

Ahmed Gebril

CONTINUOUS INTEGRATION, A LI-
TRERATURE REVIEW

Engineering and Science
Bachelor’s Thesis

April 2020

i

ABSTRACT

Ahmed Gebril: Continuous integration, a literature review.

Bachelor of Science and engineering thesis

Tampere University

Science and Engineering

April 2020

Adopting Continuous integration (CI) and continuous delivery (CD) has become a powerful
approach to help software engineers integrate, build, and test their work more frequently, resulting
in faster deployments in the production side. The CI/ CD approach works within automating tools
that checks the code correctness according to a setup in a software engineering pipeline before
integration. Adopting CI/ CD could have numerous advantages; however, there are challenges.

This study aims to identify the benefits and challenges of adopting CI/ CD, associate these
benefits and challenges to the stages within a continuous delivery pipeline (CDP), and explore
whether these benefits could encourage decision makers in an organization to adopt CI/ CD.
Most common challenges, which could discourage product owners from adopting CI/ CD ap-
proach, along with recommended resolutions collected from literature are listed and demon-
strated.

The findings indicate that adopting continuous integration has numerous benefits that the chal-
lenges associated could be resolved with some effort and resources allocated. A total of four main
benefits, and four main challenges with proposed solutions to them where found. It is also indi-
cated that organizations are to make analysis whether these challenges could be managed and
consequently decide on whether to adopt CI or not. There is a lack of research on expected cost
of adopting CI/ CD and further on-depth research regarding actual costs would be needed in the
future.

Keywords: continuous integration, continuous delivery, continuous deployment

ii

PREFACE

I would like to thank my employer Eija Hartikainen for suggesting this thesis topic

as it opened me a door to understand a new aspect of my workplace more deeply.

I would like to thank my supervisor, Terhi Kilamo for her support and guidance

throughout the writing of the thesis. I would also like to thank my family and friends

for providing the support and motivation for completing this thesis.

Tampere, 20th of April 2020

Ahmed Gebril

iii

CONTENTS

1. INTRODUCTION .. 1

2. CONTINUOUS INTEGRATION AND CONTINUOUS DELIVERY 3

2.1 Continuous Integration ... 4

2.2 Continuous Delivery ... 5

2.3 Continuous Deployment ... 7

2.4 Stages of the CI/ CD Pipeline ... 7

2.4.1 Version Control ... 8
2.4.2 Code Review .. 10
2.4.3 Unit Testing ... 11
2.4.4 Code Quality Analysis ... 11
2.4.5 Integration Testing .. 12
2.4.6 System Testing ... 13
2.4.7 Acceptance Testing .. 14
2.4.8 Artifactory ... 15

3. BENEFITS WHEN ADOPTING CI/ CD ... 17

3.1 Frequent Builds .. 17

3.2 Testing in the Cloud ... 17

3.2.1 Scalable Reinforcement .. 18
3.2.2 Improved Collaboration ... 18

3.3 Faster Deployment ... 18

3.4 Quality Assurance .. 19

4. CHALLENGES WHEN ADOPTING CI/ CD ... 21

4.1 High Initial Cost and Effort.. 21

4.2 Testing Automation Related Challenges .. 21

4.3 Integration Related Problems ... 22

4.4 Security Related issues .. 22

5. DISCUSSION.. 23

5.1 Frequent Builds vs. Integration Related Problems 23

5.2 Implementation vs. Initial cost and effort .. 23

5.3 Multiple stages of testing vs. Testing Automation Challenges 25

5.3.1 Flaky tests... 25
5.3.2 Complex software with multiple dependencies 25

5.4 Security Validation vs. Threats ... 26

5.4.1 DevSecOps ... 26
6. CONCLUSION .. 28

REFERENCES... 30

iv

LIST OF FIGURES

FIGURE 1. INTEGRATING, TESTING, AND DELIVERING A SOFTWARE WITHOUT CI/ CD [30]. .. 4
FIGURE 2. INTEGRATING, TESTING, DELIVERING A SOFTWARE PRODUCT WITH CI/ CD [30]. 4
FIGURE 3. EMBODIES FREQUENCY IN INTEGRATING CODES IN CI. FEATURES ARE INTEGRATED WITH SMALL INCREMENTS

INSTEAD OF WAITING BEFORE AN OFFICIAL RELEASE IS ANNOUNCED. [7] ... 5
FIGURE 4 SHOWS THE STEPS FOLLOWED BY THE PIPELINE IN CD, WHICH TAKES CI FURTHER BY A BUTTON CLICK. [6] 6
FIGURE 5. THE CONCEPTIONAL DIFFERENCE BETWEEN CI/ CD. [10] .. 6
FIGURE 6. THE DIFFERENCE BETWEEN CONTINUOUS DELIVERY, WHERE DEPLOYING IS MANUAL AND 7
FIGURE 7. STAGES OF CONTINUOUSLY INTEGRATING AND DEPLOYING A SOFTWARE ENGINEERING PRODUCT [10] 8
FIGURE 8 WORKFLOW OF INTEGRATING CODE INTO A CDP, BUILDING THE APPLICATION IS A REPETITIVE PROCESS.[44] 8
FIGURE 9. SIDE-BY-SIDE PATCH VIEW USED IN PEER REVIEWING IN GERRIT [17]. .. 10

.

1

1. INTRODUCTION

Software development incorporates various methodologies in developing and

testing circles. The most used of these are continuous integration and continuous

delivery, Agile, an approach that defines iterations to software development and

project management [41], and Development and operations (DevOps). Though

DevOps, agile, CI/ CD are different, they complement each other [1].

Software development methodologies serve as skeletons for defining tasks per-

formed at each step such as requirement gathering, analysing, designing, imple-

menting, testing, and maintaining in the software development process [2]. Agile

acts as a chain connecting the gaps in communication between developers and

customers [1]. Agile focuses on the development process as it provides an alter-

native to traditional sequential software development through employing customer

collaboration and a whole team approach [3]. CI/ CD holds the uttermost im-

portance when adopting agile methodology; in other words, it is an agile best prac-

tice [4].

DevOps is a culture; it helps in providing a blueprint for the stages used in CI/ CD

[5]. Serving as a chain connecting IT operations and developers, DevOps helps

in breaking down the barriers between engineering and operations; it offers cross

training about both side’s skills. That leads to an overall increased ability in par-

ticipating in each other’s tasks and more high-quality collaboration and robust

communication [1]. CI/ CD focuses on technical practices highlighting tools used

in the automation process.

While there have been instructions on how to adopt CI/ CD, there has not been a

lot of research done on what challenges could be associated with adopting such

a discipline; this study aims to investigate what these challenges could be and

whether the benefits outweigh such challenges [10]. The research question in this

study is what the pros and cons of adopting CI/ CD are, throughout studying the

stages of the methodology, hence, associating the benefits and challenges with

each possibly used stage. This study could be useful for developers for under-

standing how useful implementing CI/ CD could be and what kind of challenges

to expect with the implementation, besides knowing proposed solutions for such

2

challenges. The literature is collected from official documentations on the technol-

ogies used in the stages and from previous studies, articles, and research papers.

The rest of the thesis is structured as follows: Chapter 2 explains the difference

between CI and CD, and examines the most common stages adopted by organi-

zations already utilizing CI/CD, from the build stage to the deployment stage to

the production side, Chapter 3 lists most discussed benefits and challenges as-

sociated with adopting CI/ CD, Chapter 4 serves as a general discussion on the

findings and aims at finding solutions for the most reported challenges; Chapter 5

concludes the study.

3

2. CONTINUOUS INTEGRATION AND CONTINU-

OUS DELIVERY

Continuous integration and continuous delivery (CI/ CD) are a coding methodol-

ogy and set of practices. Once developers within the same or different teams are

done with implementing small changes, they need to commit these changes to

version control repositories frequently. Developers in different teams, sometimes

even in the same team, are mostly using different platforms, tools, and technolo-

gies. The team needs a mechanism to integrate and validate these changes. Test-

ing in Continuous integration expands beyond utilizing automated testing frame-

works, which can help development teams and quality assurance engineers know

whether a software build passes or fails [6].

CI/ CD is a growing field of interest in the industry. As for being competitive in

today’s market, corporations are to launch new features that matter to their users

faster than their competitors and getting quicker feedback on the work is crucial

to achieve faster deliveries. According to Fowler “The whole point of continuous

integration is to find problems as soon as you can and receive frequent feedbacks”

[25]. It is up to decision makers in corporations to decide on whether to adopt CI/

CD or not. However, this is a question that could be answered by investigating the

pros and cons associated with utilizing such a methodology.

As mentioned earlier, Agile is just an iterative approach focuses on the develop-

ment process supporting CI/ CD in achieving one of its main goals which is re-

ceiving quicker feedbacks. When an organization is lacking CI/CD as Figure 1

shows, there is going to be an extensive process required at every stage of the

software delivery cycle. The organization is presumably not Agile [30]. And with

such, delivering the product to the customer would take longer than expected, as

there are always extra and unexpected layers of approvals added. Even the

smallest software changes would not be an exception.

4

Figure 1. Integrating, testing, and delivering a software without CI/ CD. [30]

What CI/ CD aims at, as shown in Figure 2, is continuously receiving feedbacks

for small sections within the project and eventually on the whole project. One of

the most common frameworks for Agile is Scrum, where the project is broken

down into features and these features into user stories, which are continuously

integrated [31].

Figure 2. Integrating, testing, delivering a software product with CI/ CD [30].

Even though CI and CD are often mentioned together, they are not synchronous. CD

might either refer to continuous deployment or continuous delivery.

2.1 Continuous Integration

CI puts emphasis on building, integrating, automatically testing, and packaging

the ap-plication, helping with checking that the application will not break whenever

5

any changes are made to the code, and allowing a release of the application

whenever requested. With consistency in the integration process in place, teams

are more likely to commit code changes more frequently, and that leads to a better

quality in the code and quality assurance. [6]

Testing the code frequently is a prerequisite in CI; the goal is to deliver quality

products to the customers. Continuously testing a code is often implemented

within a set of auto-mated regression, performance tests in the CI pipeline.

Teams adopting CI may opt to deploy their codes to the production side as fre-

quently as they wish, on a daily or even hourly basis.

Figure 3. Embodies frequency in integrating codes in CI. Features are integrated with
small increments instead of waiting before an official release is announced. [7]

2.2 Continuous Delivery

CD starts from the endpoint of CI. CD allows manual release of an application to

certain infrastructure environments. Teams within the same organization are often

working with multiple environments other that of the production, and CD helps in

ensuring that the developed application will not break whenever any code

changes are pushed. The code is manually delivered to the production side when-

ever needed [8]. The goal of continuous delivery is not necessarily to deploy the

result, but to ensure that the result is deployable. The mechanism of continuous

delivery is the continuous delivery pipeline (CDP). Nevertheless, CD is not always

the optimal solution for delivering an application to the customer [9].

6

Figure 4 shows the steps followed by the pipeline in CD, which takes CI further by a button

click. [6]

Figure 5. The conceptional difference between CI/ CD. [10]

7

2.3 Continuous Deployment

At this level everything is automated, human intervention is not needed. All the

changes passing the stages in the pipeline are released to the customer. CD pro-

vides a regular and continuous feedback from customers and allows all the work

done by developers to be continuously reviewed. Not all corporations integrate

CD as it is considered an advanced phase of delivering the product. [31]

Figure 6. The difference between continuous delivery, where deploying is manual and

continuous deployment, where deploying to production is automatic. [12]

2.4 Stages of the CI/ CD Pipeline

Figure 7 depicts the stages within a continuous integration pipeline, viewed from

the perspective of adopting them on integration servers such as Jenkins, Travis

CI, Bamboo. The actions taken during each step are written in a build script. The

stages achieving the desired outcome of mainly getting quick feedback on the

code and required to maintain the health of the application, are described concep-

tionally. The stages in the pipeline are stated in a configuration file, which allows

a customization of the stages that the application could go through.

8

Figure 7. Stages of continuously integrating and deploying a software engineering product

[10]

Frequent feedbacks are achieved from frequent builds in a CDP. Every time there

is a code change, the Repository, where the codes are pushed to, notifies the CI/

CD server. This triggers CDP for building and testing the application, and if all

configured stages are passed, it is ready to be deployed in the Artifactory. As

depicted in Figure 8

Figure 8 Workflow of integrating code into a CDP, building the application is a repet-
itive process.[44]

2.4.1 Version Control

Developers continuously commit their changes into Version Control Systems

(VCS). VCS help us track all changes committed so that they do not get lost.

Nowadays, Subversion and Git are the most widely version control systems. [13]

9

Subversion is a centralized version control system (CVCS), Git is a Distributed

version control system (DVCS). CVCS has a separate server and client. Devel-

opers using CVCS have control only on the files they are working on, whereas

DVCS focuses on sharing code changes, allowing developers to have full control

on the project on their local machines by having a full version history. [32]

 CI requires that the codebase must be under version control. Every change

applied to the codebase must be safely stored in a dedicated VSC. Once the code

is in version control, it can be accessed by the CI tool.

Git is a powerful VCS, and its characteristics serve CI in many ways, some of

these are:

• Huge branching capabilities: Feature branches provide an isolated environment

for every change in the codebase. As discussed earlier the first step in the deploy-

ment process is committing the code changes. That cannot be done without cre-

ating a new branch, no matter how big or small the change is. This ensures that

the master branch only contains code that can be used in the production environ-

ment [14].

• Distributed development: Every developer can access the whole repository in-

cluding its history and can work on it locally.

• User Authentication: Changes are traced with their commit ID and their author

identity.

• Efficiency in handling large projects: Performance testing, which is a testing

practice that aims to determine how a system behaves in terms of stability under

a particular workload, indicates that Git is fast.

• Garbage Collection: Git optimizes the memory usage by freeing up disk space

and packing similar objects together. [33]

Once changes are committed to a version control system, the pipeline assembles

the application, in other words compiling the application and pulling the depend-

encies, which are anything needed for the application to work, such as modules

or libraries. Build stages allow us to run applications in a sequential order and

multiple parts of the application in parallel. [15]

10

2.4.2 Code Review

When a single developer is working on a project, they could commit their changes

by pushing them to the master branch in the VCS [16], or a dedicated branch.

However, a team working on a single project need to use a different approach,

which is code review; the code review process should not consist of one-sided

feedback. Code review is essential because it does not only check if the code is

free of bugs but also, confirms that the code adheres to certain guidelines, i.e.,

styling, functionality. There are multiple ways of reviewing the code, email pass-

around, pair programming and Gerrit code review, the latter is one of the most

popular nowadays. [17]

Reviewing other developer’s work is done in Gerrit, where the last version of the

code is stacked alongside the changes made by the developer. This approach is

called Side-by-side patch view as depicted in Figure 8.

Figure 9. Side-by-side patch view used in peer reviewing in Gerrit. [17]

A review is done through voting, where the highest vote is +2 and the lowest is -

2. Once the change achieves a +2 review by two different developers, mostly

seniors, it moves into the CDP for testing. The pipeline tool detects the changes

made in the source code repository, pulls these changes, and starts a new build.

If the build succeeds, the changes get merged into the master. Otherwise, the

team responsible for the changes will be notified. The pipeline tool will continu-

ously keep looking for changes made in the source code [18].

11

2.4.3 Unit Testing

Adopting CI requires intensive testing; ensuring that the product can be reliably

shipped to the production side requires various stages of testing, starting from

small changes to the final current version of the whole product.

Unit testing, where discrete components of a software are tested, is the first step

in testing a continuously integrated software. Usually based on a single input, unit

tests are meant to validate that each unit of a software behaves as expected. I.e.

testing the expected behaviour of a function against what it results. It is essential

that unit tests are written throughout the development process as it would be very

difficult to trace a bug if a discrete component of a software is not tested individu-

ally. Unit tests are usually conducted by the same developer who wrote the code,

making them simpler than other types of tests. [45]

Unit tests should be quick as they require no external resources, and because of

their pace and coverage of small units, besides requiring low maintenance, and

therefore being cost-effective, they could be viewed as the first line of defence

against bugs. Because a small bug would inevitably result in defected application

when deployed to the production side, unit tests are very important to the overall

health and maintainability of an application. [19]

2.4.4 Code Quality Analysis

Analysing the code in terms of its security vulnerabilities and against a set of cod-

ing rules ensures the codes readability and maintainability. Code quality is crucial

as it impacts the overall software quality. [20]

A high-quality code can do what it should, follows the expected behaviour, follows

a consistent style, is easy to understand, includes proper documentation, and is

testable. Codes are best analysed with automation tools that run static analyser

over code early and often.

12

One of the most popular platforms to run automatic static analysis is SonarQube,

an open-source platform [21].

SonarQube examines the code based on several criteria such as: complexity of

the code, number of lines, vulnerabilities, false positive issues and more [37]. If

the code fails to comply with its rules, it raises an issue.

SonarQube has an exhaustive list of metrics, some of them are: [34]

• Reliability: Examining bugs in the code and an estimate effort associated with

fixing such bugs.

• Security: Examining vulnerabilities, their severity, and the effort associated with

fixing them.

• Maintainability: examining code smells and technical debt (TD), which is the effort

associated with fixing all maintainability issues.

SonarQube analyses the code according to four main types of issues: [36]

• Code Smell: A maintainability issue that could possibly suggest a deeper problem

in the application.

• Bug: A maintainability issue that could result in breaking the code.

• Vulnerability: Security issue that puts the application at risk and as such needs

to be fixed immediately.

• Security Hotspot: Highlighting a security-sensitive piece of code that needs to be

reviewed, upon which, it is determined whether there is either no threat or that

fixes to the code must be applied.

2.4.5 Integration Testing

Integration testing is a level at which individual units of a software application are

grouped and tested as one entity. This level of testing helps expose bugs and

faults occurring with the interaction between unit tests to verify functionality of unit

tests together [22]. Integration tests can also quickly detect issues happening

when an application communicates with an external system. This includes exter-

nal resources such as networks, databases or any third party components .This

13

is an important step as the customer might be using extra components and that

would require the developers to test how the application interacts with such com-

ponents. Integration testing broadens the test coverage and improves the reliabil-

ity of tests.

There are two main types of integration testing, one of them is Big Bang approach,

at which all unit tests are merged and tested at once. Another is incremental inte-

gration testing, which is divided into three types, Top-Down, Bottom-Up, Sandwich

integration tests. Incremental integration tests are performed by connecting two

logically related modules and testing them together and incrementally increasing

the test coverage till all modules are tested. [46]

Implementing integration tests are time-consuming as it requires a lot of setup.

The tests are difficult sometimes because they depend on external factors such

as platforms, environments, and databases. And there might be less compatibility

between two systems developed by two different corporations. Choosing the ap-

propriate approach for integration testing is quite challenging because there are

advantages and disadvantages of choosing each. However, implementing a solid

set of integration tests is one of the best things you can do to ensure the long-

term stability of your application.

2.4.6 System Testing

System tests are carried out to ensure that the whole software system is compliant

with the requirements and specifications. Therefore, they require a fully installed

system. Such tests ensure that the external interfaces such as Graphical User

interfaces (GUIs), and Web page endpoints, work end to end as expected. Sys-

tems tests are usually lengthy in runtime besides having extensive set-up times.

14

 The key to having successful system testing is having proper initial unit testing.

This eliminates the risk associated with faulty components within the whole soft-

ware, resulting in faster and more efficient system tests [47]. System testing is

performed by a testing team rather than the development team. That ensures hav-

ing an independent work platform.

There are four types of system testing: [50]

• Performance Testing: Determines how the system performs in terms of speed,

stability, and reliability.

• Load Testing: Determines how the software responds under extreme loads.

• Stress Testing: Determines how the software responds under different loads in

terms of intensity.

• Scalability Testing: Checks how the software performs in terms of scaling the

user request load up and down.

2.4.7 Acceptance Testing

After individual codes pass previous stages of testing, they are integrated into the

pipeline for acceptance tests, which is the stage of testing the whole system for

acceptability. The main purpose of acceptance tests is ensuring that the final prod-

uct complies with the requirements created by the customer. And verifies that the

product meets the quality standards of agreed upon between the customer and

the product owners [23].

Acceptance tests holds the role of evaluating the system in a production-like test

environment. This gives an insight on how an external user perceives the system

[38].

15

One prominent aspect of making acceptance testing efficient is test driven devel-

opment (TDD), which is a development technique where writing tests comes be-

fore the code implementation by writing a test that fails and the only way to make

it pass is by writing a proper code implementation [38].

Acceptance criteria come in different suites: [47]

• Functional: Testing the functionality of the application.

• Non-functional: Testing the application for criteria such as security, maintaina-

bility, reliability, performance.

Acceptance testing come in types some which are:

• User Acceptance Testing (UAT): Also referred to as, End-User Testing, where

the product’s functionality is tested for verification from the end user’ perspective.

• Business Acceptance Testing (BAT): Determines whether the product complies

with the business goals in terms of both functionality and non-functionality. As

they focus on business profits, BAT could be quite challenging because they

should always meet the changing market conditions.

2.4.8 Artifactory

Codes that survive all the previous stages can be merged into the master. How-

ever, keeping versions of such releases provides a library at which any version of

the application can be dispatched whenever considered ready [24]. This allows

making modifications easy whenever the customer requires changes in the appli-

cation. The VCS tags the version either as a patch release, which could refer to a

regular release for the product i.e., minor new features, bug fixes or enhance-

ments. Or as hot-fix, which is a reported issue by the customer that is needed to

be fixed as soon as possible, a hot-fix is released on request, whereas a patch

version is released at regular intervals [35].

Artifactory is similar to source code repository. An artifact repository includes arti-

facts that are the result building the application. It stores metadata, which is data

needed by the application and described by another data, such as versioning and

dependencies. [48]

Keeping the application’s versions in the repository has numerous advantages in

a CDP such as: [48]

16

• Highly available and stable systems: As DevOps aim to, the system should

be kept running. As it is crucial that the system could be deployed in high

availability whenever needed.

• Managing many binaries of the system across different platforms: Only

one copy of the system configuration, which is referred to as binary, is

stored, and the copy could be accessed by different teams. Therefore,

there is no need for replicating extra environments to support the develop-

ment cycle.

• Security, Access Control and Traceability: The binary itself could be ac-

cessed with different access rights among teams, mitigating any security

vulnerabilities. I.e. restricting access to reliable third-party resources that

are already approved.

17

3. BENEFITS WHEN ADOPTING CI/ CD

There are numerous benefits associated with adopting CI, from the build to the

deployment stage. A developer can debug their codes more easily, as errors can

be associated to small increments in code, fixing these small incremental errors

prevents accumulating these errors into a big chunk of bugged code [25]. Merging

the code frequently helps in avoiding merge conflicts [26]. CI allows finding likely

problems that might arise during the development stage earlier and that improves

product predictability [27]. The overall result of all these benefits is increasing the

productivity by reducing the time spent chasing and correcting these integration

bugs.

3.1 Frequent Builds

The fundamental benefit of CI comes from removing lengthy sessions at which

people spend time hunting bugs without even knowing who was responsible for

this bug happening [32]. Frequent builds allow developers to catch bugs earlier

by making small segments of the code. That makes developers less worried about

breaking their builds and let them spend less time debugging [28].

 As the first phase in CDP, the build phase constantly and incrementally merges

code changes along with testing and security validation. Frequently building an

application is not inclusive to compiling it. Building an application is followed by all

the other phases stated in the pipeline configuration such as testing and code

quality analysis.

3.2 Testing in the Cloud

18

Modifications in the code could be constantly saved in the cloud, an online hosted

environment that allow controlled setup of environment, freeing up space in per-

sonal machines [29]. Developers and testers can trace back a change made to

the code with its date and author of the change. Tracing these changes make

corrections much easier and faster. Hence, developers would not keep tons of

copies as a backup whenever there are modifications to the code just in case a

build or a test fails, or something goes wrong.

Cloud testing allows controlled conditions that could clear out any imminent prob-

lems in the production side when deploying the application. For that the environ-

ment in both the development and the production sides are to be identical. [51]

Cloud testing benefits are not only exclusive to memory optimization but could

also include providing scalable services and improved collaboration. [52]

3.2.1 Scalable Reinforcement

The cloud allows the application to be scaled in volume, capacity. The cloud pro-

vides platform-as-a-service (PaaS), which is a whole set-up development envi-

ronment in the cloud with the customized resources that could serve from simple

applications to sophisticated ones. PaaS includes an infrastructure for applica-

tions to run on, servers, customized storage, databases. Therefore, PaaS reduces

the expenses and complexity of buying software licences separately. [53]

3.2.2 Improved Collaboration

Because of its nature in allowing resources to be globally available. Cloud Testing

unifies development procedures, complying with DevOps principles that aim to-

wards continuous collaboration among project participants, facilitating the process

of continuously delivering the product releases. The Genuity of testing through

the cloud assures overall high quality for the application.

3.3 Faster Deployment

19

A mature pipeline would allow automatic deployment of the code to the production

if all build tests pass. Unlike the pattern followed by CI would depend on small

changes, developing the code as big chunk means that the code would need to

be tested once all developers finish their small increments. And that leads to in-

evitable bugs and therefore delays in deploying the product to the production side.

CI helps us ensure that code works in the production side since the development

environment is ideally matching the production environment [7]. Aiding in avoiding

the hassle of testing and chasing bugs after the program is thought ready to be

deployed steering clear of the long sessions of testing that would cause customer

frustration.

Keeping binary versions in the Artifactory keeps the product in a deployable state,

with just a simple button click, a requested version of the application is ready to

be shipped.

3.4 Quality Assurance

Frequent deployments would mean having frequent communication between the

developers and the customers, even if not directly, and that allows more frequent

and faster feedbacks [30], which is the whole idea behind Agile and DevOps.

Hence lowering the risks of developing unnecessary parts in the project. And that

ensures that things would not go wrong due to miscommunication. Continuous

delivery aims to keep a product continuously in a releasable state. Thus, if the end

user requests a release at any given time, it should be reliable. Raising the overall

quality of the process [30].

Quality assurance is categorised in three main roles [39],

• Testing: Packing a set of tests such as Integration tests, helps developers access

these tests whenever needed, assuring the code quality in the long run.

• Delivery: Deliveries can be done automatically or deployed whenever needed.

• Optimization: One of its aspects is making the code self-documenting. This is

huge aspect in assuring the quality of the work. Unit tests help developers under-

stand the expected behaviour of the code without actual written documentation.

Quality assurance also refers to the overall quality of the code tested by Static

Analysis tools, which as indicated earlier, help in testing the quality of the code in

terms of security, maintainability, and reliability.

20

21

4. CHALLENGES WHEN ADOPTING CI/ CD

4.1 High Initial Cost and Effort

Setting up the CI pipeline can be time consuming [30]. Initial adoption of CI re-

quires a huge effort for setting up the right environment that would ensure proper

building and testing. The development environment should match the production

environment and that also requires hardware resources needed for the test envi-

ronment to mentor the performances of the product in different situations. The

perceived initial effort for adopting such CI system could discourage product own-

ers from the adoption [10].

4.2 Testing Automation Related Challenges

One prime challenge in test automation is that it requires a lot more initial effort

than manual testing. Lack of proper testing might lead to broken code in the pro-

duction side. Therefore, making sure that the tests are thorough is not a simple

task. Automated tests also require skilled testers or that the existing testers would

be trained, besides having the skills needed for adopting new tools [30].

Not all products or their components can be tested, a complex software that has

multiple dependencies that are implemented in a way that it would accept testing

requires a lot of communication to have a thorough understanding of what makes

the application testable. Another type of mostly reported test fails are flaky tests,

which are tests that fail sometimes even though there might not be bugs in the

code. Such tests are time-consuming and could result in a lot of frustration to the

developers [10]. Another common problem is UI testing bearing in mind the fact

that the user interface of the application is the part that undergoes changes most

frequently could cause unexpected outcomes in the test environment.

22

4.3 Integration Related Problems

Integrating the code changes regularly are undoubtably very helpful for tracing the

changes. However, it should be done in a proper way. A lot of problems come

from broken builds, large commits, and merge conflict, which arises when different

developers make changes in the same line, for instance, one developer edits a

file, and another deletes the same file. [10] Reports 7 reasons behind integration

problems. The two most critical ones are:

• Broken builds: become problematic when a build breaks, fixing and maintaining

such build takes a significant effort.

• Slow integrations approval: become problematic when integrating changes be-

comes a lengthy process by strict approval processes, for instance approval by

a project manager.

4.4 Security Related issues

One major challenge in implementing CDP is dealing with security issues. The

availability of the application components and its dependencies on external tools

could create risks. Some of these risks are: [54]

• Security Risks in servers: Servers accessing the application could jeopardize the

applications security. Such issue is prominent when testing on the cloud.

• Security Risks in CI server: Since CI servers could be accessed from anywhere.

There is a risk of modifying or deleting the CDP if there are no proper access

right mechanisms implemented.

• Security Risks in the VCS repository: User authentication using password is the

only way of securing access.

23

5. DISCUSSION

5.1 Frequent Builds vs. Integration Related Problems

Since we used as the example VSC in this study; it is obvious that Git serves CI/

CD pipelines in tremendous ways, such as creating a branch that holds a specific

change before the change gets accepted and merged. Yet since some issues

might arise when developers try to push these changes, for instance, merge con-

flicts, integrating small changes and constant communication between developers

is crucial. And in case integrating some changes would result in broken builds, the

fastest fix is reverting to the mainline [25]. [10] Discusses in details the reasons

behind broken builds and proposes three solutions to them.

• Rejecting bad commits: a practice by which commits that automatically fail pre-

requisites and standards, i.e., failing some tests are rejected from merging, keep-

ing the branch always functional.

• No Branches: Keeping only one main branch to contain all the code changes and

no other branches are allowed prevents possible problems caused by long-run-

ning branches.

• Monitoring build length: keeping the build length as short as possible and taking

actions if the build gets lengthy.

5.2 Implementation vs. Initial cost and effort

24

As discussed earlier, implementing a CI system would have numerous ad-

vantages in general. According to [42], In 2018, 38 percent of organizations that

undertook DevOps practices along with CI exhibited a revenue growth of 10 per-

cent more than that of prior year. On the other hand, only 25 percent of those who

have not adopted CI had a comparable growth.

According to [10] The initial effort in implementing CI refers to:

• Resources: Effort in fixing and maintaining broken builds, Insufficient hardware

resources, network latencies that could cause delays in builds.

• Human and organizational factors: lack of motivation, lack of experience, lack of

discipline.

And there are specific recommendations on resolving such issues

Human and organizational factors could be mitigated with these practices:

• Situational help: providing help needed by members in related situations aids in

mitigating lack of experience of these members.

• Training: Organizing sessions for the team to be comfortable with implementing

a CI/ CD system and maintaining it could mitigate the lack of experience.

• Demonstration: Constantly exhibiting to team members how important undertak-

ing DevOps practices along with implementing CI/ CD would benefit both individ-

uals and organizations.

Resources issues could be mitigated with these practices:

• Tooling: providing enough tools that would be able to provide a an easy-to-follow

feedback for all the stages in the pipeline.

• Providing hardware Resources: providing enough hardware resources that could

simulate a production-like environment.

Since cost might be a hindering factor for organizations to choose all tools and

resources needed for implementing a CI system. Making a cost analysis is essen-

tial for the organization to decide which tools and resources to choose.

25

5.3 Multiple stages of testing vs. Testing Automation Chal-
lenges

The fact that a snippet of code goes through unit testing, the whole application

through integration testing, and the application’s quality is assessed from an end-

user perspective, helps ensure that the code is free of bugs and complies with the

quality assurance.

However, the issues mentioned earlier could be a challenge in the pipeline. In this

section some recommendations are proposed for these issues:

5.3.1 Flaky tests

Tests that pass or fail periodically without change in the actual implementations

are tricky and cause a lot of issues. [43] lists ten categories of flaky tests and

discusses three of them in details:

• Async wait: such problems occur because the test and the application under test-

ing are running in separate processes. For example, a test that is expecting a

response from a server is not properly synchronized to wait for the server to re-

turn a response. This can be resolved with configuring the test to wait for a spe-

cific period before the response has been received.

• Concurrency: such problems occur because of a non-deterministic nature of the

test. Such as a code that can produce different valid outcomes, yet the test is

expecting an exact outcome. This issue could be resolved by making a more

generic test that could accept all valid outcomes.

• Test order dependency: such problem occurs when tests depend on frequently

changing data. Such as adding data to a database. This can be resolved by

rolling back the database to the previous state after the test finished executing.

5.3.2 Complex software with multiple dependencies

Testing a software gets more challenging when it depends on a lot of external

resources. This might cause the tests to be slow, a problem in Agile practices,

26

especially if there are expected release dates for the software. Some recom-

mended practices for speeding up tests are:

• Containerization: Using cloud technologies to package a software into Standard-

ized tests for development, shipping, and deployment. And bundling the code

with its minimum requirements needed to run. Such approach also helps running

the tests in parallel, resulting in higher speed and efficiency [40]

• Modular Testing: breaking down the application into small functionalities. Such

practice helps creating a road map that is easier-to-follow.

5.4 Security Validation vs. Threats

Enhancing security mechanisms in a CDP is essential and could be achieved by

several methods including: assigning different roles and having strong authenti-

cation passwords for the VCS. Team members should be granted different levels

of access. It is also crucial for servers in which CDP could depend on to be se-

curely configured. And totally isolating testing and production environments [55]

5.4.1 DevSecOps

The term DevSecOps, Development Security Operations, describes a security fo-

cused, continuous delivery, software development life cycle (SDLC).

DevSecOps are built upon the general practices of DevOps, adding the security

mechanisms that should be followed to secure a CDP. DevSecOps injects active

security audits into agile development. And promotes that applying security into

the product comes hand in hand with its planning and development rather than to

its final version. DevSecOps promotes collaboration rather than handing in secu-

rity principles to team members, as everyone engaged in the development of the

application knows it should be secured. DevSecOps operate on continuous secu-

rity, as in continuous integration, every change within the code should be checked

for its security robustness. DevSecOps operate in layers including: [56]

• Security unit Testing: Testing the security of the applications components

is as crucial as testing their functionality.

• SAST (static analysis security testing): Alongside detecting violations in

coding best practices, static code analysers detect security vulnerabilities.

27

Static analysis tools such as SonarQube detects violations in the coding

best practices along with detecting security vulnerabilities.

• DAST (dynamic analysis security testing): Unlike SAST, DAST detects vul-

nerability in the application if communicating externally in its running state.

Such mechanism is helpful in detecting violations in servers that have ac-

cess to the pipeline.

Introducing DevSecOps is crucial when planning and implementing a CDP, as it

offers protection for the application from both internal and external threats.

28

6. CONCLUSION

Working in the software engineering domain does not only mean working with a

set of codes. Such requires a methodology and a set of practices that would serve

delivering these codes optimally. There are numerous approaches used in soft-

ware engineering, and continuously integrating (CI) the codes is one of the most

widely used ones nowadays. This study tries to mainly answer what are the ben-

efits and possible challenges when adopting continuous integration. As discussed

earlier, the stages are not necessarily identical in all continuous integration pipe-

lines but are the most common when corporations adopt CI. Building, thoroughly

testing, and keeping the product in a deployable state are essentials.

There are a lot of issues that would come across within these stages, however,

the benefits are numerous. Continuously integrating the changes of the code help

us track bugs early on, free personal workstations of all the versions of these

changes, checking the quality of the code changes, and having the product kept

running so that it could be deployed whenever needed and more. All these bene-

fits result in a higher productivity by developers, less frustration, and keeping on

track with the deadlines put by the customer. And on the customer side, more

satisfaction.

Nevertheless, reaching all these benefits would not come easily, setting up a con-

tinuous integration and delivery pipeline (CDP) requires experienced testers and

DevOps engineers and that would come hand in hand with higher cost, resource

demand and time needed. Besides automation testing problems, which are the

most widely reported by corporations when already adopting CI/ CD. However,

such drawbacks can be managed and mitigated. Setting up the tools and environ-

ments might be initially costly and time consuming, Nevertheless, worthwhile in

the long run.

According to the findings based on the discussion on the effort needed for imple-

menting CI, resources and organizational factors are the main challenges. And

these could be mitigated by allocating enough tooling and resources, proper train-

ing, communication between team members, and providing expertise to team

29

members whenever needed. Solving integration related problems could be re-

solved by rejecting bad commits, monitoring build length, and practicing no

branches principle. Resolving test automation related challenges, which is the

most reported challenge, could be done with dealing with flaky tests and dissect-

ing a complex software to small stand-alone sections. Resolving security issues

does not only come with installing strong security mechanisms but also with

properly assigning access rules to members and raising awareness on security

issues. Following the principles of DevSecOps could be part of a resolution.

Overall, this study highlights the fact that the benefits of adopting CI/ CD out-

weighs its challenges if there are resources, security mechanisms and proper ex-

pertise given to maintaining a CDP. Organizations are to make specific analyses

to determine whether to adopt CI/ CD.

30

REFERENCES

[1] Lucy Ellen Lwakatare, Pasi Kuvaja, Markku Oivo Relationship of DevOps to Ag-

ile, Lean and Continuous Deployment, pages 399-415, In Int. Conf on Product-

Focused Software Process Improvement, 2016.

[2] Rathnayaka, Kumara, A Review of Software Development Methodologies in Soft-

ware Engineering, pages 36-48, 2020.

[3] Crispin, Agile testing: A practical guide for testers and agile teams. Reading, Ad-

dison-Wesley Professional, , pages 13-18, 2008

[4] J Koivuniemi, Shortening feedback time in continuous integration environment in

large-scale embedded software development with test selection, pages 16-18,

University of Oulu repository, 2017

[5] BogoToBogo DevOps: phases of continuous integration, https://www.bogoto-

bogo.com/DevOps/Continuous_Integration_Phases.php

[6] Isaac Sacolick, What is CI/CD? Continuous integration and continuous delivery

explained | InfoWorld website, https://www.infoworld.com/article/3271126/what-

is-cicd-continuous-integration-and-continuous-delivery-explained.html, 2020.

[7] Isaac Kapelonis, What is CI/CD? Continuous integration and continuous delivery

explained | thenewstack official webpage, https://thenewstack.io/understanding-

the-difference-between-ci-and-cd/, 2018.

[8] Brent Laster, Continuous Integration Versus Continuous Delivery Versus Contin-

uous Deployment, O'Reilly Media, Inc., pages 22-34, 2017

[9] What is CI/CD? Continuous integration and continuous delivery explained,

https://www.infoworld.com/article/3271126/what-is-cicd-continuous-integration-

and-continuous-delivery-explained.html

[10] Eero Laukkanen, Juha Itkonen, and Casper Lassemius, Problems, causes, and

solutions when adoption continuous delivery a systematic literature review, pages

55-79, Aalto University Research information portal, 2017

[11] Mojtaba Shahin, Muhammad Ali Babar, Mansooreh Zahedi, and Liming Zhu, Be-

yond Continuous Delivery: An Empirical Investigation of Continuous Deployment

Challenges, In Int Con. ACM/IEEE International Symposium on Empirical Soft-

ware Engineering and Measurement (ESEM), 2017

[12] Karl Carenas, , Difference between CI/ CD | Medium webpage, https://me-

dium.com/what-is-ci-cd-pipeline

https://thenewstack.io/understanding-the-difference-between-ci-and-cd/
https://thenewstack.io/understanding-the-difference-between-ci-and-cd/
https://www.infoworld.com/article/3271126/what-is-cicd-continuous-integration-and-continuous-delivery-explained.html
https://www.infoworld.com/article/3271126/what-is-cicd-continuous-integration-and-continuous-delivery-explained.html
https://medium.com/what-is-ci-cd-pipeline
https://medium.com/what-is-ci-cd-pipeline

31

[13] Version control and continuous integration, tutorialspoint webpage |

https://www.tutorialspoint.com/continuous_integration/continuous_integra-

tion_version_control.htm

[14] Why git | Atlassian webpage. https://www.atlassian.com/git/tutorials/why-git

[15] Travis CI, build stages | Travis-ci official documentation https://docs.travis-

ci.com/user/build-stages/

[16] Pushing and committing changes to git | Github official documentation

https://docs.github.com/en/free-pro-team@latest/github/using-git/pushing-com-

mits-to-a-remote-repository

[17] Working with Gerrit, An example | Gerrit official documentation https://gerrit-re-

view.googlesource.com/Documentation/intro-gerrit-walkthrough.html

[18] Saurabh. What is Jenkins | edukera webpage https://www.edureka.co/blog/what-

is-jenkins/, 2020

[19] Samuel Brown. Stages of Continuous Delivery. Oteemo webpage | stages of con-

tinuous delivery, the build stage https://oteemo.com/2017/11/02/stages-continu-

ous-delivery-part-1-build/. 2017.

[20] Richard Bellairs. What is code quality and how to improve Code Quality. per-
force webpage | https://www.per-force.com/blog/sca/what-code-quality-and-
how-improve-code-quality, 2019.

[21] Code Quality | SonarQube official Documentation https://SonarQube.org/docu-
mentation

[22] Archana Choudary. Integrating testing | Edureka weppage.
https://www.edureka.co/blog/what-is-integration-testing-a-simple-guide-on-how-
to-perform-integration-testing/Acceptance testing, 2019

[23] Martin Fowler, Continuous Integration | Martin Fowler articles https://www.mar-
tinfowler.com/articles/continuousIntegration.html

[24] Steve Neely, S.Stolt. Continuous Delivery? Easy! Just Change Everything (Well,
Maybe It Is Not. That Easy, ResearchGate, in Int Conf. Agile, 2013

[25] Daniel Stahl, Jan Bosch. Experienced benefits of continuous integration in in-
dustry software Software Product Development: A Case Study. 2013

[26] Michael Hilton, Timothy Tunnel, Kai Huang, Darko Marinov, and Danny Dig. Us-
age, Costs, and Benefits of Continuous Integrationin Open-Source Projects. In
Int Conf,the 31st IEEE/ACM International Conference. 2016.

[27] Haverilla Severi, Impacts of Continuous Delivery in Software Projects Severi
Haverila. Aaltodoc. pages 38-46

https://www.tutorialspoint.com/continuous_integration/continuous_integration_version_control.htm
https://www.tutorialspoint.com/continuous_integration/continuous_integration_version_control.htm
https://www.atlassian.com/git/tutorials/why-git
https://docs.travis-ci.com/user/build-stages/
https://docs.travis-ci.com/user/build-stages/
https://docs.github.com/en/free-pro-team@latest/github/using-git/pushing-commits-to-a-remote-repository
https://docs.github.com/en/free-pro-team@latest/github/using-git/pushing-commits-to-a-remote-repository
https://gerrit-review.googlesource.com/Documentation/intro-gerrit-walkthrough.html
https://gerrit-review.googlesource.com/Documentation/intro-gerrit-walkthrough.html
https://www.edureka.co/blog/what-is-jenkins/
https://www.edureka.co/blog/what-is-jenkins/
https://oteemo.com/2017/11/02/stages-continuous-delivery-part-1-build/
https://oteemo.com/2017/11/02/stages-continuous-delivery-part-1-build/
https://www.per-force.com/blog/sca/what-code-quality-and-how-improve-code-quality
https://www.per-force.com/blog/sca/what-code-quality-and-how-improve-code-quality
https://sonarqube.org/documentation
https://sonarqube.org/documentation
https://www.martinfowler.com/articles/continuousIntegration.html
https://www.martinfowler.com/articles/continuousIntegration.html

32

[28] Mojtaba Shahin, Muhammad Ali Babar, Mansooreh Zahedi, and Limiting Zhu ,
Beyond Continuous Delivery: An Empirical Investigation of Continuous Deploy-
ment Challenges, in Int Conf 11th ACM/IEEE International Symposium on Em-
pirical Software Engineering and Measurement (ESEM), 2017.

[29] Martin Fowler.MartinFowler original continuous integration, the benefits of con-
tinuous integration https://martinfowler.com/articles/continuousIntegration.html, ,
2016.

[30] Ian Buchanan, Why agile isn’t agile without continuous delivery | Atlassian webpage
https://www.atlassian.com/continuous-delivery/principles/why-agile-development-needs-
continuous-delivery.

[31] What is Scrum | Scrum official documentation https://www.scrum.org/re-
sources/what-is-scrum]

[32] GIT vs SVN | perforce webpage https://www.perforce.com/blog/vcs/git-vs-svn-
what-difference, 2018

[33] Garbage collection in Git | Atlassian webpage https://www.atlassian.com/git/tu-
torials/git-gc

[34] SonarQube Metrics Definitions | SonarQube official Documentation.
https://docs.sonarqube.org/7.1/MetricDefinitions.html

[35] Chris ward. Exoscale webpage | What is continuous integration https://www.ex-
oscale.com/syslog/what-is-continuous-integration, 2018

[36] SonarQube Rules | SonarQube official documentation. https://docs.so-
narqube.org/7.4/user-guide/rules/

[37] SonarQube Rules | SonarQube official documentation. https://docs.so-
narqube.org/latest/user-guide/issues/].

[38] Acceptance testing. Infoq webpage | https://www.infoq.com/news/2017/04/ac-
ceptance-testing-delivery/

[39] Quality Assurance in Continuous integration West webpage |
https://www.west.com/blog/interactive-services/continuous-integration-in-qa/

[40] Docker containers | Docker official Documentation https://www.docker.com/re-
sources/what-container

[41] Robert Wenner, Extreme Programming and Agile Methods - XP/Agile Universe
2003, in Conf.Third XP and Second Agile Universe Conference, 2003, pages
12-16.

[42] Connect the dots of DevOps value, Charles Betz. How To Sell The Value Of
DevOps And Continuous Delivery. Business Case: The Modern Technology Op-
erations Playbook | Forrester report. 2019.

[43] Farah Hariri, Lamyaa Eloussi, and Darko Marinov. An Empirical Analysis of
Flaky Tests. In Conf: the 22nd ACM SIGSOFT International Symposium, 2014

https://martinfowler.com/articles/continuousIntegration.html
https://www.atlassian.com/continuous-delivery/principles/why-agile-development-needs-continuous-delivery
https://www.atlassian.com/continuous-delivery/principles/why-agile-development-needs-continuous-delivery
https://www.scrum.org/resources/what-is-scrum
https://www.scrum.org/resources/what-is-scrum
https://www.perforce.com/blog/vcs/git-vs-svn-what-difference
https://www.perforce.com/blog/vcs/git-vs-svn-what-difference
https://www.atlassian.com/git/tutorials/git-gc
https://www.atlassian.com/git/tutorials/git-gc
https://docs.sonarqube.org/7.1/MetricDefinitions.html
https://www.exoscale.com/syslog/what-is-continuous-integration
https://www.exoscale.com/syslog/what-is-continuous-integration
https://docs.sonarqube.org/7.4/user-guide/rules/
https://docs.sonarqube.org/7.4/user-guide/rules/
https://docs.sonarqube.org/latest/user-guide/issues/
https://docs.sonarqube.org/latest/user-guide/issues/
https://www.infoq.com/news/2017/04/acceptance-testing-delivery/
https://www.infoq.com/news/2017/04/acceptance-testing-delivery/
https://www.west.com/blog/interactive-services/continuous-integration-in-qa/
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container

33

[44] Christina Paule, Thomas F. Düllmann, André Van Hoorn. Vulnerabilities in Con-
tinuous Delivery Pipelines? A Case Study. In Conf: IEEE International Confer-
ence on Software Architecture Companion (ICSA-C), 2019.

[45] Unit Tests vs. Integration Tests. Educba | https://www.educba.com/unit-test-vs-
integration-test/

[46] What is continuous integration testing. Educba | https://www.edureka.co
/blog/what-is-integration-testing-a-simple-guide-on-how-to-perform-integration-
testing

[47] Jez Humble, David Farley. Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation. Addison-Wesley Professional
.2010. pages: 60-82.

[48] Binary Artificat Repository. Jfrog Documentation | http://help.collab.net/in-
dex.jsp?topic=/teamforge178/faq/binary_artifact_repository_overview.html

[49] 8 Reasons for DevOps to use a binary repository manager. Jfrog Documenta-
tion | https://jfrog.com/whitepaper/devops-8-reasons-for-devops-to-use-a-bi-
nary-repository-manager/

[50] System Testing. Geeks for Geeks web page | https://www.geeksfor-
geeks.org/system-testing/

[51] Martin Fowler. Martin Fowler articles | https://www.martinfowler.com/arti-
cles/continuousIntegration.html#TestInACloneOfTheProductionEnvironment

[52] Continuous testing ensures continuous delivery. GetZephyr web page |
https://www.getzephyr.com/insights/continuous-testing-cloud-ensures-continu-
ous-delivery

[53] What is Paas. Microsoft Azure official documentation | https://azure.mi-
crosoft.com/en-us/overview/what-is-paas/

[54] Faheem UllahAdam Johannes Raft, Mojtaba, Muhammed Ali Babar, Security
Support in Continuous Deployment Pipeline. Conf 12th International Conference
on Evaluation of Novel Approaches to Software. 2017

[55] Paul Rimba, L. Zhu, and S. Reeves. Composing Patterns to Construct Secure
Systems. Conf: 11th European Dependable Computing Conference.pp. 2015.
213–224.

[56] DevSecOps. Atlassian Web page | https://www.atlassian.com/continuous-deliv-
ery/principles/devsecops

https://www.educba.com/unit-test-vs-integration-test/
https://www.educba.com/unit-test-vs-integration-test/
http://help.collab.net/index.jsp?topic=/teamforge178/faq/binary_artifact_repository_overview.html
http://help.collab.net/index.jsp?topic=/teamforge178/faq/binary_artifact_repository_overview.html
https://jfrog.com/whitepaper/devops-8-reasons-for-devops-to-use-a-binary-repository-manager/
https://jfrog.com/whitepaper/devops-8-reasons-for-devops-to-use-a-binary-repository-manager/
https://www.geeksforgeeks.org/system-testing/
https://www.geeksforgeeks.org/system-testing/
https://www.martinfowler.com/articles/continuousIntegration.html#TestInACloneOfTheProductionEnvironment
https://www.martinfowler.com/articles/continuousIntegration.html#TestInACloneOfTheProductionEnvironment
https://www.getzephyr.com/insights/continuous-testing-cloud-ensures-continuous-delivery
https://www.getzephyr.com/insights/continuous-testing-cloud-ensures-continuous-delivery
https://azure.microsoft.com/en-us/overview/what-is-paas/
https://azure.microsoft.com/en-us/overview/what-is-paas/

