation of the closeness of solutions to each other is not easily evaluated.  

Domingo-Perez et al. used speciation [10] in a similar problem setting and managed to 

achieve significantly improved results in comparison to an unmodified NSGA-II algo-

rithm. Their solution for defining species was based on the number of beacons used in 

an individual’s solution. This is simple, computationally efficient, and has sound reason-

ing behind it as solutions using the same number of beacons are generally similar in 

fitness. In addition, when using a single population, bias towards either over or under 

placement of beacons can easily occur if the cost of placement is not correctly fine-tuned. 

With speciation, since selection is applied within a species, individuals are not required 

to compete with solutions that have an unfair advantage towards the bias exhibited by 

the fitness evaluation.  

The usage of speciation in this paper is similar to that presented by Francisco et al. but 

varies in technical implementation and includes a few additions. Figure 7 shows the gen-

eral structure of speciation as implemented in this thesis 
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Figure 7: Structure of speciation with species size determined by normal dis-
tribution 

Given a population of individuals, it is split into 𝑁 species which each consists of 𝑖 indi-

viduals. This species size 𝑖 of each species in the whole population is determined with 

Equation 8 given below 

𝑖 = (𝑃(𝑏 + 0.5 > 𝑋) − 𝑃(𝑏 − 0.5 > 𝑋)) ∗ 𝑝 ∗ 𝑟, 𝑤ℎ𝑒𝑛  𝑋~𝑁(𝜇, 𝜎2), (8) 

where 𝑏 is number of beacons used by each individual in the species, 𝑝 is the total pop-

ulation required, 𝑟 is a multiplier to normalize the total population to the required amount 

shown below in Equation 9 

𝑟 =
1.0

𝑃(𝑏𝑚𝑎𝑥 + 0.5 > 𝑋) − P(𝑏𝑚𝑖𝑛 − 0.5 > 𝑋)
 , (9) 

and 𝑋 follows a standard distribution centred around the average number of beacons 

found in the selected population. An example of this is presented with the parameters 

given in Table 1 below.  

Table 1: Parameters for calculation of species distribution 

Population size Number of species Selection ratio (𝑠𝑟) Beacon average (𝜇) 

1000 7 0.1 7.7 

After the selection round is applied, we are left with a population of size 100, which needs 

to be bred into a new population of the appropriate size. Each species in this new popu-
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lation will be limited to i individuals based on the usage of normal distribution as previ-

ously described. A species with 6 beacons for example would be limited as shown below 

in Equation 10 

𝑖 = (𝑃(6.5 > 𝑋) − 𝑃(5.5 > 𝑋)) ∙ 1000 ≈ 240 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠, 𝑤ℎ𝑒𝑛  𝑋~𝑁(7.7,1), (10) 

The benefit of using a normal distribution to determine the size of each species is two-

fold. Firstly, it allows a larger focus on the species which is currently providing the best 

results. As the average number of beacons begins to converge on the “optimal” solution, 

there will be less computational resources wasted on solutions with less or more bea-

cons, that have already not shown to be able to reach the same optimality.  Secondly, it 

allows a wider optimisation while using fewer computational resources, since solutions 

farther from the average are provided less and less resources.  

One additional adjustment made to speciation was the limitation of the shift in the aver-

age. Early on after implementation it was noticed that the optimality could easily degrade 

when the shift to a higher or lower average was too fast. Large sudden shifts will cause 

species that are not represented in the new average to be discarded entirely and their 

solutions will not be allowed to develop. The shift was instead limited to 0.2 per genera-

tion, meaning that even with a large increase in the average, the distribution of the next 

generation will be calculated using an average shifted only this amount above the current 

average beacon number.  

4.3.2 Tournament selection 

With selection, the goal is to improve the fitness of the population each generation by 

selecting for strong traits. This is done by selection of some portion of individuals from 

the total population with a preference towards high fitness. The traits these individuals 

contain will then be passed on to the next generation during reproduction. How these 

individuals are exactly selected can have a large impact on the overall performance of 

the algorithm depending on what kind of selection pressure is applied to the population.  

The simplest method for selection involves selecting only the top individuals. The issue 

with this method is the high selection pressure it causes against individuals with lower 

fitness. An individual might not have the required fitness to be selected while containing 

some desirable traits. Divergence from the local minimum should be allowed in the short-

term, as otherwise we will converge without allowing solutions in a wider area of the 

search-space to be evaluated. This is very much a balancing act, and there is a wide 

array of different methods used to provide selection pressure, while still allowing diver-

gence from the local optimum. 
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A commonly used method for this is tournament selection. In a similar problem setting 

Leune et al. showed the effectiveness of this method in comparison to a simpler uniform 

roulette selection method [4]. Tournament selection involves separating the population 

into groups in which the individual with the highest fitness will have the highest chance 

of winning. A diagram representing the structure of tournament selection is shown in 

Figure 8 

 

Figure 8: Structure of tournament selection applied to a population 

A population of individuals is split into tournaments based on the selection ratio 𝑠𝑟, which 

defines what percentage of individuals will be selected, and the size of the total popula-

tion 𝑃𝑡𝑜𝑡𝑎𝑙. From each tournament only one individual is selected with a probability de-

fined by Equation 11 given below 

𝑠𝑝(1 − 𝑠𝑝)
𝑖𝑟
 , (11) 

where 𝑠𝑝 is the selection pressure and 𝑖𝑟 is the rank of the individual in comparison to 

others in the tournament. Given for example a selection pressure 𝑠𝑝 of 0.9 and a selec-

tion ratio 𝑠𝑟 of 0.1 – meaning we select 10% of the initial population – the top individual 

in each tournament would have a 90% chance of being selected, the second best 9%, 

the third best 0.9%, etc. By finetuning the selection ratio and selection pressure, we can 

thus effectively decrease or increase the selective pressure applied to the population in 

question. In the case of speciation this selection process is applied to each species indi-

vidually. 
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4.3.3 Fitness evaluation 

In Equation 5 we presented a basic method for calculating the fitness of a solution. This 

equation can have significant problems with certain types of optimization situations and 

can be improved on.  

One problem encountered when running the generic genetic algorithm, was an inability 

to converge to a viable solution when the operational area has multiple areas that have 

little or no relation to each other. This means that placing a beacon to provide localization 

for some area will not provide any benefits to other unconnected areas and will require 

a minimum number of beacons until any results are reached. Later, when defining the 

experimental setup, this will be presented in more detail. To improve convergence in this 

situation an additional metric called localizability ratio is presented in Equation 12 

𝐿𝑅 = 𝐿𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑟𝑎𝑡𝑖𝑜 =
∑ max (1,

𝑏𝑝

𝑛
)𝑚

1

𝑚
, (12)

 

where 𝑚 is the number of points in the operational area, 𝑏𝑝 is the number of beacons 

visible at some point 𝑝, and 𝑛 is the minimum number of beacons required to provide 

localization. This provides a value ranging from 0 to 1 that represents how localizable 

the operational area is, and how close it is to achieving localizability. Placing beacons 

that provide coverage for an operational area that is not localizable yet will provide utility 

even though a minimum threshold for localizability has not been reached. Using this with 

the previously presented fitness equation gives us Equation 13 presented below 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑊𝑆 + 𝐿𝑅 − 𝑐 ∙ 𝑏, (13) 

where 𝑊𝑆 is the well-seen ratio calculated from the geometry of the beacons, 𝐿𝑅 is the 

localizability ratio, 𝑐 is the beacon cost, and 𝑏 is the number of beacons used in the 

solution.  

The value given to the beacon cost𝑝 can have a large impact on the final result and the 

appropriate value can vary depending on the size of the operational area. The more 

beacons need to be placed for an “optimal” solution, the lower the beacon cost should 

be. This is because each individual beacon will provide a smaller increase in any opti-

mality metric, since it can only reach a small portion of the entire area. Too high of a cost 

when the solution will require a large number of beacons to be placed can cause areas 

which will not be properly covered because the cost of coverage is too high.  

To better deal with this, beacon cost will be automatically determined based on the op-

erational area. Some assumptions are made that might reduce the validity of these  
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4.4 Problem specific genetic algorithm 

The previously mentioned modifications to the genetic algorithm are presented below in 

Figure 9.  

 

Figure 9: Structural overview of the problem specific genetic algorithm 

As can be seen, the addition of speciation complicates the structure and operators may 

be applied to the population either individually or within a species. The specifics of each 
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block (fitness evaluation, tournament selection, reproduction, mutation) are detailed in 

their individual chapters. From the above figure you can get a general overview of how 

the population and species change in size as they pass through an iteration of the algo-

rithm. 
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5. EXPERIMENTAL SETUP 

The geometry of the optimisation environment can present a variety of difficulties for 

optimisation and the final result. We show some hand-made geometries, the problems 

they present for optimisation, and what kind of convergence on optimal solutions we 

expect. 

Automatic and random generation of geometries can provide a wide range of different 

problematic optimisation geometries. The issue is that the geometries will need to be 

manually checked anyway to remove duplicates, trivial geometries, and those that are 

unsolvable. Instead, various geometries will be hand-made to represent a wide variety 

of optimisation problems due to obstacles and range limitations. 

5.1 Single obstacle – centre placement 

A single line-of-sight obstacle placed centrally in a rectangular area provides the most 

basic problem for beacon placement optimization. Figure 10 shows an example of con-

vergence onto an optimal solution with several HDOP maps of various beacon place-

ments. 

 

Figure 10: Beacon placement HDOP maps with a centrally placed LOS ob-
struction. Red circles are single beacons 
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Given a rectangular area and beacons with sufficient range, the simple and optimal so-

lution is to place beacons in each corner. In the left-most solution, it can be seen how 

poorly this approach performs when there is a centrally placed obstacle. The coverage 

drops below the minimum of four beacons that is required for localisation in most of the 

operational area. Thus, HDOP is non-definable in most of the area, and the well-seen 

ratio is very low.  

In the middle solution we have placed additional beacons between the corners, and this 

improves the performance significantly. Apart from the areas near the edges of the rec-

tangle, the HDOP is definable for the entire area, but receives some poor values near 

the rectangle. The well-seen ratio supports this as ~5% of the area remains outside the 

well-seen coverage. 

Finally, the right-most solution presents the intuitively optimal solution to this problem 

with regards to the well-seen ratio. As can be seen, issues with poor and non-definable 

HDOP have been eliminated, and the well-seen ratio has reached its maximum value. 

This is the solution we are expecting algorithms to reach for this specific map. When 

dealing with a single centrally placed obstacle we are expecting beacons to converge in-

line with the edges of the shape. The convergence points with different geometries are 

presented in Figure 11. 

 

Figure 11: Expected convergence points with a rectangular and a hexagonal 
LOS obstruction. The obstacle is denoted with grey and the operational area as 

the white area. 
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For simplicity, we will be using a centrally placed rectangle for testing, but this rule double 

be applicable to obstacle geometries of varying and non-symmetrical shapes. These il-

lustrations are generic, and do not account for the ranges of the beacons or the size of 

the area.   

5.2 Single obstacle – corner placement 

A corner placement of a single obstacle is a special case of free-form placement of an 

obstacle. The beacon convergence for a centrally placed obstacle, as shown in the pre-

vious chapter, would provide results just as well with regards to the HDOP and well-seen 

metrics, but solution optimality also factors in the number of beacons used. Convergence 

onto an optimal solution is presented in Figure 12. 

 

Figure 12: HDOP maps of different beacon placement with a corner placed 
LOS obstruction. Red circles are either single or double beacons (1,2). 

Any beacons placed along the edges that are not facing operational areas do not provide 

any additional improvement for either HDOP or the well-seen metric. In the left-most 

solution with beacons placed in corners, the entire area has non-definable HDOP. The 

central solution has the beacons placed following the expected placements for a centrally 
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placed rectangular object. The HDOP and well-seen results are that of an optimal solu-

tion, but many of the beacons placed provide either marginal or no improvement with 

regards to these metrics.  

The right-most solution presents the ex-

pected solution to this problem with re-

gards to the well-seen ratio. Only 7 of 

the 12 beacons were required to reach 

an optimal well-seen ratio and while the 

HDOP does improve with more bea-

cons, the change is often only margin-

ally better. In Figure 13 is shown a visu-

alization of how we expect the beacons 

to converge in a corner placement case, 

based on the previously shown conver-

gence for objects shown in Figure 11. 

 

 

 

5.3 Splitting obstacle 

With the previous examples of centrally and corner placed obstacles, the convergence 

onto the expected points can happen quite gradually and even a single beacon place-

ment can provide improved results. A more difficult case is when an obstacle splits the 

operational area into new sub-areas that do not rely on the same beacons for localiza-

tion, or if they do, only marginally so.  

This can cause major issues depending on the algorithm used, as the areas are essen-

tially optimized independently of each other. Figure 14 shows an example of an area split 

into two by an obstacle, and what the HDOP maps look like with different solutions 

Figure 13: Expected convergence 
points with a rectangular corner placed 

LOS obstruction 
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Figure 14: HDOP maps of different beacon placement with a splitting LOS ob-
struction. Red circles are single beacons. 

In the left solution, the upper area has an optimal beacon placement, while the lower 

area has no coverage and a non-definable HDOP. Even when adding beacons to the 

lower area, as shown in the central image, the lower area still receives no coverage and 

has a non-definable HDOP. Only with the addition of the 4th beacon in the right image do 

these values improve. This is a difficult problem for an iterative algorithm, as the first 3 

beacons, no matter how optimally they are placed, provide no coverage and thus no 

improvement in scoring. These beacons, however, have an associated cost with them, 

which can easily cause solutions attempting to optimize the lower area to be discarded 

before they provide any results. 
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5.4 Limited range 

In all previous examples, the ranges of the beacons have been assumed to be sufficient 

to cover the entire area from all corners. When faced with an area where beacons will 

have insufficient range to cover it entirely, another set of problems for optimization come 

up. In Figure 15 is shown an example where the size of the area and the limited range 

of the beacons means that there is a very restrained way to optimally place the beacons.  

 

Figure 15: HDOP maps of different beacon placement with limited range. Red 
circles are single beacons. 

In the left-hand side image, the beacons are placed so that they are just within range of 

each other to achieve an optimal well-seen ratio. The right-hand side image shows what 

even a small shift the in the beacon placements can cause. The well-seen ratio drops 

noticeably, and some areas lose coverage entirely. The size of this map and the ranges 

of the beacons are set so that it can only barely be covered by 8 beacons when they are 

placed optimally, with some wiggle room in the placement. 

5.5 Multiple complicating factors 

To provide a more challenging optimisation environment there will be a combination map 

that contains each of the previously presented problematic optimisation geometries. The 

map with a planned optimal solution is shown in Figure 16. As can be seen, there are 
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still some areas with poor HDOP. These are unavoidable in this optimisation configura-

tion when placement of beacons is only allowed outside the operational area. 

 

Figure 16: HDOP map of combined map. Red circles are single beacons 

The purpose of this map is to provide a good range of problematic geometries and in-

crease the number of beacons needed for an optimal solution. In the solution shown, we 

are expecting 18 beacons to be placed, with the placement following the rules described 

in the previous sections for each individual obstacle placement and beacon range-limi-

tation. The solution shown is hand-made and thus might not be a truly optimal solution. 

Regardless, a well-seen ratio of about 0.97 is achieved, and this is expected. Some can-

not achieve well-seen coverage since placement of beacons will be limited to the outside 

of the operational area during optimisation. 
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6. RESULTS 

The performance of the problem-specific genetic algorithm will be compared with various 

parameters for species distribution. The problem-specific genetic algorithm, running with 

the best determined parameters, will then be compared with a generic genetic algorithm, 

running with configuration values that are otherwise identical. Both implementations of 

the genetic algorithm will be compared with other heuristic algorithms, such as hill-climb-

ing and random generation. 

6.1 Problem-specific genetic algorithm 

The tinkering done with the generic genetic algorithm to improve its performance in this 

problem area added and changed the actions of various configuration values. One of 

these configuration values is the sigma value used to determine species distribution in 

speciation. The impact of this value on performance and the reasoning behind this should 

be determined, so that the strengths and weaknesses of this implementation of specia-

tion can be identified. Below in table 2 is presented the fixed configuration values used 

for this comparison. The fixed configuration values used for this comparison are pre-

sented in Table 2 

Table 2: Configuration values for sigma comparison 

Population 

size 

Species Selection 

ratio 

Selection 

pressure 

Stop 

limit 

Mutation 

rate 

Translation 

range 

2000 7 0.25 0.9 100 0.5 5.0 

Figure 17 shows the performance of the algorithm with various sigma values. Note the 

cut-off of the y-axis at a well-seen value of 0.6. This is due to a very fast convergence to 

reasonable values within the first few generations, regardless of the sigma value. 
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Figure 17: Well-seen ratio by configuration value for each generation. 

The results have been collected from a single run with each sigma value. With random-

ized algorithms the results are unpredictable and can vary depending on the run. The 

processing time for the algorithm with the hardware available was poor enough that run-

ning it enough times to get a proper average would have taken too long within the scope 

of this thesis. These values may not be fully indicative of the performance but do seem 

to support what was noted during development and seem sensible when we later take a 

look at how the sigma value would affect the species distribution in each case.  

What can be seen from Figure 17 is that, regardless of the sigma value, performance 

was quite good, with all of the configurations achieving a fast increase in fitness and 

eventual convergence onto > 0.97 well-seen ratio. The configuration of 𝜎 = 1 does seem 

to provide the fastest convergence to optimality as well as the best final result, while 

increasing or decreasing the value slightly decreases convergence speed as well as the 

final value. Of special note are the configurations 𝜎 = 0.1 and 𝜎 = 8.0, of which the for-

mer would cause limitation to a single species, and the latter would cause a completely 

flat distribution of individuals to all species. 

With 𝜎 = 0.1 only the species within the average beacon number was allowed any indi-

viduals. Thus, this value in fact enforced a fixed beacon size for each generation based 

on the average number of beacons in the selected population. While at first it seems that 
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this could not provide any results, this still works since the average beacon number is 

determined only after the mutation and selection stages. If beacons need to be added 

for an optimal solution, there will be a large selection pressure towards the individuals 

that mutate more beacons during the selection round.  

However, this is not a great method, since large populations of individuals will be lost 

before they are allowed to mutate towards optimality. Given a shift between generations 

to a different species being allocated all possible individuals, all other individuals will be 

lost. Due to the way selection applies pressure to the best individuals it might be that the 

population of individuals in the selected species is very small and much of the diversity 

present in the previous population will be discarded.  

The configuration 𝜎 = 8.0 represents the opposite end of this issue. With the given con-

figuration of the other parameters, this value provided a completely flat distribution, with 

each species allocated the same number of individuals. With the configured parameters 

in Table 2 each species was allocated 285 individuals, and this is a large enough popu-

lation to begin to provide some results.  

While the well-seen metric is used for fitness evaluation, and we can note that the 𝜎 =

1.0 configuration seems to provide the best convergence towards optimality as defined 

by the fitness, we cannot use it as a final comparison on localization performance. The 

well-seen metric is intended to broadly represent HDOP, but this is not assured, as it is 

a geometric simplification that does not account for spread of beacons in as HDOP does. 

Figure 18 presents the mean and standard deviation of the HDOP, as well as the validity 

ratio for the configuration 𝜎 = 0.1. 
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Figure 18: Mean HDOP with standard deviation, and validity ratio, by genera-
tion. σ = 0.1 

As can be seen, this graph implies a connection between the HDOP and the well-seen 

ratio.  Figure 17 previously showed that the well-seen ratio was being maximised during 

the optimisation process, and in Figure 18 we can now see that the HDOP was also 

being minimised. Even though we are not directly optimising for HDOP – as it is not used 

at any stage of fitness evaluation – we see it generally decreasing due to the connection 

between it and the well-seen metric. The validity ratio, as presented previously in Section 

3.2.2, is the ratio of the HDOP points that can be used for evaluation. It is meant to show 

at what stage the HDOP is truly comparable with other results, as a low validity ratio 

means that a large portion of points are ignored in the mean and standard deviation 

calculations.  

The results for the 𝜎 = 0.1 case in Figure 18 show a large variance in the HDOP and 

error values during the beginning of the optimisation process, as well as a low validity 

ratio. This is because at this stage there are various points that do not have sufficient 

coverage for localisation, and the points that do can have highly varying values, causing 

large errors in the mean HDOP. In Figure 19 the 𝜎 = 1.0 case is shown. 
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Figure 19: Mean HDOP with standard deviation, and validity ratio, by genera-
tion. σ = 1.0 

There are a few important distinctions to note immediately in comparison to the previous 

case in Figure 18. Firstly, the validity ratio converges onto near total coverage of the 

operational area much faster than with the previous configuration. Secondly, the HDOP 

falls below a value of below 1 much faster than with the previous configuration. And 

thirdly, the error is less prone to spiking and remains consistent after the first ~50 gener-

ations. 

While the slightly improved performance of the algorithm cannot be firmly tied to a better 

configuration value without more averaged trials, it seems to be supported by the other 

improved factors, such as a faster convergence of the validity ratio, faster convergence 

to a HDOP value below 1, and a generally smaller error during the process. All of these 

indicate better performance which could in addition allow better final convergence to-

wards optimality. 

Another thing to note, is that HDOP does not seem to be so strictly tied to our fitness 

value with the configuration 𝜎 = 1.0. From generation ~100 onwards the HDOP has not 

significantly improved and has instead even increased from the best results it managed 

during the run. This can be explained by looking at the number of beacons used by the 
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best individual in each generation. Below in Figure 20 is shown the number of beacons 

in each generation for various configurations of the sigma value. 

 

Figure 20: The number of beacons placed in each generation with different 
sigma values 

As can be seen, the number of beacons used varied greatly between the algorithms run 

with different sigma values. We can now note why the HDOP value could end up increas-

ing in general and why specifically with the configuration 𝜎 = 1.0.  

The general reason for increasing HDOP during optimisation is simply caused by the 

factoring of additional aspects into our complete fitness value. Specifically, the addition 

of a beacon cost will cause minimisation of the number of beacons and will always cause 

beacons to be preferred to be removed if they do not improve the well-seen ratio. The 

well-seen ratio is not entirely connected to HDOP, and if points are already within the 

convex hull of their visible beacons, any additional beacons will not improve the well-

seen ratio. With HDOP, however, each additional beacon will provide improvements de-

pendent on its actual placement, with diminishing returns as more and more beacons 

are placed with a proper geometry. Due to these factors, when we minimise the number 

of beacons, HDOP is expected to increase some small amount, but as can be seen in 

Figure 19 the increases are very small and we are still dealing with HDOP values lower 

than 1.  
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The reason why this problem is exhibited more consistently in the case 𝜎 = 1.0 – and in 

addition the case 𝜎 = 2.0, which will be analysed next in more detail – is most probably 

due to the faster decrease of the HDOP to a nearly final value.  Additionally, a larger 

amount of time is spent alternatively over placing beacons, and then subsequently re-

moving those that have no impact on the fitness. This will cause much more shifts in the 

HDOP value than with the other configurations that do not exhibit the same over-place-

ment and then removal behaviour. Now, let us take a closer look at the configuration 𝜎 =

2.0 shown in Figure 21. 

 

Figure 21: Mean HDOP with standard deviation, and validity ratio, by genera-
tion. σ = 2.0 

This configuration is more comparable in performance to the configuration 𝜎 = 1.0. In 

comparison to the configuration 𝜎 = 0.1 shown in Figure 18, it has faster convergence of 

the validity ratio to near total coverage of the operational area, faster convergence of 

HDOP to below 1, but a similar number and intensity of spikes in the error graph. Other 

than the increase in the error spikes in comparison to 𝜎 = 1.0, this seems like expected 

behaviour.  

When taking a look at the number of beacons placed between 𝜎 = 1.0 as shown in Figure 

19, and 𝜎 = 2.0, as shown in Figure 21, we can note some differences between the two 

configurations. While both configurations exhibit the behaviour of over-placing beacons 

and then removing them, the configuration 𝜎 = 1.0 seems to be less inclined to remove 
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beacons and generally has a larger number of beacons in its solutions. The configuration 

𝜎 = 2.0 on the other hand consistently has a lower number of beacons. 

Now let us take a look at our final configuration of 𝜎 = 8.0 shown below in Figure 22. 

 

Figure 22: Mean HDOP with standard deviation, and validity ratio, by genera-
tion. σ = 8.0 

As explained previously, the configuration 𝜎 = 8.0 is a large enough value to cause a 

totally flat distribution of species sizes. With a quick look at the HDOP graph it would 

seem that this configuration provided quite comparable results to the previously pre-

sented configurations. 

The validity ratio does not converge to near total coverage of the operational area quite 

as fast as with the other configurations, but does provide improved results compared to 

the configuration presented in Figure 19. The HDOP value actually decreases below 0.8 

and provides better results than any of the previous configurations. And finally, the error 

seems to be focused on the beginning of the process, and no additional spikes are seen. 

However, when a closer look is taken at the number of beacons placed in Figure 20 

these results become clearer.  

With a configuration of 𝜎 = 8.0 there is a large overplacement of beacons. Unlike with 

the lower configurations of 𝜎 = 1.0 and 𝜎 = 2.0, there is not as consistent culling of bea-
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cons after overplacement, which cause the final solution to have large number of bea-

cons. As previously noted in Section 5.5, the map used for optimisation should have an 

optimal solution of 18 beacons, and the final solution with this configuration ended up at 

26 beacons. This is far from the optimal number, and far from the other solutions pro-

vided by runs with other configurations. This explains why this configuration exhibited 

the best HDOP result, while simultaneously providing a well-seen ratio similar to 𝜎 = 0.1 

and 𝜎 = 2.0 configurations. Each additional beacon will almost always increase the 

HDOP slightly, but diminishing returns are apparent as more and more are placed. In 

comparison to the configuration 𝜎 = 1.0, the placement of 7 additional beacons only in-

crease the HDOP by < 0.1 which, while not completely insignificant, is not worth the 

placement of extra beacons as any HDOP under 1.0 is already a good result. 

An interesting note about the well-seen ratio achieved with the configuration of 𝜎 = 1.0 

is that it is in fact better than the optimal value that was predicted during introduction of 

the combined map in Section 5.5. The solution for it was designed by hand with the idea 

that the resolution of the coverage map would be large enough to avoid any discrepan-

cies. The most probable reason for the larger than expected final value is the usage of 

quite a low resolution during optimisation due to memory constraints. The problem a low 

resolution may present is shown in Figure 23.  

 

Figure 23: Low discretization resolution impacting coverage 

The black dots represent the points in the coverage map based on the discretization grid. 

In this example, all points are visible to both beacons marked in blue, even with the 

obstacle cutting off the view partially. However, if the resolution were increased, the area 

below the lines and above the obstacle would have new points that would not have visi-

bility to the beacons with the given positioning.  
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To conclude, while all configurations of sigma values provided good results with high 

well-seen ratios (>97%) and low HDOP values (<1.0), the best results were with the 

configuration of 𝜎 = 1.0. With this configuration, a well-seen ratio of ~98% and a median 

HDOP value of ~0.86 was reached while only placing 20 beacons. This is close to the 

optimal solution that the map was designed with, and all later examples of the problem-

specific genetic algorithm will be using this configuration of 𝜎 = 1.0. 

6.2 Performance comparison 

One of the major goals of this work was to analyse how a genetic algorithm can be tai-

lored for the specific problem area of beacon placement for localization purposes. We 

will be taking a closer look and comparing its performance with various other algorithms, 

such as a generic variant of the genetic algorithm, a hill-climbing algorithm, and a random 

generation algorithm. 

6.2.1 Genetic algorithms 

First, let us look at how the performance of the problem-specific genetic algorithm com-

pares to the generic implementation. The generic implementation is missing implemen-

tation for localizability in the fitness evaluation, a more complex selection process, and 

speciation. Figure 24 shows the performance of a re-run of the problem-specific genetic 

algorithm 
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Figure 24: Well-seen ratio values for problem-specific and generic genetic al-
gorithms for each generation. 

The end results are not quite as clear as was expected during initial development. The 

generic implementation in fact provides better results when comparing the final well-seen 

values but does converge significantly slower in the earlier generations. The problem-

specific algorithm reached a well-seen ratio of ~0.98 while the generic implementation 

reached an improved result of ~0.99. The difference is not particularly large but does 

indicate that the generic algorithm does have better convergence. Now, let us take a 

closer look at the generational HDOP values for both algorithms in Figure 25 and Figure 
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Figure 25: Mean HDOP with standard deviation, and validity ratio, by genera-
tion. σ=1.0 

 

Figure 26: Mean HDOP with standard deviation, and validity ratio, by genera-
tion. Generic genetic algorithm. 
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Both implementations converged on low HDOP values (<1.0) with the generic implemen-

tation having a slight advantage with a value of ~0.85 in comparison to ~0.86 for the 

problem-specific implementation. However, the rate of convergence to a high enough 

validity ratio was poorer. A likely explanation for the slower convergence towards having 

all points with definable HDOP values is the problem of the splitting obstacle in the com-

bined map. Due to not using the localizability ratio in fitness determination, the algorithm 

had trouble placing beacons in the lower area as shown previously in Figure 16. The 

validity ratio was then achieved very suddenly when a solution was found that provided 

localisation in the lower area.  

Another interesting note is the larger variability and spiking of the error in the earlier 

generations with the generic implementation. It is hard to exactly say what could have 

caused this, but the lack of strict limitation of the population to specific beacon numbers 

would be a possibility. Let us take a closer look at the number of beacons in Figure 27.  

 

Figure 27: Beacon numbers values for problem-specific and generic genetic 
algorithms for each generation 
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longer. This seems to be due to the generous over-placement of beacons at generation 

267. The beacon number went from 19 all the way to 27, and this type of behaviour is 

not possible for the problem-specific implementation. This is because the number of bea-

cons allowed in each generation is strictly limited around the average number of beacons 

in the selected population. If the average at that stage was around the best individual of 

20 beacons, the maximum number of beacons for any individual would have been limited 

to 23 beacons with the species number of 7 that was used during optimisation. 

Over-placement of beacons is generally a good thing, even when it is done suddenly 

within a few generations, and with large amounts of beacons placed. As long as any 

beacons that provide minor or no benefits to fitness are then removed, this is not prob-

lematic. This indicates the heavily constrained speciation implemented for the problem-

specific algorithm is too limiting. It needs to allow a wider range of species, either through 

increasing the total population size and the species number, or completely removing the 

limitations on the number of beacons allowed, as is done in the generic version.  

One way to improve the problem-specific variant would be to remove the strict limitation 

of crossbreeding between different species – as is done in the generic version – and 

instead, discourage crossbreeding with some other method. This could, for example, be 

a penalty applied during reproduction the farther away the individuals beacon numbers 

are to each other. This would implement speciation less strictly and allow the population 

to optimise across the entire search-space with less restriction, instead of being forced 

into some local area.  

6.2.2 Other algorithms 

If the genetic algorithm does not provide significant improvements over simpler algo-

rithms, it is of limited use due to increased complexity and computation time. So, let us 

take a look at some simpler heuristic algorithms to get a better understanding of how the 

genetic algorithm performs in relation to them.  

One of the simplest algorithms for solving this problem and many others is random gen-

eration. It simply involves randomly generating a solution and checking for any possible 

improvements to the well-seen ratio. One thing to note about this method is the require-

ment of a beacon number as input. This is because unlike algorithms which can gradually 

converge on the expected number of beacons, random generation must start from 

scratch each iteration and this must be done with knowledge of the expected number of 

beacons.  
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An implementation could be made that would allow an unknown number of beacons, but 

this would need additional mechanisms to increase or decrease the number as is 

deemed necessary. With a genetic algorithm this natural increase or decrease in the 

number of beacons happens due to a large number of solutions being iterated simulta-

neously. For random generation, with a single solution generated each iteration, the 

choice of whether to increase or decrease the number of beacons for the next iteration 

is not a trivial decision. 

The second algorithm is a simple implementation of a hill-climbing algorithm, following 

the implementation by Allen et al. [1]. It involves making incremental changes to a solu-

tion, to slowly converge on the optimal result, as well as starting over with a fresh solution 

when certain parameters are met, to avoid getting stuck in local minima. As the previ-

ously mentioned random generation algorithm, this also requires a beacon number to be 

known beforehand. The optimisation results for this, along with both the generic and 

problem-specific genetic algorithm, as well as the random generation are shown below 

in Figure 28. 

 

Figure 28: Algorithm performance in combined, central obstacle, corner ob-
stacle, range limited and splitting obstacle maps 
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that the generic genetic algorithm failed to provide results in on of the sides in the splitting 

obstacle map but managed to provide results in the split area in the combined map. The 

lower number of beacons required for an optimal solution most probably prevented indi-

viduals from developing towards it as the beacon number would significantly increase 

from 4 to 8 beacons. In the combined map however, the number of beacons is much 

larger throughout the optimisation process, which means that placing beacons is less 

costly. Additionally, there are significantly more beacons during the optimisation process 

which do not provide any utility. Thus, it is more probable that there will be some individ-

ual which provides a good enough result otherwise, while still having beacons placed to 

provide coverage in the separate area that does not currently provide any utility. Such 

individuals would not be removed from the population so easily and would be able to 

progress into solutions that do eventually provide utility.  

It would be interesting to test these algorithms with an even larger map to see if any 

differences arise between the hill-climbing algorithm and the genetic algorithms. How-

ever, memory limitations heavily constrained maps that required too many beacons, as 

memory usage directly scaled with the number of beacons placed by the entire popula-

tion. The memory required to store each individual increases as the number of beacons 

in its solution increases. This means that as the average number of beacons in the pop-

ulation increases, so will the memory usage.  
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7. CONCLUSIONS 

Beacon placement in navigation systems can have a large impact on the quality of local-

isation. This thesis took a closer look at the usage of genetic algorithms for placement 

design, with analysis of the performance of some problem-specific modifications, as well 

as comparison with other heuristic algorithms. The well-seen metric was used as the key 

metric during optimisation.  

7.1 Conclusion 

One of the key goals for this thesis was to evaluate the usage of the well-seen metric in 

optimisation. Its usage as an indicator of optimality in various algorithms, and how it 

related to the commonly used metric HDOP was evaluated. It was thought to mirror 

HDOP while being less computationally intensive to calculate, and this was evident in 

the results. While HDOP was not used by any of the algorithms during optimisation, the 

results obtained during each generation of the genetic algorithm were quite consistently 

showing a decrease in the average HDOP value of the operational area. There was some 

small variance where HDOP increased during optimisation, but this was often tied to the 

reduction of beacons. Placement of beacons that provide more coverage will always 

improve the HDOP result, but tend to provide diminishing returns with over-placement. 

There is a clear connection between the well-seen metric and HDOP. 

Another goal was to evaluate the usage of genetic algorithms for beacon placement de-

sign. Some problem-specific modifications were made based on existing research in 

similar problem areas. One of these was the usage of speciation. The usage of normal 

distribution and how the spread of individuals into different species impacted the optimi-

sation process was evaluated. The modified genetic algorithm was then compared with 

a generic variant in a wide variety of different optimisation scenarios designed to provide 

different challenges for optimisation. The results obtained were not quite what was ex-

pected during development of the genetic algorithm, as the generic variant ended up 

performing slightly better on some accounts than the problem-specific one. This was 

most probably due to the overly strict limitation of individuals to a specific number of 

species, instead of allowing completely free speciation with some penalty applied to limit 

cross-species reproduction. 
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In comparison to some other heuristic algorithms, the genetic algorithms provided better 

optimisation results as well as not requiring the number of beacons to be placed as a 

starting point.  

7.2 Open research direction 

Some questions came up during this thesis and remained unresolved. One interesting 

avenue of research would be to further evaluate how the well-seen ratio matches with 

HDOP. For example, with very narrow operational areas, the well-seen ratio might not 

match up as closely with HDOP, and similar well-seen values might provide drastically 

different results when comparing HDOP. Random generation of scenarios and further 

evaluation of those deemed problematic could expose some additional scenarios that 

were not predicted in this thesis.  

The limitations to map size due to memory constraints prevented the usage of larger 

maps to compare the genetic algorithm with other algorithms. It would be interesting to 

see how well the results scale with an increasing number of beacons required to reach 

decent results, but this would require an improvement in the implementation to reduce 

memory usage. 

Speciation in this paper was implemented with a strict limitation to certain species around 

the average number of beacons in the selected population and removing individuals not 

in these species. This could be too strict to allow proper development of individuals and 

it would be interesting to see how the performance could be improved with an alternate 

implementation. One alternative to the strict speciation would be to not completely pre-

vent cross-species reproduction, but instead discourage it by applying a penalty in the 

reproduction stage between different species. Another possibility might be to use a dif-

ferent way to group individuals into species, since the beacon number is not necessarily 

the best way to determine how similar solutions are. This could, for example, be based 

on grouping individuals with similar beacon placements or perhaps those with similar 

fitness values.  
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