
Ali Gohar

ROBUST SOUND EVENT DETECTION IN REAL

WORLD ENVIRONMENT

Master of Science Thesis

Information Technology and Communication Sciences

Examiner: Prof. Tuomas Virtanen and Toni Heittola

November 2020

i

ABSTRACT

Ali Gohar: Robust Sound Event Detection in Real World Environment
Master of Science Thesis
Tampere University
Master in Information Technology
November 2020

Sound present in our daily life contains very useful information and can help in solving multiple
problems. Sound event detection (SED) in real life can be used to build products for security,
safety and human convenience. Deep neural networks are quite common and perform very well
for such tasks. A lot of work has already been done using deep neural networks and recurrent
neural networks to tackle various problems.

Considering the informative events for nurses in home care centers and nursing homes, we
finalized four target classes (door, water tap, yelling, human fall) to be focused in this thesis. These
sound events can also be used in other places e.g home security and public places. Considering
other frequent sounds in the daily environment, we took speech, music and coughing as non-target
classes. Despite four target classes all other sounds will be considered as background noise and
will be ignored. This thesis aims to synthesize a dataset containing all these sound events and
train various models to achieve higher accuracy for target classes.

Target and non-target class data along with ambience sounds are collected from the internet
to create real-life soundscapes. Soundscapes are created in four folds to use the cross-validation
technique during training of the model. To ensure the privacy of the speaker, we decided to
extract audio embeddings from these soundscapes and use them for further process. Three
different types of audio embeddings (openl3, kumar2018, zhao2020) are extracted and compared
to find the optimal one for this task. Supervised learning acoustic detection models are trained
and validated on this synthesized data to find the finest model for these events.

We found that embeddings extracted from Zhao2020 and provided to various classification
models outperform the other two types of embeddings extraction models on our synthetic dataset.
We achieved the best results by combining a recurrent neural network with max polling.

Keywords: Sound Event Detection, Recurrent Neural Network, Soundscape Synthesis

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

PREFACE

The conceptual knowledge acquired by the Data Engineering and Machine Learning pro-

gram is best manifested in this project. I sincerely express my gratitude to my supervisor

Professor Tuomas Virtanen for providing me an opportunity to work on this project with a

prestigious research group. I would like to thank Toni Heittola and Shuyang Zhao for pro-

viding technical support during the implementation process. Moreover, my sincere thanks

go to the complete team of the project for discussion and guidance.

Last but not the least, I could not have achieved these things without the support of my

family, so thanks to my family for assisting me in my whole life.

Tampere, 30th November 2020

Ali Gohar

iii

CONTENTS

1 Introduction . 1

1.1 Motivation . 2

1.2 Objective . 4

2 Background . 6

2.1 Deep Neural Networks . 6

2.1.1 Feed Forward Neural Network 6

2.1.2 RNN . 7

2.2 Pooling Techniques . 10

2.3 K-Fold Cross-Validation . 10

2.4 Evaluation Metrics . 11

2.5 Sound Event Detection . 13

2.6 Robustness . 15

3 Methods . 17

3.1 Dataset Creation . 17

3.1.1 Data Collection . 17

3.1.2 Data Preparation . 19

3.2 DNN SED Techniques . 25

3.2.1 Frame-level Prediction . 25

3.2.2 Recording-level Prediction . 27

3.3 Data Loader and Training . 30

4 Results and Discussion . 32

4.1 Frame-level Prediction Results . 32

4.2 Recording-level Prediction Results . 33

5 Conclusion . 41

References . 43

Appendix A Appendix . 46

iv

LIST OF FIGURES

1.1 Categories of sound events . 2

1.2 SED system architecture . 3

1.3 Audio tagging for polyphonic sound event detection 5

2.1 Feedforward neural network . 7

2.2 Recurrent neural network . 8

2.3 LSTM block . 9

2.4 4-fold cross-validation . 11

2.5 Area under ROC curve . 13

2.6 Impulse response measurement setup 16

3.1 Annotation file structure . 20

3.2 Each fold structure in four folds data . 20

3.3 Scaper synthesis pipeline . 21

3.4 Openl3, kumar2018 and zhao2020 embeddings illustration 24

3.5 Embeddings database structure . 25

3.6 Single layer FFNN model . 26

3.7 Multi-layer FFNN model . 26

3.8 Uni-directional RNN model . 27

3.9 Bi-directional RNN for recording-based prediction 28

3.10 RNN with residual connection . 29

3.11 Attention model . 29

4.1 Embeddings model selection based on recording level results 39

4.2 Classification model selection from recording level results 39

4.3 Recording level results comparison of RNN maxpool and single layer FFNN

with zhao2020 . 40

5.1 SED system in a real life application . 42

A.1 Simple scenario of soundscape . 46

A.2 Complex scenario of soundscape . 46

A.3 Ground truth labels structure . 47

A.4 Detailed output results structure for one experiment 47

v

LIST OF TABLES

2.1 Activation functions . 6

2.2 Five various pooling functions and their gradients 10

3.1 SNR ranges with probability of occurrence of various number of events in

one file . 22

4.1 F1 and jaccard scores for openl3’s single embeddings frame 32

4.2 F1 and jaccard scores for kumar2018’s single embeddings frame 33

4.3 F1 and jaccard scores for zhao2020’s single embeddings frame 33

4.4 Recording-level F1 and jaccard scores with single layer FFNN 33

4.5 Recording-level F1 and jaccard scores from uni-directional RNN 34

4.6 Recording-level F1 and jaccard scores from bidirectional RNN 34

4.7 Recording-level F1 and jaccard scores from residual connections with RNN 34

4.8 Recording-level F1 and jaccard scores from attention model 35

4.9 Recording-level F1 and jaccard scores from RNN with max pooling 35

4.10 Recording-level F1 and jaccard scores of zhao2020 with various pooling

techniques . 36

4.11 Recording-level F1 and jaccard scores comparison of kumar2018 and ku-

mar2020 . 36

4.12 Comparison of using various resolution labels during training by using

RNN-maxpool as classifier and zhao2020 embeddings 36

4.13 Comparison of using various resolution labels during training by using

residual RNN-maxpool as classifier and zhao2020 embeddings 37

4.14 Comparison of using various resolution labels during training by using

RNN-maxpool as classifier and kumar2020 embeddings 37

4.15 Comparison of using various resolution labels during training by using

residual RNN-maxpool as classifier and kumar2020 embeddings 37

4.16 Comparison of 7 vs 4 target classes by training and evaluating with 1

minute weak labels using zhao2020 . 38

4.17 Comparison of 7 vs 4 target classes by training with 10 s and evaluating

with 1 minute weak labels using zhao2020 38

vi

LIST OF ABBREVIATIONS

AUC Area Under Curve

BCE Binary Cross Entropy

CASA Computational auditory scene analysis

CRNN Convolution Recurrent Neural Network

DCASE Detection and Classification of Acoustic Scenes and Events

DNN Deep Neural Network

FFNN Feed Forward Neural Network

GRU Gated Recurrent Unit

IoT Internet of Things

LSTM Long Short-Term Memory

MFCC Mel-frequency Cepstral Coefficients

ML Machine Learning

RNN Recurrent Neural Network

ROC Receiver Operating Characteristic

SED Sound Event Detection

SNR Signal to Noise Ratio

1

1 INTRODUCTION

Our daily life environment contains multiple complex sounds that are generated from var-

ious sources. These sounds have very much variation in terms of the sound source,

loudness level, temporal behavior and location as shown in Figure 1.1. The sound could

be generated by humans, animals, machinery and nature at different loudness having a

wide range of background to event ratio. The sound source could be stationary or moving

depending on the situation, so the same sound source could produce different sounds on

the base of the movement. Transient, intermittent and continuous are different temporal

behavior of sounds and all these sounds are present in our daily life. Gun shot is a tran-

sient sound that occurs for a very short time, water tap running could be considered as

continuous sounds and footsteps is an intermittent sound and occur periodically.

The human auditory system is trained and automatically works to recognize and put vari-

ous sounds in a different category. We gather tremendous information from various sound

events and use that in our daily routine for taking different decisions. If we want to de-

velop a smart system that could interact with humans and provide useful information, then

the system should be able to recognize the surrounding sounds. Computational auditory

scene analysis (CASA) [1] is a field to use these sounds and convert them into meaning-

ful information with the help of machines. Source separation, sound event detection and

acoustic scene recognition come under the umbrella of CASA.

Source separation is a task to separate a specific event from mixed audio (e.g vocal from

music), sound event detection is to determine and classify each sound in a mixture and

acoustic scene recognition is to only categorize the environment (e.g park, office, home).

These task could be used separately or jointly depending on the situation and problem.

For example, in the case of SED, acoustic scene recognition can narrow down the output

results and provide high accuracy [2]. Similarly, source separation can also be used jointly

with SED to first separate the specific target event and then classify the event [3]. In this

thesis, we will be focusing only on sound event detection in a real-world environment.

Sound event detection could be done in two different ways: recording-level detection and

frame-level detection. Recording-level detection is also known as audio tagging where

we are not interested in the onset and offset of the sound event, but we only want to

determine the sounds in the recording. Frame-level detection can determine the onset

2

and offset of the sound event to pinpoint the exact location of the event. These two tasks

could be used jointly or standalone depending on the situation. During my work of this

thesis, I would be focusing on solving the audio tagging problem but we will also consider

frame-level detection.

Figure 1.1. Categories of sound events

1.1 Motivation

The internet of things (IoT) gave birth to a new era of smart cities to assist mankind and

it opens the doors for various new technologies. Machine learning (ML) is one of the

hot topics these days and running an ML algorithm on edge devices e.g Raspberry Pi

and Jetson Nano, becomes a common practice. By using these technologies we can

provide security, convenience, comfort and entertainment to the people. Sound event

detection can also be used in these applications to provide audio surveillance, urban

sound analysis, healthcare monitoring and multimedia event detection. At the simplest

level, SED could provide information about sound events in a specific environment, and

by using that information we can produce semantic interpretation about the activities in

that environment.

The simple architecture of sound event detection is shown in Figure 1.2, where the mi-

crophone will record the sounds and through some API’s send the data to the server for

further processing. The server will receive the audio and detects various sound events

on the base of the machine learning algorithm, and then this information will be used for

further data analysis. The data analysis part will produce semantic interpretation on the

base of events and produce triggering alarm and notification for users.

3

Figure 1.2. SED system architecture

Computational analysis of sound scenes and events [4] chapter 12 gave examples of us-

ing SED in a real-life environment, let us discuss some of them here. Regarding security

and safety, window break in an empty apartment could be an indication of an intruder in

the home and can be tackled by the SED system. SED system will recognize that sound

and play a previously recorded audio, turn the light on and send the notification of activity

to the owner. Similarly, smoke alarm in an unoccupied apartment could be a great threat

but can be handled easily by immediately sending an alert to the owner.

Concerning comfort and convenience, baby cry at night can disturb both parents at night

and this issue can be solved by SED. The sound will be detected by the SED system and

soothing lullaby will be played by the sound system. In case the baby does not sleep

again and keeps crying for a certain interval then the SED system will send a notification

to one of the parents without waking the other. In the same way, dog bark in an empty

home can be recognized and notified from the SED system. The owner can talk to the

dog through intercom or can also check the home camera feed to verify everything is fine.

The elderly world population is increasing day by day and those people may not get a

healthier life causing concern for government and society [5]. A sound event detection

system can also play a vital role in health care monitoring to timely tackle any accident

with patients. Human fall, call for help and other daily activity sounds can be recognized

by the SED system and save the older people from some serious problems. Concerning

human fall seriousness, Droghini et al. create a dataset of human fall and propose a

method for one-shot human fall detection in their paper [6].

Audio-based multimedia event detection is also an interesting application, where you can

get useful information from sound events to explain the activity or environment in the

video. Currently searching a video is based on text instead of actual events in that video.

Audio-based multimedia event detection can solve this problem and open a new era of

searching techniques.

All these interesting applications of sound event detection motivates me to work in this

area and try to solve one of the problems. Considering the seriousness and importance

of different applications, I choose to work on the healthcare monitoring problem. During

this thesis, I will focus in recognizing sounds related to healthcare monitoring.

4

1.2 Objective

The objective of this thesis is to design a supervised learning model to detect polyphonic

sound events that could be useful in health care monitoring. From the literature review as

well as considering informative events for nurses, we finalized four target classes (door,

water tap, yelling and human fall) and three non-target classes (speech, music and cough-

ing). Despite four target classes all other sounds will be considered as background noise.

For training and evaluating the supervised learning model, we need a huge amount of

annotated data containing our target and non-target classes. Getting such data is a prob-

lem and if we record this type of data then annotation of that data will be a big task, so

we decided to synthesize the dataset.

I will collect the individual samples of all required classes as well as ambience from the in-

ternet and annotate those samples. The samples will be divided into four non-overlapping

folds, so that it can be used for training and evaluation. These individual samples folds

will be used to synthesize the real-life soundscapes dataset according to our require-

ments. The benefits of synthesizing data will be a huge amount of annotated data with

a controlled number of target and non-target classes. We will try a python-based sound

synthesizing tool, Scaper [7], to produce soundscapes similar to real life.

Computational analysis of sound scenes and events [4] chapter 12 also gives information

about ethical issues in privacy and data protection. Privacy is one of the important things

in any project and especially if we want to use real-life recordings. Audio data collection

in someone’s home or any other place for research or commercial purpose falls under

the data protection laws and we need to consider it seriously. Normally, people do not

want to share their audios with others, so converting the audio to some privacy-preserving

features (embeddings) and use that for SED is an important task. We will consider various

embeddings models (Openl3, Kumar2018, Zhao2020) in this thesis to tackle this Privacy

preserving issue.

For selecting a model, I will mainly consider deep neural network (DNN) and recurrent

neural network (RNN). A simple DNN model will be taken as the base model for SED and

then we will continue towards more advanced models to improve the performance. I will

do experiments with different models as well as various embeddings, mentioned above,

to see which embeddings model working good with which classification model on our

synthetic dataset.

As discussed above sound event detection could be done into two different ways, and I

will experiment considering both frame-level and recording-level. For the audio tagging

problem, one possible approach could be using RNN where all frames will be sent to

RNN in sequence and then the prediction is made on the basis of last frame. As I will

be synthesizing the data with strong labels, so I will do experiments by using both strong

5

and weak labels during training to see the difference in both approaches. Our main focus

in this thesis will be to solve the audio tagging problem and make a prediction for a one-

minute recording. The embeddings for a complete recording will be extracted and given

to the sound event detector that will make frame-level prediction. The results from the

frame-level could be combined to form a recording-level prediction output as shown in

Figure 1.3.

Figure 1.3. Audio tagging for polyphonic sound event detection

6

2 BACKGROUND

2.1 Deep Neural Networks

2.1.1 Feed Forward Neural Network

Feedforward neural networks also known as multilayer perceptron are considered as deep

learning foundation and get popularity in the last decade. Frank Rosenblatt invented the

perceptron algorithm in 1958 that become the base for deep learning models. Recur-

rent neural networks and convolution neural networks are complex cases of feedforward

neural networks and are mainly used for supervised learning. Simple neural networks

consist of input, output and hidden layers with multiple neurons in each layer. It takes an

input in the form of a fixed-length vector multiply that with some weights and add a bias

to produce an output. The output of each neuron is calculated as

y = σ(wtx+ b), (2.1)

where x denotes the input vector, w is the weight vector, b represents the bias and σ

stands for non-linear activation function. Non-linear activation functions are used to create

the mapping between input and output of the neural network. Sigmoid, softmax, ReLU

and tanh are commonly used activation functions and their equation are shown in the

Table 2.1.

Table 2.1. Activation functions

Activation Function Equation

Sigmoid(x)
1

1 + exp−x

Softmax(x)
expzi∑︁k
j=1 exp

zi

Tanh(x)
expx − exp−x

expx +exp−x

ReLU(x) max(x, 0)

The choice of activation function at the output layer mainly depends on the task. Sigmoid

7

and softmax both give output between 0 and 1, which is considered as probabilities of

classes. Sigmoid is used for multilabel tasks where several classes can occur at the same

time while softmax is used for multiclass classification when only one class is active.

Training of neural networks is finding optimal parameters (weights, bias) for each layer

to minimize the loss. If x is the input to network and y-pred is the predicted labels and

y-act is the ground truth labels then the loss is calculated as loss (y-pred, y-act). Loss is

minimized by using various kinds of techniques and the gradient descent algorithm is a

favorite one.

Gradient descent is an iterative process and used to find the minimum of a function by

updating the value. There are different variants of gradient descent e.g batch gradient

descent, stochastic gradient descent and mini-batch gradient descent. In batch gradient

descent the weights of layers are updated after showing the complete training dataset to

the network and this is called one epoch. This method is a slow process and learning

is also slow in that case, but it is not computationally expensive. Stochastic gradient

descent updates the weights of layers after every example, and it makes this method to

learn faster by updating the weights more frequently. For mini-batch gradient descent we

divided the whole dataset into mini-batches and weights are updated after passing each

mini-batch. Based on dataset size and task we choose one of the technique to train our

system.

2.1.2 RNN

In feedforward neural network the information flows only in one direction without any feed-

back. The neurons in each layer do not provide any information to other neurons in the

same layer. That means, in the case of sequence input, every output is only dependent

on that moment input without considering the contextual information and it can be seen

in Figure 2.1.

Figure 2.1. Feedforward neural network

8

Contextual information could be very informative and useful in some of the machine learn-

ing tasks such as speech recognition and audio detection. To use contextual information

in a sequence input recurrent neural network (RNN) play a vital role. In RNN, the output

of the current instance depends on current input as well as previous output as shown in

Figure 2.2.

Figure 2.2. Recurrent neural network

First, it takes X1 as input and produces Y1 as output along with h1 which together with

X2 is used as input for the next step. Similarly, h2 along with X3 is used as input for

further step and it keeps on going like that to remember the contextual information. For

calculating the output of the current state the formula is

Yt = f(ht−1, Xt), (2.2)

where Yt, Xt and ht−1 is the current output, current input and previous hidden vector. As

we see current input could be dependent and get some useful information from past con-

text, in some cases future context can also provide useful data. To utilize future contextual

information bidirectional RNN (BRNN) is the key to success. Each layer is divided into

two separate layers in BRNN, one reads the forward sequence and the other takes care

of the backward sequence. This way the network will have both past and future context

of the input sequence to predict the output.

Gradient vanishing and exploding is one of the common problems in RNN which are be-

ing handled in long short-term memory (LSTM) networks [8]. A simple neuron in RNN is

replaced by units known as LSTM memory blocks (Figure 2.3). LSTM uses backpropa-

gation to train the model and consists of three gates (input gate, output gate, forget gate).

Hidden activation in RNN is replaced by the following equations [9]

it = σ(W xixt +W hiht−1 +W cict−1 + bi)

ft = σ(W xfxt +W hfht−1 +W cfct−1 + bf)

ct = ftct−1 + it tanh(W
xcxt +W hcht−1 + bc)

ot = σ(W xoxt +W hoht−1 +W coct + bo)

ht = ot tanh(ct)

(2.3)

9

where it, ft, ct and ot represents the input gate, forget gate, memory cell and output gate

activation respectively, b∗ are the bias terms and W ∗∗ are the weight matrices. The input

gate controls the information that is added to C, the forget gate regulates the erasing of

information and the output gate manages what information will be produced at the output

of the LSTM memory block. To obtain bidirectional long short-term memory (BLSTM)

network we just replace the simple neuron in BRNN with the LSTM memory block and

get past and future context information.

Figure 2.3. LSTM block

Gated recurrent unit (GRU) [10] is a simplified version of LSTM with a fewer number of

parameters. GRU does not have a cell state vector C and output gate, so they only have

an update and reset gate to control the flow of information. GRU gives comparable output

accuracy to the LSTM with fewer computations and is considered as favorable in sound

event detection. The equations for various gates are defined as

zt = σ(W z[ht−1, xt] + bz)

rt = σ(W r[ht−1, xt] + br)

nt = tanh(W inxt + bin + rt(W
hnht−1 + bhn)

ht = (1− zt)nt + ztht−1

(2.4)

where zt, rt and ht are respectively the update gate, reset gate and output, W ∗∗ are the

weights matrices and b∗∗ are the bias terms.

10

2.2 Pooling Techniques

As discussed earlier, sound event detection can be divided into two subtasks: determine

which events are present in recording (audio tagging) and specify the onset and offset of

the event. Multiple instance learning [11] is a common framework for audio tagging tasks

where instances are grouped in bags and we make prediction for every bag. A recording

in SED is considered as a bag while its frames are interpreted as instances. Neural

networks makes a prediction on every frame about the presence of events and then those

frame-level predictions are combined with the pooling method to get the prediction for a

complete recording. Wang et al. compare five different pooling techniques [12] for sound

event detection as shown in the Table 2.2.

Table 2.2. Five various pooling functions and their gradients

Pooling Function Gradient

Average Pooling y =
1

n

∑︂
i

yi
∂y

∂yi
=

1

n

Max Pooling y = max(yi)
∂y

∂yi
=

{︄
1, ifyi = y

0, Otherwise

Exp. Softmax y =

∑︁
i yi exp yi∑︁
i exp yi

∂y

∂yi
= (1− y − yi).

exp yi∑︁
j exp yj

Linear Softmax y =

∑︁
i y

2
i∑︁

i yi

∂y

∂yi
=

2yi − y∑︁
j yj

Attention y =

∑︁
i yiwi∑︁
i wi

∂y

∂yi
=

wi∑︁
j wj

,
∂y

∂wi

=
yi − y∑︁

j wj

All mentioned pooling techniques are use for calculating recording-level probability output

y, where yi and wi are the frame-level probabilities and weights respectively. For attention

pooing function the weights wi are learned with a softmax-based fully connected layer.

Linear softmax pooling was performing better for audio tagging as well as localization in

their experiments, but they also mentioned this could not be an ultimate choice and other

polling technique like attention or adaptive pooling can perform better.

2.3 K-Fold Cross-Validation

In the case of limited data, machine learning models are evaluated through cross-validation

technique [13]. Cross-validation is a kind of resampling procedure in a way that two sets

should not overlap. This procedure has a single parameter K which represents the num-

ber of splits from the data. A standard approach to use K-fold cross-validation have the

following steps:

11

• Divide the data into K splits called folds

• Use K-1 splits for training and one remaining split for validation and store the results

• Repeat the process by taking every split as a validation fold

• Summarize the model skill by averaging the results from all folds

Four fold cross-validation is shown in Figure 2.4, where every fold data is used as test

data.

Figure 2.4. 4-fold cross-validation

2.4 Evaluation Metrics

Classification accuracy is measured by taking the ratio of the number of correct predic-

tions to the total number of predictions. Accuracy is appropriate if the dataset is balanced

concerning the number of events of different classes. In the case of an imbalanced num-

ber of target class samples accuracy becomes unsuitable measure. Accuracy could be

90 or 99 % with an unskillful model depending on how extreme the dataset is imbalanced.

Let’s consider an example where our model have to look at cases and find out the fraud

and non-fraud cases. If we only look at the accuracy of that model, that is 99.9%, we

Predicted

Non-Fraud Fraud

Actual
Non-Fraud 998 0

Fraud 1 1

can say the model is performing very well. On the other hand, if we consider actual fraud

cases which model misclassified, then we can think of the cost that this misclassification

posed. Precision, recall, error rate and AUC metrics could be used to evaluate the perfor-

mance of your model and to overcome the problem mentioned above. For calculation of

12

precision, recall and F1 score the number of true positive, false positive and false negative

are calculated as:

• If an event is detected in the data and it is also present in ground truth of that data

then event is regarded as true positive

• If an event is detected in the data and it is not present in ground truth of that data

then event is regarded as false positive

• If an event is not detected in the data but it is present in ground truth of that data

then event is regarded as false negative

Precision calculates how much precise our model is and out of total predicted positive

how many of them are actually positive. In cases where costs of having false-positive is

high precision is a good measure.

Precision =
TruePositive

TruePositive+ FalsePositive
(2.5)

Recall, on the other hand, talks about out of total actual positive how many of them are

captured as positive from our model. The recall is a good measure in cases where the

cost of false negative is high as it was in the above virus or fraud example.

Recall =
TruePositive

TruePositive+ FalseNegative
(2.6)

Precision and recall confront two different problems and when we want to have balance

between these two quantities we use F1 score. F1 score is a harmonic mean between

precision and recall and is considered a good measure of evaluation in case of an imbal-

anced dataset.

F1 = 2 ∗ precision ∗Recall

Precision+Recall
(2.7)

One other metric that was used in detection and classification of acoustic scenes and

events (DCASE) 2013 for evaluation was the error rate, and it can be used to increase

the confidence on your system. It is calculated by considering the number of insertion,

deletion and substitution.

Error Rate =
Substitution+Deletion+ Insertion

ReferenceEvents
(2.8)

These metrics can be computed segment-based and event-based as described by Mesaros

et al. in [14]. In a segment based metric, the active or inactive status of an event is pre-

dicted on a fixed short interval and then compared with ground truth labels of the same

interval. On the other hand, event-based metrics are used to compare the predicted

output and ground truths event by event.

The receiver operating characteristic curve (ROC) and area under the curve (AUC) can

13

also be used for classification accuracy. The true positive rate and false positive rate are

plotted at a different threshold to make ROC, while AUC is used to summarize it into a

single number. In Figure 2.5 we can take a look at TP vs FP rate at different classification

thresholds and the curve is formed in the two-dimensional area. If we calculate the area

under that curve then we will get one value which is AUC. AUC is a good measure to

estimate the quality of your model irrespective of the value of the classification threshold.

Figure 2.5. Area under ROC curve

Jaccard index could also be one other evaluation metric that could be used to measure

similarity and dissimilarity between sets. This is easy to interpret as in the case of multiple

classes one number could show the performance of the method. It is calculated by taking

the ratio of the size of the intersection to the size of union of sample sets as shown in

equation 2.9.

J(A,B) =
A ∩B

A ∪B
(2.9)

2.5 Sound Event Detection

Real-life sounds have multiple events happening at the same time and that makes the

task a little bit complicated. Cakir et al. [15] used multi-label deep neural networks for

polyphonic sound event detection. The recordings are divided into frames and features

are extracted from each frame to detect sound events in that specific frame. They used

maxout activation function in hidden layers and sigmoid activation for the output layer. The

output is binarized to 0 or 1 with the help of specifying a certain threshold. Log mel-band

energies are used as a feature in experiments and F1 scores were used as an evaluation

metrics.

Parascandolo et al. [9] proposed bi-directional LSTM for SED in real-life recordings. As

discussed in DNN part above, they support the benefits of using RNN over FNN to avoid

14

smoothing steps at the end because RNN has the ability to remember previous states.

They use log mel-band as features and normalize them by subtracting the mean. Acoustic

features are mapped to class activity by using multilabel bi-directional LSTM along with

several hidden layers. To avoid overfitting issue they use an interesting approach of data

augmentation. Time stretching, sub-frame time-shifting and block mixing transformations

are applied to the features in freq-domain. For evaluation, they use frame-wise and 1

s block average F1-score and get considerable improvements in results as compared to

previous FNN base results.

Cakir et al. [16] proposed the convolutional recurrent neural networks approach for poly-

phonic sound event detection. They use CNN for the extraction of higher-level features

from audio and then RNN is used to keep contextual information. As discussed earlier,

feedforward neural networks for SED lack temporal context as well as frequency and time

invariance. These two problems are tackled in their paper with CRNN where CNN’s ad-

dresses the frequency and time invariance problem by learning various filters and RNN

deal with temporal context issue by integrating information of consecutive frames.

They trained the model using binary cross-entropy as a loss function and adam [17] as

gradient descent optimizer. Segment-based F1 score and segment-based error rate were

taken as evaluation metrices and experiments were done on four different datasets. For

the experimental setup, the Gaussian mixture model and feedforward neural network were

used as baseline models while standalone CNN and RNN were considered as advanced

models for comparison. CRNN performed better on all four datasets and considered as a

valid approach for polyphonic sound event detection, however, the performance of CRNN

depends on the size of annotated data. As future work, they proposed a semi-supervised

training method and transfer learning as a potential candidate to overcome annotated

data limitation.

Xu et al. won the 1st position in large-scale weakly supervised SED in detection and

classification of acoustic scenes and events (DCASE) 2017 challenge. They proposed

[18] a CRNN approach with a learnable gated linear unit (GLU) and temporal attention on

frames for audio tagging and localization. Instead of ReLU activation GLU is used to con-

trol Information flow between convolution layers for audio classification. Time-frequency

(T-F) unit is attended when the GLU gate value is close to 1 while it is ignored if the gate

value is near to 0. This way unrelated events are ignored and required sound events are

attended. GLUs defines as

Y = (W ∗X + b)⊙ σ(V ∗X + c), (2.10)

where ⊙ denotes an element-wise product, σ is a sigmoid function and ∗ represents the

convolution operator. X in the equation is a T-F representation input, b and c are biases

while W and V are convolution filters.

15

To predict the temporal location of sound events they proposed an attention-based ap-

proach. The RNN output is feed to FNN with sigmoid activation function and frame-level

classification is performed there. RNN output is also sent to FNN with softmax activation

function which produces weights for events and considers only salient frames for different

classes. Element-wise multiplication is done between the outputs of both parallel layers

and then the average is taken across the time axis to get the final output. This approach

is a unified approach for audio tagging as well as weakly supervised SED.

For the training machine learning algorithm, we need a huge amount of data and that

is the limitation in SED classification. Audioset [19] is the main dataset available at this

time with weakly labeled data but certain events are inherently rare and decrease the

usefulness of DNN. Kumar et al. [20] proposed knowledge transfer using a convolution

neural network for sound event detection and scene classification. They train a CNN

model on the audioset and use that model in domain adaptation as well as in the task

adaptation scenario. For training with Audioset, they used 13 convolution layer model

to produce frame-wise output which is then converted to recording-level output by global

max pooling. This recording-level output is then used to calculate the loss and optimize

the model. To transfer the learning they use 11 convolution layers from the 1st method as

it is and change the last two layer in three different manners. To adapt the different tasks

they use different target datasets (ESC-50) and only update the last two layers during

training. They achieve 83.5% accuracy on the ESC-50 dataset which was higher than

human accuracy on this dataset. Their methods of transfer knowledge are also helpful for

understanding the relation between sound events and scenes.

Wang et al. [21] proposed deep recurrent neural networks for audio-based multimedia

event detection. Audio in multimedia often contains useful information about the environ-

ment and sometimes that information is not even present in visual content. They classify

audio frames into "noisemes" (semantic units) and performed frame-level noiseme clas-

sification and clip-level event detection. For feature extraction, they took MFCCs as a

low-level feature and then use a sliding window to get a variety of statistics over low-level

features. One interesting thing they used in their work is the Adaptive learning rate, which

changes its value on basis of validation error rate. They concluded recurrent neural net-

works (RNNs) could utilize temporal information for frame level and clip-level classification

in multimedia event detection.

2.6 Robustness

Reverberation in acoustics needs to be considered seriously while doing SED. Reverber-

ation is created when sounds reflect from different surface. Normally the sound decays

because of absorption due to various objects in space (furniture, air and people) and that

is the reason reverberation is high in empty places. It becomes noticeable when actual

16

sound is stopped but the reflection continues due to slow reduction of amplitude with time.

These reverberating sounds could become challenging for detectors, and sometime late

reverberations can be categorize as sound event. Dereverberation could also be used to

remove effects of the reflections before providing the audio to the detector or it can also

be handled at the detector side.

Noise and other environmental sounds are also needed to take care of while doing sound

event detection. If there is some kind of noise in the data then you have to make sure

the data is properly divided into train and test, so that model will also learn the effect of

noise. Sometimes environmental sounds are very similar to some of the target sounds

and could be very confusing. In case of such sounds, you should include those sounds

in training data to teach the model about ignoring those sounds.

Impulse response measurement can also help in making the sound event detection sys-

tem more robust and efficient. Different rooms and places have different effects on audio

recordings and to make a system for a specific environment you need to know the effect of

that place. Impulse response measurement is a good way to have idea of different places

and then use that information for designing the system. For example in the case of train-

ing with synthesized data you need to make your data to be similar to real-life recordings.

To achieve similarity with real-life recording you can measure the impulse responses of

actual rooms and then convolve them with synthesized data as

Output Recording = SR ∗RIR, (2.11)

where ∗, SR and RIR represents the convolution, synthesized recording and room im-

pulse response respectively. For measuring impulse responses we play an excitation sig-

nal from speaker and record that from microphone as shown in Figure 2.6. The original

and recorded signal are used to recover the impulse response of a room. Maximum length

sequence (MLS), inverse repeated sequence (IRS), time-stretched pulses and sinesweep

[22] could be used as an excitation signal for impulse response measurement.

Figure 2.6. Impulse response measurement setup

17

3 METHODS

3.1 Dataset Creation

3.1.1 Data Collection

Freesound Data

Freesound provides a huge amount of audio data with a variety of samples that could be

used to create a database for research purposes. For collecting samples of target classes

(door, water tap, yelling, human fall) I started searching on this website. To gather indi-

vidual samples, I searched with different key words for every class e.g yelling is searched

with scream, call for help, yell, cry and pain. After searching these samples, I go through

each audio samples manually and listen to them before selecting that sample. Door and

water tap samples are very easy to find and we gather a variety of samples in these

classes. For door sounds we consider open, close and open-close sounds along with

variation in types of the door (old, new, main door, inner door). The yelling class has very

broad meaning, and we define this class as abnormal voices or the sounds that would

not be present in a typical scenario. Human fall samples are a bit rare and difficult to find

online but we managed to get some of them from freesound. We find a paper [6] where

they are detecting human fall and have recorded the data, so we contact them and get

their data for our experiments. This way we gather around 100 samples for each target

class.

One-shot human fall detection [6] dataset was recorded in three different rooms (class-

room, recording room and auditorium). Real human fall was performed in recording studio

and auditorium, while in the classroom they use a manikin doll instead of humans. When

we listen to the sounds recorded in the recording studio, they are very low, and we cannot

hear them without amplification. When we amplify the sounds it also increases the noise

in the recording up to unacceptable levels, so we cannot use these recording sounds. On

the other hand, recordings in the auditorium were a little bit louder so I listened and chose

some of them for our use. I chose those sounds which have some frequencies above

1000 Hz in the spectrogram. Initially, we thought we would only choose sounds from real

human fall, but later on, we decided to consider manikin doll fall for our dataset.

18

VoxCeleb1

Speech is considered as one of the non-target events for our dataset and we want some

kind of real speech instead of reading a book. We choose the voxceleb1 [23] dataset

for speech, it contains 1251 celebrities voices in total. It seems more natural speech as

compared to reading books because celebrities are talking and telling about themselves.

We have metadata available for this dataset in a CSV file. The following information is

available in the metadata file.

VoxCeleb1 ID VGGFace1 ID Gender Nationality Set

LibriSpeech

LibriSpeech [24] is a corpus of approximately 1000 hours of 16 kHz read English speech.

Reading books seems more like television news, so we can use that for TV. This dataset

also has metadata available. The following information is available in the metadata file.

ID SEX SUBSET MINUTES NAME

MUSAN

This corpus [25] provides data for music/speech discrimination, speech/non-speech de-

tection, and voice activity detection. The corpus is divided into music, speech, and noise

portions. In total there are approximately 109 hours of audio. All files in this corpus fall

under a creative commons license or are in the USA public domain.

Music

Music is annotated for the presence or absence of vocals and by genre(s).

It contains western art music (e.g., Baroque, Classical, and Romantic) and

popular western music genres (e.g., Country, Hip-Hop, Jazz, etc)

Fma

This folder contains files at 16 kHz sampling rate with the mono channel. The

length of the files is between the 50 seconds and 11 minutes. On average

most files vary between 3 and 5 minutes.

Fma-western-art

This folder contains files at a 16 kHz sampling rate with a mono channel. The

length of the files is between 50 seconds and 7 minutes. On average most

files are around 3 minutes long.

Hd-classical

This folder contains files at a 16 kHz sampling rate with a mono channel. The

length of the files is between 1 and 16 minutes. On average most of the file’s

length is between 2 and 6 minutes.

19

Rmf

This folder contains files at a 16 kHz sampling rate with a mono channel. On

average most of the files are 2 and 4 minutes long.

US-Gov

Speech in this folder is from US-Gov people discussion and does not have

annotation file. The files length varies between 2 and 10 minutes but most

of the files are between 9 and 10 minutes long. Some of the files were up-

sampled at 16 kHz sampling rate, so I have removed those files from this

folder.

Speech

This data is more like reading a book that could be used as TV. It also

contains an annotation file with identification, gender and nationality of the

speaker.

ID GENDER NATIONALITY

Ambience files are also required to combine them with the above-mentioned sound

events to create real-life soundscapes. The criteria for selecting ambience files is to have

a single holistic sound that should be coming from distant. Wind, snoring, typing on com-

puter and clock ticking sounds are some examples of ambience sounds that are present

in real-life environment. These files are taken from multiple sources such as downloaded

from freesound, DCASE 2016 [26] office sounds and some real-life recordings.

3.1.2 Data Preparation

Annotation

Annotation is the first part of data preparation, where we need to point out the starting

point (onset) and ending point (offset) of the sound event in a recording file. Annotation

normally takes too much time, so I need to find ways to somehow reduce the time. I use a

semi-automatic process that requires some empirical tuning of the class-specific thresh-

olds to get good enough rough estimates and then manual screening and fine-tuning of

the timing. It is faster than annotating from scratch, but it still takes time. PyaudioAnalysis

library is used for this purpose, and silenceRemoval function in audioSegmentation fits a

classifier with the most and least energetic frames and then predicts the activity for the

rest of the frames. We created an excel sheet by adding the onset, offset and class infor-

mation w.r.t the name of files as shown in Figure 3.1. This onset and offset information

will be extracted from the sheet before adding a target event in soundscape.

20

Figure 3.1. Annotation file structure

Sampling Rate

We downloaded the data from various platforms e.g. freesound.org (target sounds),

openslr.org (LibriSpeech) and robots.ox.ac.uk (VoxCeleb1). Sampling rate was different

for various files. Freesound data have a sampling rate of 44.1 kHz, 48 kHz and 96 kHz

but some of our datasets (non-target sounds) have a sampling rate 16 kHz. We decided

to resample all the data at 16 kHz. There is one more problem in the dataset which is

about the upsampling of some files. When we look at the sampling rate for some files it

shows 16 kHz, but the spectrogram was showing 8 kHz. For those upsampled files we

decided to look manually and remove them from the dataset.

Folds Creation

For cross-validation purpose, we discussed to have four folds of synthesized data with

non-overlapping samples. I look at every class samples as well as ambience files and

randomly divide all of them into four different folds. For creating folds, I also keep in mind

the target class samples from the same source should be assigned to the same split.

The structure of every fold is similar to the one shown in Figure 3.2. These four splits of

samples will be used to create the respective four split of soundscapes.

Figure 3.2. Each fold structure in four folds data

21

Real-life Soundscape Synthesis

We have to create mixtures of different sounds to simulate the real-world environment.

We have audio samples of target and non-target classes in the form of four splits as

mentioned above. For creating mixtures we consider an open-source tool Scaper [7] that

is developed by Salamon et al.

Figure 3.3. Scaper synthesis pipeline

Scaper creates mixtures with background and foreground audios as shown in Figure

3.3. There are two different directories with background and foreground names, which

contain sub-directories of different classes. You can select the source file randomly from

these directories or you can also specify some specific directory or a file. In our case,

we put ambience sounds in the background directory while all other classes data in the

foreground directory. We randomly select a file from the foreground directory (target-

event) and then use annotation.csv file to find the onset and offset. Event time and event

duration information in Figure 3.3 is provided with help of onset and offset of that event.

Non-target events are added randomly with a variable length that can vary between 0 and

60 seconds.

To create a mixture with different number of sound events, we follow two different ap-

proaches:

• In the first approach, we randomly generate a number between 0 and 6 for adding

total events in the ambience file. Out of these total events, 65% of events were

22

dedicated to the non-target class and 35% to target ones. There was an issue in

that approach, we do not have control over the occurrence of each class, but we

were only controlling the target and non-target distribution. In most of the files,

it adds music more as compared to speech, but we want to have some kind of

balance between different classes, so we moved to the 2nd approach.

• In the second approach, we do not put any restriction on the total number of events,

but we set the probability for the occurrence of every event. The probabilities for

various events are decided considering the occurrence of those events in the real

environment as shown in Table 3.1. This way we can control any event by just

changing the probability for that event.

Table 3.1. SNR ranges with probability of occurrence of various number of events in one
file

Event SNR No. of Events

0 1 2 3 4

Door 0->+20 0.5 0.45 0.05 0 0

Water Tap -10->+20 0.5 0.45 0.05 0 0

Yelling 0->+20 0.5 0.45 0.05 0 0

Falling 0->+30 0.5 0.45 0.05 0 0

Speech -5->+20 0.5 0.125 0.125 0.125 0.125

Music -10->+10 0.5 0.45 0.05 0 0

Coughing -5->+20 0.5 0.45 0.05 0 0

We also have the capability to choose the level of background loudness as well as signal

to noise ratio (SNR) while adding foreground. Initially, we set the background loudness

to -50 LUFS for all soundscapes, but to make more variation in the data we change this

value to be a random number between -40 and -50. For selecting SNR values while

adding foreground events we follow two different approaches:

• Initially, we consider generating mixtures by selecting a random number from -10,

-5, 0, 5 and 10 for SNR. For some classes like human fall and door -10 and -5 SNR

was a bit low, so we decided to use 0, 5 and 10 for such classes.

• After observing some samples, we change the SNR value ranges for every class.

We set low SNR values for music because music in nature is a bit loud and when the

music is added to soundscape at higher SNR, then it becomes difficult to recognize

other events at the same time. SNR for the door, yelling and a person falling events

is set a bit higher because these events are quite in nature and for negative SNR

these events become impossible to recognize. The reason for having negative SNR

for some events is to consider the scenario when some sounds will come from other

23

rooms. Specific SNR ranges for different classes are shown in Table 3.1

Scaper generates output file at 44.1 kHz sampling rates, but we decided to use 16 kHz as

discussed above. Scaper’s core.py file was changed to achieve a 16 kHz sampling rate

for output files.

Feature Extraction

Openl3 [27] is an open-source tool for deep audio embedding, and it is an improved

version of L3-Net. It is trained using self-supervision and exploiting the audio and video

correspondence on a subset of AudioSet [19]. The video and audio subnetwork extracts

the respective feature and then correspondence is created between them by the fusion

layer.

We were using PyTorch [28] so we extract the openl3 model for PyTorch and use that

pre-trained model to get embeddings. We load the audio at 48 kHz and convert that into

log-mel spectrogram with the help of librosa [29]. Log-mel spectrogram features are then

reshaped to meet the dimension requirement of openl3. This model returns two objects,

one is T-by-D dimension embeddings, where T is the number of frames and D represents

the number of features in each frame. Openl3 supports two different numbers of features

in each frame 6144 and 512. In our synthetic dataset each audio is one minute long and

we get 60 frames and each frame have 512 features.

Kumar2018: Kumar et al. [20] proposed knowledge transfer methods and extracting

meaningful features from audio. They showed the learned features with the proposed

CNN model reach human-level accuracy on the ESC-50 dataset. They also use extracted

features for acoustic scene classification experiments and get good results. It is trained

using the AudioSet [19] dataset to produce embeddings, and works on 44.1 kHz sampling

frequency. We also consider this embeddings model for our task to see the classification

accuracy. The initial procedure for embeddings extraction is the same as openl3, like

loading the audio and get a log-mel spectrogram representation of audio from librosa. It

gives 28-by-1024 dimension embeddings for one minute audio, where 28 are the number

of frames and 1024 are the features in each frame.

I also receive a different version of the kumar2018 model that was trained with 16 kHz

data. We consider this model because our synthetic dataset is 16 kHz. We refer to these

embeddings in our work as kumar2020 and it produces 29-by-1024 dimension embed-

dings for one minute audio.

Zhao2020: This is also an embeddings extraction model that is based on gated CNN

and trained using AudioSet [19]. The embeddings are extracted per frame of log-mel

spectrogram and change point detection is performed on embeddings. It works on 16

kHz sampling frequency and produces embeddings. For one minute audio it produces

239-by-128 dimension embeddings, which means every frame is 0.25 s resolution.

24

Figure 3.4. Openl3, kumar2018 and zhao2020 embeddings illustration

Label Extraction

As discussed above, the Scaper generates soundscape as well as an annotation file that

contains the event name along with the onset and offset of that event. We use that file to

create ground truth labels for our data. Based on our embeddings, the number of frames

for one minute audio vary, so we have to tell our label extraction system the number of

frames in one audio file. The label extractor divides the 60 s by the number of frames to

get the time resolution of each frame. Labels are extracted for each frame by considering

the respective annotation file information. Labels are created for all seven classes (door,

water tap, person fall, yelling, speech, music and coughing). For each frame a 1-by-7

vector is generated and if the specific event is present in that frame we put 1 for that

event otherwise 0. For openl3 we generate 60-by-7, for kumar2018 28-by-7 and 239-by-7

dimension label matrix for zhao2020.

Embedding Database Creation

To create an embeddings database, we extract the embeddings and labels from the audio

data, as mentioned in previous sections, and save the data into the HDF5 file along

with the information of various folds. HDF5 file is chosen to create a database because

it has a key-value pair structure to save the data. The key-value structure makes the

system quite fast by making access to a certain value possible with the help of a key. The

purpose of database creation is to avoid extracting the embeddings, a time consuming

task, whenever you want to train a model. Once we get the database file then we can use

that file for all of our experiments. For saving the data we created the HDF5 file structure

as shown in Figure 3.5

In the main file, we have three subfolders data log, feature and label. Data log folder

contains four datasets with the key as the name of the respective fold and each value of

that key keeps the record of the audio file names belongs to that specific fold. The feature

folder contains a separate dataset for each audio file where the key of that dataset is the

25

Figure 3.5. Embeddings database structure

name of the file and the value is the embeddings of that file. The label folder also stores

the distinct dataset for each audio file, and the file name is used as the key of that dataset

while the extracted labels are saved as the value of that dataset.

3.2 DNN SED Techniques

3.2.1 Frame-level Prediction

As discussed earlier, all three embeddings extraction models (openl3, kumar2018 and

zhao2020) produced a T-by-D dimension embeddings, where T is the number of frames

and D is the number of features in each embeddings frame. We consider doing some ex-

periments with the frame-level output of all embeddings to see the difference in DNN and

RNN classification models. We cannot compare the frame-level output of embeddings

with each other because the time resolution of a single frame is different in all embed-

dings. We planned to compare a feedforward neural network model and RNN model

within each type of embeddings. From the family of recurrent neural networks, we con-

sider GRU for our experiments due to less number of parameters. Now onward, when we

refer to RNN that will mean GRU.

Single Layer Feedforward Neural Network

Deep neural network shows promising results in acoustic event recognition [30], so we

also consider a single layer neural network model for predicting the output of every em-

beddings frame. The input of the model is the number of features in one embeddings

frame while the output is the number of total target events. The features in one embed-

dings frame are different for different embeddings models e.g openl3 has 512, kumar2018

26

has 1024 and zhao2020 has 128. We created a single layer FFNN model as shown in

Figure 3.6 for frame-level predictions.

Figure 3.6. Single layer FFNN model

Multi-Layer Feedforward Neural Network

After obtaining results from a single layer FFNN model, we moved to a multi-layer FFNN

as shown in Figure 3.7. For example, in the case of openl3 embeddings, the input layer

will go from 512 to 128 dimension hidden layer, 1st hidden layer to 2nd hidden layer the

dimension goes from 128 to 32 and then at the end we go to 7 neuron output layer. One

dimensional batch normalization and ReLU are applied after 1st and 2nd hidden layer

and sigmoid non-linearity is used at the output layer.

Figure 3.7. Multi-layer FFNN model

27

Uni-Directional RNN

The embeddings frames are sent to the RNN layer to get the benefit of contextual infor-

mation. X1 and X2 are the first and 2nd embeddings frame producing the frame-level

output Y1 and Y2, while Xt is the last input frame and give Yt as an output. The output

of each frame (Y1, Y2 and Yt) of the RNN layer is then passed through a sigmoid-based

output layer to get the frame-level output.

Figure 3.8. Uni-directional RNN model

3.2.2 Recording-level Prediction

Considering real-life scenarios of using SED in health care monitoring, where prediction

will be done for the resolution of one minute or longer, we think to do experiments for

the prediction of one minute. In frame-level predictions, a 1-by-7 output vector is gener-

ated for every frame, while in recording-level predictions a 1-by-7 vector is generated for

a complete recording. Our synthetic data produce one minute long soundscapes, and

we try different models for producing output labels for every recording. Recording-level

predictions also make it easier to compare various embeddings and their performance for

SED.

Single Layer Feedforward Neural Network

We start recording-level sound event detection by taking a single layer FFNN model that

has an input layer and output layer. All the embeddings frames from one minute audio

are concatenated to make a long big vector. This concatenated vector of one minute

recording is used as input to our model. For one minute audio, various embeddings have

a different number of features in each frame, so when concatenated the size of the input

layer varies based on the type of embeddings. As we have seven classes in our synthetic

dataset, so the output layer always has seven neurons. Sigmoid non-linearity is used at

the output layer to get the probabilities for seven classes.

Uni-Directional RNN

As discussed above, when we want to use contextual information then RNN is the best

choice. I took a uni-directional RNN model for the experiment, where a single layer of

28

RNN is used. The number of features and the number of hidden units are kept the same

in this layer. As shown in Figure 3.8 embeddings frames (X1, X2 until Xt) from audio

are passed to RNN and then instead of taking the output of all frames only the last frame

output Yt is taken for further process. The last frame output Yt also has the information

that is passed from the 1st frame due to the capability of RNN. The last frame output

is then given to the sigmoid-based output layer to generate the probabilities of output

classes present in the full recording.

Bidirectional RNN

We took bi-directional RNN [31] for the next experiment, where forward and backward

time steps are used for predicting the current input. The last embeddings frame output

from the forward layer is concatenated with 1st frame output of backward layers as shown

in Figure 3.9. This concatenated vector is then given to the sigmoid-based output layer

for generating predictions.

Figure 3.9. Bi-directional RNN for recording-based prediction

Residual Connection with RNN

Inspired by the idea of using the residual connection in [32] [33], which has shown good

performance results, we also think to try it in our work. We created two layers of RNN

as shown in Figure 3.10, where embeddings frames X∗ are given to the first RNN layer

and processed. Each frame output of the 1st RNN layer is then added with the respective

input frame and then given to the 2nd RNN layer as input. Each frame’s output Y∗ is the

addition of the 2nd RNN layer’s output with the respective input frame. As we were doing

recording-based prediction, so we took the last frame output Yt and passed through a

sigmoid-based output layer to get probabilities of classes.

29

Figure 3.10. RNN with residual connection

Attention

The attention model [34] [35] also gains popularity for multiple instance learning problems

[11]. They used a trainable weights measure for each class and then these weights along

with the classification output probabilities of frames are used to produce the final output.

As shown in Figure 3.11, px is the frame-wise classification probability for every frame,

wx is the frame-wise weights measure and x belongs to the specific frame of X . The final

prediction will be the expectation of px w.r.t the weight of wx.

Figure 3.11. Attention model

RNN with Pooling

We also use RNN with various pooling techniques to find out the performance of this

model. For this model, the input embeddings are passed to the RNN layer, then instead

of taking only the last frame output, we take the output of all the frames. Frame-level

outputs are then combined with help of pooling to form recording-level predictions. As

30

discussed in [12] and also shown in Table 2.2 five different pooling functions, we consider

trying all of them. We use all five pooling functions with RNN as explained above and

generate results to select the best performing one for our case.

Train with Strong Label

All of the above methods are generating recording-level prediction labels, and those weak

labels are used during training. Loss is calculated on recording-level predicted and ground

truth weak labels, and weights are updated on the base of that loss. We try out training

with strong labels because our synthetic data have frame-level ground truth labels. In

this method, the model generates the probabilities for every frame and then the loss is

computed on the base of those strong labels. For evaluation, recording level weak labels

are generated on test data by applying pooling. The reason to use weak labels during

validation is to compare the results with previously done experiments.

Train with 10 Seconds Resolution Weak Labels

We checked both extreme cases, training with one minute resolution weak labels as well

as training with strong labels. We consider doing training with the resolution something in

between these two values. We generate 10 s resolution weak labels for ground truth and

also create a RNN model to return 10 s resolution weak labels. These 10 s resolution

weak labels are generated by applying max-pooling over the results of multiple frames.

Training is done with these 10 s weak labels, but the evaluation is done on a one minute

resolution to make the results comparable with previous results.

Train with Four Target Classes

As explained earlier, in our synthetic dataset we have 7 classes, 4 targets and 3 non-

target. All methods explained above are trained by considering 7 classes and making

a prediction for non-target classes as well. Considering healthcare monitoring in a real-

life, detecting four sound events (door, water tap, yelling and human fall) are important,

so we have a test by reducing the number of predicted classes to 4 (target classes). The

dataset remains the same but we dropped the labels of 3 non-target classes and only take

target classes labels for training and evaluation. In this method, all non-target classes are

considered as background noise and the model will focus only on target classes. The

purpose of this experiment is to find out how much performance improvement we get for

reducing the number of classes, and is it really worth it to lose the information related to

non-target classes.

3.3 Data Loader and Training

We have our data in the form of four non-overlapping folds for cross-validation purpose.

We decided to use every fold for testing one by one and remaining for the training of our

model. Mini-batch approach is adopted to train the model where batch size was decided

by the user. We created a data loader class that loads the folds information from the data

31

log folder and creates a list of train and test files. The data loader class also contains a

get-next-batch method that loads the embeddings and labels of a specific mini-batch and

sends it for training. The same method also keeps track of the number of batches and

when the last mini-batch is sent for training, then it shuffles the training data for the next

epoch.

As our problem is a classification problem, so binary cross-entropy (BCE) loss is being

used which is optimized for this kind of task. We use Adam [17] optimizer as gradient

descent optimizer during the training of our model. As this problem is a multi-label and

multi-class problem where multiple events can happen at the same time, so sigmoid is

used at the output layer to get the probabilities of every event. The threshold is applied

at the output probabilities to get the final predicted labels. To finalize the number of

epochs during training on our synthetic data, we run multiple tests by setting the number

of epochs 100, 200, 300 and 400. On our synthetic dataset 200 epochs is the optimal

number because the best model is always achieved before that.

To train the model ’Training’ class is created that contains multiple methods for various

tasks. Train method in the training class is used to run four times considering every

fold as validation data. Mini-batch is taken from training data and given to the model to

get the predicted labels. Loss is calculated with predicted and ground truth labels, and

propagated backward after every batch. At the time of last mini-batch evaluation is done

with test data and results are calculated. The result of current epoch is compared with

the best result of previous epochs and if the current epoch result is better, then the best

result is updated. The model is saved whenever the best results are found. At the end of

the training, we get four best trained models one for every fold.

For evaluation, we use jaccard index, precision, recall and F1 score. Jaccard index is

calculated jointly for all classes and one single number shows the overall credibility of the

model. Precision, recall and F1 score are calculated for every class and give the detailed

performance overview of individual classes.

The training class also contains load-best-model and test methods. We can load the

already saved model with help of this load-best-model method and utilize the test method

to get the performance of every fold. The test data method also writes the results in a

CSV file for the record.

32

4 RESULTS AND DISCUSSION

4.1 Frame-level Prediction Results

Frame-level predictions are done to see the difference between deep neural networks and

recurrent neural networks. We cannot compare the frame-level results of one embeddings

model with other embeddings model because the time resolution of each embeddings

frame is different in all embeddings models. We generate the following results for each

type of embeddings.

Openl3

Openl3 embeddings model generates a T-by-D dimension embeddings, where T is the

number of frames and D is the number of features in each frame. It produces 60 em-

beddings frames for one minute audio, so every embeddings frame belongs to 1 s time

resolution. We use each frame (1 s segment) results for training and evaluation. We tried

three different models as shown in Table 4.1 and see the trend as expected. Jaccard

score increase when we go from the single layer FFNN model to the multi-layer FFNN

model and finally to the RNN model. If we look at the individual F1 scores of classes then

we can see RNN is performing better for our task as compared to simple neural network

models. The F1 scores for the door and human fall class was not that good with openl3,

but some of the classes like music and water tap was performing well.

Table 4.1. F1 and jaccard scores for openl3’s single embeddings frame

Model Jaccard F1 Score

Water tap Door Yelling Human Fall Music Speech Coughing

Single layer FFNN 0.406 0.790 0.014 0.236 0.059 0.690 0.554 0.033

Multi-Layer FFNN 0.435 0.738 0.084 0.325 0.021 0.702 0.623 0.075

RNN 0.531 0.787 0.080 0.503 0.221 0.838 0.694 0.143

Kumar2018

Three experiments performed again with kumar2018 embeddings and the conclusion is

the same. In terms of jaccard and individual F1 score, RNN performed better as com-

pared to other models as shown in Table 4.2. Jaccard score increases 5.3% by moving

from single layer FFNN to RNN model. Kumar2018’s each embeddings frame time reso-

lution is 2.14 s as it is generating 28 embeddings frames for one minute audio.

33

Table 4.2. F1 and jaccard scores for kumar2018’s single embeddings frame

Model Jaccard F1 Score

Water tap Door Yelling Human Fall Music Speech Coughing

Single layer FFNN 0.588 0.755 0.429 0.600 0.366 0.840 0.775 0.519

Multi-Layer FFNN 0.579 0.748 0.396 0.617 0.194 0.836 0.773 0.469

RNN 0.642 0.773 0.484 0.656 0.473 0.886 0.814 0.585

Zhao2020

Zhao2020 produces 239 embeddings frames for one minute audio so each frame belongs

to 0.25 s resolution. Considering the results across various models, the conclusion is the

same as the other two embeddings model, and RNN performs better. From the single

layer FFNN model to RNN it shows a 16.8% increase in jaccard scores.

Table 4.3. F1 and jaccard scores for zhao2020’s single embeddings frame

Model Jaccard F1 Score

Water tap Door Yelling Human Fall Music Speech Coughing

Single layer FFNN 0.497 0.799 0.218 0.396 0.284 0.763 0.686 0.224

Multi-Layer FFNN 0.541 0.814 0.326 0.483 0.352 0.792 0.724 0.345

RNN 0.666 0.839 0.470 0.723 0.432 0.889 0.777 0.570

4.2 Recording-level Prediction Results

A comparison of the embeddings model is made on basis of one minute recording level

results. We performed multiple experiments with all three embeddings model by taking

various classification models. All these experiments were done to select embeddings

model that perform better for our task. Let us now discuss the results of experiments.

Single Layer Feedforward Neural Network

The single layer FFNN is considered as a base model for recording-level predictions. This

model results show very minor difference in all three embeddings model as can be seen

in the Table 4.4.

Table 4.4. Recording-level F1 and jaccard scores with single layer FFNN

Embedding Jaccard F1 Score

Water tap Door Yelling Human Fall Music Speech Coughing

Openl3 0.541 0.630 0.672 0.656 0.698 0.791 0.770 0.675

Kumar2018 0.559 0.710 0.595 0.668 0.652 0.887 0.834 0.659

Zhao2020 0.552 0.770 0.654 0.639 0.629 0.877 0.831 0.556

34

Uni-directional RNN

The recording-level results from uni-directional RNN shows kumar2018 and zhao2020

performing better as compared to openl3. Kumar2018 and zhao2020 jaccard and F1

scores for all classes are almost similar or have minor differences.

Table 4.5. Recording-level F1 and jaccard scores from uni-directional RNN

Embedding Jaccard F1 Score

Water tap Door Yelling Human Fall Music Speech Coughing

Openl3 0.574 0.865 0.666 0.610 0.707 0.850 0.782 0.664

Kumar2018 0.629 0.787 0.650 0.753 0.661 0.906 0.914 0.704

Zhao2020 0.630 0.887 0.656 0.754 0.633 0.906 0.893 0.672

Bidirectional RNN

When we move from uni-directional RNN to bidirectional RNN only zhao2020 shows a

little improvement but the other two embeddings almost remains the same. Zhao2020’s

jaccard score improved due to improvement in the water tap, door, yelling and music

scores as can be seen in Table 4.6.

Table 4.6. Recording-level F1 and jaccard scores from bidirectional RNN

Embedding Jaccard F1 Score

Water tap Door Yelling Human Fall Music Speech Coughing

Openl3 0.580 0.872 0.667 0.644 0.686 0.841 0.804 0.654

Kumar2018 0.629 0.785 0.666 0.747 0.685 0.916 0.893 0.718

Zhao2020 0.647 0.886 0.671 0.757 0.662 0.926 0.893 0.682

Residual Connections with RNN

Residual connections in RNN is used to see the effect on performance and results are

calculated on one minute recording-level. This method does not show much improve-

ment as compared to bidirectional RNN. Openl3 and kumar2018 recording-level scores

go down with this model and zhao2020 results show minor improvements.

Table 4.7. Recording-level F1 and jaccard scores from residual connections with RNN

Embedding Jaccard F1 Score

Water tap Door Yelling Human Fall Music Speech Coughing

Openl3 0.556 0.833 0.599 0.626 0.684 0.811 0.772 0.668

Kumar2018 0.619 0.778 0.656 0.732 0.667 0.897 0.908 0.699

Zhao2020 0.653 0.911 0.679 0.765 0.684 0.898 0.884 0.699

35

Attention

Results improved by using an attention model for recording-level predictions. Across dif-

ferent embeddings, zhao2020 performed the highest and openl3 as the lowest. Overall

kumar2018 and zhao2020 results improved as compared to previous experiments. Jac-

card score for zhao2020 improved 5.1% from the previous highest score and 3.9% for

kumar2018.

Table 4.8. Recording-level F1 and jaccard scores from attention model

Embedding Jaccard F1 Score

Water tap Door Yelling Human Fall Music Speech Coughing

Openl3 0.560 0.820 0.650 0.649 0.679 0.797 0.777 0.647

Kumar2018 0.668 0.825 0.702 0.777 0.728 0.906 0.917 0.723

Zhao2020 0.704 0.913 0.757 0.789 0.783 0.886 0.893 0.745

RNN with Pooling

Zhao2020 remains on top of the list by 70.4% recording-level jaccard score. We did an

experiment by applying max pooling over the frame-level results of RNN to get recording-

level results. RNN with max pooling display promising results and improved jaccard

score for all embeddings as compared to their previous highest scores. Jaccard score

of zhao2020, kumar2018 and openl3 improved 3%, 1.3% and 2.9% respectively.

Table 4.9. Recording-level F1 and jaccard scores from RNN with max pooling

Embedding Jaccard F1 Score

Water tap Door Yelling Human Fall Music Speech Coughing

Openl3 0.589 0.887 0.663 0.641 0.696 0.853 0.807 0.673

Kumar2018 0.681 0.834 0.696 0.768 0.735 0.928 0.920 0.751

Zhao2020 0.734 0.927 0.757 0.804 0.805 0.916 0.923 0.770

As we get favorable results from RNN with max pooling, so we decided to test some other

pooling techniques as shown in Table 2.2. We tried various pooling techniques mentioned

in Table 4.10 with zhao2020 embeddings because it was on top of the list in our previous

results. RNN with Max pooling and exponential softmax pooling gave better results as

compared to other pooling. Overall, if we look at jaccard score max pooling technique

remains on top with a 73.4% score.

36

Table 4.10. Recording-level F1 and jaccard scores of zhao2020 with various pooling
techniques

Pooling Jaccard F1 Score

Water tap Door Yelling Human Fall Music Speech Coughing

RNN-Maxpool 0.734 0.927 0.757 0.804 0.805 0.916 0.923 0.770

RNN-Expnential Softmax 0.729 0.925 0.750 0.809 0.786 0.907 0.917 0.784

RNN-Linear Softmax 0.445 0.675 0.497 0.649 0.689 0.673 0.753 0.696

RNN-Average Pooling 0.643 0.862 0.690 0.746 0.675 0.914 0.885 0.699

kumar2018 vs kumar2020

Comparison is made between kumar2018 and kumar2020 to see the effect on recording-

level results with RNN max pooling. Kumar2020 performed better and shows 2.3% in-

crease in jaccard score along with an increase in F1 scores for most of the classes, and

can be seen with bold face in the Table 4.11.

Table 4.11. Recording-level F1 and jaccard scores comparison of kumar2018 and ku-
mar2020

Embedding Jaccard F1 Score

Water tap Door Yelling Human Fall Music Speech Coughing

Kumar2018 0.681 0.834 0.696 0.768 0.735 0.928 0.920 0.751

Kumar2020 0.704 0.932 0.726 0.792 0.726 0.936 0.910 0.766

After doing all these experiments, we shortlisted RNN with max pooling and residual

RNN with max pooling model for further experiments. Regarding embeddings, we decide

to proceed with zhao2020 and kumar2020.

Train with Various Resolution Labels

We performed multiple experiments by varying the training technique and keeping the

evaluation technique same. We train multiple models with various time resolution labels

(1 minute, 10 s and 0.25 s strong labels) and then use these models to generate recording

level results on our test data. Zhao2020 embeddings are used in all of these experiments

and the RNN with max pooling as classification model.

Table 4.12. Comparison of using various resolution labels during training by using RNN-
maxpool as classifier and zhao2020 embeddings

Label Resolution Jaccard F1 Score

Water tap Door Yelling Human Fall Music Speech Coughing

1 Minute weak Label 0.734 0.919 0.765 0.809 0.796 0.923 0.921 0.775

10 seconds label 0.734 0.919 0.756 0.820 0.789 0.902 0.910 0.797

Strong Labels 0.699 0.899 0.733 0.797 0.758 0.866 0.895 0.770

37

We find out the 1 minute resolution and 10 s resolution weak labels are performing almost

equally well as can be seen by jaccard score in Table 4.12. Although the difference is very

small but training with strong labels gave little bit lower results.

We did the same experiments as above but with a different model to verify things. Resid-

ual RNN-maxpool also produce the same conclusion as simple RNN-maxpool as shown

in the Table 4.13.

Table 4.13. Comparison of using various resolution labels during training by using resid-
ual RNN-maxpool as classifier and zhao2020 embeddings

Label Resolution Jaccard F1 Score

Water tap Door Yelling Human Fall Music Speech Coughing

1 Minute weak Label 0.732 0.924 0.766 0.796 0.792 0.919 0.919 0.777

10 seconds label 0.734 0.922 0.759 0.812 0.789 0.891 0.918 0.796

Strong Labels 0.701 0.901 0.739 0.805 0.756 0.861 0.893 0.777

Both the above experiments are also done with kumar2020 to see the effect of the

changing training method on these embeddings. The conclusion remains identical to

zhao2020’s embeddings by keeping the 1 minute resolution and 10 s resolution weak la-

bels on top. RNN-maxpool and residual RNN-maxpool results lead to the same opinion

as shown in Tables 4.14 and 4.15 respectively.

Table 4.14. Comparison of using various resolution labels during training by using RNN-
maxpool as classifier and kumar2020 embeddings

Label Resolution Jaccard F1 Score

Water tap Door Yelling Human Fall Music Speech Coughing

1 Minute weak Label 0.704 0.932 0.726 0.792 0.726 0.936 0.910 0.766

10 seconds label 0.707 0.932 0.719 0.795 0.702 0.911 0.925 0.757

Strong Labels 0.695 0.927 0.707 0.787 0.683 0.885 0.916 0.769

Table 4.15. Comparison of using various resolution labels during training by using resid-
ual RNN-maxpool as classifier and kumar2020 embeddings

Label Resolution Jaccard F1 Score

Water tap Door Yelling Human Fall Music Speech Coughing

1 Minute weak Label 0.704 0.929 0.716 0.790 0.724 0.934 0.912 0.759

10 seconds label 0.707 0.927 0.729 0.796 0.702 0.906 0.917 0.771

Strong Labels 0.699 0.921 0.719 0.803 0.699 0.880 0.915 0.764

38

Train with Four Target Classes

We did an experiment by predicting only four target classes and consider three non-target

classes as background. The first experiment is done by taking the one minute weak labels

during training and evaluation. The results were not so much different in terms of F1 score

for individual classes. We can see water tap, door and human fall F1 score increase if we

move to the prediction of four classes, but the improvement is not that significant.

Table 4.16. Comparison of 7 vs 4 target classes by training and evaluating with 1 minute
weak labels using zhao2020

No. of Classes Jaccard F1 Score

Water tap Door Yelling Human Fall Music Speech Coughing

7 Target Classes 0.734 0.919 0.764 0.809 0.796 0.923 0.921 0.776

4 Target Classes 0.702 0.924 0.768 0.798 0.805

The same experiment is done by training the model with 10 s resolution weak labels and

the conclusion just remains the same as in the above experiment.

Table 4.17. Comparison of 7 vs 4 target classes by training with 10 s and evaluating with
1 minute weak labels using zhao2020

No. of Classes Jaccard F1 Score

Water tap Door Yelling Human Fall Music Speech Coughing

7 Target Classes 0.734 0.919 0.756 0.820 0.789 0.903 0.911 0.797

4 Target Classes 0.709 0.934 0.762 0.816 0.800

Embeddings Model Selection

For extracting privacy-preserving features from audio, we used openl3, kumar2018 and

zhao2020 embeddings model. Embeddings extracted from all these models are provided

to various classification models to have a comparison among these embeddings. Jaccard

score is the cumulative score of all events present in data and one value displays the

overall result with one number, so we use it as an evaluation metric for this comparison.

After obtaining the recording-level classification results from various models, we find out

that the zhao2020 embeddings model performed better on our synthetic dataset. As

shown in Figure 4.1 single layer FFNN model is giving similar outputs for all three types

of embeddings, but in all of the other classification models, zhao2020 embeddings out-

perform the other embeddings models on our synthetic dataset.

39

Figure 4.1. Embeddings model selection based on recording level results

Classification Model Selection

Zhao2020 is selected as the best performing embeddings extraction model on our syn-

thetic dataset, so we use these embeddings with various classification models. Recording-

level results are obtained from multiple classification models to have a comparison among

them. RNN with max pooling came out the best performing classification model with em-

beddings as an input, and give Jaccard score of 73.4% as shown in Figure 4.2.

Figure 4.2. Classification model selection from recording level results

40

For a detailed overview of the results concerning different events, we consider the F1

score for each event. Zhao2020 as an embeddings model and RNN with max pooling

are selected according to previous given results and now the detailed behavior of various

classes will be done with help of the F1 score. Recording level F1 scores of single layer

FFNN and RNN maxpool for each event is shown in Figure 4.3, and all events show a

significant increase in F1 score as we move from single layer FFNN to RNN maxpool.

Water tap, music and speech F1 score reaches above 90%, while all other classes are

above 75%.

Figure 4.3. Recording level results comparison of RNN maxpool and single layer FFNN
with zhao2020

41

5 CONCLUSION

In this thesis, we did sound event detection in a real-life environment by considering the

healthcare monitoring problem. We created a synthetic dataset with a door, water tap,

yelling, human fall, music, speech and coughing sounds. Door, water tap, yelling and

human fall are taken as target classes, while music, speech and coughing are non-target

classes. These sounds are quite common in daily life, so this dataset could be used

as training material in many applications e.g health care monitoring, home security and

activity measurement in a house.

Privacy of the people in real life recording is a serious concern and need to be handled

accordingly. For having privacy-preserving features from audio, we consider openl3, ku-

mar2018 and zhao2020 embeddings extraction models. We extract embeddings from

these three models and provided them to various classification models to see the differ-

ence in performance. After obtaining recording-level results from various experiments,

we concluded that embeddings extracted from zhao2020, when given to various classi-

fication models performed better as compared to the other embeddings models on our

synthetic dataset.

For classification model selection, we did various experiments producing the recording-

level outputs. We concluded that on our synthetic dataset, providing embeddings as an

input, RNN model with a max pooling performed better as compared to all other classi-

fication models. This model makes frame-level predictions and then combine the frame

results of one recording by applying max pooling for generating recording level output.

For recording-level predictions, this model gives a jaccard score of 73.4% and F1 scores

above or equal to 80% for most of the classes on our synthetic dataset.

We did experiments with various training techniques, where we use different resolution

labels for calculating loss during the training of the model. Training done during these

experiments by using 1 minute resolution weak labels, 10 s resolution weak labels and

strong labels, while in evaluation results are calculated on a recording level. Training

done with one minute weak labels outperforms the other two training techniques on our

synthetic dataset. Considering the real-life scenario of healthcare monitoring, we want to

do recording level (one minute) predictions and one minute weak labels training performed

well, so we finalize this training technique for our task.

42

Future Work

The synthetic dataset created in this thesis could be improved by adding impulse re-

sponses during the soundscape creation to make the data more realistic. Some more

sound events like paper flipping and laughing could be added because these are also

common sounds in homes.

This sound event detection model could be used in real-life monitoring of nursing homes

and home care centers. The microphones will be installed at the monitoring site that

records the audio and sends it to the local server present at the site as shown in Figure

5.1.

Figure 5.1. SED system in a real life application

The local server will process the audio and extract the privacy-preserving features (em-

beddings) and send it to the backend server on the cloud. The backend server will send

the embeddings to the SED system and receive the predictions. The predictions will be

sent to a mobile app or web site where a person can see the activity detail.

43

REFERENCES

[1] Wang, D. and Brown, G. J. Computational Auditory Scene Analysis: Principles,

Algorithms, and Applications. Wiley-IEEE press, 2006.

[2] Kumar, A. and Raj, B. Audio event and scene recognition: A unified approach using

strongly and weakly labeled data. 2017 International Joint Conference on Neural

Networks (IJCNN). 2017, 3475–3482.

[3] Heittola, T., Mesaros, A., Virtanen, T. and Eronen, A. Sound event detection in mul-

tisource environments using source separation. Machine Listening in Multisource

Environments. 2011.

[4] Virtanen, T., Plumbley, M. D. and Ellis, D. Computational Analysis of Sound Scenes

and Events. Springer, 2018.

[5] Carone, G. and Costello, D. Can Europe afford to grow old. Finance and Develop-

ment 43.3 (2006), 28–31.

[6] Droghini, D., Squartini, S., Principi, E., Gabrielli, L. and Piazza, F. Audio Metric

Learning by Using Siamese Autoencoders for One-Shot Human Fall Detection.

IEEE Transactions on Emerging Topics in Computational Intelligence (2019), 1–

11.

[7] Salamon, J., MacConnell, D., Cartwright, M., Li, P. and Bello, J. P. Scaper: A library

for soundscape synthesis and augmentation. 2017 IEEE Workshop on Applications

of Signal Processing to Audio and Acoustics (WASPAA). 2017, 344–348.

[8] Hochreiter, S. and Schmidhuber, J. Long short-term memory. Neural computation

9.8 (1997), 1735–1780.

[9] Parascandolo, G., Huttunen, H. and Virtanen, T. Recurrent neural networks for poly-

phonic sound event detection in real life recordings. 2016 IEEE International Con-

ference on Acoustics, Speech and Signal Processing (ICASSP). 2016, 6440–6444.

[10] Chung, J., Gulcehre, C., Cho, K. and Bengio, Y. Empirical evaluation of gated re-

current neural networks on sequence modeling. NIPS 2014 Workshop on Deep

Learning. 2014.

[11] Amores, J. Multiple instance classification: Review, taxonomy and comparative study.

Artificial Intelligence 201 (2013), 81–105.

[12] Wang, Y., Li, J. and Metze, F. A comparison of five multiple instance learning pooling

functions for sound event detection with weak labeling. IEEE International Confer-

ence on Acoustics, Speech and Signal Processing (ICASSP). 2019, 31–35.

[13] Wikipedia contributors. Cross-validation (statistics) — Wikipedia, The Free Ency-

clopedia. https : / / en . wikipedia . org / w / index . php ? title = Cross -

https://en.wikipedia.org/w/index.php?title=Cross-validation_(statistics)&oldid=975192923
https://en.wikipedia.org/w/index.php?title=Cross-validation_(statistics)&oldid=975192923

44

validation_(statistics)&oldid=975192923. [Online; accessed 17-September-

2020]. 2020.

[14] Mesaros, A., Heittola, T. and Virtanen, T. Metrics for polyphonic sound event detec-

tion. Applied Sciences 6.6 (2016), 162.

[15] Cakir, E., Heittola, T., Huttunen, H. and Virtanen, T. Polyphonic sound event detec-

tion using multi label deep neural networks. 2015 International Joint Conference on

Neural Networks (IJCNN). 2015, 1–7.

[16] Cakır, E., Parascandolo, G., Heittola, T., Huttunen, H. and Virtanen, T. Convolu-

tional recurrent neural networks for polyphonic sound event detection. IEEE/ACM

Transactions on Audio, Speech, and Language Processing 25.6 (2017), 1291–

1303.

[17] Lecun, Y., Bottou, L., Bengio, Y. and Haffner, P. Gradient-based learning applied to

document recognition. Proceedings of the IEEE 86.11 (1998), 2278–2324.

[18] Xu, Y., Kong, Q., Wang, W. and Plumbley, M. D. Large-scale weakly supervised

audio classification using gated convolutional neural network. 2018 IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing (ICASSP). 2018,

121–125.

[19] Gemmeke, J. F., Ellis, D. P., Freedman, D., Jansen, A., Lawrence, W., Moore, R. C.,

Plakal, M. and Ritter, M. Audio set: An ontology and human-labeled dataset for au-

dio events. 2017 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP). 2017, 776–780.

[20] Kumar, A., Khadkevich, M. and Fügen, C. Knowledge transfer from weakly labeled

audio using convolutional neural network for sound events and scenes. 2018 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP).

2018, 326–330.

[21] Wang, Y., Neves, L. and Metze, F. Audio-based multimedia event detection using

deep recurrent neural networks. 2016 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP). 2016, 2742–2746.

[22] Holters, M., Corbach, T. and Zölzer, U. Impulse response measurement techniques

and their applicability in the real world. Proceedings of the 12th International Con-

ference on Digital Audio Effects (DAFx-09). 2009, 1–5.

[23] Nagrani, A., Chung, J. S. and Zisserman, A. VoxCeleb: A Large-Scale Speaker

Identification Dataset. Proceedings of the Interspeech. 2017, 2616–2620.

[24] Panayotov, V., Chen, G., Povey, D. and Khudanpur, S. Librispeech: an asr cor-

pus based on public domain audio books. 2015 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP). 2015, 5206–5210.

[25] Snyder, D., Chen, G. and Povey, D. MUSAN: A Music, Speech, and Noise Corpus.

arXiv:1510.08484v1. 2015. eprint: 1510.08484.

https://en.wikipedia.org/w/index.php?title=Cross-validation_(statistics)&oldid=975192923
https://en.wikipedia.org/w/index.php?title=Cross-validation_(statistics)&oldid=975192923
1510.08484

45

[26] Mesaros, A., Heittola, T. and Virtanen, T. TUT database for acoustic scene classifi-

cation and sound event detection. 2016 24th European Signal Processing Confer-

ence (EUSIPCO). 2016, 1128–1132.

[27] Cramer, J., Wu, H., Salamon, J. and Bello, J. P. Look, Listen, and Learn More:

Design Choices for Deep Audio Embeddings. IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP). 2019, 3852–3856.

[28] Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Des-

maison, A., Antiga, L. and Lerer, A. Automatic differentiation in PyTorch: NIPS Au-

todiff Workshop: The Future of Gradient-based Machine Learning Software and

Techniques. (2017).

[29] McFee, B., Raffel, C., Liang, D., Ellis, D. P., McVicar, M., Battenberg, E. and Nieto,

O. librosa: Audio and Music Signal Analysis in Python. Proceedings of the 14th

Python in Science Conference. Vol. 8. 2015, 18–25.

[30] Gencoglu, O., Virtanen, T. and Huttunen, H. Recognition of acoustic events using

deep neural networks. 2014 22nd European Signal Processing Conference (EU-

SIPCO). 2014, 506–510.

[31] Schuster, M. and Paliwal, K. K. Bidirectional recurrent neural networks. IEEE Trans-

actions on Signal Processing 45.11 (1997), 2673–2681.

[32] He, K., Zhang, X., Ren, S. and Sun, J. Deep Residual Learning for Image Recogni-

tion. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

2016, 770–778.

[33] Su, P., Ding, X.-R., Zhang, Y.-T., Liu, J., Miao, F. and Zhao, N. Long-term blood

pressure prediction with deep recurrent neural networks. 2018 IEEE EMBS Inter-

national Conference on Biomedical & Health Informatics (BHI). 2018, 323–328.

[34] Kong, Q., Xu, Y., Wang, W. and Plumbley, M. D. Audio set classification with at-

tention model: A probabilistic perspective. 2018 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP). 2018, 316–320.

[35] Xu, Y., Kong, Q., Huang, Q., Wang, W. and Plumbley, M. D. Attention and Localiza-

tion Based on a Deep Convolutional Recurrent Model for Weakly Supervised Audio

Tagging. Interspeech. 2017.

46

A APPENDIX

Scaper’s Soundscape with Label

Scaper generates audio mixture as well as their annotation file as shown in Figure A.1.

This is a bit simple scenario where sound events are not overlapping with each other.

Figure A.1. Simple scenario of soundscape

One complex scenario of the audio mixture is shown in Figure A.2 where multiple sound

events are happening at the same time.

Figure A.2. Complex scenario of soundscape

Ground Truth Labels

Frame wise ground truth labels are generated for seven classes with help of an annotation

file provided by scaper. The structure of ground truth labels is shown in Figure A.3. The

1 in a frame means that a specific event is present in that frame while 0 indicates the

absence of that event.

47

Figure A.3. Ground truth labels structure

Detailed Output Results for One Experiment

We have four folds of data, and we did cross-validation during the evaluation of different

models. The detailed overview of the results that we get after one experiment is shown

in Figure A.4. The F1 scores, precision and recall are calculated for every event in each

fold of data. The results that are considered for evaluation are by taking the average of

these four folds results.

Figure A.4. Detailed output results structure for one experiment

	Introduction
	Motivation
	Objective

	Background
	Deep Neural Networks
	Feed Forward Neural Network
	RNN

	Pooling Techniques
	K-Fold Cross-Validation
	Evaluation Metrics
	Sound Event Detection
	Robustness

	Methods
	Dataset Creation
	Data Collection
	Data Preparation

	DNN SED Techniques
	Frame-level Prediction
	Recording-level Prediction

	Data Loader and Training

	Results and Discussion
	Frame-level Prediction Results
	Recording-level Prediction Results

	Conclusion
	References
	Appendix Appendix

