

Maxim Shilov

IMPLEMENTATION OF CONFIGURABLE
AND DELAY-OPTIMAL

STATIC RANDOM-ACCESS MEMORY
GENERATOR

 Bachelor’s thesis

Faculty of Information Technology and Communication Sciences
Examiner: University lecturer Erja Sipilä

November 2020

i

ABSTRACT

Maxim Shilov: Implementation of configurable and delay-optimal static random-access

memory generator

Bachelor’s thesis

Tampere University

Degree Programme in Computing and Electrical Engineering, BSc (Tech), Electrical Engineer-

ing

November 2020

Computer static random-access memory (SRAM) can greatly vary in size. Peripheral

circuitry which provides memory readability and writability must be changed accord-

ingly with a size order to keep memory operation fast enough. Development of a

memory layout generator with these architectural changes may require huge effort.

However, within a given architecture, delay optimization can be made by making logic

gates scalable and furthermore they must be scaled appropriately. One way to esti-

mate these scale factors is to use the Method of Logical Effort.

In this work a configurable generator for a small and delay-optimized static RAM-

memory for the 180 nm process was implemented. The main emphasis in this work

was made toward the least delay for different memory sizes within the same architec-

ture. To achieve this goal, some of the logic gates were implemented scalable and the

Method of Logical Effort was used to scale these gates appropriately. To validate the

obtained results, delay-optimal logic gate sizes for a different number of bits were

found empirically by straightforward repetitive simulations. To see how significant rela-

tive error was, absolute delays caused by differently sized gates were simulated. Also,

these delays were compared to ones caused by temperature rise and voltage drop.

It was shown that the Method of Logical Effort can be used in a development of semi-

custom SRAM generator, although with some constraints. It was also shown that error

caused by this method is not significant and that environmental changes can have a

larger impact on a delay. This work can serve as a guide during development of a simi-

lar macro and its layout generator if the fastest topology by scaling logic gates must be

achieved.

Keywords: SRAM, static random-access memory, generator, layout, the Method of Logical

Effort

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

PREFACE

I would like to thank Teppo Karema and Tuukka Vaaraniemi from VLSI Solution Oy for
a great opportunity to gain experience and knowledge while doing this project and for all
provided help and support.

Tampere, 24 November 2020

Maxim Shilov

iii

CONTENTS

1. INTRODUCTION .. 1

2. THEORETICAL BACKGROUND... 3

2.1 Static random-access memory ... 3

2.2 L language and ”Led” layout editor ... 5

2.3 The Method of Logical Effort .. 7

3. METHODOLOGY .. 12

3.1 SRAM implementation ... 12

3.1.1 SRAM cell ... 13

3.1.2 Row circuitry ... 14

3.1.3 Column circuitry .. 15

3.2 SRAM optimization... 16

3.2.1 Building empirical model for optimal inverter sizing 16

3.2.2 Adapting the Method of Logical Effort for optimal inverter sizing . 17

4. RESULTS AND DISCUSSION .. 19

5. CONCLUSION .. 26

REFERENCES... 28

iv

LIST OF SYMBOLS AND ABBREVIATIONS

DSP Digital signal processor
IC Integrated circuit
MOS Metal-oxide-semiconductor
rwl Read word line
SRAM Static random-access memory
SoC System on a chip
wl Word line
wwl Write word line

1

1. INTRODUCTION

Modern SoC’s (system on a chip) are dependent on integrated SRAM (static random-

access memory) and overall memory area can overlay large part of a chip [1]. During

development of such a system, particularly DSP (digital signal processor), there may

rise a need for a small-size, high-speed SRAM for buffering. In a semi-custom layout

design technique this need is usually satisfied with a help of memory generator which

allows automatically instantiate repetitive structures like standard cells, contacts, wires

or transistors.

Peripheral circuitry which provides memory readability and writability must be changed

accordingly with a size order to keep memory operation fast enough. Development of a

memory layout generator with these architectural changes may require a huge effort.

Also, size-configurable generator with same architecture will be optimal only for a par-

ticular size. However, within a given architecture, delay optimization can be made by

making logic gates scalable. Depending on the memory size, these logic gates must be

scaled appropriately. One way to estimate these scale factors is to use the Method of

Logical Effort [2].

In this work a size-configurable generator for small and delay-optimized SRAM memory

was developed. In this work, unlike in similar one [3], peripheral circuitry’s logic gates

were implemented as scalable components where possible. In addition, to scale them

appropriately depending on the memory size, the Method of Logical Effort was used. In

order to validate the results gotten from the Logical Effort Method, additional model

based on experimental simulations was developed and results were compared. The dif-

ference in results, in particular its magnitude and significance, was studied. The delay

increase caused by this error was compared to a delay increase caused by common

environmental changes, such as voltage drop and temperature rise.

Chapter 2 of the present work gives brief overview on SRAM operation principle and

how size-configurable SRAM generator with scalable logic gates can be implemented

by means of L language and “Led” tool. It also presents needed theoretical background

on the Logical Effort Method. Chapter 3 focuses on how SRAM was implemented in

this work. Additionally, it shows what quantities must be measured in order to adapt the

2

Logical Effort Method, and how to build an empirical model to validate results. In Chap-

ter 4 all measurements and calculations are presented and briefly discussed. Finally,

Chapter 5 aims to summarize and analyze all results obtained in this work.

3

2. THEORETICAL BACKGROUND

This chapter provides basic information on SRAM memory operation and its crucial

parts. After that, it gives a brief overview on how scalable logic gates can be imple-

mented by means of L language and “Led” layout editor. Finally, in order to understand

how gates can be scaled to achieve the least possible delay, a required part of the the-

ory on the Method of Logical Effort is presented.

2.1 Static random-access memory

Static random-access memory is a type of volatile computer memory that is primarily

used in caches and buffers due to its speed [4]. The main building block of any SRAM

is the memory cell itself, where “0” or “1” is stored. Different topologies of a memory

cell have been developed; each with a different number of transistors and each with its

own advantages and disadvantages [5][6][7]. However, most of them are based on the

most common topology which consists of six transistors (6T). Its schematic is depicted

in Figure 1. The cell consists of two cross-connected inverters and two access transis-

tors. To write a value into the cell (“1” for example) bit line is pulled-high and its com-

plement value (“0” in this case) is set in bit_b. Once the wordline (wl) is raised, it opens

access transistors and shortens bit and bit_b to nets Q and Q_b respectfully. Both in-

verters start to feed each other complement values, positive feedback loop occurs, and

inverters keep storing the bit within the cell as long as voltage is supplied.

Figure 1. Schematic of 6T SRAM cell.

4

The written value is stored in net Q. To be read, wl must be low and both bit and bit_b

must be precharged high. Once wl is raised again, bit or bit_b (depending on stored

value) will be tied to ground through nMOS transistor in the corresponding inverter.

When several (or dozens) of cells are aligned horizontally and all share common wl

then word is formed. Words, in turn, inserted one below the another (with common bit

and bit_b lines) form a memory array. However, to be able to store information within a

memory, additional circuitry is required. Example of such circuitry is a decoder which is

used to choose from 𝑛 bit sequence one of the 2𝑛 words. [8, pp. 498-501][9, pp. 418-

423] Block diagram of exemplary simple SRAM can be seen below (Figure 2).

Figure 2. Simple generic SRAM architecture.

The choose of one or another architectural solution may depend on many factors such

as: memory cell topology, memory size (meaning number of words and bits per word),

speed, area and power consumption constrains, requirement of additional features (like

sleep mode) and so on [10]. Memory implemented in this work will be presented and

discussed in detail in Chapter 3.1.

5

2.2 L language and ”Led” layout editor

Mentor Graphics’ “Led” layout editor is a tool for implementing IC (integrated circuit)

layout within a graphical user interface. Implemented circuits are stored in so-called L-

files and described in L language that has a C-like syntax. Each circuit is called a cell.

Simple circuits such as logic gates can be saved in L-files and instantiated in a more

complex circuits on a higher level of abstraction. A cell instantiation in another cell is

not limited to any number and complex designs may consist of many layers of cells.

This is how complexity is handled in L. Simple inverter that is described in L language

(Program 1) and its corresponding layout representation in “Led” editor (Figure 3) can

be found below.

Program 1. Inverter description in L language.

6

Different instances, such as transistors (6, 7), wires (16, 17), contacts (10-13), poly-

gons and terminals (20-23) can be crated in L language. Every instance except wires

and polygons must have a name (tn_1 for example). In wires, terminals and polygons

material level must be specified (MET1, MET2, POLY, NDIFF). Also, different features

like width and length, orientation (R90, R180, R270, RX, RY) and location (AT) must be

given within a single instance declaration. Contacts and transistors can be wired to-

gether and wire direction can be specified with special words like HOR, VER. Wire’s

path can also be laid more precisely using other special keywords: UP=<distance>,

DOWN=<distance>, LEFT=<distance>, RIGHT=<distance>. Terminals serve as a com-

munication path between cells in complex designs as well as power and I/O ports to

outside world. All allowed material levels, design rules and other constraints are speci-

fied in a technology file (1). It is declared in a first row with a special character L:: indi-

cating that this is an L-file.

Figure 3. Layout representation of inverter from Program 1.

Cell is called a generator if parameters are given inside parentheses within a cell decla-

ration (3). Such generator can be called from “Led” and parameters are given by the

user or it can be called from the code in an L-file. Repetitive structures and cell instanti-

ations can be done by means of while loop and condition checking by if-else state-

ments.

All described features are only a small part of all possibilities that “Led” and L language

can utilize. However, given information should be enough to have an idea on how a

layout of complex circuits such as SRAM can be implemented.

7

2.3 The Method of Logical Effort

The Method of Logical Effort was developed by Sutherland and Sproull in 1991 and is

used to estimate a delay in digital circuits [2]. It also can be used to find a suitable num-

ber of logic gates in a stage and how to scale them appropriately to achieve minimal

delay. Generator developed in this work is not able to add or remove logic gates, only

change their size. Therefore, only relative information and basic concepts from applica-

tive point of view will be provided in this chapter. All following information in this chapter

is primarily based on Sutherland’s and Sproull’s book [2] as well as [8, pp. 155-171].

Every logic gate consists of transistors. Typically, signal transition from “0” to “1” is ac-

complished by a pull-up network that consists of pMOS transistors while signal transi-

tion from “1” to “0” is done by a pull-down network which consist of nMOS transistors.

Simplest logic gate is an inverter which has one nMOS and one pMOS transistor in se-

ries (Figure 3). Hole mobility is lower than electron mobility in a diffusion and thus to

achieve equal fall and rise times, pMOS transistors are usually made wider than nMOS

transistors. How much wider depends on a particular technology but typical values for

pMOS to nMOS width ratio lie between 1.5 and 3. If logic gate is driving some capaci-

tive load, be it wire or another gate, it has to be scaled appropriately; otherwise it will

require long time to charge or discharge the load. Scaling means changing a width of

transistors. If for example inverter x1 has nMOS transistor of width 400 nm and pMOS

transistor of width 800 nm then threefold inverter x3 will have nMOS of width 1200 nm

and pMOS of 2400 nm. Scaling in the case of NAND gates is a bit trickier. N-input

NAND gate consists of N nMOS transistors in series and N pMOS transistors in paral-

lel. In order to deliver same current as inverter despite number of inputs, transistors in

series have to be N-times wider than in a unit inverter.

In the Logical Effort Method delays are expressed in technology-independent, normal-

ised with respect to inverter values (1):

𝑑 =
𝑡𝑝𝑑

𝜏
, (1)

where 𝑡𝑝𝑑 is the absolute propagation delay of a logic gate and 𝜏 is the absolute propa-

gation delay of an inverter respectively. Delay of a logic gate in a stage depends on

several factors. First, on its size and the load that it drives.

8

This value is called the electrical effort or the fanout. It is denoted by letter ℎ and can

be expressed as:

ℎ =
𝐶𝑜𝑢𝑡

𝐶𝑖𝑛
, (2)

where 𝐶𝑜𝑢𝑡 is a capacitance of the load that gate drives and 𝐶𝑖𝑛 is its input capacitance.

As was stated earlier, ℎ is dependent on the size of a gate and Equation (2) operates

with capacitances. The fact is that logic gate input capacitance is proportional to its size

and by knowing the size, capacitance can be estimated. If for example inverter x1 is

driving four times larger inverter x4 then fanout of x1 is equal to
4𝐶𝑖𝑛

𝐶𝑖𝑛
= 4.

The gate delay is also dependent on how complex its inner structure is. This value is

called the logical effort. It shows how much worse the logic gate is in a delivering out-

put current compared to an unit inverter’s output current if they both have the same in-

put capacitance. From another point of view, it shows how larger gate’s input capaci-

tance (compared to a unit inverter) should be, in order to deliver the same amount of

current. Mathematically it is expressed like:

𝑔 =
𝑅𝑔𝐶𝑔

𝑅𝑖𝑛𝑣𝐶𝑖𝑛𝑣
, (3)

where 𝑅𝑔 and 𝐶𝑔 are logic gate’s input resistance and capacitance. Inverter’s input re-

sistance and capacitance are denoted by 𝑅𝑖𝑛𝑣 and 𝐶𝑖𝑛𝑣. One way to estimate the logi-

cal effort is to simulate delays of logic gate that drives different loads and fit the line to

obtained results. The slope of the obtained line then must be divided by a similarly

found slope of an inverter. Point where slope crosses the delay axis (equivalently delay

value where load is equal to zero) is called the parasitic delay and is denoted by 𝑝. By

putting it all together, formula for calculating gate delay can be expressed as:

𝑑 = 𝑔ℎ + 𝑝 (4)

Term 𝑔ℎ is also called the stage effort and is denoted by 𝑓.

When several gates in series and/or parallel are forming a network, their path effort is

expressed as:

𝐹 = 𝐺𝐵𝐻, (5)

where 𝐵 is the path’s branching effort and 𝐺 and 𝐻 are the path logical and electrical

efforts respectively.

9

Each of these terms can be calculated as a product of every individual term in a stage

(6).

𝐹 = ∏ 𝑔𝑖𝑏𝑖ℎ𝑖 (6)

If some stage in the network consists of several gates in parallel, then its stage branch-

ing effort 𝑏𝑖 can be found using Formula (6):

𝑏𝑖 =
𝐶𝑜𝑛𝑝𝑎𝑡ℎ + 𝐶𝑜𝑢𝑡𝑝𝑎𝑡ℎ

𝐶𝑜𝑛𝑝𝑎𝑡ℎ
, (7)

where 𝐶𝑜𝑛𝑝𝑎𝑡ℎ is the input capacitance of a logic gate where delay to be calculated,

while 𝐶𝑜𝑢𝑡𝑝𝑎𝑡ℎ is the total input capacitance of parallel logic gates in a stage. Delay

along the whole path is equal to (8):

𝐷 = ∑ 𝑑𝑖 = ∑ 𝑓𝑖 + ∑ 𝑝𝑖 (8)

It turns out, that the path electrical effort 𝐻 is equal to the ratio of network’s output to

input capacitance, because the input capacitance of a stage 𝑖 is the output capacitance

of stage 𝑖 − 1. Thus, all terms except 𝐶𝑖𝑛,1 and 𝐶𝑜𝑢𝑡,𝑛 in a chain of 𝑛 gates are cancelled

out.

The following example clarifies all abovementioned equations. The inverter from Figure

4 in the Stage 2 has input capacitance of 3 of some unit capacitance C. The NAND

gate is designed so that it delivers the same amount of current as the inverter and their

effective resistances are equal. In such a case its input capacitance will be equal to 4C.

The whole network is driving capacitive load of value 100C. There are two NANDs in

parallel in the input node and thus input capacitance 𝐶𝑖𝑛 is equal to 2*4C=8C. There-

fore, the path electrical effort is equal to 𝐻 =
100𝐶

8𝐶
=

25

2
. The branching effort of the

Stage 1 is equal to 𝑏1 =
4𝐶+4𝐶

4𝐶
= 2 and branching effort of the Stage 2 to 𝑏2 =

(3𝐶+3𝐶)+3𝐶

3𝐶
= 3. Overall path branching effort is therefore 𝐵 = 3 ∙ 2 = 6. The logical effort

of the Stage 1 is 𝑔1 =
𝑅𝑁𝐴𝑁𝐷𝐶𝑁𝐴𝑁𝐷

𝑅𝑖𝑛𝑣𝐶𝑖𝑛𝑣
=

𝐶𝑁𝐴𝑁𝐷

𝐶𝑖𝑛𝑣
=

4𝐶

3𝐶
=

4

3
. The logical effort of the inverter is

equal to 1 by definition. By combining all obtained values, the path effort of the network

can be count as 𝐹 = (
4

3
∙ 1) (2 ∙ 3) (

25

2
) = 100.

10

Figure 4. Example network.

Suppose that load and input capacitance (NAND gates) are fixed and only size of the

inverters in the Stage 2 can be changed. This means that the path electrical effort 𝐻 is

constant. Delay along the path, according to equation (8) is equal to

𝐷 = (𝑔1ℎ1 + 𝑝1) + (𝑔2ℎ2 + 𝑝2) (9)

The electrical effort ℎ2 in the Stage 2 can be expressed through the path electrical ef-

fort 𝐻 as:

𝐷 = (𝑔1ℎ1 + 𝑝1) + (𝑔2

𝐻

ℎ1
+ 𝑝2) (10)

To minimize the delay along the path by adjusting size of the inverter in the Stage 2,

partial derivative with respect to ℎ1 to be taken and equated to zero:

𝜕𝐷

𝜕ℎ1

= ℎ1 + 𝑔2

𝐻

ℎ1
2 = 0 (11)

By substituting 𝐻 with ℎ1ℎ2 and solving equation (11) following result is obtained:

𝑔1ℎ1 = 𝑔2ℎ2 (12)

Equation (12) tells that delay is minimized when every stage has the same effort 𝑓.

Thus, to equalize efforts in every stage, the path effort 𝐹 from equations (5, 6) must be

raised to the power of
1

𝑁
:

𝑓 = 𝐹1 𝑁⁄ , (13)

where 𝑁 is a number of stages.

11

By inserting the stage effort formula 𝑓 = 𝑔ℎ into equation (2) and by replacing 𝑓 with

the equalized effort 𝑓, the capacitance transformation formula can be obtained:

𝐶𝑖𝑛,𝑖 =
𝐶𝑜𝑢𝑡,𝑖 ∙ 𝑔𝑖

𝑓
(14)

This formula can be used to adjust logic gate input capacitance (or equivalently its size)

if the number of stages, network’s input and output capacitances and logical efforts are

known. To adjust the inverter size from Figure 4, the equalized stage effort must be

found by rising 𝐹 to the power of
1

2
 (because there are 2 stages). Obtained value

𝑓 = √𝐹 = √100 = 10 can then be used in the capacitance transformation formula (14)

to find the input capacitance of the inverter:

𝐶𝑖𝑛,2 =
100𝐶 ∙ 1

10
= 10𝐶 (15)

Result from equation (15) tells, that in order to achieve the least delay in the network

from Figure 4, the input capacitance of the inverter in the Stage 2 has to be 10C in-

stead of 3C. This means that inverter must be more than three times larger than in Fig-

ure 4 to achieve the least delay.

12

3. METHODOLOGY

Before actual chip fabrication, simulation remains the main tool of circuit validation and

verification. All simulations were performed in ELDO simulator. Supply voltage was

equal to 1.8 V and temperature parameter 25 °C unless otherwise mentioned. Some

fixed-sized logic gates were made in a full-custom manner in “Led”, while scalable

gates and repetitive parts and structures were implemented as generators in L lan-

guage. Implemented design was intended for the 180 nm technology.

3.1 SRAM implementation

As was mentioned earlier, choice of the architecture depends on many factors. One of

studied SRAM cells in [6] was chosen to be used in this work due to its low power con-

sumption and ability to read and write values simultaneously. The selected cell allows

to design relatively simple peripheral circuitry (Figure 5) with no need in sense amplifi-

ers and precharging bit lines. Corresponding layout of generated SRAM can be seen in

Figure 6.

Figure 5. SRAM architecture used in this work (64-bit example).

13

One of the words (8 in this case) is chosen by applying some bit sequence to addr and

word to be written to bit_in. In order to write bits to chosen word, rd is pulled high. They

can be read in the same time by pulling wr high as well and written data will appear in

bit_out.

Figure 6. Layout of the generated SRAM (64 bits).

When a user decides to call a generator from “Led”, the number of words and the num-

ber of bits per word must be specified. Generator automatically chooses optimal logic

gate sizes based on a model described in Chapter 3.2.1. If time constraints are not

tight, area and power consumption can be reduced by relaxing size parameters manu-

ally in the source code.

3.1.1 SRAM cell

In this work slightly modified SRAM cell from Figure 1 was used. In [6] different cell to-

pologies were studied and compared. Most efficient and proposed one (10T) was used

in this work. In this cell additional inverter is added to node Q_b (Figure 1). Comple-

ment of the stored value goes through inverter and true value appears after it. In order

to control that appearance, transition gate is added. Transition gate consists of one

nMOS and one pMOS transistor in parallel and controlled by two complement values. It

allows to pass both strong “0”s and “1”s through a line (meaning without a voltage drop

caused by threshold voltage of either transistor) [11, p. 866].

14

Memory cell is a main area consumer on a chip die because it is repeated hundreds,

thousands and millions of times. Even small saving in a cell layout can have a huge im-

pact on the overall area. For this reason, transition gate in proposed 10T cell was re-

placed with a typical nMOS access transistor. The modified cell schematic and imple-

mented layout can be found below (Figure 7).

Figure 7. Modified SRAM-cell and corresponding layout.

Access nMOS transistor alone cause some voltage drop due to its threshold voltage

while passing “1”. This however should not be a problem if number of rows stay rela-

tively small and inverter that accepts this signal is made as small as possible to further

reduce capacitance.

3.1.2 Row circuitry

Row circuitry consists of a decoder, write word line (wwl) drivers and read word line

(rwl) drivers. Lines wwl and rwl are driven by simple inverters placed next after NAND

gates. In order to simplify connectivity and avoid excessive area, row circuitry have to

be the same height as the memory array. This means that all inverters and NANDs in

each row should be the same height as the height of the memory cell. To use the

Method of Logical Effort in search of fastest topology, logic gates must be scalable. In

the case of inverters, they can be easily scaled in both vertical and horizontal directions

separately (Figure 8).

15

Figure 8. From left to right: x1 inverter, x3 inverter (folded), x3 inverter (unfolded).

However, in case of NAND gates, they start to grow in both directions with increasing

number of inputs if scaled appropriately [12, p. 55]. For all abovementioned reasons,

only inverters were implemented as scalable logic gates in folded style.

3.1.3 Column circuitry

Column circuitry mainly consists of inverter drivers. Drivers for wr, rd and bit_out con-

sist of two inverters in series thus producing a true value and can be treated as buffers.

First inverters in all these drivers are made as small as possible to reduce input capaci-

tance. In case of wr and rd this is done due to the fact, that signals that drive them are

coming from outside circuits and wires that carries these signals, in turn, can have a

large capacitance. In case of bit_out bus, as was mentioned earlier, stored “1” when-

ever read is experiencing voltage drop due to access transistor’s threshold voltage and

long wire’s parasitic resistance and capacitance. For these reasons, inverter that is

driven by this “weak 1” has to be as small as possible to reduce the overall input ca-

pacitance. Address and bit_in busses must produce both true and complementary val-

ues and thus consist of two inverters in series with one inverter in parallel. First invert-

ers in a true side were made small for the same reasons as for wr and rd.

16

3.2 SRAM optimization

To make SRAM delay-optimized within a given number of words and number of bits

per word, logic gates must be scalable and scaled appropriately. Because of some

constraints that origin from the SRAM’s topology, only inverters can be made scalable.

This chapter shows what needs to be done in order to apply the Method of Logical Ef-

fort to find optimal inverter sizes. It also shows how to use straightforward method for

finding these sizes. This method, however, suffers from its own constraint and is time

consuming. It is still applicable to given SRAM topology and is primarily used to confirm

the Logical Effort Method workability.

3.2.1 Building empirical model for optimal inverter sizing

To ensure that the Method of Logical Effort will work, a more reliable, empirical and

comparative model had to be developed. The most simple and straightforward way is

to simulate read and write delays with different memory and logic gate sizes and

choose size that gives the least delay. As an example, to find an optimal inverter size

that drives wwl with a given number of bits in a word, a circuit with differently scaled in-

verters must be generated. Then delays between assertion of wr and appearance of a

bit in a cell has to be measured and inverter size that gives minimal delay must be cho-

sen. Operation then must be repeated with another number of bits in a word.

It is worth mentioning that such method will only work fine if the number of gates with

variable size is equal to one. In the case from Figure 9 NAND that drives inverter has

the fixed size and thus the fixed input capacitance. Inverter that follows after NAND

drives fixed load which is accumulated from SRAM cells. Therefore, there is only one

logic gate which size can be varied. If there were for example two, three or more invert-

ers in series, then, with a such brute force method, every combination of different in-

verter sizes would have had to be simulated; which is impractical. In developed circuit,

there are such stages with two inverters in series. These are rd, wr and inverters in true

side in addr and bit_in. For the sake of simplicity, first inverters in these stages were

scaled to 1 and only second inverters’ sizes could be varied.

Once optimal buffer sizes are found they can be used in a function estimation. This

function can be used in a generation of memory of different sizes. As the Method of

Logical Effort (13, 14) and measured data points (Table 1 and 2) would suggest that in-

verter and memory size will have a non-linear dependency.

17

The Method of Logical Effort tells that the stage effort is the root function of a number

of stages (13). Thus, the root function will be a fitting function (16).

𝐼𝑛𝑣𝑒𝑟𝑡𝑒𝑟 𝑠𝑖𝑧𝑒 = 𝑎√𝐿𝑜𝑎𝑑 (16)

The coefficient 𝑎 is a scaling factor to be found and 𝐿𝑜𝑎𝑑 is an accumulative load ca-

pacitance of a given number of words or bits/word. The total square error between

measured data points (Table 1 and 2) and fitting function can be expressed as:

𝐸 = ∑(𝑎√𝐿𝑜𝑎𝑑 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑟 𝑠𝑖𝑧𝑒)
2

(17)

Finally, to minimize the error, equation (17) must be partially derivated with respect to

𝐿𝑜𝑎𝑑 and equated to zero.

3.2.2 Adapting the Method of Logical Effort for optimal inverter
sizing

In the previous section, in order to find optimal logic gate sizes, circuit had to be simu-

lated many times while varying its size and adjusting logic gates until fastest size was

found. In the present work’s case where memory size is relatively small and there is

only one variable gate in series, it was not over time-consuming. However, this method

becomes labour intensive with large circuits and with more than one gate in series.

One possible solution to address this problem is the Logical Effort Method. In this work,

it was adapted only for inverters that drive wwl, rwl (Figure 9) and rd (Figure 5) lines.

However, this method can be used to any (scalable) logic gate in the circuit.

Figure 9. Part that comes after row decoder and responsible for reading and writing
bits into cells.

18

First, capacitances of logic gates and load should be estimated. Inverter’s and NAND’s

input capacitances can be found using the testbench from [8, p. 308].

Capacitive load for both wwl and rwl from Figure 9 consist of two components: the par-

asitic capacitance of the metal wire that connect SRAM cells in a word and the diffusion

capacitance of access transistors. To estimate these load capacitances for both wwl

and rwl in a single cell testbench (Figure 10) was developed and used.

Figure 10. Testbench for estimating load capacitances of wwl and rwl in SRAM cell.

Testbench consists of the step function voltage source and the resistor with some

known resistance. The cell’s wwl (or rwl) load capacitance can be calculated from the

propagation delay as follows:

𝑡𝑝𝑑 = ln 2 ∙ 𝑅𝐶 (16)

𝐶 =
𝑡𝑝𝑑

ln 2 ∙ 𝑅
(17)

Finally, as formula (14) would suggest, NAND’s logical effort must be known. As a re-

minder, the logical effort of an inverter is equal to 1. To find the logical effort of NANDs,

placed before inverters that drive wwl and rwl lines, testbench from [8, p. 316] was

used. All obtained results and calculations based on them are presented in next chap-

ter (Chapter 4).

19

4. RESULTS AND DISCUSSION

Optimal inverter sizes were found for a different number of words and bits/word. Size of

some of the gates depends only on the number of words but does not depend on the

number of bits/word. Example of such inverter is one that drives global wr or rd signals.

On the contrary, sizes of wwl or rwl drivers depend only on the number of bits. In other

words, inverters that drive vertical lines depend on a number of words. All these line

drivers consist of two inverters in series. Results presented in Table 1 relate to second

inverters, while first one was scaled to 1.

Table 1. Optimal sizes of second inverter in different lines depending on load

words rd wr addr bit_in

8 3 3 3 2
16 4 4 4 2
32 6 5 6 3
64 8 8 8 4

Sizes of horizontal line drivers depend on the number of bits. These drivers are rwl and

wwl and their sizes can be found in Table 2.

Table 2. Optimal sizes of inverter in different lines depending on load

bits/words rwl wwl

8 3 4
16 4 6
32 7 8
64 10 11

Inverter that comes after address NAND in the decoder is also driving horizontal lines

(2 NAND’s from Figure 9). However, its size does not depend (as the Logical Effort

Method and empirical data would suggest) on the size of the memory, because it lies

between two fixed sized NAND’s. The optimal size of this inverter, regardless how

many bits and how many words there are in the memory, is always equal to 2.

Absolute read and write delay values for the fixed-sized memory (32 words and 32

bits/word) and differently sized inverters that drive wwl and rwl lines were measured as

well. Before measurement, the memory array was filled with sequences of ones and

zeros in such way that: 1 word – 1010…1, 2 word – 0101…0 and so on. The read de-

lay was measured from asserting address on addr and appearance of the stored value

20

on bit_out. During the write delay, the word with complement values was asserted in

bit_in and time difference between address assertion and value appearance in a cell

was measured. All obtained values can be found in Table 3.

Table 3. Absolute read and write delay values for 32x32 SRAM memory with dif-
ferently sized inverter drivers

Inverter size
Delay (ns)

rwl wwl

3 1.0440 0.64903

4 1.0261 0.61255

5 1.0210 0.59426

6 1.0201 0.58498

7 1.0231 0.58098

8 1.0270 0.58013

9 1.0324 0.58143

10 1.0381 0.58425

11 1.0432 0.58808

12 1.0484 0.59275

It can be seen from Table 3 that delay variation caused by different inverter sizes is not

crucial. Moreover, circuits commonly experience different sorts of environmental im-

pacts. Some of these, such as temperature rise inside or outside a chip or a voltage

drops may slow down a circuit operation. To see how delay, due to these impacts, is

comparable to delay caused by non-optimal inverter size same circuit with optimal in-

verter sizes were simulated with lower voltages and higher temperatures (Table 4). De-

lay, as previously, was measured in ns.

21

Table 4. Delay variations caused by temperature rise and voltage drop.

 Vdd \ t 25 °C 50 °C 75 °C

rw
l

1.8 V 1.0231 1.0460 1.0639

1.7 V 1.1067 1.1293 1.1414

1.6 V 1.2203 1.2376 1.2491

w
w

l

1.8 V 0.58013 0.59585 0.61135

1.7 V 0.61716 0.63338 0.64914

1.6 V 0.66263 0.67883 0.69464

It can be seen, that even small voltage drop and/or rise in temperature has more signif-

icant impact on the delay than erroneously chosen inverter size. Thus, for example, if

temperature rises from 25 °C to 50 °C and supply voltage drops from 1.8 V to 1.7 V, it

will cause the delay rise in optimally chosen inverter that drives wwl from 0.58013 ns to

0.63338 ns which is 9,1%. Simultaneously, if the inverter size is two times smaller than

optimal (4 instead of 8), the delay grows from 0.58013 ns to 0.61255 ns which is 5,6%.

Finally, the Logical Effort Method was adapted to inverters that drive wwl, rwl (Figure 8)

and rd (Figure 5). All measurements required for the adaptation were extracted from

simulations using testbenches mentioned in previous chapter (Chapter 3). These re-

sults with explanations can be seen in Table 5.

22

Table 5. Extracted testbench results needed for the Logical Effort Method

Description Symbol Value

Unit inverter’s input capacitance 𝐶𝑖𝑛,𝑖𝑛𝑣 2.4687 fF

NAND’s first input capacitance (global) 𝐶𝑖𝑛1,𝑁𝐴𝑁𝐷 3.0796 fF

NAND’s second input capacitance 𝐶𝑖𝑛2,𝑁𝐴𝑁𝐷 2.4769 fF

SRAM cell’s wwl capacitance 𝐶𝑤𝑤𝑙,𝐶𝐸𝐿𝐿 2.5183 fF

SRAM cell’s rwl capacitance 𝐶𝑟𝑤𝑙,𝐶𝐸𝐿𝐿 1.5331 fF

NAND’s logical effort 𝑔𝑁𝐴𝑁𝐷 1.043

By using all simulated values, sizes of inverters that drive wwl depending on the num-

ber of words can be found in the following way. First, the path effort (5) must be found.

There are two identical NAND’s in parallel so the branching effort 𝐵 is equal to 2. The

logical effort of the NAND was 𝑔𝑁𝐴𝑁𝐷 = 1.043 and the logical effort of the inverter is 1

so the total path logical effort is 𝐺 = 1.043 ∙ 1 = 1.043. The path electrical effort is equal

to output to input capacitance ratio. The output capacitance is a number of cells in a

word times cell’s wwl capacitance. If there are 𝑥 cells in a word, then the output capaci-

tance is 𝐶𝑜𝑢𝑡 = 2.5183𝑥 fF. The input capacitance consists of the doubled NAND ca-

pacitance because there are two NAND’s connected to the same node and is

𝐶𝑖𝑛 = 2 ∙ 2,4769 = 4,9538 fF. Therefore, the path electrical effort is

𝐻 =
𝐶𝑜𝑢𝑡

𝐶𝑖𝑛
=

2.5183𝑥

4,9538
= 0.5083𝑥 and the path effort is

𝐹 = 𝐺𝐵𝐻 = 1.043 ∙ 2 ∙ 0.5083𝑥 = 1.0603𝑥. There are two stages so the equalized stage

effort is 𝑓 = √𝐹 = √1.0603𝑥 = 1.03√𝑥. Finally, to find the optimal inverter size, the ca-

pacitance transformation formula (14) must be used. To drive a word with 𝑥 cells with

least delay, the inverters’ input capacitance must be equal to

𝐶𝑖𝑛,𝑖𝑛𝑣 =
𝐶𝑜𝑢𝑡∙𝑔𝑖𝑛𝑣

𝑓̂
=

2.5183𝑥∙1

1.03√𝑥
= 2.44√𝑥 fF. To map the capacitance back to size, calcu-

lated value must be divided by a unit inverter’s capacitance and thus

𝐼𝑛𝑣𝑒𝑟𝑡𝑒𝑟 𝑠𝑖𝑧𝑒𝑤𝑤𝑙 =
2.44√𝑥

2.4687
= 0.9883√𝑥. By making similar actions the same value for rwl

was found to be 𝐼𝑛𝑣𝑒𝑟𝑡𝑒𝑟 𝑠𝑖𝑧𝑒𝑟𝑤𝑙 = 0.5465√𝑥. In case of rd, the capacitive load contrib-

utes to the NAND’s input capacitance and depends on the number of words.

23

Thus, if there are 𝑥 words, then load is equal to 3.0796𝑥 fF. If first inverter is scaled to

1, then the path effort is 𝐻 =
3.0796𝑥

2.4687
= 1.2474𝑥. There are only two inverters in series

and thus the branching effort 𝐵 = 1, 𝐺 = 1 and 𝑓 = √1.2474𝑥 = 1.1169√𝑥. Size of the

second inverter must be 𝐼𝑛𝑣𝑒𝑟𝑡𝑒𝑟 𝑠𝑖𝑧𝑒𝑟𝑑 =
3.0796𝑥

1.1169√𝑥
: 2.4687 = 1.1168√𝑥.

To validate above calculated results, model, based upon experimental data from Table

2 and partially from Table 3, can be used. The square root fitting function is in a form of

𝐼𝑛𝑣𝑒𝑟𝑡𝑒𝑟 𝑠𝑖𝑧𝑒 = 𝑎√𝑛𝑏𝑖𝑡𝑠, where 𝑎 is a coefficient to be found. Cumulative difference be-

tween this function and data points from Table 2 in square is a total error (16) to be

derivated and equated to zero. For rwl it can be found as follows:

𝐸 = (𝑎√8 − 3)
2

+ (𝑎√16 − 4)
2

+ (𝑎√32 − 7)
2

+ (𝑎√64 − 10)
2

(18)

By taking partial derivative of (18) with respect to 𝑎 and equating it to zero following

equation is obtained:

120𝑎 − 68√2 − 192 = 0 (19)

This, in turn, leads scaling coefficient 𝑎𝑟𝑤𝑙 to be 1.2. The same procedure was re-

peated for wwl and coefficient was equal to 𝑎𝑤𝑤𝑙=1.4. Finally, for rd it was 𝑎𝑟𝑑=1.02.

All obtained results for wwr, rwl and rd can be seen below (Figures 12, 13 and 14).

Figure 11. Comparative results for rwl.

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70

In
ve

rt
er

 s
iz

e

#bits/word

Read word line (rwl)

Experimental (measured)

Experimental (fitted)

Logical Effort

24

Figure 12. Comparative results for wwl

Figure 13. Comparative results for rd.

It is evident from Figures 11 and 12 that results are not ideal. The Logical Effort Method

always suggests making inverter size smaller than optimal. However, in case of rd,

curves are close enough to each other.

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70

In
ve

rt
er

 s
iz

e

#bits/word

Write word line (wwl)

Experimantal (measured)

Logical Effort

Experimantal (fitted)

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70

In
ve

rt
er

 s
iz

e

#words

Read (rd)

Experimantal (measured)

Logical Effort

Experimantal (fitted)

25

The results for rwl, wwl and rd, and how capacitances for each part were extracted,

would suggest, that parasitic capacitances of the cell were underestimated. Memory

cell has a very tight and complex morphology. This probably leads to a capacitive cou-

pling and other parasitic effects such as Millers capacitance [13]. For these reasons,

obtaining of more precise results, would require development of a more sophisticated

testbench.

26

5. CONCLUSION

In this work configurable SRAM generator with scalable logic gates was implemented.

Needed capacitances and other values of logic gates and memory cell were estimated

by simulation using testbenches described in [8]. The Logical Effort Method was

adapted to developed SRAM and its architectural constraints. The additional empirical

model was developed upon simulation results in order to verify the Logical Effort

Method’s workability. The difference in results was studied and its significance was

evaluated.

The results for the second inverter in rd line have shown that the Logical Effort Method

gives accurate estimation for delay-optimal logic gate sizes. Even if size is not fully op-

timal, additional delay caused by it is in order of picoseconds and thus is not significant.

In addition, the delay caused by a small voltage drop and temperature rise have

caused more significant impact on a delay, than non-optimal logic gate size. For exam-

ple, temperature rise from 25 °C to 50 °C with supply voltage drop from 1.8 V to 1.7 V,

have caused delay growth in 9,1%. In the meantime, inverter that is two times smaller

than optimal (4 instead of 8) have caused delay growth only in 5,6%.

However, the results for rwl and wwl line drivers were not that accurate and inverters

were undersized. Even though model have not produced fully optimal inverter sizes,

they are still applicable and will not cause large additional delay if word’s length stays

relatively small.

All abovementioned results and methods used to estimate capacitances suggest that

rwl and wwl driver sizes were deviated because SRAM cell’s parasitic capacitances

were underestimated. Thus, the more sophisticated method in parasitic capacitance

extraction is required. As an example, approach used in the testbench for extracting

capacitances from logic gates may be used. Parallel inverters driven by same driver

should be connected to a line with interested parasitic capacitance and test capacitor.

Parasitic capacitance can be found by sweeping test capacitor value and comparing

delays until they are equal. Also, to make results more realistic, word of 16 bits should

be generated. Then sequence of “1”s and “0”s should be written into the word and then

obtained value for the capacitance can be divided by 16.

All in all, the Logical Effort Method can be used in a design of a custom or semi-custom

circuit such as SRAM, where scalable logic gates can be adjusted to achieve the fast-

27

est topology. This work can serve as a guide during development of such circuit. How-

ever, care should be taken during capacitance extraction from involved logic gates and

structures that act as load. Although even rough estimation can still be applicable if tim-

ing is not critical. Finally, obtained results can be easily validated and model can be ad-

justed accordingly by sweeping size of the interested logic gate in both directions and

by comparing obtained delays.

28

REFERENCES

[1] J. Sell, The Xbox One X Scorpio Engine, IEEE Micro, Vol. 38, No. 2, Mar/Apr

2018, pp. 53-60.

[2] D. Harris, R. F. Sproull, I. Sutherland, Logical Effort: Designing Fast CMOS Cir-

cuits, San Francisco, Calif: Morgan Kaufmann Publishers, 1999.

[3] S. N. Panda, S. Padhi, V. Phanindra, U. Nanda, S. K. Pattnaik and D. Nayak, De-

sign and implementaton of SRAM macro unit, 2017 International Conference on

Trends in Electronics and Informatics (ICEI), Tirunelveli, 2017, pp. 119-123.

[4] C. Barry, Modern Embedded Computing: Designing Connected, Pervasive, Me-

dia-Rich Systems. Modern Embedded Computing, St. Louis: Elsevier Science &

Technology, 2012, pp. 66-67.

[5] P. Athe and S. Dasgupta, A comparative study of 6T, 8T and 9T decanano

SRAM cell, 2009 IEEE Symposium on Industrial Electronics & Applications,

Kuala Lumpur, 2009, pp. 889-894.

[6] P. N. V. Kiran and N. Saxena, Design and analysis of different types SRAM cell

topologies, 2015 2nd International Conference on Electronics and Communica-

tion Systems (ICECS), Coimbatore, 2015, pp. 1060-1065.

[7] P. Sharma, R. Anusha, K. Bharath, J. K. Gulati, P. K. Walia and S. J. Darak,

Quantification of figures of merit of 7T and 8T SRAM cells in subthreshold region

and their comparison with the conventional 6T SRAM cell, 2016 20th Interna-

tional Symposium on VLSI Design and Test (VDAT), Guwahati, 2016, pp. 1-2.

[8] D. Harris, N. Weste, CMOS VLSI Design: a Circuits and Systems Perspective,

4th ed., Boston (MA): Pearson/Addison-Wesley, 2010.

[9] H. Kaeslin, Digital integrated circuit design: from VLSI architectures to CMOS

fabrication, Cambridge University Press, 2008.

[10] H. Yamauchi, A Discussion on SRAM Circuit Design Trend in Deeper Nanome-

ter-Scale Technologies, IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, Vol. 18, No. 5, May 2010, pp. 763-774.

[11] R. Baker, CMOS: Circuit Design, Layout, and Simulation, Third Edition, Vol. 17,

Wiley, 2010.

[12] D. Clein, G. Shimokura, CMOS IC layout: concepts, methodologies, and tools,

Newnes, 2001.

29

[13] K. Brzozowski, The miller effect in digital CMOS gates and power consumption

analysis, 2012 International Conference on Signals and Electronic Systems

(ICSES), IEEE, Sep. 2012, pp. 1–6.

	1. Introduction
	2. theoretical background
	2.1 Static random-access memory
	2.2 L language and ”Led” layout editor
	2.3 The Method of Logical Effort

	3. methodology
	3.1 SRAM implementation
	3.1.1 SRAM cell
	3.1.2 Row circuitry
	3.1.3 Column circuitry

	3.2 SRAM optimization
	3.2.1 Building empirical model for optimal inverter sizing
	3.2.2 Adapting the Method of Logical Effort for optimal inverter sizing

	4. results AND DISCUSSION
	5. conclusion
	REFERENCES

