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ABSTRACT

Julius Ikkala: Real-time path traced spherical harmonics probes
Master’s thesis
Tampere University
Signal Processing
November 2020

Virtual reality headsets and light field displays are relatively new display technologies that are
becoming more commonplace. They pose problems because of the extremely high number of
pixels that they require to be rendered at relatively high framerates. Simultaneously, the latest
high-end GPUs contain acceleration hardware for ray tracing, which enables photorealistic ren-
dering algorithms such as path tracing to be used in real-time to a limited extent. Using the
computational power of these power-hungry devices over a network connection can enable more
realistic graphics in mobile devices as well.

This thesis proposes a novel hybrid real-time computer graphics rendering algorithm that is
particularly well-suited for distributed computing and reproduces indirect lighting phenomena. The
algorithm works by computing and storing lighting state at specified points in space, called light
probes. These probes are calculated and updated using path tracing, which is a highly realistic
light simulation algorithm, during the runtime of the program. Light probes solve the issue of
indirect lighting in the rendering pipeline; direct lighting is computed using lightweight rasterization-
based rendering.

In the proposed rendering method, the heavy-to-compute indirect lighting part of the rendering
pipeline is highly independent of the rest of the pipeline and can be offloaded to a powerful server,
leaving the client device with only the lightweight rasterization workload. This allows low-powered
devices, such as wireless virtual reality headsets with built-in rendering capabilities, to render
highly realistic and dynamic 3D content. The independence of the indirect lighting component
from the rest of the system also benefits light field rendering and other multi-viewport rendering,
as the intensive indirect lighting computation can be shared between all viewports and only the
lightweight rasterization has to be duplicated.

Additionally, a new technique for computing approximated specular lighting from spherical har-
monics light probes is proposed. This method applies the split-sum approximation to spherical
harmonics and allows for fast approximation of specular lighting for materials with varying rough-
ness. With this technique, the proposed method is able to include both the diffuse and specular
lighting components of indirect lighting.

Compared to single-sample-per-pixel path tracing with state-of-the-art denoising, which is an-
other realistic real-time rendering pipeline option, the proposed method achieves greater quality
as measured by PSNR in each of the three scenes tested and the effect of increasing resolution
reduces performance significantly less.

Keywords: computer graphics, real-time, global illumination, indirect lighting, spherical harmonics,
light probe, path tracing
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TIIVISTELMÄ

Julius Ikkala: Reaaliaikanen polunjäljityksellä päivitetty palloharmoniavalaistus
Diplomityö
Tampereen yliopisto
Signaalinkäsittely
Marraskuu 2020

Virtuaalitodellisuuslasit ja valokenttänäytöt ovat suhteellisen uutta ja alati yleistyvää näyttötek-
nologiaa. Niiden vaatima korkeat päivitystaajudet ja suuri pikselimäärä aiheuttavat pulmia. Saman-
aikaisesti, viimeisimmät ja tehokkaimmat näytönohjaimet sisältävät laitteistokiihdyttimiä säteenjäl-
jitystä varten. Säteenjäljitys mahdollistaa fotorealististen renderöintialgoritmien, kuten polunjälji-
tyksen, toteuttamisen rajallisissa määrin. Näiden paljon tehoa vaativien laitteiden laskentatehon
hyödyntäminen verkkoyhteyden yli voi mahdollistaa aiempaa realistisempaa grafiikkaa myös mo-
biililaitteissa.

Tässä työssä esitetään uusi reaaliaikainen tietokonegrafiikan renderöintialgoritmi, joka sovel-
tuu erityisen hyvin laskentaan hajautetussa järjestelmässä ja kykenee jäljentämään epäsuoria va-
loilmiöitä. Algoritmi toimii laskemalla ja säilömällä valaistuksen tilaa määritellyissä tilan pisteissä,
joita kutsutaan valoluotaimiksi. Nämä luotaimet lasketaan ja päivitetään sovelluksen ajon aikana
käyttäen polunjäljitystä, joka on hyvin realistinen valon simulointialgoritmi. Valoluotaimet ratkai-
sevat epäsuoran valaistuksen renderöintialgoritmissa, kun taas suora valaistus lasketaan kevyitä
rasterointipohjaisia menetelmiä käyttäen.

Esitetyssä renderöintialgoritmissa raskas epäsuoran valaistuksen laskentaan liittyvä osuus on
hyvin riippumaton muista osista ja voidaan siirtää laskettavaksi etänä tehokkaalla palvelimella,
mikä jättää asiakaslaitteelle vain kevyen rasterointityön. Tämä sallii matalatehoisten laitteiden,
kuten langattomien virtuaalitodellisuuslasien sisäänrakennettujen renderöintilaitteiston, hyödyn-
tämistä realistisen ja dynaamisen 3D-sisällön kuluttamiseen. Epäsuoran valaistuksen laskennan
riippumattomuus muusta järjestelmästä hyödyttää myös valokenttien ja muiden useampaan nä-
kymään perustuvan näyttötekniikan renderöintiä, sillä tuo intensiivinen osa laskennasta voidaan
jakaa kaikkien näkymien kesken ja vain kevyt rasterointiosuus tarvitsee toistaa näkymäkohtaisesti.

Myös uusi menetelmä heijastuneen valon karkeaan arviointiin palloharmonisista valoluotaimis-
ta esitellään tässä työssä. Tämä menetelmä soveltaa “split-sum approximation”-nimistä aiempaa
menetelmää palloharmoniaan ja mahdollistaa heijastuneen valon nopean laskennan materiaa-
leille, joiden karheus ei ole vakio. Tätä menetelmää käyttäen esitetty renderöintialgoritmi pystyy
sisällyttämään sekä sironta- että heijastusosuuden epäsuorasta valaistuksesta.

Eräs toinen realistinen ja reaaliaikainen renderöintimenetelmä on luoda kuva polunjäljityksellä
laskien yksi näyte per pikseli ja peittämällä aiheutuva kohina modernilla kohinanpoistoalgoritmil-
la. Tähän lähestymistapaan verrattuna esitetty renderöintialgoritmi saavuttaa paremman laadun
PSNR-metriikalla mitattuna kaikissa kolmessa testitapauksessa, ja resoluution kasvattaminen vä-
hentää sen tehokkuutta huomattavasti vähemmän.

Avainsanat: tietokonegrafiikka, reaaliaikainen, globaali valaistus, epäsuora valaistus, palloharmo-
nia, valoluotain, polunjäljitys

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.
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1 INTRODUCTION

With the introduction of ray tracing acceleration in graphics hardware available to con-

sumers in 2018 [2], using ray casting and tracing as part of a real-time rendering algo-

rithm has become reality. While the performance isn’t yet there for the high-quality offline

methods used in movie rendering to be real-time, many new and better approximations

are now possible.

At the same time, interest in multi-viewport rendering is on the rise; virtual reality headsets

have been in the hands of consumers for a while and light field rendering is emerging. A

greater number of pixels than before have to be rendered at high frequencies, which can

make ray tracing every pixel prohibitively slow. For example, a light field display which

was used during the testing of the method presented in this thesis, used 32 viewports

of 1280x720 pixels each. This is almost 30 megapixels. Another example is the Varjo

VR-2 virtual reality headset, which contains two 1920x1080 displays and two 1440x1600

displays, with support for a refresh rate up to 90 Hz [3].

Another aspect is the desire for content on-the-go: the device where content is consumed

is usually a rather weak mobile device that is incapable of calculating realistic lighting in

real-time. Services like Google Stadia [4] and PlayStation Now [5] stream game content

that is rendered on a server as a video stream to the client device. They effectively

reduce the amount of overall hardware needed, since instead of each user having a fast

GPU that sits idle most of the day, the server hardware can be in use 24/7 by different

users. However, the bandwidth cost of streaming image frames like this is high, input

delay is a concern and network issues immediately interrupt the experience in its entirety

as the image may stop updating. Further, they leave most of the hardware that does exist

at the client underutilized.

Taking all of the aforementioned aspects into account, we propose a rendering method

based on real-time updated spherical harmonics light probes with support for rough spec-

ular reflections. These light probes are computed with path tracing, a highly realistic ren-

dering algorithm. Then, they are consumed by a rasterization-based rendering pipeline,

which is the classic and highly optimized computer graphics technique for 3D rendering.

The representation of the light probes is very compact, only 56 bytes per probe without

any kind of compression. For a medium-sized scene, a 3D grid of these probes called an
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“irradiance volume” could contain in the order of 10x10x10 probes, which would only take

56000 bytes to transmit over the network. Further, the irradiance volume is independent

of camera location and orientation.

The independence from camera greatly benefits the multi-viewport rendering needed for

light fields or VR headsets: each viewport can share the same path traced lighting data,

and only the fast rasterization step needs to be duplicated. Another benefit in the context

of remote rendering is that this makes the rendering method resilient to poor network

reliability. Even if the probe update occurs at a different rate than camera movement or

even stops entirely for a while, the only major symptom is slightly outdated lighting in the

scene. In the worst-case scenario of not having a connection in the first place, the probes

can easily be replaced by static, precalculated values stored on the client device.

Further, separating the lighting from camera position lets the same lighting be shared

between multiple users. A conceivable situation where this would be useful is an online

game, where all players exist in the same scene. This way, the overall energy requirement

of the system would likely be reduced when compared to rendering everything locally on

each device, as only the server has to compute the lighting and even that would have to

be done only once to serve all players.

However, there is a tradeoff. Both the directional and spatial detail become undersam-

pled in indirect lighting, which manifests as blurry lighting. This only affects indirect light-

ing, which is usually mostly low-frequency to begin with, making the concession more

palatable. In addition to using the probes for diffuse lighting like is usually done, we

also present a very lightweight approximation for computing specular reflections from the

probes. Reflections from mirror-like objects are not well-handled by this method due to

the loss of such directional detail, but rough surfaces are quite well approximated.

In Chapter 2 the general computer graphics theory regarding materials, rasterization and

ray tracing is introduced. After that, Chapter 3 explores a method for approximating indi-

rect lighting called “light probes”. Chapter 4 discusses the implementation of the proposed

rendering pipeline in detail. Results measured using this implementation are presented in

Chapter 5. Similar probe-based real-time rendering algorithms are discussed and com-

pared to the proposed method in Chapter 6. Finally, Chapter 7 concludes the thesis and

outlines some possible future improvements.
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2 COMPUTER GRAPHICS THEORY

As a research field, 3D computer graphics is concerned with generating images from

a mathematically precise model that describes three-dimensional shapes and volumes.

Typically, the target is photorealism, in which the generated images should be indistin-

guishable from a photograph in real world. Another common target is real-time operation,

in which the image generation must occur dozens of times in a second. These two goals

are difficult to satisfy simultaneously, because the algorithms used for achieving photore-

alism through accurate simulation of light transport are typically extremely heavy.

Because of the conflicting goals, there have classically been two different approaches:

rasterization and ray tracing. The former is a very performant way of rendering 3D mod-

els and has been able to produce acceptable images in real-time for decades, but comes

with severe limitations. The latter, ray tracing, can be used to simulate light transport to a

high degree of accuracy that achieves photorealism in all but the most extreme scenes.

However, this kind of precise simulation is also very demanding. To an extent, both ap-

proaches can utilize a realistic model of the interaction between individual rays of light

and surfaces.

2.1 Surface-Light Interaction

At the core of all realistic computer graphics is the interplay of light and geometry. This

interaction between light and material is described by the Bidirectional Scattering Distribu-

tion Function (BSDF), which is often divided into two parts: the Bidirectional Reflectance

Distribution Function (BRDF) governing the part of light that gets reflected off the surface,

and the Bidirectional Transmittance Distribution Function (BTDF) which covers the part of

light that gets transmitted through the surface. [6]

There are lots of different BRDFs and BTDFs in use for different materials with varying

degrees of realism. The Lambertian reflection models perfect diffuse reflection, meaning

that a surface reflects an equal amount of light into all outgoing directions and the intensity

only depends on the albedo of the material and the cosine of the angle between the

normal of the surface and the direction vector of arriving light [7].

The GGX BSDF contains both a BRDF and a BTDF with parameters that allow them to
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Figure 2.1. A 2D cross-section diagram of a BRDF lobe. The red arrow represents the
outgoing ray, and the blue blob is the lobe. The length of each blue arrow visualizes the
value of the BRDF at that direction. The directions of the rays are opposite to the actual
direction light would move in; light rays are usually traced in reverse.

be used for a large variety of different real-world materials with a good degree of realism

[1] and is quite fast to evaluate, which is why it has seen quite a lot of use in the real-time

rendering industry. One of the parameters is commonly called “roughness”, even though

it is introduced as the “width parameter” αg in [1]. This parameter controls how rough the

surface appears, with zero being a perfectly smooth, polished surface and one being an

extremely matte surface.

The BSDF can be thought of as a spherical function that describes how much light an

incoming direction contributes towards an outgoing direction. When the outgoing direction

is given, they are often visualized with 3D shapes where the distance of each point from

the origin corresponds to the value of the BSDF for that incoming direction. These images

resemble a lobe, which is why the BSDF for a set outgoing direction is often called as

such. We are often only interested in one half of the BSDF, which is why some lobes

only describe the BRDF or BTDF sides. Figure 2.1 shows an example of a BRDF lobe

visualization.

2.2 Rasterization

For decades, rasterization has been the most popular technique for rendering real-time

computer graphics due to its high performance arising from the simple nature of the algo-

rithm. Rasterization works by projecting only the vertices of each rendered polygon to a

2D plane representing the viewport and then coloring all pixels within the bounds of the

projected polygon. This way, each polygon is only considered for those pixels that they

cover, which keeps the algorithm performant.
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Rasterization has some critical limitations, however. Because each polygon must remain

a polygon after the projection operation, only projections that preserve straight lines can

be used with it. Fortunately, this includes orthographic and perspective projection which

are vital for rendering the first bounce of light, i.e. the light that arrives at the camera

sensor. Because modern hardware allows user-programmable code to determine the

coloring for each pixel covered by the projected polygon (so-called “Fragment shaders”),

some techniques exist that allow bending these rules to an extent [8].

The modern rasterization pipelines supported by 3D acceleration hardware roughly fol-

low the same structure, with some additional features and stages. Vertex coordinates and

other per-vertex data is fed to a programmable pipeline stage called the “vertex shader”.

This stage applies the desired projection to vertex coordinates and can perform additional

transformations on them as well. The vertex data output from the vertex shader is interpo-

lated for each pixel within the projected polygon and fed into the “fragment shader”. This

fragment shader is then responsible for calculating the color of the pixel that is written to

the frame buffer. Here, the interpolated vertex data and some programmer-defined data

buffers are often used to perform lighting simulation.

A “compute shader” stage also exists, and can be used to perform arbitrary GPU-accelerated

computation. Technically, it is possible to implement ray tracing in both the fragment

shader and the compute shader. In this thesis, the rasterization category only includes

those methods that can be implemented with the modern rasterization pipeline but are

not equivalent to ray tracing.

2.2.1 Direct Lighting

Direct lighting is the component of lighting that is local to a single surface, i.e. it does

not take light bounces from other surfaces into account at all; only the direct light source

is used. This category encompasses only the rays that travel from a light source into a

surface, then to the camera. Thus, only the potentially shadowed reflection of that light

from the surface has to be calculated. Rasterization-based approximations can typically

be quite accurate with direct lighting, and the performance is not a major issue. Figure 2.2

shows the contribution of direct light to an example scene.

Primarily, the BSDF must be evaluated for each light source and shadowing should be

taken into account. When the light is punctual, evaluating the BSDF is typically quite

simple. For area lights, a more complex integration is often needed, which is why they

are either approximated or omitted. Some real-time approaches for specific types of area

lights do exist [9] [10].

Solving the visibility of a light source to the surface is another issue. Shadow mapping is

a very common method for real-time shadows in rasterization [11]. It works by rendering
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Figure 2.2. An example scene with only direct lighting.

a depth image from the light’s point of view, which can then be used in a fragment shader

later on to determine whether the shaded pixel is occluded to that light, i.e. in shadow or

not. The naive implementation results in aliased edges in the shadow, but further filtering

can be done to reduce this aliasing and to approximate soft shadows quite convincingly

[12] [13].

2.2.2 Indirect Lighting

Indirect lighting, which is the part of lighting that does multiple bounces on the way from

the light to the camera, is much more difficult for rasterization-based methods. This cat-

egory encompasses such phenomena as reflections, refractions and color bleeding, all

of which can be crucial to form the visual “look” of a material. Because of the difficulties

in implementation, rasterization-compatible methods related to indirect lighting often use

some degree of offline precomputation, resulting in the loss of dynamic interaction with

some aspects of the scene. Figure 2.3 shows the contribution of indirect light in the same

scene as Figure 2.2.

For simulating reflections, one method is to render a so-called environment map, which

is a representation of the lighting around a point in space [11]. There can only be a lim-

ited number of these environment maps in each scene due to memory limitations, which

results in somewhat incorrect reflections as points use the nearest available environment

map that may not match with the actual lighting conditions. A typical modern approach to

reflections would be Screen-Space Ray Tracing [14], which traces rays of light with depth

information acquired from an earlier pass. This method is only limited to what has been
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Figure 2.3. An example scene with only indirect lighting shown.

rendered in that earlier pass, which is typically only the things visible on-screen. This

means that reflections of off-screen objects would not be visible. Planar reflections are

an older method for reflections with fewer quality issues, but they are limited to planar

surfaces and only support sharp reflections naturally [11].

Color bleeding, which is the visual end result of indirect lighting between colored diffuse

surfaces, is very difficult to simulate in rasterization-based methods and is still mostly

precomputed or very heavily approximated in interactive 3D content [11]. Even the real-

time methods rarely work with pure rasterization alone. Instead, parts are implemented

with ray tracing, cone tracing or some other method, using compute shaders. Voxel cone

tracing is one example of such a method [15], though it is quite heavy and suffers from

“light leaking”, where light passes through walls even when it shouldn’t due to limited

precision. Reflective shadow maps are another method [16], but they suffer from several

limitations as well: they too can be heavy to apply and have issues with visibility of indirect

light (indirect shadowing).

2.2.3 Anti-Aliasing

Likewise, lots of anti-aliasing methods have been devised with rasterization in mind. While

many operate as a post-processing effect, some more accurate methods exist. Super-

sampling Anti-Aliasing (SSAA) operates by simply rendering the scene with multiple sam-

ples per pixel, and then averaging these samples to produce an anti-aliased image. How-

ever, this has a high performance cost. Often, the shading color for each sample is nearly

the same.
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Figure 2.4. Multisample Anti-Aliasing shades each polygon only once per pixel, but allows
multiple polygons with partial coverage.

Instead of shading each sample separately, Multisample Anti-Aliasing (MSAA) works by

computing the coverage of each polygon for each sample, but only calculating shading

once and applying it to all covered samples within the pixel for that polygon. This method

is usually supported by graphics acceleration hardware for rasterization.

Figure 2.4 shows a visualization of coverage. In it, the blue triangle has a coverage of 2/8

and the orange triangle has a coverage of 5/8. The resolved color of the pixel would then

be a weighted average of the triangles by their coverage.

While MSAA is usually an efficient solution, it is not helpful in cases where aliasing is

caused by the shading itself. One typical case is shadows: sharp shadows always appear

aliased even with MSAA, because each pixel is shaded only once and thus is either in

shadow or not. There is no anti-aliased edge in the shading because effectively only one

sample is taken.

2.3 Ray Tracing

In contrast to rasterization, ray tracing has only recently become a viable option for real-

time 3D graphics, as hardware acceleration for the method has surfaced from multiple

vendors during the last few years [2][17]. As the name suggests, ray tracing determines

the intersections of a ray within the given scene, sometimes multiple times, continuing
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from the previous intersection in order to simulate certain aspects of lighting. The method

does not require the scene to be defined in terms of polygons and can be implemented

with any geometry representation for which a ray intersection can be computed, but trian-

gle meshes are a very common geometry representation and discussion of ray tracing is

limited to them in this thesis.

Ray tracing requires considering all geometry for each ray, which is why much research

has been conducted towards making acceleration structures that allow disqualifying large

swaths of triangles quickly. One such method is Bounding Volume Hierarchy, which con-

structs a hierarchy of quick-to-intersect volumes encompassing multiple subvolumes or

triangles [18]. This can actually sometimes yield higher performance than rasterization

when there are very high amounts of triangles [19], but the acceleration structures need

to be updated whenever the geometry changes which can negate this benefit to an extent.

Because each ray can be individually evaluated, ray tracing does not impose limitations

on projection unlike rasterization. This also makes shadows, reflections, refractions and

even indirect light possible to simulate quite directly, though special consideration can still

be necessary to make them relatively performant in certain conditions.

2.3.1 Path Tracing

Path tracing is one method based on ray tracing. It attempts to produce photorealistic

images by following individual “photons” within the scene, bouncing around into different

directions from each intersection. Monte Carlo path tracing is a variation that attempts to

solve the rendering equation

I (x, x′) = g (x, x′)

(︃
ϵ (x, x′) +

∫︂
S

ρ (x, x′, x′′) I (x′, x′′) dx′′
)︃
, (2.1)

where I(a, b) is the intensity of light transported from b to a, g(a, b) determines whether

there is an occlusion between a and b, ϵ(a, b) is the intensity of light emitted by the

surface at b towards point a, ρ(a, b, c) determines the fraction of light that passes from c

to a through b and is derived from the BSDF. S is the set of all points on all surfaces and

x, x′, x′′ ∈ S. As can be seen from the integral, this equation is recursive and in practice,

is very rarely analytically solvable. Therefore, numerical integration methods are used

instead. In this thesis, we use Monte Carlo integration

FN =
1

N

N∑︂
i=1

f(Xi)

p(Xi)
, (2.2)

where FN is the approximated value, N is the number of samples taken, Xi is a sample

taken from a distribution whose probability distribution function is p(x). f(x) is the value



10

Figure 2.5. The visual difference between 1 and 16384 samples per pixel in Monte Carlo
path tracing.

of the integrated expression. As N grows, FN converges towards
∫︁
A
f(x)dx where A is

the domain of values that each sample is taken from.

In practice, this means that each bounce direction along the path is picked randomly

from a probability distribution. Images produced with Monte Carlo integration appear

noisy until they converge. Figure 2.5 exemplifies this difference between the number of

samples taken. Importance sampling is the act of picking the probability distributions in

a way that follows the sampled value from sample, which generally makes Monte Carlo

integration convergence faster than picking the samples uniformly [20].

Path tracing is able to naturally simulate almost all visually important aspects of lighting.

Relativistic effects and diffraction cannot be modeled with plain path tracing as the rays no

longer travel in straight lines in those cases, though some extensions do exist for both. On

the other hand, it is typically not possible to render enough samples for the Monte Carlo to

converge to a visually noise-free image in real-time with current hardware. Depending on

scene and resolution, the maximum number of samples per pixel that current hardware

can deliver at real-time framerates is in the order of 1-10, whereas the noise becomes

mostly invisible generally around 1000-10000 samples per pixel. Because of this, fewer

samples are typically used and fed to a noise removal filter, which often causes loss of

high-frequency lighting details.
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3 LIGHT PROBES

A light probe is a representation of the lighting around a specified point in space. When

they contain high-resolution information, light probes are also often called environment

maps because they act as a globe of the surrounding environment. This information can

then be used to approximate lighting for nearby surfaces. A particular representation of a

light probe is called a basis. One common and easy-to-understand basis is the cubemap

basis, in Figure 3.1. This basis is often used in precomputed environment maps. Another

basis often used when distributing photographically captured environment maps is the

equirectangular projection, shown in Figure 3.2.

High resolution bases are useful when the probes are used to simulate sharp, detailed

reflections, but very wasteful when shading rough surfaces. For this use-case, several

bases exist. The ambient cube basis is an extreme simplification of the cubemap basis,

storing only one color per face. This method, however, experiences quite noticeable

quality loss even for the rough surfaces [21].

Traditionally, light probes have been used to precalculate lighting in the scene. Another

common method is lightmapping, which works by precalculating a texture of the diffuse

illumination that the covered objects receive. While lightmapping can cover the diffuse

lighting for static objects, it usually cannot contribute to specular lighting or to the lighting

of dynamic objects. Probes are then used to cover those cases. Cubemap environment

maps have been used for specular lighting and spherical harmonics probes for the diffuse

lighting of dynamic objects. Both data structures are such that computing the lighting for

a given vector is very quick, which is why they are useful for real-time rendering.
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Figure 3.1. A cubemap environment map, shown as an unfolded cube.

Figure 3.2. An equirectangular environment map.
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3.1 Spherical Harmonics

Spherical harmonics (SH) probes have a long history in real-time computer graphics,

where they have been used to represent environment maps since [22]. They have found

much use especially in video games, where there is an opportunity to precalculate lighting

for large and static scenes with only few moving components. SH probes are especially

good for modeling indirect diffuse lighting: the L2 representation is very compact and yet

their average error is always below 3% for irradiance [22]. It is also very compact: when

using 16-bit floating point values per coefficient and assuming that a multiple of 4 bytes

are needed for memory alignment reasons, the L2 SH representation is only 56 bytes. A

cubemap representation at a resolution of 256x256 per cube face would weigh in at ~2

megabytes.

Spherical harmonics can be used to represent lighting information in a bit less direct

manner. It is similar to how frequency space representations with 1D signals work, but is

defined on a spherical surface instead. This brings many performance and quality bene-

fits. Convolution of a probe by a lobe is very fast and is a very common use case when

computing lighting from a probe. Additionally, the representation is rotationally invariant,

meaning that the orientation of the probe does not affect the value of the probe in any

other way than just the rotation, i.e. re-orienting the probe is equivalent to rotating the

sampling direction instead. This is not true for the cubemap and ambient cube bases

due to the way they discretize directions into pixels. Low-frequency data can be stored

with spherical harmonics without high-frequency artifacts such as those caused by linear

interpolation in pixel-based bases. The spherical harmonics representation suffers from

ringing, meaning that overshooting can occur near high-intensity areas. [23]

Figure 3.3 shows the lack of detail and strong ringing present in the L2 SH representation

in a difficult case. The surrounding area has significantly large areas of both high and

low-intensity light. The image has been tonemapped for display in a manner that does

not fully represent the range of values. In linear colorspace, typical shady areas have

color values around 0.005 in magnitude, whereas the bright ground has values greater

than 1.5. Even though truly black color is very rare in the surroundings, the SH basis

representation has areas which appear black. In fact, these areas had negative values

which got clamped to zero. The result after a convolution needed for diffuse irradiance

much closer matches a heavily blurred version of the cubemap probe.

The light is represented by fitting a linear combination of spherical harmonics, shown in

Table 3.1, to the lighting intensity. The process of doing so is called spherical harmonics

projection. For each probe, only the coefficients for the linear combination are stored, as

the spherical harmonics are always the same. The number of spherical harmonics used

for the linear combination affects the precision of the lighting reconstruction. Table 3.1

shows the spherical harmonics of four bands; a probe using these would be called to be
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(a) Cubemap basis

(b) L2 SH basis (c) L2 SH basis after convolution for irradiance

Figure 3.3. The data loss in L2 spherical harmonics compared to a high-resolution cube-
map basis.

of order 3, or L3. Equivalently, an L2 probe would contain 3 bands and 9 coefficients.

In practice, triple the number of coefficients are needed because color is encoded as

separate light intensities for red, green and blue.

Because the spherical harmonics representation is simply a linear combination of the

different spherical harmonics, linear interpolation of probe data is trivial as it is equivalent

to simply interpolating the coefficients. This enables using hardware texture interpolation
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Table 3.1. A visualization of Spherical Harmonics, where blue is positive and red is neg-
ative magnitude. The central column is the Zonal Harmonics subset. Pictures generated
using a modified version of [24].

L0

L1

L2

L3

support to gain a performance benefit. The coefficients can be stored in a 3D texture from

which they can be directly sampled and automatically interpolated for the desired point in

space.

3.2 Zonal Harmonics

In Table 3.1, the central column contains the subset of spherical harmonics called zonal

harmonics. This subset is used to represent rotationally symmetric functions. They have

certain properties which speed up common calculations significantly compared to using

all spherical harmonics. [23]

In particular, the ZH representation is often used to represent rotationally symmetric

BRDF lobes. The convolution of an SH and ZH function can be performed significantly

faster than SH-SH convolution. This is why using ZH approximations for lobes is beneficial

for overall renderer performance.

3.3 Irradiance Volumes

Irradiance volumes are 3D grids of light probes that are placed in a 3D scene [25], usually

by an artist. Because the data of an irradiance volume can be packed in a 3D texture, they

allow for fast GPU interpolation of spherical harmonics light probes, which is vital when

per-pixel interpolation is desired. They are also fairly compact in nature, because the
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Figure 3.4. Visualization of probe grids (irradiance volumes). In this scene, each wall has
a 6x6x1 grid and the teapot area has a 6x5x6 grid. Each probe in the volume is visualized
as a white lambertian sphere lit by the probe alone. In our system, the probes only carry
indirect lighting data, which is why the visualizers do not react to the direct sunlight.

data structure is simply a 3D array. Figure 3.4 visualizes the probes of multiple irradiance

volumes in a single scene.

Compared to freely placing individual probes, it is hard to achieve a good placement for

every probe in an irradiance volume. This can result in worse quality even when there

are more probes. Often, probes end up inside objects, which causes issues with lighting

conditions leaking through walls when the probe data is interpolated with naive trilinear

interpolation. Workarounds, such as not rendering back faces of surfaces or introducing

smarter interpolation with visibility information, help mitigate these issues.
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4 IMPLEMENTATION

The proposed method is a hybrid rendering algorithm which uses a path tracing pipeline

for computing indirect lighting and using the results with a classic rasterization pipeline.

This is specifically done in such a way that minimizes communication and dependencies

between the two pipelines, making this algorithm well-suited for distributed and remote

rendering.

Figure 4.1 presents an overview of the pipeline structure. In the lime “transformation

matrices” step, all transformation matrices which determine the state of the scene are

calculated based on user input and animation. The dashed red step is the overall “SH

update” part of the pipeline, and the dashed blue is the “SH usage” part. These are

discussed in more detail in Sections 4.1 and 4.2, respectively.
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Acceleration
structure
update

Path trace
SH samples

Compact
SH probes

Shadow map
update

Rasterization

Tone mapping

Transformation matrices

Display

User input or animation update

Figure 4.1. The pipeline setup of the proposed method. The SH update (red) can run
asynchronously relative to SH usage (blue) with few negative effects.

4.1 Spherical Harmonics Probe Update

The parts of the pipeline responsible for keeping the spherical harmonics probes updated

works entirely by path tracing. It is also quite configurable as the number of probes,

number of samples per probe, amount of temporal accumulation and ray bounces can

be adjusted to suit the needs. Further, it does not need to run synchronously with the

pipeline stages described in Section 4.2.

These properties lend the algorithm great potential for distributing the computation across

multiple devices; a relatively weak client device could leverage the power of a remote but

powerful server. The data that needs to be transferred from this stage to the client device

is very compact and latency-resilient.

4.1.1 Path Tracing

The path tracing implementation in the proposed method uses a recent Vulkan extension,

VK_KHR_ray_tracing_pipeline [26], to enable hardware acceleration of the ray tracing

workload. The implementation is very focused on performance but is still in its early days
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and therefore not extensively optimized yet.

In the framework of the extension, acceleration structures are divided into bottom-level

(BLAS) and top-level acceleration structures (TLAS) [27]. The former contains geometry

such as triangles, and the latter consists of these bottom-level acceleration structures with

an applied matrix transformation. The TLAS is updated for each frame since doing so is

quite cheap; the tested scenes do not contain deforming geometry which is why BLAS’s

are not updated. BLAS updates could be somewhat costly.

To simplify shading, a material model matching the glTF 2.0 specification [28] is used.

The specular and transmission components are based on the GGX model [1] and the

diffuse component is the simple lambertian model. The resulting BSDF is then used for

importance sampling. Next-event estimation is used, which significantly reduces noise in

directly-lit areas but roughly halves performance.

Path tracing is used rather directly to update the SH probes. For each probe position, a ray

direction is generated and then path traced. The resulting brightness value and direction

are then projected into an SH representation. Multiple samples are then averaged in order

to cover the entire SH.

Path tracing with low sample counts can result in some noise, which is still the case for SH

probes. While at first it may seem that a low-frequency representation like an SH would

only need few samples to work, it must be kept in mind that an SH probe still carries much

more information than a single pixel would and thus requires significantly more samples

to appear noise-free than a single pixel would. Even thousands of samples per probe

causes distracting flickering.

To alleviate the noise issue, a couple of techniques are used. Firstly, ray directions for

a probe are not generated fully randomly; instead, samples are picked from a Fibonacci

lattice which approximates evenly distributed samples on a sphere [29]. Secondly, results

from the previous pass are blended with the new ones using a constant ratio. This kind

of temporal averaging does not carry other issues than outdated information if objects in

the scene move. Since the probes are independent of the camera used for viewing the

data, specular details dependent on view direction are not smudged by camera movement

like commonly seen in temporal reprojection methods. The Fibonacci lattice could be

randomly oriented for each pass so that as many directions as possible would be covered

in the temporally blended SH probes, but doing so has virtually no effect with the sample

counts used in the test scenes.

Particularly difficult rays can cause the equivalent of the “fireflies” artifact, which appears

as sudden large-scale flashes in the SH representations. Those particularly bright sam-

ples are caused by paths that are not very likely to be sampled and that would yield a

high contribution to the sample’s lighting, such as those created by caustics. At the cost
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of some realism, clamping lighting contribution of each bounce into a limited range can

significantly reduce or even eliminate these issues.

The probe update presents a parallelization challenge: typical grid volume sizes such as

103 are not enough to saturate the GPU completely and looping to calculate hundreds

samples per probe results in both low GPU utilization and long-running kernels. Instead

of looping, each projected SH sample is stored separately in a buffer. These samples are

then averaged into the final SH probe in a separate merge step that implements a parallel

reduction. The final SH probes are stored in a 3D texture for easy sampling. Since there

are more coefficients than available channels per voxel, the coefficients are packed into

the texture in layers; one block matching the volume size contains the first 4 coefficients,

another one that is placed next to it contains the next 4 and so on.

The resulting volume is all of the information that needs to be given to the rasterization

pipeline. It is quite compact, a 103 grid of L2 probes using 16-bit floating point values

would take roughly 56 kilobytes. Furthermore, the data is independent of camera location

and angle and is therefore somewhat resilient to a high delay between the update and

usage at the rasterization, allowing highly asynchronous updates.

4.2 Rasterization and SH Probe Usage

In the proposed method, the final image is rasterized. Most GPU acceleration hardware is

still highly geared towards rasterization and is very efficient at it, which is why it presents

a clear performance benefit over ray tracing the entire scene. Since the ray tracing itself

is decoupled from this step, the resolution of the viewport does not affect ray tracing per-

formance and the number of samples taken for path tracing does not affect rasterization

performance.

The rasterization part of the pipeline is responsible for producing direct illumination and

adding indirect illumination using the SH probes which are generated as described in Sec-

tion 4.1. Rasterizing the direct illumination is not straightforward but can be approximated

quickly to a plausible degree of realism, with the main obstacle being shadows.

4.2.1 Multisampling

The Vulkan API exposes an option for “Sample Shading”. This option can be used to

force the implementation to compute shading for a portion (or all) of the taken samples

separately, which reduces aliasing in the shading itself. This essentially turns MSAA

into SSAA, though the ratio of shading samples to coverage samples can be somewhere

between 0 and 1 if desired. It can be significantly slower, especially when the shading is

complicated as the number of shading calculations per frame is multiplied by the number

of samples taken per pixel.
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MSAA can also be used to implement order-independent alpha blending, which is done

in the proposed method. This is achieved through another API feature called alpha-

to-coverage, which uses the output transparency value to adjust the ratio of samples

which are covered by the triangle for each pixel. The number of samples thus affects

the precision at which alpha blending occurs. To avoid this causing aliasing, the hardware

used for the results implements alpha-to-coverage with dithering, where certain pixels are

weighted more than others to better visually match the desired shading.

4.2.2 Applying Spherical Harmonics Probes

The coefficients of the spherical harmonics probes updated by the path tracing step can

be sampled from the 3D textures they are saved in. This sampling typically has some

degree of hardware acceleration, and is thus often beneficial compared to accessing an

array of SH data directly. Since spherical harmonics coefficients can be linearly combined,

per-coefficient trilinear interpolation is a completely valid way to sample them.

No windowing method is used in the proposed method. While it could be beneficial in

some cases to reduce ringing artefacts, the visual effect of windowing is also quite notice-

able and potentially worse than ringing. Diffuse lighting is implemented using the method

presented in [22].

An implementation for specular lighting with spherical harmonics probes has been pre-

sented in [30] but is quite heavy, requiring multiple lookup texture taps and SH rotation.

Furthermore, the tighter convolution lobe causes the low-frequency nature of SH data

to become apparent. Instead of using such a heavy method for an effect which cannot

be very accurate anyway because of SH limitations, we propose applying the split sum

approximation to spherical harmonics in order to simplify and speed up the operation.

The split sum approximation is a method for splitting the integral part of the rendering

equation 2.1 in such a way that incoming light is integrated separately from the sur-

face response to it [9]. In its original use case, the split sum approximation focuses on

cubemap-basis environment maps and allows for precomputation of both halves of the

split but forces symmetric specular lobes. The application of this method to spherical har-

monics probes is novel in this thesis, and allows for them to be used for specular lighting

in addition to the more traditional diffuse component.

Unlike in the original use case of the split sum approximation, we cannot precalculate

the convolution because our probes are dynamically updated. This requires modeling

the GGX specular lobe with an SH approximation. Because the split sum approximation

forces isotropy in the lobe, the projected SH representation ends up only using zonal

harmonics (ZH), which are the axially symmetric subset of spherical harmonics that are

even faster to convolve with. There is only one ZH coefficient per SH order, which is why
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Figure 4.2. Values of the precomputed ZH coefficients for approximating GGX lobes.

referring to them with the order name (L0-L4) is unambiguous.

The projected lobes for 1024 roughness values were calculated numerically, then a curve

was fit to these so that the required ZH coefficients can quickly be computed for a lobe

with a given roughness. This curve elegantly fades from a lobe representing impulse

response to a lobe representing a clamped cosine lobe. Figure 4.2 displays the numeri-

cally calculated lobe ZH coefficients as a function of the GGX roughness parameter. See

Appendix A for the resulting shader code for the L2 case.

Since direct lights are explicitly excluded from the probes in the update step, the probes

only provide the indirect component. Direct lighting is computed by modeling the light

sources as infinitely small, then evaluating the BRDF directly. This loses some detail with

larger lights; particularly, specular highlights become infinitesimal in perfectly specular

surfaces.
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4.2.3 Shadow Mapping

Because direct lights are calculated with traditional rasterization in the proposed method,

shadow mapping was chosen. If used naively, the visibility tests done in shadow mapping

would cause heavy aliasing along the shadow edge. Percentage Closer Filtering (PCF)

[31] is used to soften the edges. To simulate soft shadows caused by area lights, Percent-

age Closer Soft Shadows (PCSS) [12] are used to determine the softening radius for PCF.

These methods are simple to implement but fairly heavy and not necessarily optimal for

this use case. Moment Shadow Mapping is a more recent method that could potentially

be more efficient for rasterized shadow mapping [13].

To improve performance while having high-resolution shadow maps near the viewer, cas-

caded shadow mapping is used for directional lights such as the sun. This can cause

some artefacts near the border between cascades. A small guard band is automatically

determined based on the solid angle of the directional light so that the PCF radius doesn’t

sample beyond a single cascade very often.

4.2.4 Tone Mapping

All lighting calculations are done in linear color space. However, modern display devices

expect non-linear colorspaces. Further, values can easily exceed the “maximum bright-

ness” of 1.0 and thus appear overexposed. Tone mapping can be used to work around

these issues.

Figure 4.3 shows the transformation caused by several different tonemapping methods

which convert colors from linear color space into something else. The sRGB color space

is often expected by display devices. Gamma correction is a fast approximation for the

sRGB correction and is used very often because of that. Displays and printers expect the

given value to be in the 0-1 range, and thus the gamma and sRGB corrections would lose

detail on all color values greater than 1. The filmic tone mapping method always keeps

the values in the valid range, no matter what the linear color value is.

For the PSNR results of this thesis, simple gamma-correction was used in the tone map-

ping, with no clamping. For shown images, a filmic tonemapping operator was used since

it compresses intensity values exceeding one into the 0-1 range that can be printed while

preserving details.
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Figure 4.3. Color remapping caused by different tonemapping algorithms.
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5 RESULTS

The quality of the proposed method is evaluated in three scenes: the “Breakfast room”

scene [32], shown in Figure 5.1; the “San Miguel” scene [32], shown in Figure 5.3; and the

“Sponza” scene [32], shown in Figure 5.5. The performance characteristics for the scenes

are categorized in Tables 5.1, 5.2 and 5.3. Materials in the scenes are redefined because

the original materials are not compatible with the physically-based material model used in

the renderer. Lastly, Figures 5.7 and 5.8 contain graph which display the frametime and

quality scaling, respectively, in the “Breakfast room” scene.

These scenes and the lighting conditions and camera angles in them are selected to

feature indirect lighting as a significant part of the lighting. This lets the quality comparison

focus on the core problem tackled by the proposed method, instead of relying on direct

lighting which is handled by the rasterizer component alone in the proposed method.

All images are rendered at a resolution of 1280x720 pixels, with the exception of those

used in Figures 5.7 and 5.8 where the resolution varies and the aspect ratio is square.

Reference images are generated by path tracing using 4096 samples per pixel and a

maximum of 4 ray bounces per path. “Fireflies”, i.e. extremely bright pixels caused by

high light contribution through an improbable path, can be a major source of noise that

does not easily converge. To mitigate them and the issues they cause in all compared

methods, the contribution of indirect light bounces is clamped to an extent that visually

removes fireflies but does not significantly affect the brightness of the image.

In addition to the reference, the proposed method is compared to denoised path tracing

results in order to outline the unique performance characteristics of this method. The

BMFR algorithm, which is one of the state-of-the-art real-time denoising methods tailored

for 1spp path tracing, is used [33] for the denoising comparisons.

Dynamic Diffuse Global Illumination (DDGI) is a rendering method quite similar to the

proposed method; it uses a different probe basis, more advanced probe interpolation and

only handles diffuse lighting with the probes [34]. Even though it is the closest related

work to this thesis and comparison to it would be desirable, it is omitted from this the-

sis due to the amount of work related to replicating the method in the same renderer.

Furthermore, the DDGI paper lacks objective quality measurements for the method.

For the proposed method, the probe grids are placed manually in each scene. In “Break-
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fast room”, the grid contains 8 · 4 · 8 = 256 probes. In “San Miguel”, the grid contains

8 · 8 · 8 = 512 probes. Finally, in “Sponza”, the grid contains 10 · 6 · 7 = 420 probes. This

resolution and the placement of the probe grid is chosen to produce reasonable results.

In all scenes, 512 path traced samples are calculated per SH probe for each frame, and

these are blended with the probes from the previous frame with a factor of 0.01. That

value for the factor is quite extreme and is a strong cause for delay in the lighting. More

samples or more aggressive firefly clamping would be needed to make higher blending

factors flicker-free. While these sampling parameters are selected conservatively to avoid

all visual flickering while using the same parameters in all scenes, they are still quite

arbitrarily chosen and should be tweaked based on the specific needs in a real use case.

L2, L3 and L4 spherical harmonics probes are evaluated for the proposed method. The

visual results of L3 and L4 are exceedingly similar to the L2 results and are thus omitted

from the comparison figures.

For the comparison images and performance tables, particularly heavy but high-quality

settings are used in the rasterization component. 8x multisampling and full sample shad-

ing are used, meaning that every pixel is shaded 8 times. These parameters fully elim-

inate aliasing both in geometry and in shadow boundaries. Sample shading is disabled

for the graph in Figures 5.7 and 5.8, so only geometric edges are antialiased but perfor-

mance is significantly better. In all cases, shadow filtering uses 16 samples for PCF and

16 samples for PCSS blocker search.

Because BMFR is not integrated into the renderer, all BMFR results are computed by first

rendering the buffers required for the default settings of BMFR using our renderer, then

feeding those into the standalone BMFR implementation [35]. Because of this, the timing

results are computed by summing the time taken to render the 1spp path traced input

image and the average filtering time reported by the BMFR implementation.

The BMFR results are compared to a reference image with the exact same setup as

the aforementioned reference, but with antialiasing disabled. This is done because TAA

jitter, the feature needed by BMFR for antialiasing, is not yet implemented in the renderer

at the time of writing. Comparisons to the antialiased reference would cause an unfair

disadvantage for the BMFR method.

Quality measurement is done by rendering 60 frames with a static camera and scene and

comparing the last frame to the reference using the PSNR metric. The PSNR is calculated

after gamma correction is applied. The purpose of rendering multiple frames preceding

the examined frame is to let temporal computation reach equilibrium. All timing results are

averaged over 50 frames, the first and last few frames are excluded because they may

contain initialization and image saving delays, respectively. The reference images are an

exception to this, only one frame is rendered per result image since there is no temporal

component in them. Likewise, their frametime is measured from only that single frame.



27

Table 5.1. The performance details of the “Breakfast room” scene.

Method PSNR (dB) SH update (ms) Rasterization (ms) Total (ms)

L2 SH 25.80 3.92 5.35 10.88

L3 SH 25.78 5.11 55.50 62.04

L4 SH 25.84 10.89 41.53 53.73

1spp PT + BMFR 22.51 N/A N/A 13.94

4096spp PT N/A N/A N/A 59077.1

Table 5.2. The performance details of the “San Miguel” scene.

Method PSNR (dB) SH update (ms) Rasterization (ms) Total (ms)

L2 SH 27.93 13.17 20.05 38.88

L3 SH 27.92 13.70 225.95 244.86

L4 SH 27.88 17.93 176.01 198.97

1spp PT + BMFR 24.25 N/A N/A 35.286

4096spp PT N/A N/A N/A 151483

Table 5.3. The performance details of the “Sponza” scene.

Method PSNR (dB) SH update (ms) Rasterization (ms) Total (ms)

L2 SH 25.02 5.89 10.36 18.50

L3 SH 25.05 6.82 95.50 104.32

L4 SH 24.99 13.4 74.21 89.33

1spp PT + BMFR 18.99 N/A N/A 15.362

4096spp PT N/A N/A N/A 151483
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(a) 4096spp path traced reference

(b) L2 spherical harmonics (25.80 dB)

(c) 1spp PT + BMFR (22.51 dB)

Figure 5.1. Quality measurement of the methods in “Breakfast room” (PSNR).
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(a) L2 difference to reference

(b) 1spp PT + BMFR difference to reference

(c) L2 closeup (d) Reference closeup

Figure 5.2. Quality comparison between the methods in “Breakfast room”.
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(a) 4096spp path traced reference

(b) L2 spherical harmonics (27.93 dB)

(c) 1spp PT + BMFR (24.25 dB)

Figure 5.3. Quality measurement of the methods in “San Miguel” (PSNR).
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(a) L2 difference to reference

(b) 1spp PT + BMFR difference to reference

(c) L2 closeup (d) Reference closeup

Figure 5.4. Quality comparison between the methods in “San Miguel”.
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(a) 4096spp path traced reference

(b) L2 spherical harmonics (25.02 dB)

(c) 1spp PT + BMFR (18.99 dB)

Figure 5.5. Quality measurement of the methods in “Sponza” (PSNR).



33

(a) L2 difference to reference

(b) 1spp PT + BMFR difference to reference

(c) L2 closeup (d) Reference closeup

Figure 5.6. Quality comparison between the methods in “Sponza”.
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5.1 Quality Characteristics

Compared to the quality of denoised path traced images, the proposed method fares

better in every tested scene. One of the systematic issues with contemporary real-

time denoisers such as BMFR is the reliance on simplistic albedo demodulation and re-

modulation, which is fundamentally broken with the specular reflections of objects whose

albedo does not affect the color of the reflection. In practice, this causes dielectric mate-

rials to appear overly saturated as their reflections become colored by their albedo color

even when they should not be. This effect is apparent in the hanging cloths of the C image

of Figure 5.5.

As seen in Figure 5.8, the quality of the proposed method is quite independent from

resolution, whereas BMFR-denoised 1spp path tracing grows closer to reference with

higher resolutions. This is expected; the constant tile size of BMFR means that more tiles

are used in larger images and thus the ratio of tile size to resolution shrinks, which results

in relatively less blurry images when the resolution is higher. In the proposed method, the

number of pixels covered by each probe scales naturally with the resolution, so a similar

major quality change does not occur.

5.1.1 Shadow Issues

The shadow quality is highly dependent on shadow mapping parameters. While PCSS is

used to simulate soft shadows with moderate success, the difference images of Figure 5.2

make it quite clear that the shadow edge is one of the largest error sources. Other shadow

mapping methods, such as moment shadow mapping [13], could provide higher-quality

soft shadows with similar performance characteristics. PCF+PCSS are chosen for this

implementation simply for ease of integration into a basic rasterization pipeline.

Compared to the path traced image denoised with BMFR, the proposed approach seems

to have less error near the shadow edges. The shadowing occurs mainly on flat pla-

nar surfaces such as the walls, where the features within a block are highly uniform,

preventing BMFR’s regression component from expressing detail that could match such

high-frequency changes in lighting, which results in overly blurred shadows. While the

rasterized shadows do not match the reference perfectly, they at least do not appear any

softer than they should.

5.1.2 Light Probe Issues

Looking at the difference images in Figures 5.2, 5.4 and 5.6, it can be seen that areas

with high-frequency details from indirect light are usually a major error source. The left

back corner of the room in Figure 5.1 and tiles just above the arches in Figure 5.5 are a
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couple of example cases demonstrating this. This is caused by the sparsity of the probes

within the irradiance volume. This representation is mostly an undersampled version of

the lighting, which is why such small details are easily lost. This could be remedied by

adding more probes, but the cost of updating them would likely become prohibitive.

Another problem that is less visible is that the positioning of the probes affects the result-

ing lighting. This along with the undersampling means that spatial aliasing can be drastic;

a probe placed in a small but dark area causes the influence of that area to be dispropor-

tionately large. This makes automatic placement of the irradiance volume difficult, since

such situations must be avoided. The volumes are placed manually in the scene in the

proposed method.

A related problem is light leaking, where the naive trilinear interpolation between probes

can cause a bright probe to influence lighting through a wall. Methods have been derived

to combat these issues, one is to store visibility information along with the probes and

intelligently interpolate between them according to that information [34].

5.1.3 Spherical Harmonics Issues

While results for L2-L4 were measured in Tables 5.1, 5.2, 5.3, quality for orders beyond

L2 was somewhat surprisingly barely different, sometimes even worse. L3 and L4 should

technically be able to carry more high-frequency data and thus work better with specular

reflections. One potential reason for this is the fitted specular lobe shape; shown in

Figure 5.9, it can be seen that L3 and L4 feature more prominent lateral rings which

are simply a instance of the ringing artefact typical of spherical harmonics. Because the

performance and memory cost of L3 and L4 is significantly higher than L2, there seems

to be no reason to use them over L2.

The result of fitting a spherical function into an SH representation often results in nega-

tive values where there should be none. This is evident in Figure 3.3. After filtering for

irradiance, the result is good, but specular lobes will suffer from these negative values. If

the lighting contribution from the SH would be negative, it is set to zero in the proposed

method. The lack of directional detail also significantly reduces the attainable quality of

sharper specular details.



38

(a) L2 impulse (b) L3 impulse (c) L4 impulse

Figure 5.9. Visualizations of L2-L4 SH lobes fitted to an impulse.

5.2 Performance Characteristics

With the proposed method, the path tracing workload is entirely independent of the num-

ber of the viewports and the resolution of the viewport. Figure 5.7 shows that the time it

takes to update the SH probes is constant as resolution changes, which is to be expected

because the number of path traced samples only depends on the number of probes in

the scene and how many samples per probe we wish to render.

In Tables 5.1, 5.2 and 5.3, it can be seen that the rasterization cost is unexpectedly high.

This is primarily caused by the extremely heavy settings used in the test scenario: shadow

filtering is done using 16 PCF + 16 PCSS samples and MSAA of 8 samples with full

sample shading is used, meaning that every single pixel is evaluated 8 times in slightly

different positions. Simply disabling sample shading massively improves performance,

and using fewer samples for the shadows further drops the overhead. For example, in

the “Breakfast room” scene, the rasterization step takes only about 0.3 ms on the same

hardware after disabling MSAA and using bilinear interpolation for shadow maps.

In the proposed method, one L2 SH probe takes 56 bytes. A half-precision floating point

coefficient for each SH band and color channel is stored resulting in 54 bytes, and this is



39

then aligned to the next multiple of 4 bytes. An irradiance volume of 8x8x8 probes would

then consume a mere 28672 bytes, making the bandwidth needed to transfer this lighting

information across a network very low. This detail should aid when considering a scenario

where the heavy path tracing workload of probe updates is computed by a server and the

probes are then streamed to a low-power client responsible for rasterization and using

the irradiance volume.
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6 RELATED WORK

Because games have been relying on light probes for a long time, dynamically updating

light probes are an easy-to-integrate method for providing real-time global illumination.

Because of this, several rendering methods similar to what was proposed in this thesis

have been published. The primary novelties of the proposed method are the usage of the

spherical harmonics basis for real-time path traced probes, which allows very compact

representation with rotational invariance and no high-frequency artefacts; and the usage

of the light probes for specular lighting using a fitted zonal harmonics representation of

GGX specular lobes. Both additions provide benefits for splitting the rendering work over

a network: the compact representation reduces network bandwidth and the specular ap-

proximation reduces need for heavy computation on the client side.

Dynamic Diffuse Global Illumination (DDGI) is one method that updates light probes in

real-time using ray tracing, achieving impressive performance. As the name implies, the

probes are limited to diffuse illumination and a ray tracer is used to fill in glossy parts

of the lighting as needed. The method uses an octahedral basis for its light probes with

additional visibility information used to improve interpolation [34]. The octahedral rep-

resentation does not suffer from ringing, unlike spherical harmonics. The DDGI paper

proposes using 8x8 resolution for color data and 16x16 for visibility data per probe, with

each pixel using a format that is 4 bytes in size. With these parameters, the probes can

store more detailed information than L2 spherical harmonics probes. However, a single

octahedral probe with those parameters would consume at least 1280 bytes of memory.

This is almost 23 times more than the 56 bytes consumed by an L2 SH probe. DDGI has

since been extended to support probe-based glossy reflection as well, although it does

not take surface roughness into account [36].

Signed Distance Fields Dynamic Diffuse Global Illumination (SDFDDGI) uses a signed

distance field approximation of the scene, which can be used to quickly trace rays even

without ray tracing hardware. Like DDGI, this method uses an octagonal basis for the

probes as opposed to the spherical harmonics used in this thesis. It has a fully automatic

system for probe placement, which neither this thesis nor DDGI propose. Unlike in this

thesis, the probes are not used for specular reflections in SDFDDGI, and the paper sug-

gests using other methods such as screen-space reflections or ray tracing to cover that

part. [37]
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An SH-based approach for dynamic global illumination is presented in [38]. Probes are

placed in the scene with an algorithm that ensures that each light receiver is visible in

some probe. The method uses a real-time lightmap of direct illumination in order to up-

date the probes. Since the probes are placed ahead of time, the contribution of the

lightmap pixels to the probe can be precomputed. During runtime, the probes are then

updated according to the state of the lightmap. The lighting from relevant probes is then

interpolated to calculate lighting at the receiver. The interpolation takes advantage of

precalculated visibility information to obtain high-quality lighting. Dynamic geometry is

somewhat limited due to the amount of geometry-dependent precalculation needed and

is as such not directly comparable to the fully dynamic method presented in this thesis.

Compared to the method proposed in this thesis, it places more limitations on dynamic

geometry and requires more precalculation, but seems to suffer from fewer artefacts and

does not use ray tracing during runtime. Further, it does allow specular highlights from

its probes unlike DDGI, but does this by approximating a directional light source from the

probe and calculating the specular reflection from that.
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7 CONCLUSION

This thesis proposed a new real-time rendering method using dynamically updated spher-

ical harmonics light probes that can approximate both diffuse and specular indirect light-

ing. The probes are updated using path tracing and stored in an irradiance volume, which

is a compact representation for light information.

This irradiance volume data is independent of camera position, which benefits the sharing

of the data between multiple viewports and allows for outdated or less frequently updating

lighting data to be used without much penalty. A simple yet novel method for approximat-

ing specular reflections from spherical harmonics probes was also presented as a part of

this rendering method.

In all three measured test scenes, the proposed rendering method achieves greater qual-

ity at similar framerates than denoised single-sample-per-pixel path tracing, even when

the capability for asynchronous SH updates is not utilized. Some systematic artefacts are

visible; high-frequency details in indirect lighting such as short-distance light bounces are

missing.

Unlike currently predominant methods of offloading rendering work from low-power de-

vices to servers such as game-streaming services [5][4], the proposed method does not

impose network latency on the entire image. Instead, all such latency can only affect the

lighting of the scene; the camera and all objects in the scene can still move freely and

without network latency.

Additionally, the bandwidth cost is easier to manage, as reduction of bandwidth can be

achieved by less frequent lighting updates. This does not affect the user as drastically

as reducing the framerate or quality of a video stream would, because all geometry still

updates smoothly with no network latency. Instead, dynamic indirect lighting in the scene

would become increasingly delayed.

A further advantage is that the proposed method can operate very well even when the

connection is lost or there never was a connection in the first place: in such situations, the

probes can simply use precalculated static values and the user only loses some visual

flare, whereas with frame streaming such a situation would prevent the usage of the

application entirely.
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Integration of the proposed method into an engine built to support spherical harmonics

probes should be simple. When there is a network connection to a server, the spherical

harmonics data that would otherwise be precalculated and static can simply be replaced

with data that is being streamed from the server in real-time.

A potential use-case for the proposed method would be gaming on a virtual reality head-

set similar to the Oculus Quest, where the headset itself contains the needed hardware to

render less-demanding graphics[39]. In the pipeline of the proposed method, the headset

would then be responsible for the light rasterization part the pipeline, and a connected

server would then do the heavy computation of light probe data and stream it separately.

This way, the latency issues of frame streaming would not hinder the virtual reality expe-

rience, which is known to be fairly latency-sensitive [40].

Generating high-quality real-time content for light-field displays is another area where the

proposed method could be used. The heavy lighting computation would only have to be

done once per frame, and only the relatively quick and tweakable rasterization step would

need to be duplicated per viewport during the frame. Assuming a 1280x720 resolution

per viewport, 32 viewports and a 4 ms light probe update, the rasterization step for each

viewport must take less than 0.4 ms to reach 60 frames per second. With current hard-

ware, this should be quite achievable in simpler scenes, at least without MSAA. Multiple

GPUs could also be used to rasterize the different viewports.

The scenes used for the measurements are all constrained and quite compact scenes.

For larger scenes, it would be necessary to place much larger irradiance volumes with

more probes. Adaptively selecting which probes need updating and which should be

transferred from the remote devices to the local ones should prove quite useful in keeping

a stable level of performance. Simply picking probes by the view frustum would be an

easy first step towards this. Using a lower-resolution volume for probes further away from

the camera could be another effective optimization to the proposed method.

Adding support for a visibility term in the probes would likely significantly help with light

leaking issues. Such approaches have been taken in related work. An additional coef-

ficient could be added to the SH probes to encode depth. This could then operate as a

visibility term, which would be used in probe interpolation in such a way that probes would

not affect further than the depth encoded for each direction. Currently, irradiance volume

placement is done manually. It would be interesting to do this automatically. The visibility

term should make this viable, because light leaking is the primary consideration in probe

placement.

To overcome the lack of short-distance high-frequency detail in lighting, the fragment

shader in the rasterization could cast short rays to recover and re-add some of that infor-

mation. Vulkan’s ray query feature should be usable for this purpose.
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In conclusion, the initial goal of the thesis was achieved, though with certain quality issues

stemming from the naive probe interpolation that should be rectifiable in further research.

The implementation of the method was much more involved than the thesis may lead

on to believe, as an entirely new real-time path tracer was written from scratch during

the thesis process, using experimental Vulkan extensions for hardware-accelerated ray

tracing. This led to some unfortunate delay in the thesis schedule. The end result is

satisfactory: the proposed method is fast enough to fulfill its intended role with acceptable

quality.
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A FITTED ZONAL HARMONIC COEFFICIENTS

FUNCTION FOR GGX SPECULAR LOBES

This GLSL function represents a function fitted to a set of numerically calculated ZH lobes

for the specular contribution of GGX. Anisotropy is not modeled in any manner.

The L0 ZH is always equal to 1, so it is not included in the vector returned by get_ggx_specular_zh.

Instead, it contains the L1, L2, L3 and L4 ZH coefficients in that order.

vec4 get_ggx_specular_zh(float roughness) {
vec4 zh = vec4(0.27793123f, 0.59372022f, 0.2400839f, 0.000250700498);
zh += vec4(0.905501229f, 10.57518269f, 21.6480923f, 5.53340572f) * cos(

fma(vec4(roughness),
vec4(2.49220829f, 3.49132073f, 3.92510137f, 3.98902127f),
vec4(2.88755638f, 0.56672964f, 0.50116945f, 0.705097221f)));

zh += vec4(1.98743320f, 9.52855312f, 19.90690569f, 3.23348085f) * cos(
fma(vec4(roughness),

vec4(1.79537159f, 3.58608449f, 4.01505002f, 4.63841986f),
vec4(0.636261278f, 3.60689811f, 3.55551139f, 3.25144230f)));

zh += roughness * fma(
inversesqrt(

vec4(0.329615862f, 0.29109984f, 0.25094573f, 0.211655471f) +
roughness*roughness),

vec4(1.54054310f, 4.35171889f, 7.58146856f, 9.84410536f),
vec4(-4.73179141e-04f, -3.58678416f, -6.47567145f, -8.76804538f));

return zh;
}
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