
Pauli Jaakkola

A TYPE SYSTEM FOR FIRST-CLASS
RECURSIVE ML MODULES

Faculty of Information Technology and Communication Services
Master of Science Thesis

November 2020

i

ABSTRACT

Pauli Jaakkola: A Type System for First-Class Recursive ML Modules
Master of Science Thesis
Tampere University
Computing and Electrical Engineering
November 2020

Standard ML (SML), OCaml and other programming languages in the ML language family
offer a particularly expressive module system. This ML module system provides hierarchical
namespacing with structures, fine-grained interfaces with translucent signatures, implementation-
side data abstraction with sealing as well as client side data-abstraction and generic programming
with functors.

Languages with the ML module system are stratified into two levels: core ML and modules.
There is extensive duplication of functionality between these levels: records and structures, types
and signatures, functions and functors. The second-class nature of modules also limits expres-
sivity as some features are available only in core ML or only in modules.

ML languages typically limit recursive definitions to very specific patterns: groups of mutually
recursive functions or type definitions connected with and keywords. The restriction on type def-
initions ensures that equirecursive types are not needed. The restriction on function definitions
ensures that recursive values are well-founded, preventing runtime use of uninitialized values.

Recursive modules are not part of the Definition of Standard ML but are supported by language
extensions in several SML compilers as well as OCaml. Just like mutually recursive functions and
types, mutually recursive modules are invariably required to be syntactically grouped together.
Implementations of recursive ML modules also struggle with the double vision and recursive link-
ing problems. In double vision a recursive module implementing abstract types fails to equate its
exported abstract types with their implementations that should not be hidden inside the module.
The recursive linking problem is to find an elegant and statically well-founded method of recur-
sively linking modules not defined in the same group of recursive definitions or maybe not even
the same compilation unit.

The paper “1ML – Core and Modules United” successfully collapsed core ML and modules
into one language with first-class modules. Recursive modules have been deployed in production
compilers and several methods to avoid double vision are known from the literature. However
first-class and recursive modules have not been combined despite the availability of intermedi-
ate languages which can both act as targets of elaborating type systems like 1ML and support
recursive modules.

This thesis develops Recursive 1ML (R1ML), a type system for recursive first-class modules.
R1ML is an elaborating type system in the style of 1ML. R1ML targets a variant of System Fc,
which was created as an intermediate language for the Glasgow Haskell Compiler (GHC). Haskell
does not have ML modules but the parametric polymorphism and type equality coercions of Fc are
general enough to support recursive first-class modules while avoiding the double vision problem.
This thesis also proves that R1ML is sound and decidable but incomplete in several (tolerable)
ways. There was no time nor space to consider the recursive linking problem.

Keywords: programming languages, type systems, ML language family, ML modules, recursive
modules, first-class modules

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

TIIVISTELMÄ

Pauli Jaakkola: Tyyppijärjestelmä ensiluokkaisille rekursiivisille ML-moduuleille
Diplomityö
Tampereen yliopisto
Tieto- ja sähkötekniikka
Marraskuu 2020

Standard ML (SML), OCaml ja useat muut kielet ML-kieliperheessä omaavat erityisen ilmai-
suvoimaisen moduulijärjestelmän. Tämä ML-moduulijärjestelmä tarjoaa hierarkkiset nimiavaruu-
det struktuureilla, hienojakoiset rajapinnat läpikuultavilla tunnisteilla, toteuttajan data-abstraktion
sinetöinnillä ja käyttäjän data-abstraktion funktoreilla.

ML-moduuleilla varustetut kielet on kerrostettu kahteen kerrokseen: ydin-ML:ään ja moduulei-
hin. Näiden tasojen välillä esiintyy laajamittaista toiminnallisuuden toistoa: tietueet ja struktuurit,
tyypit ja tunnisteet, funktiot ja funktorit. Myös moduulien toisluokkainen luonne rajoittaa ilmaisu-
voimaa koska jotkin ominaisuudet ovat saatavilla vain ydin-ML:ssä tai vain moduuleissa.

Tyypillisesti ML-kielet rajoittavat rekursion vain tiettyihin muotoihin: and-avainsanalla yhdistet-
tyjen keskinäisrekursiivisten funktio- tai tyyppimääritelmien ryhmiin. Tyyppimääritelmien rajoittami-
nen varmistaa, ettei ekvirekursiivisia tyyppejä tarvita. Funktiomääritelmien rajoittaminen varmis-
taa, että rekursiiviset arvot ovat hyvin perustettuja estäen ajonaikaisen alustamattomien arvojen
käytön.

Rekursiiviset moduulit eivät ole osa Standard ML:n määritelmää mutta ovat tuettuja kielilaa-
jennuksilla useissa SML-kääntäjissä kuten myös OCamlissa. Aivan kuten keskinäisrekursiiviset
funktiot ja tyypit, keskinäisrekursiiviset moduulit täytyy poikkeuksetta ryhmitellä syntaktisesti yh-
teen. Rekursiivisten ML-moduulien toteutukset kamppailevat myös kaksinnäön ja rekursiivisen lin-
kityksen ongelmien kanssa. Kaksinnäössä abstrakteja tyyppejä toteuttava moduuli epäonnistuu
samaistamaan viemänsä abstraktit tyypit niiden toteutuksiin, joiden ei pitäisi olla olla kätkettyjä
moduulin sisällä. Rekursiivisen linkityksen ongelma on elegantin ja staattisesti hyvin perustetun
menetelmän löytäminen sellaiseen rekursiiviseen moduulien linkitykseen, jossa linkitettäviä mo-
duuleja ei ole määritelty samassa rekursiivisten määritelmien ryhmässä tai ehkei edes samassa
käännösyksikössä.

Artikkeli “1ML – Core and Modules United” luhisti menestyksekkäästi ydin-ML:n ja moduulit
yhdeksi kieleksi, jossa on ensiluokkaiset moduulit. Rekursiiviset moduulit on otettu käyttön tuo-
tantokääntäjissä ja kirjallisuudesta tunnetaan useita tapoja välttää kaksinnäkö. Ensiluokkaisia ja
rekursiivisia moduuleja ei ole kuitenkaan yhdistetty vaikka saatavilla on välikieliä, jotka voivat sekä
toimia 1ML:n tapaisten kehittelevien tyyppijärjestelmien kohteina että tukea rekursiivisia moduu-
leja.

Tämä diplomityö kehittää Rekursiivisen 1ML:n (R1ML), joka on ensiluokkaisilla rekursiivisil-
la moduuleilla varustettu tyyppijärjestelmä. R1ML on 1ML:n tyylinen kehittelevä tyypijärjestelmä.
R1ML:n kehittelykohde on GHC:tä (Glasgow Haskell Compiler) varten kehitetty välikieli System
Fc. Haskellissa ei ole ML-moduuleja, mutta System Fc:n parametrinen polymorfismi ja tyyppien
yhtäläisyyspakotukset ovat riittävän yleisiä tukeakseen ensiluokkaisia rekursiivisia moduuleja vält-
täen kaksinnäön. Tämä diplomityö myös todistaa, että R1ML on tyyppiturvallinen ja algoritmisesti
ratkeava, mutta epätäydellinen useilla (siedettävillä) tavoilla. Rekursiivisen linkityksen ongelmien
tarkasteluun ei ollut aikaa eikä tilaa.

Avainsanat: ohjelmointikielet, tyyppijärjestelmät, ML-kieliperhe, ML-moduulit, rekursiiviset moduu-
lit, ensiluokkaiset moduulit

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.

iii

PREFACE

This thesis work was conducted at Tampere University in 2019 and 2020. It was not
commissioned by any organisation; the subject arose from my continuing interests and I
performed this research for its own sake.

I would like to thank my examiners Kari Systä and Jyrki Nummenmaa for their feedback,
especially given such an unusual subject and lengthy thesis. I am also grateful to my em-
ployer Metosin for granting me paid and unpaid study leave to engage in such impractical
research.

A special thanks to Vesa Karvonen for unexpected and insightful discussions around this
thesis and 1ML. Most of all thanks to my spouse Sinikka for unwavering moral support as
well as proofreading all this gibberish.

Tampere, 17th November 2020

Pauli Jaakkola

iv

CONTENTS

1 Introduction . 1

2 ML and Modules . 3

2.1 A Brief History of Standard ML and OCaml 3

2.2 ML Modules . 4
2.2.1 Structures . 4
2.2.2 Paths . 5
2.2.3 Signatures . 5
2.2.4 Signature Matching . 6
2.2.5 Type Refinement . 7
2.2.6 Sealing . 7
2.2.7 Functors . 9
2.2.8 Functor Generativity . 11

2.3 Recursion in ML . 12
2.3.1 Recursive Types . 12
2.3.2 Recursive Terms . 12
2.3.3 Recursive Modules . 13
2.3.4 Double Vision . 14

2.4 First-Class Modules . 14

2.5 R1ML . 18

3 Untyped Lambda-Calculus . 19

3.1 Term Equivalence . 19

3.2 Evaluation . 20

3.3 Evaluation Strategies . 21

4 Type Theory Preliminaries . 23

4.1 Simply Typed Lambda-Calculus . 23
4.1.1 Type Checking . 23
4.1.2 Extensions . 26
4.1.3 Type Assignment . 27

4.2 Subtyping . 28
4.2.1 Record Subtyping . 29
4.2.2 Impact on Other Extensions . 30

4.3 System F . 31
4.3.1 Type Checking . 32
4.3.2 Existential Types . 32
4.3.3 Type Assignment . 34

4.4 HM and MLF . 34

v

4.5 System Fη . 36
4.5.1 Quantifier Subtyping . 36
4.5.2 Elaborating Expression Typing and Focalization 38

4.6 System Fω . 39
4.6.1 Decidability . 41

5 F-ing Modules and 1ML . 43

5.1 Semantic Types . 44

5.2 Effects . 45

5.3 Structures . 45

5.4 Type Members . 47

5.5 Sealing . 47

5.6 Functors . 48

6 System Fc . 50

6.1 Term Typing . 51

6.2 Type Kinding . 53

6.3 Coercion Kinding . 53

7 The R1ML Type System . 55

7.1 Syntax . 55
7.1.1 Semantic Types . 57
7.1.2 Type Environments . 58

7.2 Lookup . 59

7.3 Types . 62
7.3.1 Elaboration . 62
7.3.2 Normalization . 64
7.3.3 Well-Formedness . 65

7.4 Terms . 66
7.4.1 Expression Type Synthesis . 66
7.4.2 Expression Type Checking . 70
7.4.3 Definition Typing . 70
7.4.4 Compilation Units . 71

7.5 Type Matching . 71
7.5.1 Focalization and Articulation . 72
7.5.2 Subtyping . 73
7.5.3 Unification . 76

8 Metatheory of R1ML . 79

8.1 Soundness . 79

8.2 Decidability . 80

8.3 Completeness . 82

9 Future Work . 83

9.1 Declarative System . 83

9.2 Practicality . 83

vi

9.3 Well-Founded Recursion . 84

9.4 Recursive Linking . 84

9.5 Row Typing . 85

9.6 Effect System . 85

9.7 Impredicative Instantiation . 85

9.8 Implicit Parameters . 86

9.9 Non-Continuations . 86

10 Conclusion . 87

References . 89

vii

LIST OF FIGURES

3.1 Abstract syntax of λ-calculus . 19
3.2 Extensional equivalence of λ-terms . 20
3.3 Reduction rules for λ-terms . 21
3.4 Compact presentation of reduction rules for λ-terms 21
3.5 Call by value evaluation for lambda-calculus 22

4.1 Abstract syntax of the simply typed lambda-calculus 23
4.2 Typing rules for the simply typed lambda-calculus 24
4.3 Abstract syntax of an extended simply typed lambda-calculus 26
4.4 Typing rules for extensions to the simply typed lambda-calculus 26
4.5 Type assignment rules for the simply typed lambda-calculus 28
4.6 Declarative subsumption rule . 29
4.7 Application rule with domain subtyping . 29
4.8 Record subtyping . 29
4.9 Local definitions, upcasting, booleans and conditionals with subtyping . . . 30
4.10 Abstract syntax of System F . 32
4.11 Introduction and elimination rules for universal types 32
4.12 Abstract syntax of System F with existentials 33
4.13 Introduction and elimination rules for existentials 33
4.14 The System F instance relation ⊑F . 34
4.15 Instantiation and generalization typing rules 34
4.16 Hindley-Milner monotypes and type schemes 35
4.17 The prenex polymorphism instance relation ⊑HM 35
4.18 Typing rules of the Hindley-Milner type system 35
4.19 MLF monotypes and type schemes . 36
4.20 Quantifier subtyping . 37
4.21 System Fη typing rules . 38
4.22 Focalization . 38
4.23 Abstract syntax of System Fω . 39
4.24 System Fω changes from System F . 40
4.25 Kinding rules for System Fω . 41
4.26 Type equivalence in System Fω . 41

5.1 Abstract (desugared) syntax of 1ML . 43
5.2 Semantic types of 1ML . 44
5.3 Effect subtyping and join . 45
5.4 1ML structures (excerpt) . 46

viii

5.5 1ML structure signatures (excerpt) . 46
5.6 1ML first-class types (excerpt) . 47
5.7 1ML sealing . 48
5.8 1ML functors (excerpt) . 48

6.1 Abstract syntax of System Fc . 50
6.2 System Fc typing rules . 51
6.3 Type kinding in System Fc . 53
6.4 Coercion kinding in System Fc . 54

7.1 Abstract (desugared) syntax of R1ML . 55
7.2 Syntactic sugar for types and declarations 56
7.3 Syntactic sugar for expressions and definitions 56
7.4 Semantic types . 57
7.5 Type environments . 58
7.6 Lookup Γ ⊢ def(x) ⇒ (α .Σ | ιΣ, e) ⊣ ∆ . 60
7.7 Type elaboration I: Γ ⊢ T ⇝ Ξ ⊣ ∆ and Γ ⊢ T ⇝! Σ ⊣ ∆ 62
7.8 Type elaboration II: record types . 63
7.9 Type elaboration III: function types . 64
7.10 Type normalization Γ ⊢ Σ −→ Σ|⊥⇝ γ and Γ ⊢ τ · τ −→ τ |⊥⇝ γ 65
7.11 Well-formedness of semantic types Γ ⊢ Ξ 65
7.12 Expression type synthesis I: Γ ⊢ E ⇒ι Σ ⊣ ∆⇝ e 66
7.13 Expression type synthesis II . 67
7.14 Expression type synthesis III: records . 69
7.15 Expression type synthesis IV: booleans . 69
7.16 Expression typechecking Γ ⊢ E ⇐ι α.Σ ⊣ ∆⇝ e 70
7.17 Definition typing Γ ⊢ x(: T)? = E ⇒ι⊣ ∆⇝ x = e 71
7.18 Typing a compilation unit x(: T)? = E ⇒ ι⇝ e 71
7.19 Focalization Γ ⊢ Σ ≫ Σ⇝ Σ⇝ f and Γ ⊢ Σ≫ Σ⇝ Σ⇝ f 72
7.20 Articulation Γ ⊢ α̂ :≫ Σ ⊣ ∆ . 73
7.21 Subtyping I: Γ ⊢ Ξ <:occ Ξ ⊣ ∆⇝ f and Γ ⊢ Ξ ≲:occ Ξ ⊣ ∆⇝ f 74
7.22 Subtyping II . 75
7.23 Unification I: Γ ⊢ Ξ ∼ Ξ ⊣ ∆⇝ γ and Γ ⊢ Ξ ≈ Ξ ⊣ ∆⇝ γ 77
7.24 Unification II . 78

8.1 Type weights . 81

ix

LIST OF PROGRAMS AND ALGORITHMS

2.1 An immutable stack structure implemented with standard lists 4
2.2 The inferred signature of ListStack . 6
2.3 A signature for abstract immutable stack structures 6
2.4 Refining the STACK signature with where . 7
2.5 The refined STACK signature . 7
2.6 A signature for abstract immutable queue structures 7
2.7 An immutable queue structure implemented with ListStack 8
2.8 An immutable queue functor . 10
2.9 A concrete instantiation of BankersQueueFun using ListStack 11
2.10 A persistent queue structure from BankersQueueFun 11
2.11 Another list-backed queue module . 11
2.12 File system types . 12
2.13 File system functions . 12
2.14 Modules for the file types . 13
2.15 A demonstration of the double vision problem 15
2.16 Signature for ordered types . 15
2.17 Generic merge sort . 16
2.18 Modules workaround for generic merge sort 16
2.19 Core workaround for generic merge sort . 16
2.20 Generic merge sort with OCaml packaged modules 17
2.21 Generic dup function in Haskell . 17
4.1 Sketch of a type checker for the simply typed lambda-calculus 25
4.2 Parametrically polymorphic identity function in Java 31
4.3 Subtyping identity function in Java . 31

x

LIST OF SYMBOLS AND ABBREVIATIONS

B a binding

E, e expressions

P a pattern

T a type

Γ,Θ,∆ type environments

Σ a non-existential semantic type

Ξ a semantic type

α, β (rigid) type variables

ι an effect

ϵ the empty sequence or grammar production

γ a coercion type

α̂, β̂ unification variables

κ a kind

σ a type scheme

τ a monotype

θ a substitution

Σ a type template

c an axiom variable

f, g function expressions

x, y term variables

1ML 1st-class Module Language

Caml Categorical Abstract Machine Language

CPS Continuation Passing Style

FIFO First In First Out

GHC the Glasgow Haskell Compiler

HM Hindley-Milner

INRIA Institut national de recherche en sciences et technologies du
numérique

LCF Logic for Computable Functions

xi

LIFO Last In First Out

MLF ML raised to the power of System F

OCaml Objective Categorical Abstract Machine Language

R1ML Recursive 1st-class Module Language

RTG Recursive Type Generativity

SML Standard ML

SML/NJ Standard ML of New Jersey

STLC simply typed lambda-calculus

System Fη System F modulo η-expansion

1

1 INTRODUCTION

Recently there has been an unprecedented surge of interest in functional programming.
Some of it can be attributed to the rise of ubiquitous multiprocessors and the difficulty
of sharing mutable state correctly between threads. But the referential transparency of
pure functions (side-effectless procedures) greatly simplifies reasoning even in single-
threaded contexts and largely eliminates the need for mocks and stubs in testing. Object-
oriented programming promised reliability and composability by encapsulating state into
objects. Perhaps programmers are starting to see reasoning about state as so compli-
cated that reliability and composability is better approached by minimizing the amount of
state altogether than by just sweeping it under a rug of objects.

Modularity is the key enabling technology for successful ‘programming in the large’ –
the development and maintenance of large programs and also the pervasive sharing of li-
braries that characterizes modern software development. Objects support modularity and
interfaces as well as polymorphism and encapsulation of state. The composability and
reliability of pure functions increases reusability but how does functional programming
support programming in the large?

Most programming methodologies do not share the totalitarian zeal of object-oriented pro-
gramming. Functional programming is primarily the enemy of state and has few opinions
on constructs for programming in the large. Nevertheless the ML family of functional-first
languages has another crown jewel beside Hindley-Milner type inference: the ML module
system.

The ML module system was introduced during the creation of the Definition of Standard
ML (SML) and is also found in slightly different form in the other mainline ML variant
Objective Categorical Abstract Machine Language (OCaml). Unlike most module sys-
tems in use today, the ML module system is far from a minimal afterthought. It pro-
vides hierarchical namespace management with structures, fine-grained interfaces with
translucent signatures, implementation-side data abstraction with sealing and client side
data-abstraction with functors. The ML module system has extensive support not only for
modularity and information hiding but also ‘generic programming’ [12].

The ML module system is not specific to functional programming or linked with other
features of ML. Indeed modules and core ML interact so little that the Definition of Stan-
dard ML [27] separates core and modules into distinct sets of chapters. The upside of
this stratification is that ‘ML modules’ could also be transplanted to most non-ML pro-

2

gramming languages. Leroy’s Modular Module System [24] amply demonstrates both
the expressive power and language-independence of the ML module system by using
functors to build a module system that is generic over the core language. Despite such
undeniable constructive proof the module system has not spread outside the ML family
or even to some ML variants such as Haskell, F# and Elm.

The downside of stratification is that positioning modules strictly above the core language
makes them second-class citizens1, which is inherently limiting. 1st-class Module Lan-
guage (1ML) [38] managed to collapse modules and core into one language, with first-
class modules by replacing stratification with a predicativity restriction.

The second-class nature of modules is shared by most other module systems for stati-
cally typed languages such as Ada and Haskell. Another typical shortcoming of module
systems that ML modules are not exempt of is the limited (OCaml) or non-existent (SML)
support for mutual recursion between modules. Often refactoring modules to be non-
recursive improves the separation of concerns, but claiming that this is always the case
is akin to Stockholm syndrome. Making the module dependency graph acyclic might re-
quire compromising the separation of concerns by mixing mutually recursive concerns in
the same module or devising complicated and brittle workarounds to achieve separation
without cross-module recursion.

This thesis develops a type system for Recursive 1st-class Module Language (R1ML),
a programming language in the ML language family. Unlike SML or OCaml, R1ML has
no stratification between core and module languages, seamlessly supporting first class
modules. This unification is due to R1ML being largely based on 1ML.

R1ML is also more flexible than other strict ML dialects in its support for recursion, espe-
cially recursive modules. The well-known double vision issue between recursive modules
and abstract types is avoided by elaborating to a variant of System Fc [44] instead of
standard System Fω like 1ML.

We start with a brief introduction to the ML language family with a focus on the module
system including its main features and the limitations on recursion and of stratification.
This is followed by introductions to the basics of evaluation and type theory needed to
understand the remaining chapters. With that out of the way a chapter on the “F-ing
Modules” approach and its culmination 1ML follows. Then the variant of System Fc used
during typechecking and as the elaboration target of R1ML is defined. Having outlined
those two primary foundations the R1ML type system itself is described in detail. Finally
the viability of the R1ML type system is estimated with the usual metatheoretic properties
of soundness, decidability and completeness. The thesis is concluded with thoughts on
directions for following research.

1Because modules cannot be used as values in the core language.

3

2 ML AND MODULES

The ML module system stands as a high-water mark of
programming language support for data abstraction.

Nevertheless, it is not in a fully evolved state.

Understanding and Evolving the ML Module System [8]

This chapter provides basic information on ML in general and the ML module system in
particular. The limitations on recursion and the second class nature of modules are also
explained.

2.1 A Brief History of Standard ML and OCaml

Starting in 1973, the original ML was the MetaLanguage (implementation and scripting
language) of the Edinburgh Logic for Computable Functions (LCF) theorem prover. Later
its successors became general purpose functional-first programming languages. But as
often happens the acronym stuck because naming is hard. So in the context of program-
ming languages and this thesis ML is not an acronym for Machine Learning – or anything
else.

ML is much like a statically typed Lisp, with garbage collection, first-class functions and
syntactic sugar for singly-linked lists. Unlike the statically typed imperative languages of
the time like Pascal (1970) [49] and C (1972) [15], ML is strongly typed – i.e. actually
type-safe (see Section 4.1.1). ML came with additional cutting edge features like excep-
tion handling, full type inference and algebraic datatypes with pattern matching. Embar-
rassingly those features except exception handling are still cutting edge in the overall
programming language landscape. The type system still evokes admiration:

“The Hindley-Milner type system ([3]; [26]) is a masterpiece of design. It of-
fered a big step forward in expressiveness (parametric polymorphism) at very
low cost. The cost is low in several dimensions: the type system is technically
easy to describe, and a straightforward inference algorithm is both sound and
complete with respect to the specification. And it does all this for programs
with no type annotations at all!” [46]

Despite all these advancements but typically for a scripting language the original ML
lacked support for programming in the large. This lack was acknowledged while the

4

Definition of SML (1990, revised 1997 [27]) was being created. The solution was the
exceptionally expressive ML module system first introduced by MacQueen in [25]. As
witnessed by the epigraph of this chapter the module system was another crown jewel for
SML.

Meanwhile on the other side of the Channel Institut national de recherche en sciences
et technologies du numérique (INRIA) created their own dialect of ML called Categorical
Abstract Machine Language (Caml) (1987) to develop their own theorem prover Coq. The
bytecode-driven Caml Light (1991) reimplementation of Caml adopted a minimal module
system in the vein of Modula-2 instead of the ‘heavyweight’ ML module system [22]. The
Caml Special Light (1995) edition added a native code compiler – and Leroy’s variant of
the ML module system [23]. The final step to OCaml (2000) added an object system [35]
which is rather unique but seldom used in comparison to the module system.

2.2 ML Modules

This section explains the various ML module constructs, but cannot serve as a proper
guide to programming in ML. We start using modules immediately, explaining the inci-
dental core ML syntax encountered on the way. The examples are mostly in SML, but
OCaml has very similar features.

2.2.1 Structures

Lists can be used as immutable stacks. We can be more explicit about this mode of
usage by creating a separate module of list stacks in Listing 2.1. Record-like modules
that consist of core definitions and whose members can be accessed (from outside the
module) with the usual dot notation are called structures in the ML module system.

structure L i s tS tack = struct
type ’ a t = ’ a l i s t

val empty = []
val isEmpty = n u l l
val push = op : :
val pop = L i s t . get I tem
val append = L i s t .@
val reverse = L i s t . rev

end
Listing 2.1. An immutable stack structure implemented with standard lists

In ListStack the stack type is called t and is just an alias for the standard list type. Like
list it is parameterized over the element type which is here called ’a. The parameteri-
zation makes list and ListStack.t type level functions. In SML and OCaml the syntax
of type level function application is backwards; what would be ListStack Int in Haskell

5

or ListStack<Integer> in Java is int ListStack.t here.

The value members are implemented with the empty list [] and various list functions
from the SML Basis top level and List module. The infix operator :: corresponds to the
Lisp cons function; x :: xs prepends the element x to the list xs, allocating a new list.
The op keyword takes an infix operator’s function value. List concatenation @ is also an
infix operator but xs List.@ ys is invalid syntax so List.@ produces the concatenation
function without needing to involve op.

For technical reasons that will be explained in Section 4.6.1 type functions must always
be fully applied in ML. In a system with higher kinded types like Haskell Stack by itself
is a valid type and can be passed around by value on the type level just like a higher order
function is passed around by value on the term level.

2.2.2 Paths

As the previous section already showed value members of modules may be used in
core ML expressions (e.g. ListStack.empty) and types (e.g. ListStack.t) via paths.
For example ListStack.empty is a path expression that denotes the empty stack and
ListStack.t is a path type that denotes the higher-kinded type of stacks. SML uses ‘dot-
ted paths’ which consist of a module name followed by a sequence of structure member
selections while applicative functors (see Section 2.2.8) allow OCaml to extend paths to
mixed sequences of member selections and functor applications. Furthermore type paths
must denote a type member of some structure.

The presence of type paths means that ML modules provide path-dependent types.
In dependently typed systems types may depend on terms (i.e. include value-level
expressions). With path-dependent types the dependence on terms is limited to type
paths.

2.2.3 Signatures

Every module has an interface. In the ML module system interfaces are simply the
types of modules and are called signatures. Listing 2.2 shows the signature inferred
for ListStack.

In this inferred signature t is a transparent type member which means that its imple-
mentation as list is present in the signature. So ListStack.t is not a distinct type but
is equal to list. All the value members also have types that relate to any list and not just
lists that are meant to be used as stacks.

The transparency of the type and values means that the module has no information hid-
ing. Clients of this module can use and abuse the implementation of stacks as lists. So
the representation of these stacks cannot be changed without potentially breaking such
clients. The clients can also freely violate the invariants (i.e. the Last In First Out (LIFO)

6

sig
type ’ a t = ’ a l i s t

val empty : ’ a l i s t
val isEmpty : ’ a l i s t −> bool
val push : ’ a * ’ a l i s t −> ’ a l i s t
val pop : ’ a l i s t −> (’ a * ’ a l i s t) op t ion
val append : ’ a l i s t * ’ a l i s t −> ’ a l i s t
val reverse : ’ a l i s t −> ’ a l i s t

end
Listing 2.2. The inferred signature of ListStack

discipline) of these stacks.

2.2.4 Signature Matching

Instead it would be desirable to create a distinct abstract type of stacks. Listing 2.3
defines a signature for modules implementing abstract immutable stacks.

signature STACK = sig
type ’ a t

val empty : ’ a t
val push : ’ a * ’ a t −> ’ a t
val pop : ’ a t −> (’ a * ’ a t) op t ion

end
Listing 2.3. A signature for abstract immutable stack structures

In this STACK signature the type of stacks t is an abstract type member as its implemen-
tation type is left unspecified. The only value members specified are the empty stack and
the fundamental push and pop operations. The types of the value members refer to the
abstract type t instead of some pre-existing concrete type like list.

Signature matching is a form of structural record subtyping (Section 4.2) of struc-
tures augmented with translucency of type members. ListStack satisfies the STACK

signature since it has all the required members (width subtyping of signatures) with
compatible types (depth subtyping of signatures) and the kind of t is also compatible.
Translucency means that the abstract type ’a t of STACK can be satisfied with other
abstract type members but also with concrete type members like type ’a t = ’a list

here.

7

2.2.5 Type Refinement

Abstract type members of signatures can be refined into transparent ones by specifying
their implementation types with where type1. The example Listing 2.4 refines the stack
type ’a t to be equal to ’a list.

signature LISTED_STACK = STACK where type ’ a t = ’ a l i s t
Listing 2.4. Refining the STACK signature with where

This signature declaration is equivalent to the one in 2.5, but more maintainable (the
Don’t Repeat Yourself principle). Note that the signature LISTED_STACK is not the same
as the inferred signature of ListStack in Listing 2.2 since LISTED_STACK only contains
the members of STACK.

signature LISTED_STACK = sig
type ’ a t = ’ a l i s t

val empty : ’ a l i s t
val push : ’ a * ’ a l i s t −> ’ a l i s t
val pop : ’ a l i s t −> (’ a * ’ a l i s t) op t ion

end
Listing 2.5. The refined STACK signature

ListStack implements both STACK and LISTED_STACK. LISTED_STACK obviously satisfies
STACK, being refined from it. Conversely implementations of STACK that do not implement
’a t with ’a list will not satisfy LISTED_STACK.

2.2.6 Sealing

Queues are another familiar family of abstract types. Listing 2.6 defines a signature for
modules implementing abstract immutable queues.

signature QUEUE = sig
type ’ a t

val empty : ’ a t
val enqueue : ’ a t * ’ a −> ’ a t
val dequeue : ’ a t −> (’ a * ’ a t) op t ion

end
Listing 2.6. A signature for abstract immutable queue structures

This queue signature is very similar to STACK. There is an abstract type of queues t

parameterized over the element type ’a. The empty queue value is required as well as
1OCaml uses with type instead.

8

the fundamental queue operations: enqueue to add an element to the rear of the queue
and dequeue to split the queue into the first element and the rest of the queue if possible.
The stack and queue operations have almost the same types but different semantics,
stacks being LIFO and queues First In First Out (FIFO). But as in most languages those
semantics are not actually specified in the interface itself.

A particularly elegant way to implement immutable queues is to use two immutable stacks
[29, sec. 5.2]. Such an implementation is shown in Listing 2.7.

structure ListsQueue : > QUEUE = struct
type ’ a t = { f r o n t : ’ a L i s tS tack . t , back : ’ a L i s tS tack . t }

val empty = {
f r o n t = L i s tS tack . empty ,
back = L i s tS tack . empty

}

fun fromRawParts (f r o n t , back) =
i f not (L i s tS tack . isEmpty f r o n t)
then { f r o n t , back }
else {

f r o n t = L i s tS tack . reverse back ,
back = L i s tS tack . empty

}

fun enqueue ({ f r o n t , back } , elem) =
fromRawParts (f r o n t , L i s tS tack . push (elem , back))

fun dequeue { f r o n t , back } =
case L i s tS tack . pop f r o n t of
| SOME (head : : f r o n t , back) =>

SOME (head , fromRawParts (f r o n t , back))
| NONE => NONE

end
Listing 2.7. An immutable queue structure implemented with ListStack

A ListsQueue.t is a record of front and back stacks. In an empty queue both stacks are
empty. Enqueueing pushes an element on top of the back stack. Dequeueing pops the
first element of the queue from the top of the front stack and builds a new queue from the
remaining elements. If the front stack is empty NONE is returned.

The dequeue function relies on the invariant that the back stack is only empty if the
front stack is; specifically the first element of the queue is always in the front stack if
present at all. This invariant is maintained by constructing every queue (except empty)
with fromRawParts. If fromRawParts gets an empty front stack it uses the reversed back
stack candidate as the front stack and makes the back stack empty. The reversal is what
creates a FIFO from two LIFOs. And since the reversal only happens when the front
stack is empty the queue operations take amortized O(1) time, assuming that the queues

9

are used linearly (i.e. whenever a new queue is constructed the client program discards
any old ones).

Sealing (:>) ListsQueue with QUEUE checks that the structure satisfies that signature
and causes the ListsQueue module variable to have a signature that is like QUEUE but
with t implemented by a fresh abstract type. Freshness means that t is not equal to its
implementing record type from the definition of ListsQueue or any other type, including
the t:s of other modules satisfying or even sealed with QUEUE. Apart from the creation of
abstract types sealing is essentially an upcast along the structural subtyping relation of
modules.

Sealing ListsQueue with QUEUE accomplishes information hiding since the definition of
ListsQueue.t is hidden and all the value members have types that are only compatible
with the fresh abstract type created by the sealing. The auxiliary function fromRawParts is
also hidden so new queues can only be created by (repeated) uses of ListsQueue.enqueue
and ListsQueue.dequeue on ListsQueue.empty. All this hiding of implementation details
also enables relying on and maintaining invariants inside modules, like the queue module
does with fromRawParts.

2.2.7 Functors

The queues of ListsQueue are immutable but not persistent [29] because amortization
does not happen if they are used in a ‘non-linear’ or ‘multiple history’ manner. Typically
that might happen in a backtracking algorithm that includes an immutable queue as part
of its state2.

One way to implement a fully persistent queue is to use a variant of the ‘queue from
stacks’ strategy that utilizes lazy sequences. On the other hand the operations on such
a queue have higher constant factors than ListsQueue. And implementing both would
create two modules with a high degree of code duplication between them.

Even though we did not seal ListStack, ListsQueue only relies on its signature (which
is larger than STACK) and not on the fact that ListStack.t = list. Listing 2.8 abstracts
over the stack module used in the implementation of queues with a functor3, which is
just a module level function.

The domain signature of the functor extends STACK by include:ing it and adding the
append and reverse operation that are used in the body of the functor in addition to the
basic stack functionality. Structures also support this sort of (multiple) inheritance with
open. The codomain of the functor is QUEUE, i.e. the results of applications of this functor
will be sealed with QUEUE.

2Immutable data structures are convenient because capturing a snapshot consists of just storing the
current version. The tradeoff is that operations on immutable data structures tend to be slower than on their
mutable alternatives

3Confusingly Haskell, C++ and Prolog each define ‘functor’ quite differently from the ML usage and each
other.

10

functor BankersQueueFun (Stack : sig
include STACK

val append : ’ a t * ’ a t −> ’ a t
val reverse : ’ a t −> ’ a t

end) : > QUEUE = struct
type ’ a t = {

f r o n t : ’ a Stack . t , f ron tLeng th : i n t ,
back : ’ a Stack . t , backLength : i n t

}

val empty = {
back = Stack . empty , backLength = 0 ,
f r o n t = Stack . empty , f ron tLeng th = 0

}

fun balance queue =
l e t { f r o n t , f ron tLength , back , backLength } = queue
in

i f f ron tLeng th >= backLength
then queue
else {

f r o n t = Stack . append (f r o n t , Stack . reverse back) ,
f ron tLeng th = f ron tLeng th + backLength ,
back = Stack . empty , backLength = 0

}
end

fun enqueue ({ f r o n t , f ron tLength , back , backLength } , x) =
balance {

f r o n t , f ron tLength ,
back = Stack . push (x , back) ,
backLength = backLength + 1

}

fun dequeue { f r o n t , f ron tLength , back , backLength } =
case Stack . pop f r o n t of
| SOME (x , f r o n t) => SOME (x , balance {

f r o n t , f ron tLeng th = f ron tLeng th − 1 ,
back , backLength

})
| NONE => NONE

end
Listing 2.8. An immutable queue functor

The body of the functor now tracks the sizes of the front and back stacks explicitly on the
side. This is required because the new invariant maintained with balance is that the front
stack is at least as tall as the back stacks. That invariant not only ensures that the back
stack is always empty if the front stack is but also that the operations of the persistent

11

queue will achieve amortized O(1) time (the proof can be found in [29, sec. 6.3.2]).

Listing 2.9 recovers ListsQueue by applying the functor BankersListQueue to ListStack.

structure ListsQueue = BankersQueueFun (L i s tS tack)
Listing 2.9. A concrete instantiation of BankersQueueFun using ListStack

Listing 2.10 applies BankersQueueFun to LazySeqStack, producing the fully persistent
queue.

structure PersistentQueue = BankersQueueFun (LazySeqStack)
Listing 2.10. A persistent queue structure from BankersQueueFun

The source code for LazySeqStack is not provided, but it would be essentially like ListStack

but using a lazy sequence type and its operations instead of standard lists. An implemen-
tation of lazy sequences as a Stream structure is given in [29].

2.2.8 Functor Generativity

ListsQueue.t and PersistentQueue.t or rather their instantiations like int ListsQueue.t

and int PersistentQueue.t are not equal – should not be since their implementations
are different. But consider another list-backed queue module BankersQueueFun in Listing
2.11.

structure ListsQueue ’ = BankersQueueFun (L i s tS tack)
Listing 2.11. Another list-backed queue module

Are the types int ListsQueue.t and int ListsQueue’.t equal or not? In SML func-
tors have generative semantics where every functor application creates a new mod-
ule with fresh abstract types. So in SML int ListsQueue.t is no more equal to int

ListsQueue’.t than it is to int PersistentQueue.t. Generative functors could be com-
pared to Java class constructors which always allocate new objects.

OCaml uses applicative functor semantics [23], where types like ListsQueue.t and
ListsQueue’.t that are created by the application of the same functor to the same argu-
ment are considered equal. Applicative functor semantics can be seen as an extension
of type constructor behaviour where int list is equal to any other int list type ex-
pression.

Applicative semantics can be convenient, especially for functors like like BankersQueueFun

that implement generic data structures. However applicative functors are somewhat sub-
tle and more difficult to formalize and implement robustly than generative ones. OCaml
has issues with abstraction safety, especially with but not limited to stateful modules
[40].

12

2.3 Recursion in ML

ML languages typically limit recursive definitions to very specific patterns. The restriction
on type definitions ensures that equirecursive types are not needed. The restriction on
function definitions ensures that recursive values are well-founded, preventing runtime
use of uninitialized values.

2.3.1 Recursive Types

The algebraic datatypes created with datatype can be recursive like the types in Figure
2.12. A file can be either a regular_file or a directory and a directory can contain
more files.

datatype f i l e = Regu la rF i le of r e g u l a r _ f i l e
| D i r e c t o r y of d i r e c t o r y

withtype r e g u l a r _ f i l e = {name : s t r i n g , s ize : i n t }
and d i r e c t o r y = {name : s t r i n g , f i l e s : f i l e l i s t }

Listing 2.12. File system types

Mutual recursion requires grouping the types together connected with and (which re-
places the datatype or type token). In SML all type recursion must go through algebraic
datatypes although withtype allows including type aliases in the recursion group. The
mandatory syntactic grouping of mutually recursive types can be annoying from a code
organization standpoint but does not fundamentally limit expressiveness. It is possible to
work around the grouping limitation with fixpointing tricks but in the long run they tend to
be too complicated or confusing to be a net win.

2.3.2 Recursive Terms

Handling recursive types usually requires recursive functions. Figure 2.13 shows func-
tions that compute the total size of file system subtrees using pattern matching. The size

function computes the size of a file by delegating to regularFileSize and directorySize.
The recursion is in directorySize, which computes the sizes of its children with size and
then sums them.

fun s ize (Regu la rF i le f i l e) = r e g u l a r F i l e S i z e f i l e
| s i ze (D i r e c t o r y d i r) = d i r e c t o r y S i z e d i r

and r e g u l a r F i l e S i z e {name = _ , s ize } = s ize

and d i r e c t o r y S i z e {name = _ , f i l e s } =
L i s t . f o l d l op+ 0 (map f i l e S i z e f i l e s)

Listing 2.13. File system functions

13

Like algebraic datatypes, functions defined with fun can be self-recursive, and mutually
recursive when connected with and like these size functions. Sometimes the alternative
val rec f = ... and g = ... syntax yields shorter definitions but it is no more ex-
pressive than fun f ... and g ... since val rec definiends must be function literals.

Recursion requires forward references and allowing arbitrary forward references in terms
would lead to use of uninitialized values at runtime. Restricting term recursion to groups of
function literals is a simple way to prevent such unsafety but can be very limiting. OCaml
has a more permissive relaxed value restriction. These restrictions are not needed in a
lazy language like Haskell since premature access to values will cause an infinite loop
instead of using uninitialized memory.

2.3.3 Recursive Modules

It would be more maintainable to make a module for each type of file and seal them
with a common FILE signature as in Figure 2.14. Especially if the operations were more
numerous or used system calls to traverse the actual filesystem.

signature FILE = sig
type t
val s ize : t −> i n t

end

structure F i l e : > FILE = struct
datatype t = Regu la rF i le of Regu la rF i le . t

| D i r e c t o r y of D i r e c t o r y . t

fun s ize (Regu la rF i le f i l e) = Regu la rF i le . s i ze f i l e
| s i ze (D i r e c t o r y d i r) = D i r e c t o r y . s ize d i r

end

structure Regu la rF i le : > FILE = struct
type t = {name : s t r i n g , s ize : i n t }

val s ize : t −> i n t = # s ize
end

structure D i r e c t o r y : > FILE = struct
type t = {name : s t r i n g , f i l e s : F i l e . t l i s t }

fun s ize (d i r : t) =
L i s t . f o l d l op+ 0 (map F i l e . s i ze (# f i l e s d i r))

end
Listing 2.14. Modules for the file types

These modules are mutually recursive and SML does not support module-level forward
references at all. Various SML compilers as well as OCaml have extensions to support

14

recursive modules. Invariably those extensions require grouping the modules just like
recursive types and terms. In practice there are much fewer modules than types or espe-
cially terms, so functor fixpointing, although arcane, is not too verbose like type and term
fixpointing. Incidentally the R1ML prototype uses recursive modules and even functor
fixpoints – as it should, in the name of metacircularity.

Recursive modules are surprisingly difficult to implement. The grouping requirement of
recursive terms must be somehow relaxed to allow term recursion between modules like
the reference to File.size inside Directory.size. Type recursion between modules
also runs into issues, especially so-called double vision of abstract types detailed in the
next subsection.

For example the OCaml recursive modules extension raises an exception on premature
forward references at runtime and also has some very technical restrictions on module
recursion to make the checks efficient. Such solutions are against the statically safe and
theoretically clean spirit of ML. The extension also does not prevent double vision in all
cases.

2.3.4 Double Vision

Recursion between sealed modules can lead to the double vision problem [8, s. 97–100]
where an abstract type created by sealing a module is seen as distinct from its imple-
mentation even inside the sealed module. The double vision problem is demonstrated in
Figure 2.15, adapted from [6].

In this contrived example the structure A defines an abstract type t implemented as int

and the structure B defines another abstract type u implemented as bool. The functions
A.f and B.g handle both A.t:s and B.u:s and are mutually recursive. The double vision
problem manifests at the call to B.g from A.f where the argument is of type int but B.g
expects a value of type A.t, which it sees as abstract and thus incompatible with int.
However t is defined as an alias of int inside A and the call should thus be valid. That
requires seeing the type alias t and the abstract type A.t as one and the same, which is
easily overlooked and requires nonstandard type checking techniques.

2.4 First-Class Modules

Figure 2.16 defines a signature ORD of ordered types. Signatures like this are used for
parameters of functors that implement generic sorted maps and sets.

One could also expect to parameterize sorting functions over structures of signature ORD.
Figure 2.17 shows how that might work for a merge sort on lists.

Unfortunately the stratification of ML into core and modules means that it is not possible
to parameterize core terms over modules like this. Instead the module parameterization
must be done with a functor that returns a structure which redundantly has the specialized

15

structure A : > sig
type t
type u = B. u

val f : t −> u * t
end = struct

type t = i n t
type u = B. u

fun f (x : t) : u * t =
l e t val (y , z) = B . g (x + 3)
in (y , z + 5)
end

end

structure B : > sig
type t = A . t
type u

val g : t −> u * t
end = struct

type t = A . t
type u = bool

fun g (x : t) : u * t = . . . A . f (. . .) . . .
end

Listing 2.15. A demonstration of the double vision problem

signature ORD = sig
type t
val compare : t * t −> order

end
Listing 2.16. Signature for ordered types

sorting function as its only member as in Figure 2.18.

The two-line usage syntax at the end of Figure 2.18 is quite verbose for the one-off us-
ages typical of sorting functions. Another option is to parameterize over just the ordering
function as in Figure 2.19.

The usage syntax is much more convenient, but core-level workarounds like this scale
badly for modules with more complicated signatures. OCaml and various SML compilers
have a packaged modules extension which allow injecting modules to and projecting
them from core-level package values. As Listing 2.20 shows, OCaml packaged modules
are sufficient to express simple cases like this.

Besides having verbose and potentially confusing syntax (you are not expected to un-
derstand Listing 2.20), packaged modules are also quite limited. For example it is not

16

fun merge (Elem : ORD) =
fn (xs , []) => xs

| ([] , ys) => ys
| (x : : xs , y : : ys) =>

(case Elem . compare (x , y)
of LESS | EQUAL => x : : merge (xs , y : : ys)

| GREATER => y : : merge (x : : xs , ys))

fun mergeSort (Elem : ORD) =
fn xs as [] => xs

| xs as [_] => xs
| xs => l e t val rec s p l i t =

fn xs as [] => (xs , xs)
| xs as [_] => (xs , [])
| x : : x ’ : : xs =>

l e t val (l s , rs) = s p l i t xs
in (x : : l s , x ’ : : r s)
end

in merge Elem (s p l i t xs)
end

Listing 2.17. Generic merge sort

functor MergeSor tL is t (Elem : ORD) : > sig
val mergeSort : Elem . t l i s t −> Elem . t l i s t

end = struct
val merge = fn . . .
val mergeSort = fn . . .

end

structure MergeSor t I n tL i s t = MergeSor tL is t (I n t)
val sor ted = MergeSor t I n tL i s t . mergeSort [5 , 42 , 17 , 23]

Listing 2.18. Modules workaround for generic merge sort

fun merge compare =
. . .
| (x : : xs , y : : ys) =>

(case compare (x , y) . . .

fun mergeSort compare =
. . .
in merge compare (s p l i t xs)
end

val sor ted = mergeSort I n t . compare [5 , 42 , 17 , 23]
Listing 2.19. Core workaround for generic merge sort

17

l e t merge (type a) (module Elem : ORD with type t = a) = f u n c t i o n
. . .
| ((x : : xs : a l i s t) , (y : : ys : a l i s t) −>

(match Elem . compare (x , y) with . . .

l e t mergeSort (type a) (elem : module (ORD with type t = a)) =
. . .
merge elem (s p l i t xs)

l e t sor ted = mergeSort (module I n t : ORD) [5 ; 42; 17; 23]
Listing 2.20. Generic merge sort with OCaml packaged modules

possible to abstract over modules of signature STACK due to the lack of higher kinded
types in core ML. For example Figure 2.21 shows a generic stack dup function using type
classes in Haskell that cannot be expressed with packaged modules. Such type class
constraints (particularly the ever-present Monad) on higher-kinded types are pervasive in
Haskell.

dup : : Stack t => t a −> Maybe (t a)
dup xs =

case pop xs of
Just (x , _) −> push x xs
Nothing −> Nothing

Listing 2.21. Generic dup function in Haskell

The stratification between core and modules also prevents selecting between modules
at runtime. One example would be selecting a graphics module based on what OpenGL
version is supported and then using dependency injection with functors to specialize the
entire application for the present GPU features.

Packaged modules partially recoup the loss of expressiveness due to the stratification
between core and modules. But they do nothing to solve the language design issue of
duplication between records and structures, types and signatures, functions and functors.

ML modules include path-dependent types and structure subtyping. The unification-
based Hindley-Milner type inference algorithms are too weak to handle either subtyping
or dependent types. Subtyping is a preorder and unification variables can only handle
equality constraints. And dependent types require the evaluation of value-level terms.
Additionally merging signatures into types would enable impredicative instantiation which
in combination with the contravariance of functor subtyping would enable a pathological
class of programs that causes the type checker to diverge, rendering the type system
undecidable [38].

But the type paths of ML modules are not really dependent because they have to be
separable: type paths must refer to type members and cannot depend on any dynamic

18

computation. Type inference for structural records4 is already incomplete in SML, without
subtyping. And impredicativity may be ruled out by directly enforcing predicative instanti-
ation instead of indirectly (but incredibly heavy-handedly) with stratification into core and
module languages. Knowing all this the 1ML paper [38] could give a type system that
merges core and modules into one language, with truly first-class modules. As a side
effect of the unification of core and modules 1ML also gains various features like higher-
rank types, existential types and record subtyping.

2.5 R1ML

1ML does not support recursive modules, as Rossberg feels that a satisfactory treatment
of recursive modules requires a complete overhaul of the ML module system as in his
earlier paper [39] on MixML with Dreyer. Inversely all module systems with recursive
modules are stratified.

In this thesis I develop a type system with both first-class and recursive modules as well
as partial type inference. The system is called R1ML, being mostly based on 1ML. I am
not aware of any other type system with both first-class and recursive modules.

Because of the double vision problem recursive modules cannot be implemented by elab-
orating to standard System Fω like 1ML. It would be natural to use an elaboration target
specifically designed to support recursive modules like Dreyer’s Recursive Type Gener-
ativity (RTG) [7] used in [6] and also in refined form for MixML. Instead I have chosen
to use a variant of System Fc [44], which was created to serve as the main intermediate
language in the Glasgow Haskell Compiler (GHC). Unlike RTG, System Fc has certainly
been proven in the field. GHC elaborates many advanced constructs like GADTs, type
classes and type families into System Fc [46]. However R1ML is the first to use System
Fc to solve double vision.

4In OCaml records are nominative (like Java classes) instead of structural (like objects in Typescript).

19

3 UNTYPED LAMBDA-CALCULUS

There may, indeed, be other applications of the system
than its use as a logic.

Alonzo Church

The untyped λ-calculus [32, ch. 5] is a minimal function application and variable refer-
ence -based programming language. Originally it was devised by Alonzo Church and his
coworkers in the 1920s and ’30s as a tool for research in the foundations of mathemat-
ics. The term ‘untyped’ might seem dismissive of dynamic typing but on the other hand
dynamically typed languages usually have more types than the untyped lambda-calculus
where everything is a function.

The abstract syntax of the untyped lambda-calculus is defined in Figure 3.1. In program-
ming language formalizations abstract syntax definitions like this are more like datatype

definitions for syntax trees than grammars for parsing.

e ::= x |λx.e | e e

Figure 3.1. Abstract syntax of λ-calculus

The untyped λ-calculus consist of just function literals λx.e, function application e e and
variable references x. The titular λ corresponds to the more descriptive function, func,
fun or fn of practical programming languages. All functions have one parameter, but mul-
tiple parameters can be emulated by currying or tuple parameters. Function application
is denoted by juxtaposition like multiplication in algebra.

3.1 Term Equivalence

An equivalence relation is a binary relation that is reflexive, symmetric and transitive.
Intuitively, two lambda-calculus terms are equivalent if they implement the same func-
tion. This extensional notion of λ-term equivalence is defined syntactically by the rules in
Figure 3.2.

The rules use the usual two-dimensional Gentzen-style notation where the expressions
above the long horizontal inference line are premises and the expression under the line is
the conclusion, i.e. A B

C is just another way to write A ∧B ⇒ C. The substitution notation
[ea/x]e replaces each occurrence of x in the expression e with the expression ea.

20

REFL

e = e

SYMM
e′ = e

e = e′

TRANS
e = e′′ e′′ = e′

e = e′

α

y ̸∈ fv(e)

λx.e = λy.[y/x]e

β

(λx.e) ea = [ea/x]e

η

x ̸∈ fv(e)

λx.e x = e

Figure 3.2. Extensional equivalence of λ-terms

We take reflexivity, symmetry and transitivity as definitions in the form of rules REFL,
SYMM and TRANS. Rule REFL can also be read as the obvious statement that two syn-
tactically identical terms are equivalent.

Lambda calculus also has three other well-known rules for term equivalence. Alpha
equivalence in rule α formalizes the intuition that variable names do not matter; param-
eters can be renamed as long as variable capture is avoided (with the side condition
y ̸∈ fv(e)). Beta equivalence of rule β defines immediate function application; a call to
a known function is equivalent to the body of the function with the argument substituted
for the parameter. Eta equivalence of rule η means that a function that just immedi-
ately calls another function on its parameter is equivalent to that other function. In more
practical systems eta equivalence only holds if the inner function expression has no side
effects, but plain lambda-calculus has no notion of side effects.

3.2 Evaluation

In day to day programming term equivalence is mostly interesting for small scale refac-
toring. Term equivalence has no directionality; β and η can be used to insert useless
function applications and wrapper functions as well as removing them.

In practice we are more often interested in program execution. The corresponding formal
notion is evaluation which consists of rewriting the program until it has been reduced
to a normal form. A reduction relation is similar to an equivalence relation, consisting
of rewriting rules that sometimes mirror the equivalence rules. It is also reflexive and
transitive, but not symmetric, which gives it the desired directionality. The normal form
form a term in a given rewriting system is one where it cannot be reduced any further, i.e.
only reflexivity can be applied. Normal form terms are also called values.

Figure 3.3 defines the reduction relation for lambda-calculus. The use of an arrow is a
constant reminder of that directionality.

So reduction in lambda-calculus is very similar to equality, but always proceeds in the
direction of fewer beta and eta redexes, i.e. terms to which the rule β or η can be
applied. Transitivity serves to apply β and η multiple times. Alpha renaming is only
useful to ensure that the variable capture precondition of η can be satisfied and in the

21

REFL

e → e

TRANS
e → e′′ e′′ → e′

e → e′

α

y ̸∈ fv(e)

λx.e → λy.[y/x]e

β

(λx.e) ea → [ea/x]e

η

x ̸∈ fv(e)

λx.e x → e

Figure 3.3. Reduction rules for λ-terms

definition of capture avoiding substitution for β.

Usually reduction relations are presented with only the rules specific to that particular
relation, reflexivity and transitivity left implicit. Similarly, the Barendegt naming conven-
tion, which states that variables are implicitly renamed whenever variable capture would
occur, is often used. These conventions condense our reduction rules to Figure 3.4

β

(λx.e) ea → [ea/x]e

η

λx.e x → e

Figure 3.4. Compact presentation of reduction rules for λ-terms

From now on, this thesis uses the Barendregt naming convention throughout. Reflexivity
and transitivity are handled more specifically than the implicitness convention, as we shall
soon see.

3.3 Evaluation Strategies

So reduction is directional, unlike equivalence. However the reduction relation in the
previous section does not specify the order of reductions. In other words it is non-
deterministic and must be refined to a specific algorithm to be implemented in practice.
The algorithms also have corresponding normal forms that may differ from the normal
form of the ‘declarative’ reduction relation of the previous section.

Full reduction does reductions everywhere in some order. Its normal form is the declar-
ative normal form. But because lambda-calculus is Turing-complete, full reduction does
not terminate on all expressions. Performing reductions inside functions is useless work
in an interpreter or compiled code but is desirable for aggressive compiler optimizations
like partial evaluation.

Call by value reduces the leftmost innermost redex first. Reductions are not made in-
side functions. More concretely the callee is evaluated, then the argument and then the
resulting β-redex. The name comes from the fact that in this strategy the arguments in
β-reductions are always in normal form. This corresponds to the runtime semantics of ML
and most other programming languages. Call by value does less useless work than full

22

reduction but is still susceptible to nontermination. It is easy to follow, which is important
for debugging the order of side effects as well as performance tuning.

Call by name reduces the leftmost outermost redex first. Reductions are not made inside
functions. In practice the callee is evaluated and applied to an unevaluated argument.
This results in weak head normal form, which can contain redexes even outside function
terms. Call by name is a normal order strategy, always finding the normal form of well-
formed terms instead of nontermination. On the other hand unevaluated arguments can
be duplicated, resulting in useless work.

Call by need avoids that duplication of work with memoization. Lazy programming lan-
guages like Haskell require a non-strict evaluation strategy, using call by need in practice.
The work saving potential of lazy evaluation is often squandered in practice by its complex
implementations and difficulty of performance tuning. The unpredictability of side effects
has been praised as a blessing in disguise, keeping Haskell purely functional unlike Lisp
or ML which used call by value and thus “succumbed to the siren call of side effects”.

This thesis always assumes that call by value is used for term evaluation, although often
it does not even matter in type systems. Call by need is used for evaluation on the type
level that is required for higher kinded types, because in that context it actually is likely to
reduce the net amount of evaluation work.

We will omit η from our reduction relations, as is usually done in practical evaluators.
Reduction algorithms will be presented in one-step form as in Figure 3.5, which shows
call by value for lambda calculus.

APP
ef −→ λx.e ea −→ e′a [e′a/x]e −→ e′

ef ea −→ e′

Figure 3.5. Call by value evaluation for lambda-calculus

This definition is recursive, so that transitivity is not needed, even implicitly. The longer
arrow is a reminder that applying this rule once does all the reductions needed to reach
normal form.

23

4 TYPE THEORY PRELIMINARIES

Learn all there is to learn and then choose your own path.

Georg Friedrich Händel

This chapter is a fast-paced tutorial on the type theory prerequisites needed to under-
stand Chapters 7 and 8, from the simply typed lambda-calculus up to System Fω. Read-
ers unfamiliar with type theory may wish to also study a textbook like [32] and type theory
aficionados should expect to skim through the majority of this chapter.

4.1 Simply Typed Lambda-Calculus

The simply typed lambda-calculus [32, ch. 9] is a statically typed version of the lambda-
calculus. It is ‘simply typed’ because it does not have any form of polymorphism (Sections
4.2 and 4.3) or nontrivial kinds (Section 4.6). The abstract syntax of the simply typed
lambda-calculus is given in Figure 4.1

e ::= x |λx : T . e | e e
T ::= T → T

Figure 4.1. Abstract syntax of the simply typed lambda-calculus

The only change from the term language of the untyped lambda-calculus is addition of
compulsory type annotations on function parameters. The types of the simply typed
lambda-calculus consist of just function types T → T . In practice non-function terms and
types like true and bool are required, because (finite) type expressions cannot consist
of just →:s.

4.1.1 Type Checking

Since type annotations are compulsory on function parameters, type checking terms in
simply typed lambda-calculus is straightforward. The type checking rules are displayed
in Figure 4.2.

The type of a variable reference is determined by rule VAR by looking it up from the type
environment Γ. The type environment is a mapping from variable names to types. In type

24

VAR
(x : T) ∈ Γ

Γ ⊢ x : T

ABS
Γ, x : Td ⊢ e : Tc

Γ ⊢ λx : Td.e : Td → Tc

APP
Γ ⊢ ef : Td → Tc Γ ⊢ ea : Td

Γ ⊢ ef ea : Tc

Figure 4.2. Typing rules for the simply typed lambda-calculus

theory the turnstile symbol ⊢ just separates the type environment from the expression
being typechecked.

The codomain type Tc of a function abstraction λx.e is determined in rule ABS by typing
the body e in a type environment extended with x : Td. The domain type Td is taken
directly from the type annotation of the parameter x. Finally an arrow type (i.e. function
type) Td → Tc is built from the domain and codomain types. Since ABS assembles arrow
types, it is an introduction rule and λx : T.e is an introduction form for arrow types.

Function applications are typed by rule APP by typing the callee and argument expres-
sions in the current type environment. The callability of the callee is ensured by checking
that it has a function type. The type of the argument must be syntactically equal to the
codomain type of the callee (Γ ⊢ ea : Tc), which ensures that the function will accept the
argument. Since APP requires values of arrow type and destructures said arrow type, it
is an elimination rule and ef ea is an elimination form for arrow types.

The simply typed lambda-calculus is type-safe or sound: the evaluation of a well-typed
term will not result in a situation where the term has not reached normal form but no eval-
uation rule applies [32, sec. 8.3]. For contrast consider the dynamically typed Javascript
where “undefined is not a function” is a frequent error message or the statically typed but
unsound C with its numerous sources of undefined behaviour. More formally, a Turing-
complete statically typed language is sound iff the evaluation of every well-typed term
either produces a value (reaches normal form) or diverges (never halts). A type system
can also be sound only for a particular evaluation strategy like call by value or call by
name.

Unlike the untyped lambda-calculus, the simply typed lambda-calculus is not Turing-
complete. One sign of this is that the Y-combinator is ill-typed in the simply typed lambda-
calculus. Indeed the simply typed lambda-calculus is provably strongly normalizing. A
statically typed language is strongly normalizing iff every sequence of reductions starting
with a well-typed term eventually reaches normal form. Strong normalization implies that
the type system is sound for every possible evaluation strategy, including full reduction.

The type system of an implementable language must be decidable. In general, a deci-
sion problem (a yes-no question) is decidable iff there exists an effective method to find
the answer. In the case of type systems the decision problem is ‘is a given program
well-typed?’ and the effective method is a typechecking algorithm.

Conversely to decidability, a type checking function is complete iff it will accept every
well-typed program. When typechecking algorithms are incomplete they typically will re-

25

ject well-typed programs in some obscure corner cases or the type checker diverges1

on some pathological programs. For instance Haskell type checkers are incomplete be-
cause type classes allow certain classes of ambiguous programs [46] and the OCaml
type checker can be made to diverge with contrived programs involving abstract signa-
ture members [38].

The simply typed lambda-calculus is decidable. The typechecking algorithm is a function
which takes the expression and type environment and returns the type of the expres-
sion. The rules of the simply typed lambda-calculus are syntax-directed, which means
that the shape of the expression completely determines which rule to apply. The type-
checking function, sketched in Listing 4.1 can be constructed simply by transliterating the
consequences as pattern matching2 on the expression and the premises as the code in
each branch.

datatype t yp =
| Arrow of t yp * typ
| Bool

datatype expr =
| Abs of s t r i n g * typ * expr
| App of expr * expr
| Var of s t r i n g

structure Env = SortedMap (S t r i n g)

fun t ypeo f env = fn
| Abs (param , domain , body) =>

l e t val env = Env . i n s e r t env param domain
val codomain = typeo f env body

in Arrow (domain , codomain)
end

| App (ca l lee , arg) =>
(case t ypeo f env c a l l e e of
| Arrow (domain , codomain) =>

l e t val arg_t = typeo f env arg
in i f arg_ t = domain

then codomain
else raise F a i l " wrong argument type "

end
| _ => raise F a i l " not a f u n c t i o n ")

| Var name =>
(case Env . f i n d env name of
| SOME t => t
| NONE => raise F a i l " unbound v a r i a b l e ")

Listing 4.1. Sketch of a type checker for the simply typed lambda-calculus

1Usually some arbitrary limit on e.g. recursion depth is put into place to force the type checker to fail
instead.

2Or branching in some other manner like an if-else chain or method dispatch.

26

To prove that the type checking function is an algorithm we only need to note that the
rules are also inductive, which means that the problem gets smaller in every recursive
invocation. Type systems where the rules can be directly read as a type checking algo-
rithm are called algorithmic. Algorithmic type systems are usually syntax-directed, but
not all syntax-directed systems are algorithmic.

4.1.2 Extensions

The minimal term and type language of the simply-typed lambda-calculus is of course
impractical. In this section we extend it with various forms of terms that are relevant to
the rest of this thesis. Figure 4.3 shows the extended terms and types. Subsequent
sections of this chapter will focus on polymorphism and nontrivial kinding.

e ::=x |λx : T.e | e e | let x : T = e in e | let rec x : T = e in e | e : T
| {x = e} | e.x | true | false | if e then e else e

T ::=T → T | {x : T} | bool

Figure 4.3. Abstract syntax of an extended simply typed lambda-calculus

Here nonrecursive (let) and recursive (let rec) local definitions as well as type ascrip-
tion e : T have been added. We also have introduction and elimination forms and type
expressions for records and booleans. The typing rules for these added constructs are in
Figure 4.4.

LET
Γ ⊢ ex : Tx Γ, x : Tx ⊢ e : T

Γ ⊢ let x : Tx = ex in e : T

LETREC

x = dedup(x) Γ, x : Tx ⊢ ex : Tx Γ, x : Tx ⊢ e : T

Γ ⊢ let rec x : Tx = ex; in e : T

ASCRIBE
Γ ⊢ e : T

Γ ⊢ (e : T) : T

RECORD
Γ ⊢ e : T x = dedup(x)

Γ ⊢ {x = e} : {: T}

SELECT
Γ ⊢ e : {xe : Te} x : T ∈ xe : Te

Γ ⊢ e.x : T

TRUE

Γ ⊢ true : bool
FALSE

Γ ⊢ false : bool

IF
Γ ⊢ ec : bool Γ ⊢ et : T Γ ⊢ ef : T

Γ ⊢ if ec then et else ef : T

Figure 4.4. Typing rules for extensions to the simply typed lambda-calculus

Nonrecursive local definitions are very easy to type (rule LET). Just type ex and check
that the computed type matches the type annotation Tx. Then type the body expression
e in a type environment extended with x : Tx. Since the value of a let-expression is that

27

of its body, so is its type.

LET can actually derived from ABS and APP by considering let as syntactic sugar (and
an optimization) for a β-redex (λx : Tx.e) ex. On the other hand, quite contrary to ABS,
LET has the property that the type annotation Tx only serves as a type assertion or
documention. The annotation is not strictly necessary for typechecking since the type of
ex can and must be computed without using it. Just making the type annotation optional
provides a trivial amount of type inference but systems like the Hindley-Milner type system
and MLF go much further with special treatment for let (Section 4.4).

Groups of mutually recursive local definitions are not much harder to typecheck (rule
LETREC). The x notation means “zero or more” and is used for all sorts of elementwise
operations in ‘computer science metanotation’. The definitions just have to be checked in
a type environment that has already been extended with their types from the annotations
x : Tx. To prevent ambiguity each name must have just one definition (dedup(x)). Thus
unlike LET, LETREC crucially relies on the type annotations. Despite that, monomorphic
type inference for let rec is quite easy. On the other hand type inference in the general
polymorphic case is undecidable [32, p. 338].

In simply typed lambda-calculus type ascription e : T just asserts statically that e has
type T as can be seen from rule ASCRIBE. In polymorphic systems ascription can be
generalized so that it can also upcast or specialize e to the type T . Here and even then
the ascription rule can actually be derived by considering e : T as syntactic sugar for
let x : T = e in x.

Records are central to this thesis thesis since structures are basically records that can
additionally have types as members. According to rule RECORD, record construction
{x = e} produces a record of type {x : T} where each field name x (label) is paired with
the type T of its initializing expression e. Duplicate labels are not allowed. Rule SELECT

states that projecting from a record (selecting a field by label) produces a value of the
type corresponding to that label in the record’s type.

The boolean constants true and false obviously have type bool. The if condition must
also have type bool. The branches must have the same type. As we will see later, in
more advanced systems matching up the branch types creates challenges specific to
conditionals, all the more reason to include them in systems in this thesis.

4.1.3 Type Assignment

As we have seen, typechecking is straightforward when type annotations are compulsory
on every variable definition. However typing those type annotations in even when they
seem obvious or even redundant (e.g. ArrayList<Foo> foos = new ArrayList<Foo>();)
quickly gets tedious. Any succeeding programming language has many more users than
compiler writers, so reducing the amount of required type annotations is a profitable idea.

In type assignment systems terms contain no type annotations at all but types are still

28

checked statically. Type checking is obviously much more difficult in such an implicitly
typed system than in the explicitly typed one we have seen so far. For many systems the
implicitly typed variant is altogether undecidable.

The terms of the implicitly simply typed lambda-calculus are those of the untyped lambda-
calculus. Its type assignment rules are given in Figure 4.5.

VAR
x : T ∈ Γ

Γ ⊢ x : T

ABS
Γ, x : Td ⊢ e : Tc

Γ ⊢ λx.e : Td → Tc

APP
Γ ⊢ ef : Td → Tc Γ ⊢ ea : Td

Γ ⊢ ef ea : Tc

Figure 4.5. Type assignment rules for the simply typed lambda-calculus

These type assignment rules are identical to the type checking rules of Figure 4.2 except
that in rule ABS the domain type Td is just conjured up from thin air. Such guessing
means that the rules do not directly describe an algorithm, but they still specify a logical
relation.

Perhaps surprisingly the system of Figure 4.5 is decidable, using algorithms based on
unification. But it does have the peculiarity that typings are not unique. Practically this
means that terms such as

let identity = λx.x in false

do not fully constrain the types of variables; x could have any single simple type. The
algorithm would have to leave the choice open like Prolog or use some arbitrary default.
The Hindley-Milner system of Section 4.4 avoids the ambiguity by inferring a polymorphic
type for identity.

4.2 Subtyping

A type T is a subtype [32, ch. 15] of another type T ′ if all the terms that have type T

also have type T ′. T ′ is also allowed to include terms that do not have type T , making
subtyping more permissive than syntactic equality. Formally subtyping is a preorder on
types while syntactic equality is an equivalence relation. Preorders must be reflexive and
transitive but are not required to be symmetric like equivalence relations. Subtyping is
also a form of polymorphism because terms can be ascribed more than one type.

The exact subtyping behaviour of a type system is specified by a subtyping relation. As
a preorder the subtyping relation is usually denoted by an infix operator <: or ≤. The left
operand type of <: contains fewer terms than the right operand type. The left operand is
a subtype of the right operand and conversely the right operand is a supertype of the
left operand.

In theory subtyping can be introduced into a type system like the simply typed lambda-

29

calculus by the subsumption rule SUB in Figure 4.6. SUB simply states that values of
type T can be used as values of type T ′, given that T is a subtype of T ′.

SUB
Γ ⊢ e : T T <: T ′

Γ ⊢ e : T ′

Figure 4.6. Declarative subsumption rule

The subsumption rule is orthogonal which is nice for a declarative specification of well-
typed terms. On the other hand it is not syntax-directed since it can be used for any
expression e. Figure 4.7 shows how orthogonality can be traded off to regain a syntax-
directed system.

APP
Γ ⊢ ef : Td → Tc Γ ⊢ ea : Ta Ta <: Td

Γ ⊢ ef ea : Tc

Figure 4.7. Application rule with domain subtyping

Fortunately subsumption turns out to only be essential for arguments of function applica-
tions APP so it can be integrated there instead of adding SUB. In the modified APP rule
the argument type can be any subtype of the domain instead of having to be identical.
[32, ch. 16]

4.2.1 Record Subtyping

Intuitively, if a piece of code requires a value of structural record type {x : T} it should
also work with records with a superset of the fields x : T . Slightly counterintuitively a
record type with more fields contains fewer values, e.g. {x = 5} has types {x : int} and
{} but not {x : int, y : int}. Both lines of thought lead to the structural record subtyping
relation in Figure 4.8. This relation is reflexive and transitive. [32, ch. 16]

SUBFNS
T ′
d <: Td Tc <: T ′

c

Td → Tc <: T ′
d → T ′

c

RECORDSUB
T <: T ′ {x1 : T1, x2 : T2} <: {x3 : T3}
{x1 : T1, x : T, x2 : T2} <: {x : T ′, x3 : T3}

RECORDDROP

{x : T} <: {}

Figure 4.8. Record subtyping

According to rule RECORDSUB each field x of the record supertype must be found in the
record subtype. RECORDSUB recurses on both the types of the field x and the fields
beside x. The type T of the x field in the subtype must also be a subtype of the corre-
sponding field type T ′ in the supertype. When a part of the subtype must be a subtype
of the corresponding part in the supertype like this the subtyping relation is covariant in

30

that part. The RECORDSUB recursion on the remaining fields ensures that all fields of
the supertype are checked and the base case RECORDDROP allows the subtype to have
fields not found in the supertype.

Finally rule SUBFNS states that functions are also covariant in their codomains (Tc <: T ′
c)

but contravariant in their domains (T ′
d <: Td). The reasoning behind this is that a function

consumes arguments with subtypes of its domain (parameter) type and produces return
values of subtypes of its codomain type.

Structural record subtyping is very relevant to this thesis since it is a large part of module
signature matching. It is quite different from the nominative subtyping of statically typed
object-oriented programming which only considers the explicit inheritance hierarchy, ig-
noring the inner structure of classes like field and method definitions.

4.2.2 Impact on Other Extensions

Besides records which motivated the introduction of subtyping, the other extensions from
Section 4.1.2 can also be incorporated into systems with subtyping. Figure 4.9 shows
their typing rules modified to accomodate subtyping.

LET
Γ ⊢ ex : T ′

x T ′
x <: Tx Γ, x : Tx ⊢ e : T

Γ ⊢ let x : Tx = ex in e : T

LETREC

x = dedup(x) Γ, x : Tx ⊢ ex : T ′
x T ′

x <: Tx Γ, x : Tx ⊢ e : T

Γ ⊢ let rec x : Tx = ex; in e : T

UPCAST
Γ ⊢ e : T ′ T ′ <: T

Γ ⊢ (e : T) : T

IF
Γ ⊢ ec : bool Γ ⊢ et : Tt Γ ⊢ ef : Tf

Γ ⊢ if ec then et else ef : Tt ∨ Tf

SUBBOOL

bool <: bool

Figure 4.9. Local definitions, upcasting, booleans and conditionals with subtyping

Local definitions and type ascription adapt easily to subtyping by just replacing the re-
quirements of equality to type annotations with subtyping (rules LET, LETREC and UP-
CAST). As the change of name suggests type ascription is thus promoted into an upcast-
ing construct. The typing of let is still consistent with that of a β-redex and upcasting
with let x : T = e in x.

The subtyping of bool is syntactic equality (SUBBOOL), so the typing of boolean con-
stants is also unaffected by subtyping and thus omitted here. The branch types Tt and
Tf of a conditional no longer need to match exactly, because in a declarative system SUB

could be used on both branches. So a conditional could have any type that is a common
supertype of the branch types. Choosing their join ∨ which is the least common super-
type retains the maximum possible amount of type information. Not all subtype relations

31

have joins. This simple record subtyping relation does, but ML modules and thus 1ML
and R1ML types do not.

4.3 System F

Parametrically polymorphic values like the polymorphic identity function (fn x => x) :

’a -> ’a abstract over types as well as values. ML type inference and type syntax make
the type abstraction very implicit so the Java version is more illustrative:

class Fun {
public s t a t i c <T> T i d e n t i t y (T x) { return x ; }

}

Listing 4.2. Parametrically polymorphic identity function in Java

Here identity has a type parameter T which is used as the return type and the type
of the (value) parameter x. The type argument can be passed at callsites like this:
Fun.<String>identity("foo")3.

Parametric polymorphism and subtyping are two different forms of polymorphism. The
unqualified word ‘polymorphism’ usually means parametric polymorphism in functional
programming. In object-oriented programming ‘polymorphism’ is usually subtyping and
parametric polymorphism is labeled ‘generics’ instead. Parametric polymorphism is use-
ful even with subtyping available as can be seen from this version of the identity function
with subtyping:

class Funk {
public s t a t i c Object i d e n t i t y (Object x) { return x ; }

}

Listing 4.3. Subtyping identity function in Java

Both Fun.identity and Funk.identity can be used on an argument of any type but while
Fun.identity("foo") returns a String, Funk.identity("foo") returns an Object. Of
course String could be restored with a downcast in the latter case but that would risk
ClassCastExceptions, postponing some type errors to runtime. Not to mention that in
C++ erroneous static casts result in undefined behaviour.

Adding abstraction of terms over types to the simply typed lambda-calculus produces the
parametrically polymorphic lambda-calculus known as System F [32, ch. 23]. The terms
and types of System F are shown in Figure 4.10.

The System F syntax for abstracting terms over types is simply Λα.e, where α is the
parameter type variable, which is in scope within the body of the Λ-abstraction just like
the term parameter x is in scope within the body of a λ-abstraction. Again analogously
the type parameter can be instantiated with an argument type via a Λ-application e ⟨T ⟩.

3Although Java does infer type arguments so Fun.identity("foo") is preferrable in practice.

32

e ::= x |λx : T.e | e e |Λα.e | e ⟨T ⟩
T ::= T → T | ∀α . T |α

Figure 4.10. Abstract syntax of System F

Type parameters may be referred to in types. Λ-abstractions have universal types ∀α.T
where the type variable α is in scope within the body T of the universal type. The idea
is that a Λ-abstraction has the type of its body for all types α that may be passed to it as
arguments.

In this thesis Λ-abstractions and universal types form a part of the implementation of
functors. For when a functor domain signature has type members the functor must work
for all implementations of those type members.

4.3.1 Type Checking

System F is quite straightforward to typecheck since parameter annotations are compul-
sory like in the simply typed lambda-calculus and all type abstractions and applications
are explicit. The typing rules for Λ-abstractions and applications that are to be added to
the simply typed lambda-calculus rules of Figure 4.2 are given in Figure 4.11.

ΛABS
Γ, α ⊢ e : T

Γ ⊢ Λα.e : ∀α.T

ΛAPP
Γ ⊢ e : ∀α.T

Γ ⊢ e ⟨Ta⟩ : [Ta/α]T

Figure 4.11. Introduction and elimination rules for universal types

ΛABS typechecks the body e in a type environment extended with the type parameter
α and universally quantifies the result type T , capturing any references to α in T . The
overall structure is analogous to ABS.

The type application rule ΛAPP typechecks the callee, which must have a universal type,
being a type abstraction. Then it instantiates that type by substituting the argument type
Ta for the type parameter α. This is more similar to the evaluation of term applications
than their typing. Despite the substitution in ΛAPP typechecking is decidable for System
F.

4.3.2 Existential Types

By analogy with mathematical logic4 we would expect that existential quantifiers could
also be used to form useful types and that values of such existential types would con-

4The analogies “propositions as types, proofs as programs” are a common theme in type theory called
the Curry-Howard correspondence.

33

cern some unknown type. And an extended version of System F, on display in Figure
4.12, does include existential types [32, ch. 24].

e ::= x |λx : T.e | e e |Λα.e | e ⟨T ⟩ | pack⟨T, e⟩ as ∃α.Tα | unpack⟨α, x⟩ = e in e

T ::= T → T | ∀α . T | ∃α . T |α

Figure 4.12. Abstract syntax of System F with existentials

An existential type ∃α.T hides some part of the implementation of T behind the type
variable α. Existential types are introduced by pack which hides the type T in the type of
e behind the existentially quantified type variable α. Existential types are eliminated by
unpack which is similar to let but also deconstructs the existential type and brings into
scope a type variable α for the abstract type in addition to the term variable x for the
unpacked value. Note that unpack does not and could not reveal the implementation of
α, it just allows use of the packaged value and brings the type variable into scope like the
type parameter of a Λ is in scope within its body.

1ML uses existentials to model the type abstraction aspect of module sealing as might
be guessed from the similarity of pack to sealing. R1ML does not implement sealing
with existential types because forward references and recursion are not supported by
pack and unpack. 1ML also uses existential types to implement the type generativity of
functors and so does R1ML. [38]

The introduction and elimination rules for existential types are given in Figure 4.13.

PACK
Γ ⊢ e : [T/α]Tα

Γ ⊢ pack ⟨T, e⟩ as ∃α.Tα : ∃α.Tα

UNPACK
Γ ⊢ ex : ∃α.Tα Γ, α, x : Tα ⊢ e : T

Γ ⊢ unpack ⟨α, x⟩ = ex in e : T

Figure 4.13. Introduction and elimination rules for existentials

The introduction rule PACK checks that the type of the expression e to be packed is the
instantiation of the existential body Tα with the implementation type T . Existential packing
is essentially type ascription but in an explicitly typed system the implementation type of
the existentially quantified type variable must be given explicitly.

The elimination rule UNPACK checks that the unpackee ex has existential type and then
types the body e in a type environment extended with the type variable α and term variable
x. The type variable must be pushed to the environment before the term variable since
the type Tα of the term variable can refer to the type variable. Existential unpacking is
essentially let with the addition of the type variable handling.

While the universal introduction ΛABS extends the type environment and the universal
elimination ΛAPP instantiates the universal, existential introduction instantiates the exis-
tential and elimination extends the type environment. Such mirroring in universal and

34

existential handling is also common in logic. In type theory one way to understand this is
the Continuation Passing Style (CPS)-flavoured encoding of existentials with universals
∃α.T = ∀β.(∀α.T → β) → β and the contravariance of function domains.

4.3.3 Type Assignment

A universal type like ∀α.α → α is more general than any of its instantiations such as
int → int. This notion of relative generality is captured by the System F instance relation
⊑F in Figure 4.14.

∀α.T ⊑F ∀β.[Targ/α]T

Figure 4.14. The System F instance relation ⊑F

The implicitly typed variant of System F is based on this instance relation. Like subtyping
<: the instance relation ⊑F is a preorder on types. So it is possible to introduce it into the
implicitly simply typed lambda-calculus via the rule INST of Figure 4.15, analogous to the
subsumption rule SUB.

INST
Γ ⊢ e : T ′ T ′ ⊑F T

Γ ⊢ e : T

GEN
Γ ⊢ e : T α ̸∈ ftv(Γ)

Γ ⊢ e : ∀α.T

Figure 4.15. Instantiation and generalization typing rules

The implicit ∀-elimination rule INST replaces explicit Λ-application of explicitly typed Sys-
tem F. Figure 4.15 also introduces the corresponding implicit ∀-introduction rule GEN.
The side condition of GEN prevents the quantifier from capturing of type variables that
were already scoped to somewhere in the type environment.

Since INST and GEN remove the need for explicit abstraction and application of terms
over types, the terms of implicitly typed System F are the same as in the implicitly simply
typed lambda-calculus. INST and GEN do use universal types, so the types of implicitly
typed System F are the same as in explicitly typed System F.

The implicitly typed System F is undecidable. This because it lacks the principal types
property, where every term has a most general type according to the ⊑F preorder. [2]

4.4 HM and MLF

The Hindley-Milner (HM) type system [26] used in core ML is a restriction of implicitly
typed System F that does have principal types. Its types in Figure 4.16 are stratified into
quantifier-free monotypes τ and prenex-quantified type schemes σ.

35

τ ::= τ → τ | bool | α
σ ::= ∀α . σ | τ

Figure 4.16. Hindley-Milner monotypes and type schemes

The HM instance relation ⊑HM in Figure 4.17 is the restriction of ⊑F to the prenex poly-
morphism of HM. Since quantifiers are limited to the outermost level of type schemes,
type variables can only be instantiated with monotypes ([τarg/α]).

∀α.τ ⊑HM ∀β.[τarg/α]τ

Figure 4.17. The prenex polymorphism instance relation ⊑HM

The full typing rules of the declarative HM type system are given in Figure 4.18. All the
rules are shown because of the pervasive changes from a single class of types T to
monotypes and type schemes.

VAR
x : σ ∈ Γ

Γ ⊢ x : σ

ABS
Γ, x : τd ⊢ e : τc

Γ ⊢ λx.e : τd → τc

APP
Γ ⊢ ef : τd → τc Γ ⊢ ea : τd

Γ ⊢ ef ea : τc

LET
Γ ⊢ ex : σ Γ, x : σ ⊢ e : τ

Γ ⊢ let x = ex in e : τ

INST
Γ ⊢ e : σ′ σ′ ⊑HM σ

Γ ⊢ e : σ

GEN
Γ ⊢ e : σ α ̸∈ ftv(Γ)

Γ ⊢ e : ∀α.σ

Figure 4.18. Typing rules of the Hindley-Milner type system

Aside from the change of type symbols the rules are very similar to implicitly typed System
F. Types are restricted to monotypes except in VAR, LET and of course instantiation and
generalization which are about quantifier handling.

In HM let is not just syntactic sugar for a β-redex and is in fact essential to the system.
The semantics of let-bound variables is that a variable reference is well-typed if it could
be replaced with the let-definiend ex of the variable5. For this semantics to work let-
bound variables must be allowed to have a type scheme in LET and in VAR (although VAR

also handles references to λ-parameters). This is the so-called let-polymorphism.

It turns out that the HM type system can be made syntax-directed by integrating INST

into VAR and GEN into LET, similar to how subtyping could be integrated into APP earlier.
Type inference algorithms like Milner’s original algorithm W combine the syntax-directed
system with the use of unification [36].

5Of course in practice let is not implemented with naive macroexpansion, but with either type erasure
(like Java generics) or monomorphisation (like C++ templates).

36

The limitations of prenex polymorphism led Le Botlan and Rémy to develop ML raised
to the power of System F (MLF) [18], which achieves principal types by extending type
schemes to be more expressive than System F types. The monotypes and type schemes
of MLF are shown in Figure 4.19.

τ ::= τ → τ | bool | α
σ ::= ∀α ⩾ σ.σ | ∀α = σ.σ | ⊥ | τ

Figure 4.19. MLF monotypes and type schemes

The distinguishing feature of MLF type schemes are the polymorphism-constrained quan-
tifers ∀α ⩾ σ.σ and ∀α = σ.σ. A flexibly (α ⩾ σ) quantified type variable can only be
instantiated by instances of the constraining type scheme σ. Flexible quantification is
required to obtain principal types in cases where System F does not have them.

A rigidly (α = σ) quantified type variable can only be instantiated with a type equal to the
type scheme σ. Rigid quantification can be seen as a generalization of nested quantifiers
in System F types, the naming of nested quantifiers enabling types that are directed
acyclic graphs instead of just trees like in System F. Rigidly quantified types are used
to incorporate type annotations into type inference. Rigid quantification contributes to
the fact that MLF only requires type annotations on function parameters that are used
polymorphically.

The MLF typing rules are very similar to those of HM, but the instance relation ⊑MLF is
much more complicated than ⊑F or ⊑HM . Overall the instance relation and especially
the type inference algorithms of MLF are too involved to explain here.

4.5 System Fη

HM has decidable type assignment, also known as “full type inference”. But ML module
signatures like STACK with polymorphic members cannot be expressed with prenex poly-
morphism, which is one reason for the stratification to core ML and the module system.

MLF types do not have the limitations of HM types. However MLF does not support covari-
ant or contravariant type constructors. The deep instantiation of co- and contravariance
has not been missed in MLF and has also recently been removed from GHC [42]. But
depth subtyping is an essential ingredient of ML module systems, so modules cannot be
implemented on top of MLF either.

4.5.1 Quantifier Subtyping

HM restricts the expressiveness of System F types to make all type annotations unneces-
sary. MLF increases the expressiveness of System F types and the power of the instance
relation and requires very few type annotations. A third option is to keep the System F

37

type language and extend the instance relation with covariance and contravariance and
treat it as a subtyping relation [28] [31] [9] [40]. A variant of this approach is shown in
Figure 4.20.

SFORALL

Γ, β ⊢ [Targ/α]Tl <: Tr ⇝ f

Γ ⊢ ∀α.Tl <: ∀β.Tr ⇝ λx.Λβ.f (x ⟨Targ⟩)

SARROW
Γ ⊢ T ′

d <: Td ⇝ f Γ ⊢ Tc <: T ′
c ⇝ g

Γ ⊢ Td → Tc <: T ′
d → T ′

c ⇝ λx.λy.g (x (f y))

SRIGID

Γ[α] ⊢ α <: α⇝ λx.x

Figure 4.20. Quantifier subtyping

The central rule in this quantifier subtyping relation is SFORALL, an extension of ⊑F with
covariance for the body types Tl and Tr. Covariance allows further instantiation to happen
in the body before the requantification with ∀β. SARROW is the standard contravariant-
covariant function subtyping rule. Rule SRIGID shows that subtyping is syntactic equality
for type variable references (that are in scope, Γ[α]).

In Figure 4.20 the subtyping check also generates a coercion function in the greyed out
parts of the rules. The coercion function is in explicitly typed System F, but this thesis
follows [40] and [38] in omitting type annotations from generated terms to reduce clut-
ter. These retyping functions can only adjust quantifier structure via Λ-abstractions
and -applications. SARROW can result in η-expansion, i.e. the generated coercion
λx.λy.xy contains an η-redex λy.xy of the function x. Similarly SFORALL can produce
(Λ-)η-redexes Λβ.x ⟨β⟩.

All the generated retyping functions can be seen as generalizations of η-expansion, which
is why systems with quantifier subtyping like this are called System F modulo η-expansion
(System Fη). System Fη originated in [28] where quantifier subtyping was called poly-
morphic containment.

The emission of coercion functions means that System Fη uses a coercion semantics
[32, sec. 15.6] for quantifier subtyping. In coercion semantics the operational meaning of
T <: T ′ is that values of type T can be coerced to type T ′ by some additional generated
code like a call to a retyping function. This is in contrast to a subset semantics where
T <: T ′ means that values of type T have a runtime representation which is compati-
ble with that of T ′ without any conversion code. For example Typescript uses a subset
semantics for structural subtyping by transpiling to Javascript which (conceptually) looks
fields up by name (instead of just an address offset like C structs).

A type system which transforms the program in addition to typechecking is an elaborat-
ing type system. The typing rules of System Fη have to transform the program by insert-
ing calls to the generated coercion functions, creating many β-redexes in addition to the
η-redexes. Both types of redexes can be optimized away by later compilation passes [1,

38

ch. 6] or avoided altogether by refining the elaboration algorithm with techniques from
one-pass CPS conversion [4].

4.5.2 Elaborating Expression Typing and Focalization

System Fη cannot just use the typing rules from Section 4.2 with the quantifier subtyping
relation as <: because elaborating typing rules are needed to incorporate the coercion
functions produced by quantifier subtyping. Figure 4.21 shows suitable elaborating rules.

VAR
x : T ∈ Γ

Γ ⊢ x : T ⇝ x

ABS
Γ, x : Td ⊢ e : Tc ⇝ e′

Γ ⊢ λx : Td.e : Td → Tc ⇝ λx : Td.e
′

ΛABS
Γ, α ⊢ e : T ⇝ e′

Γ ⊢ Λα.e : ∀α.T ⇝ Λα.e′

APP
Γ ⊢ ef : Tf ⇝ e′f Tf ≫ _ → _⇝ Td → Tc ⇝ f

Γ ⊢ ea : Ta ⇝ e′a Γ ⊢ Ta <: Td ⇝ g

Γ ⊢ ef ea : Tc ⇝ (f e′f) (g e
′
a)

Figure 4.21. System Fη typing rules

VAR just produces a variable reference. ABS and ΛABS just elaborate the function body
and wrap it in their abstraction forms.

Quantifiers cause an additional challenge for elimination forms like function application;
values with types that can be instantiated to a function type like ∀α.α → α should be
callable as well as those that already have a function type. Subtyping cannot be used
for this because no specific function type is available to act as the supertype. So we
introduce an auxiliary focalization judgment [9] [38] that takes a type template T that
is like a type but can contain holes _. Like subtyping, focalization produces a coercion
function. APP types the callee ef and focalizes its type Tf to any function type _ → _.
The argument type is subtyped with the domain type as in Section 4.2. The elaborated
application coerces the callee with the focalization coercion and the argument with the
subtyping coercion before the expected application.

Focalization itself is based on instantiation like quantifier subtyping. Focalization is de-
fined in Figure 4.22.

≫FORALL

[Targ/α]T ≫ T ⇝ T ′ ⇝ f

∀α.T ≫ T ⇝ T ′ ⇝ λx.f (x ⟨Targ⟩)

≫ARROW

Td → Tc ≫ _ → _⇝ Td → Tc ⇝ λx.x

Figure 4.22. Focalization

Rule ≫FORALL instantiates universal types, producing a coercion function with the cor-
responding Λ applications. Rule ≫ARROW just checks that when the template is _ → _

39

(the only template used in this section) the focalizee is of arrow type.

A system like this infers all Λ-applications. Quantifier subtyping can also infer quite a few
Λ-abstractions but Λ must be used to create polymorphism (via ΛABS). Enhancing the
system with bidirectional typing [9] allows replacing Λ with polymorphic type annotations
but even that system does not have the power of GEN to introduce polymorphism with
no hints from the programmer. It has been argued that inference of applications is more
important than inference of Λ-abstractions, which are far fewer in number and also benefit
from type annotations as documentation [33]. More recently it has been shown that the
vast majority of parametrically polymorphic definitions are at top level where they are very
likely to be annotated in any case [45].

A more serious weakness of this system is that it is undecidable. The predicative variant
which limits instantiation of type variables to monotypes τ is decidable. That variant is
obtained by just replacing [Targ/α] with [τarg/α] (and Targ with τarg).

Impredicative instantiation is rarely needed, so predicativity is not as limiting as it seems.
On the other hand the rarity of impredicativity might just be additional evidence for the
Sapir-Whorf hypothesis in programming languages, as Remy argues in [34] that impred-
icativity is essential. After all, people are quite satisfied with the even more limiting prenex
polymorphism of HM even though “These cases are not all that common, but there are
usually no workarounds; if you need higher-rank types, you really need them!” [31].

4.6 System Fω

The types of types are called kinds [32, ch. 29]. The systems discussed up to this point
have been “dynamically kinded” or implicitly mono-kinded, all types having the kind Type

and kind annotations omitted (because they would all be Type).

Nontrivial kinding is orthogonal to quantified types. However it is more practical to discuss
System Fω [32, ch. 30], which extends System F with nontrivial kinding.

The abstract grammar of System Fω types in Figure 4.23 is a straightforward extension
of System F with type level functions λα : κ.T and applications T T as well as kind
annotations for quantifiers. Kinds κ are similar to the types of simply typed lambda-
calculus; the atomic kind type for types and an arrow kind type → type for type level
functions. Only types of kind type classify values.

e ::= x |λx : T.e | e e |Λα : κ.e | e ⟨T ⟩
T ::= T → T | ∀α : κ . T |λα : κ.T |T T |α
κ ::= κ → κ | type

Figure 4.23. Abstract syntax of System Fω

We are primarily interested in parameterized types like

40

type ’ a po i n t = { x : ’ a , y : ’ a }

whose Java equivalent6 would be

class Point <T> { public T x ; public T y ; }

Those correspond to (second class) type level functions. Type level functions are also
called higher kinded types. Other nontrivial kinds are useful in type level programming
just like types are useful in regular term-level programming. Like SML and OCaml we will
not support such advanced type level techniques.

Since only types of kind type classify values it is unsurprising that the impact of nontrivial
kinding on the typing rules is minor. Figure 4.24 shows the required changes.

ABS
Γ ⊢ Td : type Γ, x : Td ⊢ e : Tc

Γ ⊢ (λx : Td.e) : Td → Tc

ΛABS
Γ, α: κ ⊢ e : T

Γ ⊢ Λα: κ.e : ∀α: κ.T

ΛAPP
Γ ⊢ e : ∀α: κ.T Γ ⊢ Ta : κ

Γ ⊢ e ⟨Ta⟩ : [Ta/α]T

EQ
Γ ⊢ e : T ′ T ′ ≡ T Γ ⊢ T : type

Γ ⊢ e : T

Figure 4.24. System Fω changes from System F

Quantifier rules are refined by adding kinds for type variables and well-kindedness checks
Γ ⊢ T : κ for Λ applications. The addition of type level functions means that type equality
is no longer simply syntactic. This is expressed with an explicit type equality relation
≡ and a non-syntax-directed rule EQ, which is analogous to the subsumption rule in
declarative subtyping.

At this point the impact of nontrivial kinding seems rather small. However we also need
to define the details of well-kindedness Γ ⊢ T : κ and nonsyntactic type equality ≡.

Since the new type expressions are just the simply typed lambda-calculus promoted to
the level of types, the kinding rules in Figure 4.25 should be quite familiar by now. The
kinding of function types and quantifiers is new but even simpler than the promoted rules.

The domain and codomain of functions must be of kind type and the combined function
type also has kind type. In fact rule TARROW is redundant if we just consider → as an infix
type operator of kind type → type. Some complication might be expected in the kinding of
quantified types, but they just extend the type environment with their kinded type variable
and have the kind that their body type has that extended environment.

As an equivalence relation ≡ must be reflexive, symmetric and transitive. These proper-
ties are taken as definitions in Figure 4.26.

6Ignoring the curiosity that for historical reasons Point is a supertype of e.g. Point<Integer> in Java.

41

TVAR
α : κ ∈ Γ

Γ ⊢ α : κ

TABS
Γ, α : κd ⊢ T : κc

Γ ⊢ (λα : κd.T) : κd → κc

TAPP
Γ ⊢ Tf : κd → κc Γ ⊢ Ta : κd

Γ ⊢ Tf Ta : κc

TFORALL
Γ, α : κα ⊢ T : κ

Γ ⊢ (∀α : κα.T) : κ

TARROW
Γ ⊢ Td : type Γ ⊢ Tc : type

Γ ⊢ Td → Tc : type

Figure 4.25. Kinding rules for System Fω

EQREFL

T ≡ T

EQSYMM
T ′ ≡ T

T ≡ T ′

EQTRANS
T ≡ T ′′ T ′′ ≡ T ′

T ≡ T ′

EQFORALL
T ≡ T ′

∀α : κ.T ≡ ∀α : κ.T ′

EQARROW
Td ≡ T ′

d Tc ≡ T ′
c

Td → Td ≡ T ′
d → T ′

c

EQFN
T ≡ T ′

λα : κ.T ≡ λα : κ.T ′

EQβ

(λα : κ.T)T ′ ≡ [T ′/α]T

EQAPP
Tf ≡ T ′

f Ta ≡ T ′
a

Tf Ta ≡ T ′
f T

′
a

Figure 4.26. Type equivalence in System Fω

The equivalence of both quantifiers and also type level functions follows the same for-
mula: the types are equal if the kinds of the quantified variables are (syntactically) equiv-
alent and if the body types are equivalent. It would seem that the names of the quantified
variables would also need to be identical, but recall the Barendregt naming convention:
the rules assume that the variables can be implicitly renamed to match. A practical type-
checker would need to contain explicit code for this renaming or use a nameless repre-
sentation like de Bruijn indices [32, ch. 6].

Rule Eβ is the real complication of type level functions; a β-redex (λα : κ.T)T ′ is equal
to its reduction [T ′/α]T , introducing type level computation. Equality is also recursively
defined on any application expression (EAPP) including the special case of function types
(EARROW), which might seem redundant if function applications can be evaluated with
Eβ. However applications of abstract type constructors like list or → actually cannot be
reduced further, just like in SML SOME 5 is a tagged value instead of a β-redex. Further-
more it should also be true that ∀α : type → type.α int ≡ ∀α : type → type.α int, where α

stands for all types of kind type → type.

4.6.1 Decidability

Type checking is decidable for explicitly typed System Fω. The non-syntax-directed rule
EQ can be factored out, similar to SUB in Section 4.2. Like the simply typed lambda-

42

calculus, kinding is syntax-directed and inductive so it is decidable. Type equivalence
≡ is also decidable by separating evaluation from equality checking as in Section 7.3.2.
Type level reduction is strongly normalizing, like the simply typed lambda-calculus. [32,
ch. 30]

The type assignment variant of System Fω is undecidable because it includes the already
undecidable type assignment variant of System F. Furthermore the addition of type level
functions requires higher order unification, which is also undecidable.

In predicative System Fη subtyping problems like

{x : bool} <: ∃α : type.{x : α}

could be solved straightforwardly with the substitution [bool/α]. But in Fω we would en-
counter situations like

{x : bool} <: ∃α : type → type.{x : α bool}

which could be solved with the substitution [λβ : type.β/α] but also by [λβ : type.bool/α].
In fact there are an infinitely many suitable type level functions, hence the undecidability
of higher-order unification.

In ML higher kinded types must always be fully applied, making them second class (even
on the type level). This restriction removes the requirement for higher order unification,
keeping type inference decidable.

Haskell must have some support for higher kinded types since it is required by the essen-
tial Monad type class among others. Their solution is to limit higher kinded type terms to
abstract types created by data and newtype declarations and partial applications thereof.
Transparent type definitions are still second class. The limited higher kind type support of
Haskell permits rather sophisticated constructions like the infamous monad transformers,
but is quite unprincipled and leads to a proliferation of newtype wrapper boilerplate. It
could not be reasonably combined with the translucency in ML modules (which Haskell
does not have).

As we shall see later on in great detail, the subset of quantifier subtyping problems elab-
orated from ML modules is in fact decidable. We can already see why on the level of the
surface language. A sealing problem

{ type ’ a t = ’ a ; x = t rue } : > { type ’ a t ; x : bool t }

can obviously only be solved with t = λa.a since higher kinded types are only matched at
type declarations. Furthermore without forward reference support in signatures the type

declaration will always come up before any of its uses. First class modules and forward
references complicate the situation somewhat but translucency remains workable.

43

5 F-ING MODULES AND 1ML

Altogether, we describe a comprehensive, unified, and yet
simple semantics of a full-blown module language that –

with the main exception of cross-module recursion –
covers almost all interesting features that can be found in
either the literature or in practical implementations of ML

modules.

F-ing modules [40]

ML modules were first conceived as an application of dependent types. Nevertheless ML
modules have been modeled with System Fω encodings in papers for a long time. The
“F-ing Modules” paper [40] finally introduced a full implementable module type checker
which elaborates to System Fω. The follow-up 1ML paper [38] continued by replacing the
stratification into module and core languages with a predicativity restriction.

In this chapter we review the main points of the ‘F-ing’ approach and 1ML in particular. To
avoid introducing too much at once this chapter explains the explicitly typed 1ML variant.
The abstract syntax of 1ML is repeated in Figure 5.1. The full surface syntax also includes
various derived constructs to be desugared into these.

E ::= X | true | false | if E then E else E : T | {B} | E.X | fun (X : T) ⇒ E | XX

| type T | X :> T

B ::= X = E | include E | B;B | ϵ
T ::= E | bool | {D} | (X : T) ⇒ T | (X : T) → T | type | = E | T where (.X : T)

D ::= X : T | include T | D;D | ϵ

Figure 5.1. Abstract (desugared) syntax of 1ML

Record expressions {B} cover structure modules in addition to basic records. Bindings
B are semicolon-connected sequences of member definitions X = E and inheritance
with include. Like open in SML, include E both copies the members of E into the record
being built and brings them into scope as variables for the following bindings. As with
both simple record types and structure modules the record types {D} and declarations
D parallel the record syntax.

The type T expression creates a type proxy value which carries no information at runtime

44

but whose type includes the type T . On the type level type creates abstract types and is
not tied to declarations D unlike in SML anc OCaml.

Type paths are not syntactically limited but can be any pure expression E of type type.
The singleton type = E is equal to the type of the expression E including the identity of
abstract types.

Members of (nested) record types can be refined with where, which is a generalization of
where type in SML1. A combination of where and a singleton type can emulate the where

structure compiler extension of the Standard ML of New Jersey (SML/NJ) compiler.

The fun keyword starts function literals instead of function definitions like in SML. Func-
tions can have both pure (⇒) and impure (→) types. Functions subsume functors so the
domain can be named in function types to let the codomain refer to the type components
of the domain. Impure functors are generative and pure functors applicative.

Due to the presence of higher-kinded types ML module signatures and 1ML do not have
joins. So in explicitly typed 1ML all conditionals must have a type signature to which both
branches are upcasted (sealed). When type inference is added the type annotation is not
required when both branches have monotypes.

Various subexpressions are limited to variables X to simplify typechecking. 1ML uses a
kind of A-normal form conversion [11] before typechecking to lift these restrictions from
source code programs.

5.1 Semantic Types

The types used in the 1ML type systems are a stylized subset of System Fω. That subset
is shown in Figure 5.2.

Ξ ::= ∃α.Σ
Σ ::= π | bool | [= Ξ] | {l : Σ} | ∀α.Σ →ι Ξ

τ ::= π | bool | [= τ] | {l : τ} | τ →I τ

π ::= α | π τ

ι ::= P | I

Figure 5.2. Semantic types of 1ML

The base types are the large types Σ (Σ for module signature). Monotypes τ , called
small types in 1ML have the same structure as large types but cannot contain existential
or universal quantifiers. Here τ is used instead of the σ (lowercase or small Σ) in [38] for
consistency with the rest of this thesis.

Type proxies (from type T) have carrier types [= Ξ]. Abstract types (from type) become

1with type in OCaml

45

paths π, which are either rigid type variables α or their (nested) applications to mono-
types. Abstracted types Ξ can be existentially quantified and only appear in type proxies
and function codomains.

Function types ∀ᾱ.Σ →ι Ξ have the usual arrow with domain and codomain types. Uni-
versal quantifiers are only needed in conjunction with function types, for abstract types
in functor domain types. Function types also integrate an effect ι as a subscript to the
arrow. The arrow effect is the effect resulting from calls to the function, either pure P (cor-
responding to ⇒) or impure I (corresponding to →). Monotyped (‘non-functor’) functions
always have the impure effect to simplify type inference since parametric polymorphism
is not available for effects.

5.2 Effects

Figure 5.3 defines effect subtyping and join. These rules are inevitable given the meaning
of P and I.

ESREFL

ι <: ι
ESIMPURIFY

P <: I
EJREFL

ι ∨ ι = ι
EJIMPURIFYL
P ∨ I = I

EJIMPURIFYR
I ∨ P = I

Figure 5.3. Effect subtyping and join

Either effect is a subtype of itself, making effect subtyping reflexive (rule ESREFL). The
other subtyping rule ESIMPURIFY makes P a subtype of I; when side effects are allowed,
they are not compulsory. The only other combination I <: P would make both effects
equivalent and typing unsound.

The join of either effect with itself is that effect (EJREFL). Otherwise (EJIMPURIFYL and
EJIMPURIFYR) the result is I because I is not a subtype of P as just discussed.

5.3 Structures

Figure 5.4 shows that 1ML essentially processes structure members as sequential vari-
able bindings while also collecting them into a record. The effect ι of each subexpression
is inferred in addition to the type, mostly by combining effects with the effect join. Since
the initializing expressions of the members can create abstract types the rules also have
a further unconventional aspect.

The existential parameters (if any) of the member type are inserted into the typing con-
text along with the member name typed as the body of the existential. This enables
subsequent members to refer to values involving those abstract types. For the type level
unpacking of the existential to make sense with relation to the elaborated program an
existential unpack is added to the generated code. To have a composable and tractable
system the abstract types have to be re-packed into an existential that is returned. This

46

ESTR
Γ ⊢ B :ι Ξ⇝ e

Γ ⊢ {B} :ι Ξ⇝ e

BVAR
Γ ⊢ E :ι ∃α .Σ⇝ e

Γ ⊢ X = E :ι ∃α . {X : Σ}⇝ unpack ⟨α, x⟩ = e in pack ⟨α, {X = x}⟩

BSEQ
Γ ⊢ B1 :ι1 ∃α1 . {X1 : Σ1}⇝ e1

Γ, α1, X1 : Σ1 ⊢ B2 :ι2 ∃α2 . {X2 : Σ2}⇝ e2 X ′
1 = X1 −X2 X ′

1 : Σ
′
1 ⊆ X1 : Σ1

Γ ⊢ B1;B2 :ι1∨ι2 ∃α2α2 . {X ′
1 : Σ

′
1, X2 : Σ2}

⇝ unpack ⟨α1, y1⟩ = e1 in letX1 = y1.X1

in unpack ⟨α1, y1⟩ = e2
in pack⟨α1α1, {X ′

1 = y1.X ′
1, X2 = y2.X2}⟩

BEMPTY

Γ ⊢ ϵ :P {}⇝ {}

Figure 5.4. 1ML structures (excerpt)

too needs to be accompanied by a value-level pack in the generated code. All this un-
packing and re-packing maintains the invariant that existential quantifiers only occur at
the outermost level of a type (or as the codomain of a function or inside a type carrier
type [= ∃ᾱ .Σ]). The papers call this a ‘monad of abstract type generation’ which does
provide the right intuition if one happens to be familiar with monads.

The set operations in rule BSEQ just ensure that the generated record will not have du-
plicated fields. The module expression can nevertheless employ name shadowing as in
a sequential let with the additional consequence that the last value for a name is also
collected into the record.

The 1ML structure signature elaboration rules are very similar to the analogous structure
typing rules as one can see in Figure 5.5. Value and type variables are added to the
context and existentials packed and unpacked exactly as in the module rules, just without
the complications of generating the accompanying elaborated code.

TSTR
Γ ⊢ D ⇝ Ξ

Γ ⊢ {D}⇝ Ξ

DVAR
Γ ⊢ T ⇝ ∃α .Σ

Γ ⊢ X : T ⇝ ∃α . {X : Σ}

DSEQ
Γ ⊢ D1 ⇝ ∃α1 . {X1 : Σ1}

Γ, α1, X1 : Σ1 ⊢ D2 ⇝ ∃α2 . {X2 : Σ2} X1 ∩X2 = ∅
Γ ⊢ D1;D2 ⇝ ∃α1α2 . {X1 : Σ1, X2 : Σ2}

DEMPTY

Γ ⊢ ϵ⇝ {}

Figure 5.5. 1ML structure signatures (excerpt)

It is perhaps surprising to see value bindings in type elaboration rules but this is how ML
structure signatures are supposed to work. Such behaviour is characteristic of dependent
typing but here it is implemented without dependent types.

47

The empty intersection assertion in rule DSEQ is almost analogous to the set operations
in BSEQ. However it prohibits not only duplicate fields in the output type but also name
shadowing, which is the usual ML signature behaviour even though it is inconsistent with
BSEQ.

The use of existential packages in the output of these rules is the ‘F-ing Modules’ expla-
nation for the fact that ML modules do not allow forward references. Abstract types (the
parameters of ∃-quantifiers) are created at an unpack and are only in scope after that
point. Other type definitions and even the types of values can and often do refer to these
abstract types so they too might be invalid before the unpack. For consistent behaviour
all forward references have been banned, even ones that do not refer to abstract types.

5.4 Type Members

Figure 5.6 shows the handling of type members. This is where the existentials that need
to be constantly unpacked and packed originate.

ETYPE
Γ ⊢ T ⇝ Ξ

Γ ⊢ typeT :P [= Ξ]⇝ [Ξ]

TTYPE

Γ ⊢ type⇝ ∃α . [= α]

Figure 5.6. 1ML first-class types (excerpt)

Concrete types are represented as type carrier values [= Ξ]. Concrete type expres-
sions yield carriers that just contain the elaborated type (rule ETYPE). Type members are
transmitted between modules via these carrier values that serve no other purpose and
could thus be elaborated further into e.g. the empty record {} by subsequent compilation
passes. As mentioned earlier this is one of the few places where an existential quantifier
can exist nested within a type.

The type type elaborates into a carrier type containing an existentially quantified type
variable per rule TTYPE. This is the only place where existential quantifiers are created
instead of merely being expanded and combined in the module and signature rules.

5.5 Sealing

Figure 5.7 shows the 1ML sealing rule. The rule states that only variables can be sealed,
but the preprocessing phase mentioned earlier removes this restriction from the source-
level syntax.

Sealing itself is surprisingly simple. The type of the expression is determined and the
signature elaborated. Then the expression is just tested to be a subtype of the elaborated
signature. The subtyping determines the implementations of the abstract type as the
substitution δ and computes a value-level coercion function f , which are the used to

48

ESEAL
Γ ⊢ X :P Σ1 ⇝ e Γ ⊢ T ⇝ ∃α .Σ2 Γ ⊢ Σ1 <:α Σ2 ⇝ δ; f

Γ ⊢ X :> T :ι(∃α .Σ2) ⇝ pack ⟨δα, f e⟩

Figure 5.7. 1ML sealing

coerce and pack the value of the expression to the signature type. All this is familiar
although the notation used here is slightly different from the rest of this thesis.

The notation ι(∃α .Σ2) states that the effect of the sealing is impure if the signature had
any abstract types ᾱ and pure otherwise (since a variable reference is always pure).
Sealing does not have any runtime side-effects but treating existential creation as a side
effect simplifies the handling of functor generativity in the next section. The “F-ing” and
1ML papers also describe more sophisticated language variants where sealing is pure.

5.6 Functors

The 1ML rules for functor (and function) types and values are shown in Figure 5.8. Ap-
plicative functors are also called pure because their bodies must be free of side effects.
An impure applicative functor could cause breaches of abstraction as can happen in
OCaml.

TFUN
Γ ⊢ T1 ⇝ ∃α1 .Σ1

Γ, α1, X : Σ1 ⊢ T2 ⇝ ∃α2 .Σ2

Γ ⊢ ((X : T1) → T2 ⇝ ∀α1 .Σ1 →I ∃α2 .Σ2

TPFUN
Γ ⊢ T1 ⇝ ∃α1 .Σ1

Γ, α1, X : Σ1 ⊢ T2 ⇝ ∃α2 .Σ2 α′
2 : κα1 →κα2

Γ ⊢ ((X : T1) ⇒ T2 ⇝ ∃α′
2 .∀α1 .Σ1 →P [α′

2α1/α2]Σ2

EFUN
Γ ⊢ T ⇝ ∃α .Σ

Γ, α,X : Σ ⊢ E :ι Ξ⇝ e

Γ ⊢ fun (X : T) ⇒ E :P ∀α .Σ →ι Ξ⇝ Λα . λX : Σ . e

EAPP
Γ ⊢ X1 :P ∀α .Σ1 →ι Ξ⇝ e1

Γ ⊢ X2 :P Σ2 ⇝ e2 Γ ⊢ Σ2 <:α Σ1 ⇝ δ; f

Γ ⊢ X1X2 :ι δΞ⇝ e1[δα](f e2)

Figure 5.8. 1ML functors (excerpt)

Rules TFUN and TPFUN elaborate impure (generative) and pure (applicative) functors.
The name X and abstract types α1 of the domain are added to the typing context so that

49

they are visible while elaborating the codomain type. Again this seems like dependent
typing but is actually just a way to use quantifiers to enable flexible abstract types in
modules.

The abstract types α1 are requantified with a universal quantifier that contains their entire
scope, the domain and the codomain. The functor will work for all implementations of
the domain’s abstract types, not just some hidden one so the quantifier must be changed
from existential to universal. Changing the quantifier also fits in with the contravariance
of function domain types.

As their output expressions suggest, EFUN and EAPP can be seen as combinations of
previous λ- and Λ-abstraction and application rules respectively. Since sealing is impure
in this simple 1ML variant the body of a pure functor cannot produce abstract types. The
argument types of a functor are inferred as part of domain subtyping.

Impure functors just insert the elaborated codomain type ∃α2 .Σ2 as the codomain of
the elaborated functor type. This leads to the application expressions of such functors
having an existential type like a pack expression. So the application expression generates
abstract types. In other words, an impure functor behaves generatively.

Pure functors lift the abstract types into the outermost layer of the functor type, so that
applications of pure functors will not have existential types and will not generate fresh
abstract types. However the implementation types of the abstract codomain types α2 can
depend on the abstract domain types α1 and each application of a pure functor where
the abstract domain types get implemented differently should result in different abstract
codomain types. This is achieved by parameterizing the abstract codomain types with
the abstract domain types and replacing their usages in the codomain type with the type-
level applications α′

2α1. Now each application of a pure functor to the same argument
will produce the same types but applying to a different argument will produce different
types, so a pure functor behaves applicatively. This implementation of applicative functors
does have the issue that argument identity is only tied to the domain type members
and ignoring the identity of the values can result in breaches of abstraction even without
runtime side effects. That hole was plugged with a more sophisticated system in [40], but
with first-class modules their solution would seem to require impredicative instantiation.

In 1ML and R1ML applicative functors are essential since functors subsume type con-
structors which must have applicative behaviour to be usable: list int should be equal
to all other list int type expressions. On the other hand a system that merges functors
with functions also needs generative functors because ML functions can have side effects
while abstraction-safe applicative functors require referential transparency.

50

6 SYSTEM FC

While our motivating examples were GADTs and
associated types, we believe that Fc may have much

wider application as a typed target for sophisticated HOT
(higher-order typed) source languages.

System F with Type Equality Coercions [44]

The R1ML type system uses System Fc [44] as its elaboration target. Naturally the needs
of R1ML are somewhat different from those of GHC, so the System Fc of this chapter is
an extended subset of the one in [44]. R1ML is focused on abstract types and solving
double vision and does not need as much coercion type machinery as GHC. On the other
hand supporting the composable type abstraction of ML modules requires the addition or
generalization of some constructs. The abstract syntax of our System Fc variant is shown
in Figure 6.1.

e ::= x | λx : T . e | e e | Λα : κ . e | e ⟨T ⟩ | pack ⟨T, e⟩ as T | unpack ⟨α, x⟩ = e in e

| let rec x : T = e in e | type α : κ in e | axiom c : T ∼ T in e | e ▶ γ

| {x = e} | e.x | [T] | true | false | if e then e else e

T ::= T → T | ∀α : κ . T | ∃α : κ . T | T T | {x : T} | [= T] | bool | α
κ ::= κ → κ | type
γ ::= T | sym γ | γ ◦ γ | c | γ@T | γ γ | [= γ] | {x : γ}

Figure 6.1. Abstract syntax of System Fc

As is to be expected, even the elaboration target of a realistic programming language
needs many more constructs than the idealized calculi of Chapter 4. Fortunately most in-
dividual constructs are already familiar. The only new expression forms are local abstract
type definitions type α : κ in e, local axiom definitions axiom c : T ∼ T in e and coer-
cion type -powered type casts e ▶ γ. The coercion types γ are also completely new in
Fc. Aside from the separate syntactic category of coercion types there are no unfamiliar
types or kinds.

The essence of System Fc is similar to System Fω augmented with type equality coer-
cions. Like Haskell, System Fc has nontrivial kinding and higher-kinded types, but not
general type level functions λα : κ . T . General type level functions are needed in R1ML

51

during type checking, but all of them can be β-reduced out from the final System Fc

output.

6.1 Term Typing

Our System Fc typing rules are shown in Figure 6.2. As with syntactic forms there are
quite a few but most of them are not new.

VAR
x : T ∈ Γ

Γ ⊢ x : T

ABS
Γ ⊢ Td : type Γ, x : Td ⊢ e : Tc

Γ ⊢ λx : Td . e : Td → Tc

APP
Γ ⊢ ef : Td → Tc Γ ⊢ ea : Td

Γ ⊢ ef ea : Tc

ABST
Γ, α : κ ⊢ e : T

Γ ⊢ Λα : κ . e : ∀α : κ . T

APPT
Γ ⊢ ef : ∀α : κ . T Γ ⊢ Ta : κ

Γ ⊢ ef ⟨Ta⟩ : [Ta/α]T

PACK
Γ ⊢ e : [T/α]Tα Γ ⊢ ∃α : κ . Tα : type

Γ ⊢ pack ⟨T, e⟩ as ∃α : κ . Tα : ∃α : κ . Tα

UNPACK
Γ ⊢ ex : ∃α : κ . Tα Γ, α : κ, x : Tα ⊢ e : T

Γ ⊢ unpack ⟨α, x⟩ = ex in e : T

LETREC

x = dedup(x) Γ, x : Tx ⊢ ex : Tx Γ, x : Tx ⊢ e : T

Γ ⊢ let rec x : Tx = ex; in e : T

TYPE
Γ, α : κ ⊢ e : T

Γ ⊢ type α : κ in e : T

AXIOM
Γ ⊢ T1 : κ Γ ⊢ T2 : κ Γ, c : T1 ∼ T2 ⊢ e : T

Γ ⊢ axiom c : T1 ∼ T2 in e : T

CAST
Γ ⊢ e : T Γ ⊢CO γ : T ∼ T ′

Γ ⊢ e ▶ γ : T ′

RECORD
Γ ⊢ e : T x = dedup(x)

Γ ⊢ {x = e} : {x : T}

SELECT
Γ ⊢ e : {xe : Te} x : T ∈ xe : Te

Γ ⊢ e.x : T

PROXY
Γ ⊢ T : type

Γ ⊢ [T] : [= T]

TRUE

Γ ⊢ true : bool
FALSE

Γ ⊢ false : bool

IF
Γ ⊢ ec : bool Γ ⊢ et : T Γ ⊢ ef : T

Γ ⊢ if ec then et else ef : T

Figure 6.2. System Fc typing rules

The rules for variable references as well as λ- and Λ-abstractions and applications are
the same as in standard System Fω. The existential packing and unpacking rules are
also the same as they would be in Fω. With nontrivial kinding PACK needs to check that
the existential type has the kind type as that must be the kind of the type of any packed
value. This is similar to the kind check that was added to ABS for Fω.

The rules for local definitions, records and booleans are the same as they would be in
System Fω or even the simply typed lambda-calculus. The rule PROXY is fairly obvious
and can also be derived from the 1ML encoding [T] = {typ = λx : T . {}}.

The only Fc type functions needed by R1ML are parameterless and do not need to be

52

differentiated from abstract types α. But unlike Haskell, ML modules require local abstract
type generation. So while [44] had global type functions we have local abstract types with
the completely obvious typing rule TYPE.

A cast expression e ▶ γ swaps the type of the expression e, which is also the source
type of the coercion γ to the target type of the coercion. The source and target types are
extracted from the equality kind of the coercion which is computed by the kinding rules
in Section 6.3. The coercion acts as an equality witness or proof that the cast is safe
i.e. that the runtime representations of the source and target types are identical.

Equality axioms create new type equalities. To solve double vision R1ML needs local
axioms instead of the global ones in [44]. The typing rule AXIOM is the obvious general-
ization of global axiom typing; the types to be equated are checked to have the same kind
κ and no kinding errors. Then the proof variable c of the desired equality kind is added to
the type environment while type checking of the body e.

The local axiom typing rule is simple but requires extending the auxiliary notion of con-
sistency which is required for System Fc to be sound. Clearly allowing any axiom would
be unsound since it has the same effect as arbitrary unchecked casts. Consistency be-
comes a slightly more challenging notion in the presence of scoped axioms even though
it seems obvious that Fc code produced for modules should be sound since that is the
case when plain System F or RTG is used as the elaboration target.

Definition 6.1 (Value type). A type T is a value type iff it is of form bool, Td → Tc, {l : Tl},
[= Tc], ∀α : κ . Tb or ∃α : κ . Tb.

So a value type is the type of a data value (scalar or composite), a function or a quantified
type. This value type terminology is unrelated to the value versus pointer type terminology
that concerns immediate or stack values versus address or heap values.

Definition 6.2 (Consistency). Γ is consistent iff

1. If Γ ⊢CO γ : bool ∼ T and T is a value type, then T = bool.

2. If Γ ⊢CO γ : Td → Tc ∼ T and T is a value type, then T = T ′
d → T ′

c.

3. If Γ ⊢CO γ : {l : Tl} ∼ T and T is a value type, then T = {l : T ′
l }.

4. If Γ ⊢CO γ : [= Tc] ∼ T and T is a value type, then T = [= T ′
c].

5. If Γ ⊢CO γ : ∀α : κ . Tb ∼ T and T is a value type, then T = ∀α : κ . T ′
b.

6. If Γ ⊢CO γ : ∃α : κ . Tb ∼ T and T is a value type, then T = ∃α : κ . T ′
b.

So every coercion connecting two value types that can be constructed in the context Γ
must have the same outermost type constructor on both sides. In the original System
Fc consistency was only required of the toplevel context. Because we have local axioms
we have to require consistency of all typing contexts. And we can just do that, since
we do not need to abstract over coercions (for which [44] has variants of Λ and ∀). If
we wanted to abstract over coercions we would have to require that any inconsistency
is due to coercion parameters instead of axioms, which would not be as clear-cut than

53

just requiring consistency of the toplevel or everywhere. The proof that consistency is
sufficient for soundness can be found in [44, section 3.7].

In C casts have zero runtime overhead if the representations are identical but their va-
lidity is not checked at compile time or runtime and thus they are potentially unsafe. In
Java casts are considered safe because their validity is checked at runtime. The validity
of System Fc casts is checked at compile time with the coercion kinding rules so they
have both zero overhead (because the coercion type can be erased in later compilation
passes) and safety (given consistent axioms).

6.2 Type Kinding

Because Fc has nontrivial kinds it needs kinding rules. Like typing, the kinding rules in
Figure 6.3 are mostly the same as in System Fω.

TVAR
α : κ ∈ Γ

Γ ⊢ α : κ

TFORALL
Γ, α : κ ⊢ T : type

Γ ⊢ ∀α : κ . T : type

TEXISTS
Γ, α : κ ⊢ T : type

Γ ⊢ ∃α : κ . T : type

TAPP
Γ ⊢ Tf : κd → κc Γ ⊢ Ta : κd

Γ ⊢ Tf Ta : κc

TARROW
Γ ⊢ Td : type Γ ⊢ Tc : type

Γ ⊢ Td → Tc : type

TRECORD
Γ ⊢ T : type

Γ ⊢ {x : T} : type

TPROXY
Γ ⊢ T : type

Γ ⊢ [= T] : type

TBOOL

Γ ⊢ bool : type

Figure 6.3. Type kinding in System Fc

The most interesting fact about these kinding rules is that the type level function elim-
ination rule TAPP lacks the corresponding abstraction rule, since Fc has no syntax to
support such type level abstraction. The rules TRECORD, TPROXY and TBOOL are new
but unremarkable: those types have the kind type and so must their constituents.

6.3 Coercion Kinding

A coercion type γ of kind T ∼ T ′ is proof that casting a value of the source type T to the
target type T ′ is safe. The rules in Figure 6.4 determine the kinds of coercion types.

Types that are castable to each other have identical runtime value representations. Casta-
bility is an equivalence relation so naturally there are rules for reflexivity, symmetry and
transitivity. Reflexivity REFL states that a value of type T can be cast to that same type
and the type itself also acts as the proof coercion in this case. Symmetry SYM states that
if γ proves that values of type T1 can be cast to type T2 then values of type T2 can also
be cast to type T1 using sym γ. Transitivity TRANS states that coercions to cast T1 to T2

54

REFL
Γ ⊢ T : κ

Γ ⊢CO T : T ∼ T

SYM
Γ ⊢CO γ : T ′ ∼ T

Γ ⊢CO sym γ : T ∼ T ′

TRANS
Γ ⊢CO γ1 : T1 ∼ T2 Γ ⊢CO γ2 : T2 ∼ T3

Γ ⊢CO γ1 ◦ γ2 : T1 ∼ T3

COVAR
c : T ∼ T ′ ∈ Γ

Γ ⊢CO c : T ∼ T ′

INST
Γ ⊢CO γ : ∀α : κ . T ∼ ∀β : κ . T ′ Γ ⊢ Targ : κ

Γ ⊢CO γ@Targ : [Targ/α]T ∼ [Targ/β]T
′

COMP
Γ ⊢CO γ : T ∼ T ′ Γ ⊢CO γa : Ta ∼ T ′

a Γ ⊢ T Ta : κ

Γ ⊢CO γ γa : T Ta ∼ T ′ T ′
a

ARROWCO
Γ ⊢CO γd : Td ∼ T ′

d Γ ⊢CO γc : Tc ∼ T ′
c Γ ⊢ Td → Tc

Γ ⊢CO γd → γc : Td → Tc ∼ T ′
d → T ′

c

RECORDCO
Γ ⊢CO γ : T ∼ T ′ Γ ⊢ T : type

Γ ⊢CO {x : γ} : {x : T} ∼ {x : T ′}

PROXYCO
Γ ⊢CO γ : T ∼ T ′ Γ ⊢ T : type

Γ ⊢CO [= γ] : [= T] ∼ [= T ′]

Figure 6.4. Coercion kinding in System Fc

and T2 to T3 can be combined with ◦ to directly cast T1 to T3.

As usual for variable rules, COVAR gets the equality kind from the typing context. Coer-
cions between universal types with equal-kinded parameters can be specialized with @

according to rule COINST, instantiating the universal types on both sides of the coercion’s
kind. In COMP application-like composition of coercions creates coercions between (well-
kinded) type applications. As in kinding the function, record and type proxy rules are
really just special cases of the type application logic (in this case rule COMP). Booleans
are covered by rule REFL.

There are more coercion kinding rules than this in [44]. Apparently avoiding double vision
is not a particularly demanding use of Fc, so R1ML gets by with just the functionality in
Figure 6.4.

55

7 THE R1ML TYPE SYSTEM

Scope is everything!

Daniel P. Friedman

At long last this chapter contains and explains the actual subject of this thesis: the R1ML
type system. As already stated this type system is largely based on 1ML [38] and System
Fc [44], but also heavily indebted to “Complete and Easy...” [9] and even MixML [39].

7.1 Syntax

This section lays out the abstract term and type syntax of R1ML. The subset of Fc types
that is used internally by the type system is also introduced. Figure 7.1 shows the abstract
syntax of R1ML terms and types, which is broadly similar but not identical to that of 1ML.

T ::= (x : T) (→ | ⇒)T | ′x ⇒ T | {} | {extends T ; (x : T ;)∗} |T where (.x : T)

|E | = E | type |_ | bool
E ::= x | fun (x : T) ⇒ E |E E | let (x : T? = E)+ in E |x :> T

| {} | {extends E; (x = E;)∗} |E.x | type T | true | false | if E then E elseE

Figure 7.1. Abstract (desugared) syntax of R1ML

Function types allow naming the parameter so that the codomain of a functor can depend
on the type members of the domain. Although the function syntax is the same as in
dependently typed systems, the semantics is much more limited since paths must have
type type. The domain of implicit function types ′x ⇒ T is eliminated automatically if
the type system implicitly applies the function. The domain of implicit functions is always
type. Record types are more restricted than in 1ML, only supporting single (structural)
inheritance via an initial extends declaration. Record types can be refined with where as
usual in ML modules but the construct has the more general 1ML form. A semantic path
can be any expression E. A singleton type = E is the most specific type (including the
identities of abstract types) of the expression E. Abstract types are introduced by the type
literal type. Type holes _ can be left to be filled in by type inference. As before, builtin
scalar types are represented by booleans bool.

Variable references, function application, record field selection, boolean constants and

56

conditionals have the syntax we have come to expect. Function literals fun (x : T) ⇒ E

are identical to those of 1ML. Local definitions with let are supported directly unlike in
1ML. Unlike other ML:s let is recursive by default, like in Haskell. Sealing uses the :>

operator of SML and 1ML. Like record types, records are more restricted than in 1ML
by only supporting single inheritance. A type expression type T creates a type proxy to
support semantic paths.

R1ML does not desugar as aggressively as 1ML but quite a few constructs, shown in
Figures 7.2 and 7.3, are implemented as syntactic sugar. The operator := here means
‘desugars to’, in contrast to the usual ::= ‘is defined as’ of grammar notation. Desugaring
is a convenient strategy as it reduces the number of constructs that type checking (and
later compilation passes) need to handle.

P ::= (x : T) |x := (x : _)
T → T ′ := (x : T) → T ′

T ⇒ T ′ := (x : T) ⇒ T ′

{x : T ;} := {extends {};x : T ;}
T where (.x P = E) := T where (.x : P ⇒(= E))

T where (type .x P = T ′) := T where (.x : P ⇒(= type T ′))

xP : T := x : P ⇒T

xP = E := x : P ⇒(= E)

x ′y : T := x : ′y ⇒T

type xP := x : P ⇒ type

type xP = T := x : P ⇒(= type T)

Figure 7.2. Syntactic sugar for types and declarations

Type annotations on parameters P can be made optional by assuming omitted anno-
tations to be type holes _. Conversely missing function type domain variables may be
filled with freshly generated ones. Noninheriting record types and records may be imple-
mented by inheriting from {}. Multiparameter function literals can be curried into nested
function literals.

fun x ⇒ E := fun (x : _) ⇒ E

fun P ⇒ E := fun P ⇒E

{x = E;} := {extends {};x = E;}
xP = E := x = fun P ⇒ E

type xP = T := x = fun P ⇒ type T

Figure 7.3. Syntactic sugar for expressions and definitions

As in any language with first class functions parameterized declarations, definitions and

57

where specifications can be reduced to nonparameterized ones by moving the param-
eters to the right-hand side as function type or function literal parameters. The type

declarations and definitions of ML can be implemented by using abstract types, singleton
types and first-class type expressions as in 1ML.

7.1.1 Semantic Types

The semantic types of Figure 7.4 are a subset of the Fc types of Chapter 6. There are
some differences from both the semantic 1ML types of Section 5.1 and the Fc types of
Chapter 6.

Ξ ::= ∃ᾱ.Σ
Σ ::= ∀ᾱ.Σ →ι Ξ | ∀ᾱ.{} →A Σ | {x : Σ} | [= Ξ] |λα.τ | τ τ |α | α̂ | bool
τ ::= τ →I τ | {x : τ} | [= τ] |λα.τ | τ τ |α | α̂ | bool
ι ::=P | I
γ ::=Ξ | sym γ | γ ◦ γ | γ@τ | {x : γ} | [= γ] | γ γ | c | γ̂
Σ ::=Σ |_ →_ _ | {x : _,_} | [= _]

Figure 7.4. Semantic types

The subsetting into and structure of large (Σ), small (τ) and abstracted (Ξ) types has
been carried over from 1ML. As in the type inference algorithm of full 1ML [38, section
7] unification variables α̂ and implicit functor types ∀α.{} →A Σ have been added. The
A arrow subscript is just a marker, not an effect. Implicit functions must always be pure
since implicit side effects are considered harmful for obvious reasons. Effects ι are limited
to just pure P and impure I as in 1ML.

The unification variable syntax is from [9] instead of 1ML. Inspired by [9] the unification
variable mechanism has been extended to also cover the needs of translucency. This
necessitated the expansion of semantic path syntax to τ τ and the addition of type level
function literals λα.τ . Fortunately we do not actually need to extend System Fc with
general type level functions since R1ML only produces type level function literals as part
of β-redexes, which can be reduced away immediately after type checking.

Coercions γ have the same general structure as in Chapter 6. Naturally only semantic
types (Ξ, which includes Σ and τ) are used as coercions. Since quantifiers can bind
multiple type variables, instantiation coercions γ@τ can take multiple arguments. As a
consequence of predicative instantiation those arguments are always small types.

Elimination rules require types with a particular outer structure. This is implemented by
passing a type template Σ to focalization. There are templates for functions, records with
a given field and type proxies. Any (large) type Σ may also be used as a template by only
considering its outermost structure.

58

7.1.2 Type Environments

R1ML type environments are much more complex than usual. The complexity stems
from the needs to support forward references without double vision and type inference
that respects the scope of rigid type variables α, all in an elaborating type system.

Γ,Θ,∆ ::= ϵ | Γ, {B} | Γ, {B;x : Σ} | Γ, {α} | Γ, {θ}∧ | Γ, {α; θ}∧ | Γ, {c : τ ∼ τ}
B ::= x :◦ T | x :• T | x :• α .Σ

| x =◦ E | x =• E | x :ι Σ =• e

θ ::= ϵ | θ, α̂ | θ, α̂ = τ

Figure 7.5. Type environments

Because of the parallel nature of recursive binding constructs type environments Γ are
sequences of scopes {...} instead of just term variable type and type variable kind bind-
ings as is usual. Ordering binding scopes {B;x : Σ} correspond to record type (structure
signature) declarations as well as record (structure) bindings while non-ordering binding
scopes {B} are used for let bindings.

Abstract type scopes {α} just wrap abstract type bindings which are used for quantifier
handing as usual. Hoisting scopes {α; θ}∧ are unique to R1ML and accumulate a sub-
stitution θ of unification variables and a set of recursively abstract types α that will be
elaborated to System Fc type definitions. Axiom scopes {c : τ ∼ τ} are also novel and
correspond to sequences of Fc axiom definitions which locally define the implementation
of abstract types.

Bindings B for record type declarations and annotated definitions (x : T) and unannotated
definitions (x = e) each have the three states typical of general graph algorithms: unvis-
ited (white ◦), in progress (grey •) and visited (black •). The unvisited and in progress
states are identical to the binding in the source program. The visited state of a declaration
or annotated binding replaces the type T with a semantic type Σ accompanied with the
abstract types α generated at the binding to avoid double vision. The visited state of an
unannotated definition replaces the expression E with its elaboration e and also retains
its type Σ and effect ι.

Substitutions θ are sets of unification variable bindings as usual for type inference algo-
rithms. However usually substitutions only include the bound unification variable bindings
α̂ = τ . Following [38] and [9] R1ML relates all unification variables to the scoping of
rigid type variables α. Unlike the HM Algorithm W or 1ML type inference but following [9]
R1ML integrates unification variable bindings into the type environment instead of having
a single separate global substitution. As in [9], due to the integration of substitutions θ

many judgements produce an output type environment (⊣ ∆) in addition to taking an input
environment (Γ ⊢), which is why type environments may also be denoted by Θ and ∆.

The partitioning of the type environment into scopes and the integration of unification

59

variables into the type environment should translate into an extension of rank-based type
inference [16] more readily than [38] or even [9]. Level-based type inference with mu-
table unification variables would remove the need for an output type environment as it
eliminates the explicit substitutions θ.

R1ML employs special syntax, mostly derived from [9], for various operations on type
environments. Γ[α] checks that the rigid type variable α is in scope in Γ and Γ[α̂] does
the same for a unification variable. Furthermore B[B′] checks that the binding B′ is one
of B. Conversely [α̂ = τ]Γ binds the previously unbound unification variable α̂ in Γ,
producing a new type environment. Similarly [B]Γ changes the state of the binding of the
variable bound by B.

[θ]Ξ applies the substitution θ as usual while [Γ]Ξ applies all the substitutions in Γ similar
to [9]. Most powerfully and hand-wavingly the 1ML-style syntax ΓΘ⊢... applies the substi-
tutions of Θ to all the inputs of the judgment. As the R1ML type system is (perhaps too)
algorithmic the inputs can be equated with the parameters of the type checker function
(procedure) corresponding to the judgement1.

Γ ↑ α and Γ ↑ α̂ add the type or unification variable to the innermost hoisting scope in Γ.
Γ ↑ θ extends the innermost hoisting scope with an entire substitution. This is needed to
salvage an incomplete substitution for later refinement when leaving its hoisting scope, a
consideration which [9] seems to ignore and which is handled quite differently in full 1ML
which uses a global substitution.

7.2 Lookup

In R1ML local definitions, record fields (structure members) and record type fields (signa-
ture members) are recursive. They cannot be handled like let rec in Section 4.1.2, by
just pushing the types to the type environment before typechecking the definitions. Type
elaboration by itself is not the issue since the types could just be elaborated first and
then the elaborated types added to the environment. Unfortunately that is not possible
because the types can refer to each other – including forward references – via path types
E and singleton types = E, so the bindings need to be added to the environment before
even elaborating the types.

The presence of unannotated definitions x = E is another complication. It would be
unsatisfactory to ban all forward references to unannotated variables since the Hindley-
Milner type inference of conventional ML supports unannotated recursion for monotyped
definitions. Forward references can also be desirable even without recursion, for top-
down code organization. Having to add type annotations just to reorder definitions would
be annoying. Anecdotally, avoiding such tedious addition of annotations when refactoring
has been a major ceonsideration for MLF [2, sec. 4.5].

The type of variable has to be determined when typechecking the definition of the variable
1Although compilers usually use imperative unification where explicit substitutions do not exist.

60

or at the first (transitive) forward reference to the variable. In either case the lookup
judgement Γ ⊢ def(x) ⇒ α.Σ ⊣ ∆ for annotated definitions and structure signature
declarations or Γ ⊢ def(x) ⇒ι Σ, e ⊣ ∆ for unannotated definitions is invoked. The
lookup rules are found in Figure 7.6.

LWHITEDECL
Γ, {[x :• T]B; y : Σ′} ⊢ T ⇝ ∃α.Σ ⊣ ∆, {B′[x :• T]; y : Σ′}

Γ, {B[x :◦ T]; y : Σ′},Γ′ ⊢ def(x) ⇒ α .Σ ⊣ ∆ ↑ α, {[x :• α .Σ]B′; y : Σ′, x : Σ},Γ′

LWHITE
Γ, {[x =• E]B; y : Σ′} ⊢ E ⇒ι Σ ⊣ ∆, {B′[x =• E]; y : Σ′}⇝ e

Γ, {B[x =◦ E]; y : Σ′},Γ′ ⊢ def(x) ⇒ι Σ, e ⊣ ∆, {[x :ι Σ =• e]B′; y : Σ′, x : Σ},Γ′

LGREYDECL

Γ, {B[x :• T]; y : Σ′},Γ′ ⊢ def(x) ⇒ α̂ ⊣ Γ ↑ α̂, {B[x :• α̂]; y : Σ′},Γ′

LGREY

Γ, {B[x =• E]; y : Σ′},Γ′ ⊢ def(x) ⇒ α̂ ⊣ Γ ↑ α̂, {B[x :• α̂]; y : Σ′},Γ′

LWHITEDECL’
Γ, {[x :• T]B; y : Σ′} ⊢ T ⇝ τ ′ ⊣ Θ, {B′[x :• τ]; y : Σ′}

Θ, {B′; y : Σ′}Θ⊢τ ′ ∼ τ ⊣ ∆, {B′′; y : Σ′}⇝ γ

Γ, {B[x :◦ T]; y : Σ′},Γ′ ⊢ def(x) ⇒ τ ⊣ ∆, {B′; y : Σ′, x : τ},Γ′

LWHITE’
Γ, {[x =• E]B; y : Σ′} ⊢ E ⇒ι Σ ⊣ Θ, {B′[x :• τ]; y : Σ′}⇝ e

Θ, {B′; y : Σ′}Θ⊢Σ <:check τ ⊣ ∆, {B′′; y : Σ′}⇝ f

Γ, {B[x◦ = E]},Γ′ ⊢ def(x) ⇒ι τ , f e ⊣ ∆, {[x :ι τ =• f e]B′′; y : Σ′, x : τ},Γ′

LBLACKDECL

Γ[x :• α .Σ] ⊢ def(x) ⇒ α .Σ ⊣ Γ
LBLACK

Γ[x : Σ =•
ι e] ⊢ def(x) ⇒ι Σ, e ⊣ Γ

Figure 7.6. Lookup Γ ⊢ def(x) ⇒ (α .Σ | ιΣ, e) ⊣ ∆

An unvisited binding is marked grey and then the type annotation is elaborated or the
defining expression typed. If T or E does not (transitively) refer to its own variable x the
binding will still be grey when the elaboration or typing is complete and LWHITEDECL or
LWHITE applies. The type elaboration or expression typing results are essentially returned
and also cached in the output type environment for LBLACKDECL and LBLACK which just
return the cached type and its accessories. Any scopes nested inside the scope of the
variable x must be ignored in the premises but copied to the output environment of lookup
rules.

To support forward references LWHITEDECL hoists the abstract types (∆ ↑ α) so that they
will gain System Fc type definitions at some outer scope. The type of x will then refer to
those hoisted types instead of being existential so the quantifier is dropped. The abstract
types still need to be returned and cached so that the defining expression of an annotated
definition can be sealed with the elaborated annotation without double vision.

61

LGREYDECL and LGREY produce and store in the binding a fresh unification variable
as a placeholder for the eventual elaborated T . The unification variable restricts x to
a monotype and the handling of unification variables elsewhere avoids cycles. LGREY

opportunistically uses the same black binding form as LGREYDECL because it has no
elaborated expression or effect for the black form of unannotated bindings. This is fine
since the expression and effect are only needed at the definition site which always gets
them after LWHITE(’) is complete.

If LGREYDECL was used the binding will already be black by the time the annotation has
been elaborated and LWHITEDECL’ is used instead of LWHITEDECL. The elaborated type
τ ′ must then unify with the monotype τ from LGREYDECL, which also implies that the
elaborated type must be a monotype as well. Unification is used instead of the more
flexible subtyping to adhere more closely to the type expressions supplied by the pro-
grammer. Besides, subtyping does not seem to make sense for record type declarations
where coercion functions cannot be called. The coercion type γ has no use in structure
type declarations and can also be ignored for annotated bindings by checking the defining
expression against τ instead of τ ′.

Similar to LWHITE’ if LGREY was used the binding will already be black by the time the
defining expression E has been typed and LWHITE’ is used instead of LWHITE. Here
subtyping can be used because the elaborated expression e is always available and there
are no programmer-supplied type annotations to adhere to.

Abstract types (type, elaborates to [= α]) can be subtyped by concrete types (type T ,
elaborates to [= Σ]). Matching higher-kinded abstract types to their implementations this
way is only decidable at these so-called roots and not at use sites. So subtyping has to
be manouvered into traversing the root sites before any use sites.

In conventional ML modules as well as 1ML it suffices to traverse the supertype fields
in order of appearance in the source code. In those languages structure signatures’
declarations do not permit forward references so the declarations must be topologically
sorted in dependency order in any valid signature. Since the lookup judgement visits
declarations in post-order it can also conveniently collect the elaborated record fields
(signature members) x : Σ into the signature scope {B;x : Σ} as can be seen in the
lower right corners of LWHITEDECL and LWHITEDECL’. Those fields are wrapped into a
record type by TEXTENDS (in Figure 7.8). This fine-tuning enables subtypings such as
{type t = int; x : int} <: {x : t; type t}.

Singleton types = E may also produce structure signatures, so structure bindings need to
be treated similarly to signature declarations. Their field types are collected in the lower
right corners of LWHITE and LWHITE’ and wrapped into a record type by EXTENDS and
PEXTENDS (in Figure 7.14). The types of let-bindings do not end up in record types and
so do not need to be collected, so they use a {B} scope as shown in Figure 7.13. These
let-scopes are ignored in the lookup rules of Figure 7.6 since they can be obtained by
just removing the field collection from the structure binding lookup rules.

62

7.3 Types

As the semantic types used for type checking differ from source level types, R1ML re-
quires type elaboration rules to translate from surface type syntax to semantic types. Ad-
ditionally the inclusion of limited higher-kinded types requires type normalization and the
combination of quantifiers and unification variables requires a way to check the scoping
of the type variables in a type against a type environment.

7.3.1 Elaboration

Type elaboration is broadly similar to that of 1ML. However the recursive scoping of record
type declarations and the details of our general approach cause changes both to the
overall structure of the elaboration and individual rules. The type elaboration judgement
Γ ⊢ T ⇝ Ξ ⊣ ∆ is outlined in Figures 7.7, 7.8 and 7.9.

TTOP
Γ, {; }∧ ⊢ T ⇝! Σ ⊣ ∆, {α; θ}∧

Γ ⊢ T ⇝ ∃α.Σ ⊣ ∆ ↑ θ

TPATH
Γ ⊢ E ⇒P Σ ⊣ Θ⇝ e ΘΘ⊢Σ ≫ [= _]⇝ [= ∃α.Σ′] ⊣ ∆⇝ f

Γ ⊢ E ⇝! Σ′ ⊣ ∆ ↑ α

TSING
Γ ⊢ E ⇒P Σ ⊣ ∆⇝ e

Γ ⊢= E ⇝! Σ ⊣ ∆

TTYPE
α : type

Γ ⊢ type⇝!α], [= α] ⊣ Γ ↑ α

THOLE

Γ ⊢ _⇝! α̂ ⊣ Γ ↑ α̂

TBOOL

Γ ⊢ bool⇝! bool ⊣ Γ

Figure 7.7. Type elaboration I: Γ ⊢ T ⇝ Ξ ⊣ ∆ and Γ ⊢ T ⇝! Σ ⊣ ∆

As in 1ML, the abstract types in a type expression end up in an outer existential quantifi-
cation. Like most R1ML judgements type elaboration differs from that of 1ML by including
an output type environment ∆. The implementation of that judgement has been largely
delegated to the ‘imperative’ variant Γ ⊢ T ⇝! Σ ⊣ ∆. Rule TTOP just pushes a hoisting
scope to the type environment to collect the abstract types α from the elaboration of T
and then existentially quantifies the abstract types and hoists the substitution θ in case it
has any uninitialized unification variables.

Path types E and singleton types = E are handled very similarly to (full) 1ML. The type
of the expression is synthesized and the effect must be P. The type is then focalized to a
carrier type [= Ξ] and the inner type Ξ extracted. The abstract types are then hoisted to
be caught by TTOP and finally the type Σ is returned. The elaboration of singleton types
starts with the same pure expression typing but the type Σ is returned directly and since
it cannot be existentially quantified there are no abstract types to hoist.

63

A type expression produces a carrier type containing a fresh abstract type α. The ab-
stract type is hoisted to the output environment to be later quantified by TTOP. THOLE

produces a unification variable that is also hoisted but not wrapped in a carrier type as it
does not need to have type type.

The boolean type just elaborates to Fc bool. The type environment is unchanged. Other
builtin scalar types would behave similarly.

TEMPTY

Γ ⊢ {}⇝! {} ⊣ Γ

TEXTENDS
Γ ⊢ Ts ⇝! {y : Σ} ⊣ Θ y, x = dedup(y, x)

Θ, {y :• Σ, x :◦ Tx; y : Σ}Θ⊢x : Tx ⊣ ∆, {y :• Σ, x :• Σx; y : Σ, x′ : Σx}
Γ ⊢ {extendsT ;x : Tx}⇝! {y : Σ, x′ : Σx} ⊣ ∆

DVAR
Γ ⊢ def(x) ⇒ Σx ⊣ Θ ΘΘ⊢D ⇝! ⊣ ∆

Γ ⊢ x : T,D ⊣ ∆

DEMPTY

Γ ⊢ ϵ ⊣ Γ

TWHERE
Γ ⊢ T ⇝ ∃α.Σ ⊣ Θ α′ = α ∩ ftv(Σ.x) α′′ = α \ α′

Θ ↑ α′′
Θ⊢Tx ⇝! Σx ⊣ Θ′ Θ′, {α̂′}Θ′⊢Σx <:check

[︂
α̂′/α′

]︂
Σ.x ⊣ ∆, {θ}⇝ f

Γ ⊢ T where (.x : Tx)⇝! [θ][α̂′/α′]Σ ⊣ ∆

Figure 7.8. Type elaboration II: record types

Since {x : Tx;} is just syntactic sugar for {extends {};x : Tx;} the elaboration of nonempty
record types in TEXTENDS always begins with the elaboration of the supertype T . The
fields of the elaborated supertype are then brought into scope as variables for the elabo-
ration of the additional fields like in SML open – or Java extends. The super and added
fields are then concatenated into a semantic record type. Because the scope is recursive
there is no sensible way to pick between duplicate fields so duplicate fields are disallowed
with a side condition. Multiple inheritance could be supported in this system but not with
row types (see Section 9.5) so things are kept simple with single inheritance.

The new fields in TEXTENDS are elaborated by DVAR and the base case DEMPTY. DVAR

just delegates the actual elaboration of the field type to lookup.

The elaboration and realization of field refinement in TWHERE begins by elaborating the
original type T . The free type variables of Σ are then split into α′ which appear in the part
selected by the simple dotted path .x and the rest α′′. The latter will just become abstract
types and are hoisted for TTOP to find. The refinement type Tx is elaborated with⇝! so its
abstract types also go to TTOP. The where operation can then be performed by replacing
the α′ with unification variables in Σ.x and subtyping that with the elaborated refinement
type. That amounts to partial instantiation of the original type with the refinement type,
which is exactly what where should do. It is important to finally apply the substitution θ

to the entire Σ to replace the abstract types everywhere in the original type which is also
part of the semantics of where.

64

TFUNCTOR
Γ ⊢ Td ⇝ ∃α.Σd ⊣ Θ

Θ, {α} , {x :• Σd}Θ⊢Tc ⇝ Ξc ⊣ ∆, {α} ,Θ′

Γ ⊢ (x : Td) → Tc ⇝!∀α.Σd →I Ξc ⊣ ∆

TPFUNCTOR
Γ ⊢ Td ⇝ ∃α.Σd ⊣ Θ Θ, {α} , {x :• Σd}Θ⊢Tc ⇝ ∃β.Σc ⊣ ∆, {α} ,Θ′ β′ : κα →κβ

Γ ⊢ (x : Td) ⇒ Tc ⇝!
[︂
β′α/β

]︂
(∀α.Σd →P Σc) ⊣ ∆ ↑ β

′

TIMPLICIT
Γ, {α} , {x :• α], [= α]} ⊢ Tc ⇝ Σc ⊣ ∆, {α} ,Θ α : type

Γ ⊢ ′x ⇒ Tc ⇝! ∀α.{} →A Σc ⊣ ∆

Figure 7.9. Type elaboration III: function types

The elaboration of function types is quite similar to the typing of function expressions.
The domain type is elaborated and both its abstract types α and the unquantified inte-
rior using them are brought into scope before elaborating the codomain type. For the
impure function types of TFUNCTOR the abstract domain type variables, domain type and
codomain types are then just assembled into a semantic generative functor type. For
the pure function types of TPFUNCTOR the abstract codomain types are lifted over the
abstract domain types as in 1ML. As in the other R1ML rules those abstract types are
then hoisted into the environment instead of being existentially bound as in 1ML.

The elaboration of implicit functions in TIMPLICIT is essentially the specialization of TFUNC-
TOR to domains of type type. The semantic implicit function type has an empty record
as its domain instead of [= α] since let-generalization can create implicit functions with
more than one type parameter and incorporating any number of type parameters into the
domain type would create incidental complications.

7.3.2 Normalization

Since semantic types include type level functions and applications, their equivalence re-
lation needs to include β-equivalence as in System Fω. In type equivalence algorithms it
is more convenient to first normalize the input types so that β-redexes will not be encoun-
tered during equivalence checking. R1ML uses subtyping and occasionally unification
instead of type equivalence, but the normalize-first strategy can be used also for those
judgements and focalization.

It would seem that subtyping and unification require the use of full reduction as the nor-
malization strategy. On the other hand focalization only looks at the outermost structure
of types so normalizing beyond weak head normal form would be a wasted effort. Having
several evaluation strategies would be redundant. As we will see it is possible to avoid
full reduction by interleaving subtyping, unification and focalization with call by name re-

65

duction. Figure 7.10 shows the call by name rules for R1ML type normalization.

RAPP
Γ ⊢ τf −→ τ ′f ⇝ γf Γ ⊢ τ ′f · τa −→ τ ⇝ γ

Γ ⊢ τf τa −→ τ ⇝ γf@τa ◦ γ

RAXIOM
Γ ⊢ τ −→ τ ′ ⇝ γ

Γ[c : α ∼ τ] ⊢ α −→ τ ′ ⇝ c ◦ γ

RWHNF

Γ ⊢ Σ −→ Σ⇝ Σ

RAβ

Γ ⊢ [τa/α]τ −→ τ ′ ⇝ γ

Γ ⊢ (λα : κ.τ) · τa −→ τ ′ ⇝ γ

RARIGID

Γ ⊢ α · τa −→ α τa ⇝ α τa

RAAPP

Γ ⊢ τ τ · τa −→ τ τ τa ⇝ τ τ τa

RAUNI

Γ ⊢ α̂ · τa −→ ⊥

Figure 7.10. Type normalization Γ ⊢ Σ −→ Σ|⊥⇝ γ and Γ ⊢ τ · τ −→ τ |⊥⇝ γ

RAPP evaluates the callee and the delegates to the ‘apply’ judgement Γ ⊢ Σf · Σa −→
Σ′ ⇝ γ. RAXIOM reads through an axiom binding that is in scope for an abstract type
preventing double vision (although we also have to arrange for axioms to be in scope for
the right terms). If neither RAPP not RAXIOM applies the type must already be in weak
head normal form and normalization is done (RWHNF).

Rule RAβ reduces a beta-redex by substitution and keeps reducing the result. RARIGID

and RAAPP just reassemble the type application since abstract types behave as type
constructors. When a unification variable is to be applied RAUNI fails explicitly by pro-
ducing bottom ⊥. Such an application may succeed later when the unification variable
has been initialized so subtyping and unification know what to do when they receive ⊥.
To avoid clutter the normalization rules assume that ⊥ is bubbled through them like an
exception to the initiator of the normalization.

7.3.3 Well-Formedness

The well-formedness judgement for semantic types is presented in Figure 7.11. The goal
is just to check type variable scoping. Semantic types are well kinded by construction;
because type level functions are tied to applicative functors, any kind errors are just re-
flections of type errors. Types do not need to be normalized for this judgement.

WEXISTS
Γ, {α} ⊢ Σ

Γ ⊢ ∃α.Σ

WFORALL
Γ, {α} ⊢ Σ

Γ ⊢ ∀α.Σ

WARROW
Γ ⊢ Σ Γ ⊢ Ξ

Γ ⊢ Σ →ι Ξ

WRECORD
Γ ⊢ Σ

Γ ⊢ {x : Σ}

WTYPE
Γ ⊢ Ξ

Γ ⊢ [= Ξ]

WBOOL

Γ ⊢ bool

Wλ
Γ, {α} ⊢ τ

Γ ⊢ λα.τ

WAPP
Γ ⊢ τ Γ ⊢ τ ′

Γ ⊢ τ τ ′

WAVAL
Γ ⊢ τ

Γ[c : α ∼ τ] ⊢ α

WRIGID

Γ[α] ⊢ α
WUNI

Γ[α̂] ⊢ α̂

Figure 7.11. Well-formedness of semantic types Γ ⊢ Ξ

66

The central rules are WRIGID and WUNI, which check that references to type and unifica-
tion variables are well-scoped. Otherwise the rules follow a traversal pattern we will see
several more times; structural recursion which additionally adds quantified type variables
to the type environment in WEXISTS, WFORALL and Wλ.

7.4 Terms

This section shows the R1ML term typing rules. Term typing is the core of any type
system but as often happens R1ML term typing is mostly a straightforward traversal of
the program that delegates most interesting decisions to other judgements.

7.4.1 Expression Type Synthesis

R1ML expression typing is bidirectional like [9], which means that instead of one typing
judgement E : Σ (“E has type Σ”) we have synthesis E ⇒ Σ (“the inferred type of E is Σ”)
and checking E ⇐ Σ (“Σ is a valid type for E”). Expression typing is also elaborating like
in 1ML, producing an expression ⇝ e. The expression type synthesis rules are divided
into Figures 7.12, 7.13, 7.14 and 7.15.

VAR
Γ ⊢ def(x) ⇒ Σ ⊣ ∆

Γ ⊢ x ⇒P Σ ⊣ ∆⇝ x

ABS
Γ ⊢ T ⇝ ∃α.Σd ⊣ Θ

Θ, {α}, {x :• Σd}, {; }∧ Θ⊢E ⇒ι Σc ⊣ ∆, {α}, {x :• Σd}, {β; θ}∧ ⇝ e

Γ ⊢ (fun (x : T) ⇒ E) ⇒P ∀α.Σd →ι ∃β.Σc ⊣ ∆ ↑ θ ⇝ Λα.λx.type β in pack ⟨β, e⟩

APP
Γ ⊢ Ef ⇒ιf Σf ⊣ Θ⇝ ef ΘΘ⊢Σf ≫ _ →_ _⇝ Σd →ι ∃α.Σc ⊣ Θ′ ⇝ f

Θ′
Θ′⊢Ea ⇐ιa Σd ⊣ Θ′′ ⇝ ea Θ′′ ↑ β, {α}, {x :• Σc}Θ′′⊢x ⇐ιx β.[β/α]Σc ⊣ ∆⇝ ex

Γ ⊢ Ef Ea ⇒ιf∨ιa∨ι∨ιx [β/α]Σc ⊣ ∆⇝ unpack ⟨α, x⟩ = f ef ea in ex

Figure 7.12. Expression type synthesis I: Γ ⊢ E ⇒ι Σ ⊣ ∆⇝ e

Rule VAR just obtains the type of the variable with the lookup judgement. It ignores any
accessories produced by the lookup judgement so it works for all variables. A variable
reference has no side effects (because variables are immutable as usual in ML) and
elaborates to a variable reference.

Function expression typing is largely based on that of 1ML. First the domain type T

is elaborated into ∃α.Σd. The abstract types α of the domain are pushed to the type
environment so that the parameter type in the following scope {x : Σd} is well scoped.
A hoisting scope is also pushed to collect the abstract types α generated by the function
body. The body is typed in the extended environment, producing the codomain type Σc

67

and the effect ι.

The function type is assembled around the domain and codomain types. The body effect
is suspended by attaching it to the function type; the effect of a function literal is always
P regardless of the body and the side effects of the body happen (are ‘released’) at call
sites instead. The abstract types are existentially quantified in the final codomain type,
creating a generative functor. As in the basic 1ML system applicative functors can only
be created by sealing a pure function with an applicative signature.

To match the existential quantification of the codomain the body expression needs to
be existentially packed but on the other hand the typing of the body assumed that the
abstract types will be bound by type β. The reconciliation is to pack the defined types as
the implementations of the existentially quantified types (pack ⟨β, e⟩). The substitution θ

is hoisted to the output environment as usual.

The main flow of function application APP is the usual bidirectional one where we synthe-
size the function type and check the argument against the domain from the function type.
As in 1ML and [9] the function might also require coercion to get to the actual arrow type
and the domain, which we do with the focalization judgement Γ ⊢ Σ ≫ Σ_ ⇝ Σ′ ⊣ ∆⇝ f .
Now we can apply the coerced function f ef to the likewise coerced argument ea.

Calling a generative functor generates abstract types. To enable forward references the
packing of type functions in ABS needs to be reversed, starting by unpacking the exis-
tential. Then we generate and hoist fresh type functions β to match the abstract types
α and check the fresh variable x against the pseudo-type β.[β/α]Σc to obtain the result
expression ex and the type generation effect ιx. The effect of an application expression
is the join of the callee, argument, arrow and type generation effects.

LET

x = dedup(x) Γ, {}∧, {x(:◦ Tx| =◦ Ex)} ⊢ x(: Tx)? = Ex ⇒I⊣ Θ, {θ}∧, {B}⇝ x = ex
Θ′ = Θ ↑ θ Θ′, {B}Θ′⊢E ⇒ι Σ ⊣ ∆, {B}⇝ e

Γ ⊢ let x(: Tx)? = Ex in E ⇒I∨ι Σ ⊣ ∆⇝ let rec x = ex in e

PLET
x = dedup(x)

Γ, {}∧, {x(:◦ Tx| =◦ Ex)} ⊢ x(: Tx)? = Ex ⇒P⊣ Θ, {θ}∧, {x : Σx = ex}⇝ x = ex

α̂ = undet(θ) α : type Θ, {x :• ∀α.{} →A [α/α̂]Σx}Θ,{θ}∧⊢E ⇒ι Σ ⊣ ∆, {B}⇝ e

Γ ⊢ let x(: Tx)? = Ex in E ⇒P∨ι Σ ⊣ ∆⇝ let rec x = Λα.λ_.[x ⟨α⟩ {}/x][α/α̂]ex in e

SEAL
Γ ⊢ T ⇝ ∃α.Σ ⊣ Θ Θ ↑ αΘ⊢E ⇐ι α .Σ ⊣ ∆⇝ e

Γ ⊢ E :> T ⇒ι Σ ⊣ ∆⇝ e

TYPE
Γ ⊢ T ⇝ Ξ ⊣ ∆

Γ ⊢ type T ⇒P [= Ξ] ⊣ ∆⇝ [Ξ]

Figure 7.13. Expression type synthesis II

The R1ML let is recursive by default unlike in SML and OCaml where it is sequential
(without rec or and). The rule LET is essentially the same as we have seen before for

68

let rec; the bindings for the definitions are pushed and then the definitions and the body
are typed in that extended context. The x(:◦ T | =◦ E) syntax tries to convey that for
each annotated definition a x :◦ T binding should be created and for each unannotated
definition a x =◦ E binding should be created. The definitions are typed by a separate
judgement Γ ⊢ x(: T)? = E ⇒ι x : Σ ⊣ ∆⇝ x = e defined in Section 7.4.3. The effect of
a let is the join of the combined effect of the definitions ιx and the body effect ι.

When none of the definitions have side effects, rule PLET is used instead of LET. In
practice a type checker would perform the common prefix of LET and PLET and then
branch on the combined effect of the definitions. Both LET and PLET push a substitution-
only hoisting scope {}∧. PLET uses the collected substitution θ to generalize the types
Σx of the definitions. Generalization is implemented by wrapping the definiends in implicit
functions and replacing the local unsolved unification variables undet(θ) with the rigid
universally quantified α. The use sites of the definiends also need to be changed to
apply the implicit functions ([x ⟨α⟩ {}/x]ex). LET just re-hoists the substitution instead
because generalizing impure expressions is unsound as is well known from ML [27]. The
use of an effect system (even if rudimentary) allows 1ML and R1ML to replace the very
conservative value restriction of ML with this more permissive and also more intuitive
purity restriction [38].

As usual for upcasting constructs in bidirectional typing rule SEAL switches from synthesis
to checking. Of course the type annotation has to be elaborated first. Since existentials
do not support forward references the abstract types are hoisted and the quantifier re-
moved before checking E against the elaborated type and the type of the sealing is the
unquantified Σ. All this is similar to but slightly simpler than the handling of the codomain
in APP.

The typing of type T in rule TYPE just elaborates the type and wraps it into a carrier type.
Type literals type T are considered to be constants so the effect is P.

Rule EXTENDS combines elements from both TEXTENDS and LET. The super-expression
E is typed and its fields brought into scope for typing the additional fields x(: Tx)? = Ex.
The combined fields y, x must contain no duplicates. The field definitions are typed like
the definitions of a let. The elaborated program has to extract the super-fields y so that
they are in scope for the additional fields and finally copy both sets of fields to the result
record. The effect is the join of the super-expression and combined declaration effects.
Like LET, EXTENDS has a generalizing sibling rule: PEXTENDS.

The typing of field selection is simple. SELECT types the record expression E and focal-
izes its type as a record with at least the field x. This record focalization fails if the type Σ

is a unification variable as it would have to guess the labels of the other fields. The result
type is extracted from the focalized type and the effect is just the effect of E.

The boolean constants true and false still have type bool. As constants they produce
no side effects and elaborate to their counterparts in Fc.

IF first types the condition and then focalizes that type to bool. Focalization is used to

69

EMPTY

Γ ⊢ {} ⇒P {} ⊣ Γ⇝ {}

EXTENDS
Γ ⊢ E ⇒ι⊣ Θ⇝ e y, x = dedup(y, x)

Θ, {}∧,
{︂
y :• Σ, x(:◦ Tx| =◦ Ex); y : Σ

}︂
Θ⊢x(: Tx)? = Ex ⇒I

⊣ ∆, {θ}∧, {B; y : Σ, x′ : Σx}⇝ x = ex

Γ ⊢ {extendsE;x(: Tx)? = Ex} ⇒ι∨I
{︁
y : Σ, x′ : Σx

}︁
⊣ ∆ ↑ θ

⇝ let rec xs = e; y = xs.y;x = ex; in
{︁
y = y, x′ = x′

}︁
PEXTENDS

Γ ⊢ E ⇒ι⊣ Θ⇝ e y, x = dedup(y, x)

Θ, {}∧,
{︂
y :• Σ, x(:◦ Tx| =◦ Ex); y : Σ

}︂
Θ⊢x(: Tx)? = Ex ⇒P

⊣ ∆, {θ}∧, {B; y : Σ, x′ : Σx}⇝ x = ex α̂ = undet(θ) α : type

Γ ⊢ {extendsE;x(: Tx)? = Ex} ⇒ι∨P

{︂
y : Σ, x′ : ∀α.{} →A [α/α̂]Σx

}︂
⊣ ∆

⇝ let rec xs = e; y = xs.y;x = Λα.λ_.[x ⟨α⟩ {}/x][α/α̂]ex; in
{︁
y = y, x′ = x′

}︁
SELECT
Γ ⊢ E ⇒ι Σ ⊣ Θ⇝ e ΘΘ⊢Σ ≫ {x : _,_}⇝ {y : Σy, x : Σx, y′ : Σy′} ⊣ ∆⇝ f

Γ ⊢ E.x ⇒ι Σx ⊣ ∆⇝ (f y).x

Figure 7.14. Expression type synthesis III: records

TRUE

Γ ⊢ true ⇒P bool ⊣ Γ⇝ true
FALSE

Γ ⊢ false ⇒P bool ⊣ Γ⇝ false

IFSYNTH
Γ ⊢ Ec ⇒ιc Σc ⊣ Θ⇝ ec ΘΘ⊢Σc ≫ bool⇝ bool ⊣ Θ′ ⇝ f

Θ′
Θ′⊢Et ⇒ιt Σt ⊣ Θ′′ ⇝ et

Θ′′
Θ′′⊢Ef ⇒ιf Σf ⊣ Θ′′′ ⇝ ef Θ′′′

Θ′′′⊢Σf ∼ Σt ⊣ ∆⇝ γ

Γ ⊢ if Ec then Et else Ef ⇒ιc∨ιt∨ιf Σt ⊣ ∆⇝ if f ec then et else (ef ▶ γ)

Figure 7.15. Expression type synthesis IV: booleans

be consistent with the other elimination rules TPATH, APP and SELECT but Γ ⊢ Ec ⇐ιc

bool ⊣ ∆ would be equally viable with such a simple type. The branch types have to be
reconciled somehow. In a system with subtyping their join would usually be used but 1ML
and R1ML types do not have joins. The RankNTypes paper [31] gives three options:

1. Only synthesize monomorphic types for multi-branch constructs, implemented by
checking the branches against a fresh unification variable (which can only be initial-
ized with monotypes).

2. Extend unification to handle polytypes and unify the branch types.

3. Use mutual subtyping for the branch types: Σf <: Σt ∧ Σt <: Σf .

They choose #3 because it is more powerful than #1 or even #2 and does not require the
extra work to extend unification. Full 1ML behaves similarly to #1 (even though its typing
is not bidirectional). I have chosen to use #2 because #3 would have to arbitrarily choose

70

which coercion function to apply. While the decision to cast ef (and not et) through the
coercion type is still arbitrary, at least Fc casts have no runtime effect. Polytype unification
is also useful elsewhere as witnessed by its inclusion in 1ML which chose #1 instead of
#2. The effect of a conditional is the join of the condition and branch effects as is to be
expected.

7.4.2 Expression Type Checking

The expression checking judgement Γ ⊢ E ⇐ι α.Σ ⊣ ∆⇝ e is detailed in Figure 7.16. It
is rather trivial compared to systems like [9].The required type Σ can be accompanied with
abstract types α that have already been hoisted to be bound by type function declarations.
Unlike the type, the effect is synthesized also in the checking judgement.

IFCHECK
Γ ⊢ Ec ⇒ιc Σc ⊣ Θ⇝ ec ΘΘ⊢Σc ≫ bool⇝ bool ⊣ Θ′ ⇝ f
Θ′

Θ′⊢Et ⇐ιt α .Σ ⊣ Θ′′ ⇝ et Θ′′
Θ′′⊢Ef ⇐ιf α .Σ ⊣ ∆⇝ ef

Γ ⊢ if Ec then Et else Ef ⇐ιc∨ιt∨ιf α .Σ ⊣ ∆⇝ if ec then et else ef

COERCE

Γ ↑ α̂, {c : α ∼ α̂} ⊢ E ⇒ι ΣE ⊣ Θ⇝ e ΘΘ⊢ΣE <:check Σ ⊣ ∆, {c : α ∼ τ}⇝ f

Γ ⊢ E ⇐ι∨ι(α) α .Σ ⊣ ∆⇝ axiom c : α ∼ τ in f e

Figure 7.16. Expression typechecking Γ ⊢ E ⇐ι α.Σ ⊣ ∆⇝ e

Conditionals are checked by IFCHECK which is similar to but simpler than IFSYNTH since
the branch types can just be checked against the same type instead of being reconciled.
This way the branches can implement the abstract types α differently when a conditional
is sealed and the integration of a type annotation into the if syntax in 1ML is not needed
in R1ML. Furthermore nested conditionals can be sealed with just one type annotation
instead of one per conditional.

The default checking rule in bidirectional typing with subtyping switches to synthesis and
then checks that the synthesized type is a subtype of the required type. Rule COERCE

does that but first pushes an axiom scope for the abstract types with as of yet unknown
(i.e. unification variable) implementations. In concert with rule RAXIOM these axioms are
the key to avoiding double vision in E. For the axiom scope to make sense the elaborated
expression has the corresponding local axiom declarations. The effect is the effect of E
joined with the type generation effect ι(α) which is P if α is empty and I otherwise.

7.4.3 Definition Typing

Sequences of definitions need to be typed for let, record expressions and at the top
level. The definition sequence typing rules are shown in Figure 7.17.

The lookup rules have all the logic required to compute the type of the first definition.

71

VALANN
Γ ⊢ def(x) ⇒ α .Σ ⊣ Θ

ΘΘ⊢Ex ⇐ιx α .Σ ⊣ Θ′ ⇝ ex Θ′
Θ′⊢y(: T)? = E ⇒ι⊣ ∆⇝ y = e

Γ ⊢ x : Tx = Ex; y(: T)? = E ⇒ιx∨ι⊣ ∆⇝ x = ex; y = e

VAL

Γ ⊢ def(x) ⇒ιx Σ, ex ⊣ Θ ΘΘ⊢y(: T)? = E ⇒ι⊣ ∆⇝ y = e

Γ ⊢ x = Ex; y(: T)? = E ⇒ιx∨ι⊣ ∆⇝ x = ex; y = e

NODEFS

Γ ⊢ ϵ ⇒P⊣ Γ

Figure 7.17. Definition typing Γ ⊢ x(: T)? = E ⇒ι⊣ ∆⇝ x = e

When the first definition is annotated (VALANN) the defining expression Ex is checked
against the pseudo-type α .Σx. When the first definition is unnanotated (VAL) the defin-
ing expression has already been typed. Both rules then recursively type the remaining
definitions, appending their types and elaborated expressions to the type and definition
results and joining the effects. If the definition sequence is empty the obvious base case
NODEFS produces empty sequences and a pure effect.

7.4.4 Compilation Units

The type checker entry point is the compilation unit typing x(: T)? = E ⇒ ι⇝ e of Figure
7.18. The input definitions can come from text files or a REPL input line. As in SML and
OCaml there is no entry point function even in batch compilation mode, the convention
being that the last definition is of the form _ = E where E is evaluated just for side effects
as its result is not used.

UNIT

{; }∧,
{︂
x(:◦ T | =◦ E)

}︂
⊢ x(: T)? = E ⇒ι⊣ {α; θ}∧,∆⇝ x = e

x(: T)? = E ⇒ ι⇝ type α in let rec x = e in {}

Figure 7.18. Typing a compilation unit x(: T)? = E ⇒ ι⇝ e

The definitions are put into scope and typed with the rules of Section 7.4.3 like the lo-
cal definitions of a let in Section 7.4.1. A hoisting scope also needs to be pushed to
collect any abstract types generated outside function bodies. The effect of a program is
unconstrained (although any useful program will have some sort of I/O side effect).

7.5 Type Matching

This section details the various type matching judgements that have been utilized in type
elaboration and term typing. These type matching and conversion operations are the
essence of polymorphism and translucency in R1ML.

72

7.5.1 Focalization and Articulation

As we have seen, R1ML elimination rules rely on focalization. Both the templates and
focalizees in the focalization rules of Figure 7.19 are much more varied than in Section
4.5.2.

FTOP
Γ ⊢ Σ −→ Σ′ ⇝ γ Γ ⊢ Σ′≫ Σ⇝ Σ′′ ⇝ f

Γ ⊢ Σ ≫ Σ⇝ Σ′′ ⇝ λx.f (x ▶ γ)

FFORALL

Γ ↑ α̂ ⊢ [α̂/α]Σ ≫ Σ⇝ Σ′ ⊣ ∆⇝ f

Γ ⊢ ∀α.Σ≫ Σ⇝ Σ′ ⊣ ∆⇝ λx.f (x⟨α̂⟩)

FIMPLICIT
Γ ⊢ Σ ≫ Σ⇝ Σ′ ⊣ ∆⇝ f

Γ ⊢ {} →A Σ≫ Σ⇝ Σ′ ⊣ ∆⇝ λx.f (x {})

FARROW

Γ ⊢ Σd →ι Ξc≫ _ →_ _⇝ Σd →ι Ξc ⊣ Γ⇝ λx.x

FRECORD

Γ ⊢ {y : Σy,x : Σx, y′ : Σ′
y}≫ {x : _,_}⇝ {y : Σy,x : Σx, y′ : Σ′

y} ⊣ Γ⇝ λx.x

FTYPE

Γ ⊢ [= Ξ]≫ [= _]⇝ [= Ξ] ⊣ Γ⇝ λx.x

FARTICULATE
Γ ⊢ α̂ :≫ Σ⇝ Σ ⊣ ∆

Γ ⊢ α̂≫ Σ⇝ Σ ⊣ ∆⇝ λx.x

Figure 7.19. Focalization Γ ⊢ Σ ≫ Σ⇝ Σ⇝ f and Γ ⊢ Σ≫ Σ⇝ Σ⇝ f

Top level focalization ≫ consists of just FTOP, which uses type normalization −→ to deal
with β-redexes and read through axioms in scope and then delegates to the ‘worker’
focalization ≫. If normalization gets stuck and produces ⊥ focalization will also fail;
unlike subtyping or unification, focalization cannot just go work on other things which
would hopefully cause a retry to ‘get unstuck’.

FFORALL instantiates a universal type by applying the elaborated Λ to fresh unification
variables. Similarly FIMPLICIT removes the domain of an implicit function by applying the
elaborated function to an empty record. The FARROW, FRECORD and FTYPE rules just
return a type with right toplevel structure on encounter.

In HM unification variables only get instantiated to concrete monotypes. Focalization
requires the capacity to add just enough structure to match the template, filling the rest in
with fresh unification variables. To achieve that focalization rule FARTICULATE delegates
to the articulation judgement :≫ of Figure 7.20.

As we shall see shortly in Section 7.5.2, articulation is useful in subtyping as well as
focalization. There we just use the sub- or supertype as the articulation template. Using
a large type as a template does not threaten predicativity since articulation already has to
assume that the template could contain holes and never assigns it to unification variables.

Although this thesis uses the terminology of [9], having separate judgments for general-

73

purpose focalization and articulation is due to [38]. In [9] focalization was only used for
and integrated into the application rules and rules for articulation had not been factored
out at all.

AARROW

Γ[α̂] ⊢ α̂ :≫ Σd →ι Σc ⇝ α̂d →I α̂c ⊣ [α̂ = α̂d →I α̂c](∆ ↑ α̂d ↑ α̂c)

ATYPE

Γ[α̂] ⊢ α̂ :≫ [= Σ]⇝ [= α̂′] ⊣ [α̂ = [= α̂′]](Γ ↑ α̂′)

AAPP
Γ[α̂] ⊢ α̂ :≫ Σf Σa ⇝ α̂f α̂a ⊣ [α̂ = α̂f α̂a](Γ ↑ α̂f ↑ α̂a)

ABOOL

Γ[α̂] ⊢ α̂ :≫ bool⇝ bool ⊣ [α̂ = bool]Γ
ARIGID

Γ[β][α̂] ⊢ α̂ :≫ β ⇝ β ⊣ [α̂ = β]Γ

AUNI

Γ[β̂][α̂] ⊢ α̂ :≫ β̂ ⇝ β̂ ⊣ [α̂ = β̂]Γ

AUNIREV

Γ[α̂][β̂] ⊢ α̂ :≫ β̂ ⇝ α̂ ⊣ [β̂ = α̂]Γ

Figure 7.20. Articulation Γ ⊢ α̂ :≫ Σ ⊣ ∆

The rules AARROW, ATYPE, AAPP and ABOOL just generate a type whose outer structure
matches the template and whose inner parts are filled in with fresh unification variables.
Unification variables cannot be articulated to records, because that would require guess-
ing all the labels missing from the template. SELECT in particular only supplies one field
in the template. The templates Σ cover both templates from focalization and types from
subtyping. Rigid type variables can just be assigned directly, like bool, but have to be
in scope at least as high as the unification variable α̂. Another unification variable β̂ is
treated similarly but if it is below α̂ then β̂ can be set instead of failing (this is called
‘reaching’ in [9]).

7.5.2 Subtyping

Like in System Fη and 1ML the subtyping rules in Figures 7.21 and 7.22 compose a
coercion function to be called at the subtyping site. The subtyping judgement Γ ⊢ Ξl <:occ

Ξr ⊣ ∆⇝ f requires a an occurs check flag occ in addition to the sub- and supertype.
The occurs check flag prevents quadratic behaviour due to redundant occurs checks.

Similarly to focalization the actual subtyping work implemented by the auxiliary ≲: judge-
ment is interleaved with normalization in the main subtyping judgement <:. The nor-
malizations return coercion types that can be used to reveal in-scope implementations
of abstract types within the sub- and supertypes. When both normalizations succeed
(STOP) the subtype coercion type γl is used in the coercion function to cast the sub-
type before applying the coercion function f from ≲: and the result is abstracted into the
supertype by casting with a sym-reversed γr.

The crux of universal subtyping is unchanged from Section 4.5 but in SFORALL it has

74

STOP
Γ ⊢ Ξl −→ Ξ′

l ⇝ γl Γ ⊢ Ξr −→ Ξ′
r ⇝ γr Γ ⊢ Ξ′

l ≲:
occ Ξ′

r ⊣ ∆⇝ f

Γ ⊢ Ξl <:occ Ξr ⊣ ∆⇝ (x ▶ γl) ▶ sym γr

SEXISTS

Γ, {α; β̂}∧ ⊢ ΣL <:occ [β̂/β]Σ′
R ⊣ ∆, {α; θ}∧ ⇝ f

Γ ⊢ ∃α.ΣL ≲:
occ ∃β.Σ′

R ⊣ ∆⇝ λx. unpack⟨α, y⟩ = x in pack⟨β̂, f y⟩

SFORALL

Γ, {β; α̂}∧ ⊢ [α̂/α]ΣL <:occ ΣR ⊣ ∆, {β; θ}∧ ⇝ f

Γ ⊢ ∀α.ΣL ≲:
occ ∀β.ΣR ⊣ ∆⇝ λx.Λβ.f (x α̂)

SIMPLICITR
Γ ⊢ ΣL <:occ ΣRc ⊢ ∆⇝ f

Γ ⊢ ΣL ≲:
occ {} →A ΣRc ⊣ ∆⇝ λx.λ_.fx

SIMPLICITL
Γ ⊢ ΣLc <:occ ΣR ⊣ ∆⇝ f

Γ ⊢ {} →A ΣLc ≲:
occ ΣR ⊣ ∆⇝ λx.f(x {})

Figure 7.21. Subtyping I: Γ ⊢ Ξ <:occ Ξ ⊣ ∆⇝ f and Γ ⊢ Ξ ≲:occ Ξ ⊣ ∆⇝ f

been supplemented with various general R1ML considerations. The instantiation is done
with unification variables which removes the need to guess the final instantiation types at
this point and indirectly implements the predicativity restriction required for decidability. A
new hoisting scope is inserted for the unification variables so that they and also unification
variables created within the recursive invocation of <: can unify with the abstract types β.

Existential subtyping in SEXISTS is a kind of mirror image of the universal handling as
often happens; universals are specialized to a less general type by instantiation while
existentials are shown to be implemented by some less abstracted type. A more mecha-
nistic rationale is that the reverse behaviour is forced by the form of the coercion function
body. Because universal quantifier bodies are always arrows in our semantic types we do
not have to deal with instantiation conflicts ∀α.∃β.Σ <:occ ∃β′.∀α′.Σ′ like [10] had to since
types of the form ∀α.∃β.... never occur as semantic types.

Because implicit parameters always have type type the subtyping of implicit functions is
a trivial analogue of universal subtyping. In SIMPLICITL the function is just applied to a
unit argument like in focalization and in SIMPLICITR a useless λ wrapper is added. In
a system with with nontrivial implicits like Scala or type classes like Haskell SIMPLICITL
would have to invoke instance resolution which is akin to a Prolog interpreter – far from
trivial.

Functions are still contravariant in their domain and covariant in their codomain. Addi-
tionally effect subtyping is invoked to prevent impure functions from being used as pure.
Effect subtyping is identical to that of 1ML and not repeated in this chapter. Record sub-
typing is also familiar, with subsetting of labels and covariant field types. Function and
record subtyping conjoin the constraints of their parts, which should be understood to
produce an empty constraint ∅ if both of the conjoined constraints are empty.

75

SARROW
Γ ⊢ ΣRd <:occ ΣLd ⊣ Θ⇝ f1 ΘΘ⊢ΞLc <:occ ΞRc ⊣ ∆⇝ f2 ιL <: ιR

Γ ⊢ ΣLd →ιL ΞLc ≲:
occ ΣRd →ιR ΞRc ⊣ ∆⇝ λx.λy.f2(x(f1y))

SRECORD

Γ ⊢ ΣL <:occ ΣR ⊣ Θ⇝ f ΘΘ⊢{ρ} ≲:occ {x′ : Σ′
R} ⊣ ∆⇝ g

Γ ⊢ {ρ[x : ΣL]} ≲:occ {x : ΣR, x′ : Σ′
R} ⊣ ∆⇝ λx.let y = g x in {x = f x.x, x′ = y.x′}

SEMPTY

Γ ⊢
{︁
x : Σ

}︁
≲:occ {} ⊣ Γ⇝ λx.{}

SFORGET
Γ[α̂] ⊢ τ ′ −→ α̂⇝ γ Γ = Γ′, {β; θ[α̂]}∧,Γ′′, {α; θ′}∧,Γ′′′

α̂ ̸∈ fuv(τ) β̂ = {β̂ ∈ fuv(τ) | Γ′′[β̂]} ∆ = Γ′, {β; θ, β̂}∧ ∆ ⊢ λα.τ

Γ ⊢ [= τ] ≲:occ [= τ ′ α] ⊣ [α̂ = λα.τ]∆, (Γ′′ − β̂), {α; θ′}∧,Γ′′′ ⇝ λx.x

STYPE
Γ ⊢ Ξl ∼ Ξr ⊣ ∆⇝ γ

Γ ⊢ [= Ξl] ≲:
occ [= Ξr] ⊣ ∆⇝ λx.[Ξ′

r]

SBOOL

Γ ⊢ bool ≲:occ bool ⊢ Γ⇝ λx.x

SRIGID

Γ[α] ⊢ α ≲:occ α ⊣ Γ⇝ λx.x
SREFL

Γ[α̂] ⊢ α̂ ≲:occ α̂ ⊣ Γ⇝ λx.x

SSOLVEL
α̂ ̸∈ fuv(Σ) if occ = check
Γ ⊢ α̂ :≫ Σ⇝ τ ⊢ Θ

ΘΘ⊢τ <:skip Σ ⊣ ∆⇝ f

Γ [α̂] ⊢ α̂ ≲:occ Σ ⊣ ∆⇝ f

SSOLVER
α̂ ̸∈ fuv(Σ) if occ = check
Γ ⊢ α̂ :≫ Σ⇝ τ ⊢ Θ

ΘΘ⊢Σ <:skip τ ⊣ ∆⇝ f

Γ [α̂] ⊢ Σ ≲:occ α̂ ⊣ ∆⇝ f

Figure 7.22. Subtyping II

Rule SFORGET applies at the roots of higher kinded abstract types. The abstract type
must also be as of yet unimplemented, i.e. with the callee reducing to an unitialized
unification variable. This is exactly the sort of type application that in non-root position
causes normalization to return ⊥.

But here at the root the higher-kinded type can be initialized. First an occurs check
α̂ ̸∈ fuv(τ) is made to prevent cyclic types. The occurs check is unconditional on the
occurs flag occ which is meant only for SSOLVEL and SSOLVER. The unification variables
β̂ that are free in τ and nested deeper than α̂ but shallower than α are lifted to prevent
abstract types in Γ′′ and Γ′′′ from later escaping their scope. The implementation type
λα.τ must then be well-formed in the new upper context ∆ of α̂. Having procured all these
guarantees the abstract type can finally be initialized to a type-level lambda abstraction
λα.τ of the implementation type τ . In practice the occurs check, unification variable lifting
and well-formedness check can be optimized to one non-orthogonal traversal of τ .

Unusually the λ parameters in SFORGET must capture the free occurrences of the ab-
stract types α in τ . Declaratively it should be possible for unification variables in τ that

76

are bound in θ′ or Γ′′′ to be later initialized to types containing references to α. However
that would require being able to capture those α references “after the fact”, which would
be prohibitively complicated to implement (if possible at all). Because SFORGET does
not lift the unification variables bound in θ′ or Γ′′′, such corner cases will result in type
errors. This capture restriction is a source of incompleteness for R1ML. A somewhat
less incomplete option would be to lift those unification variables, which would cause a
type error only if the retroactive type variable capture would later be required. Unfortu-
nately the delayed type error would be less specific and not indicative of the source of the
problem.

Type carriers that are not the roots of higher kinded abstract types are handled invariantly
by unifying the carried types. Due to limitations in its polytype unification 1ML uses mutual
subtyping here, much like [31] did for multi-branch expressions. In case Ξl is a unification
variable the unification is equivalent to SFORGET without type level functions.

Subtyping for booleans is still syntactic equality. Equal type and unification variables are
subtypes of themselves as long as they are in scope (SRIGID and SREFL).

SSOLVEL and SSOLVER articulate the unification variable to match the outer structure
of the other type Σ and then continue subtyping with the articulated type τ replacing
the unification variable. To avoid cycles they need to do an occurs check at the first
articulation but recursive invocations of these rules concern fresh unification variables
created in articulation so the occurs check is unnecessary. The unnecessary occurs
checks would make subtyping take quadratic time so the occ flag has been introduced to
avoid that. 1ML does the unnecessary occurs checks while [9] avoids them but, lacking
a separate articulation judgement, duplicates most of subtyping in its ‘instantiation’ rules.

7.5.3 Unification

Unification [36] is a generalization of equivalence which can also initialize unification vari-
ables to make its arguments equal. Like GHC’s OutsideIn [46] constraint solver our uni-
fication can additionally make use of available explicit type equalities (derived from the
axioms in scope) by producing a coercion type as a witness. However the flow of our
unification is modeled after coercion subtyping instead of GHC’s constraint solver. The
unification rules in Figures 7.23 and 7.24 are mostly like restricted versions of the corre-
sponding subtyping rules and produce a System Fc coercion type instead of a coercion
function.

Like subtyping (and focalization) unification interleaves normalization in UTOP and UDE-
LAY with actual unification work in an auxiliary ≈ judgement. The coercion types can be
composed directly into the result unlike in subtyping where they have to be incorporated
into casts in the coercion function. UDELAY produces a unification constraint along with a
unification variable for patching the coercion type after solution of the constraint.

Rules UEXISTS and UFORALL implement polytype unification, relied upon by IFSYNTH

77

UTOP
Γ ⊢ Ξl −→ Ξ′

l ⇝ γl Γ ⊢ Ξr −→ Ξ′
r ⇝ γr Γ ⊢ Ξ′

l ≈ Ξ′
r ⊢ ∆⇝ γ

Γ ⊢ Ξl ∼ Ξr ⊣ ∆⇝ γl ◦ γ ◦ symγr

UEXISTS

Γ, {α; β̂}∧ ⊢ Σl ∼ [β̂/β]Σr ⊣ ∆, {α; θ}∧ ⇝ γ img(θ) = dedup(img(θ)) ⊆ α ∪ β̂

Γ ⊢ ∃α.Σl ≈ ∃β.Σr ⊣ ∆⇝ ∃α.γ

UFORALL

Γ, {β; α̂}∧ ⊢ [α̂/α]Σl ∼ Σr ⊣ ∆, {β; θ}∧ ⇝ γ img(θ) = dedup(img(θ)) ⊆ β ∪ dom(θ)

Γ ⊢ ∀α.Σl ≈ ∀β.Σr ⊣ ∆⇝ ∀α.γ

UIMPLICIT
Γ ⊢ Σl ∼ Σr ⊣ ∆⇝ γ

Γ ⊢ {} →A Σl ≈ {} →A Σr ⊣ ∆⇝ {} → γ

Figure 7.23. Unification I: Γ ⊢ Ξ ∼ Ξ ⊣ ∆⇝ γ and Γ ⊢ Ξ ≈ Ξ ⊣ ∆⇝ γ

as well as STYPE. The problem with quantifier unifications like these is that types that
differ only in the order of the quantified variables or the addition of unused variables
should be considered equivalent since those differences have no runtime effect. This
is especially important in an elaborating system like this where quantifiers are merely
a hidden implementation detail. At the very least the names of the quantified variables
should not matter.

In a declarative type system the naming issue can be solved by just appealing to the
Barendregt convention, but that does not directly lead to an algorithm. Here I have at-
tempted to solve the unification of quantifiers by instantiating one of the types like in
subtyping. However since unification should not actually instantiate quantifiers the unifi-
cation variables are required to only unify with the quantified type variables from the other
side or stay uninitialized to accommodate unused type variables on the instantiated side
(img(θ) ⊆ β ∪ dom(θ)). Each unification variable must also unify with a different abstract
type (img(θ) = dedup(img(θ))). The substitution is not hoisted to prevent the unification
variables from unifying with something forbidden later. All this should solve the naming,
ordering and unused type variable issues without drifting from unification into subtyping.

Implicit functions cannot be implicitly applied or inserted in unification (UIMPLICIT). In-
deed they behave like regular functions aside from always having the same domain and
no effect (recalling that A is not an effect).

Function, record and type carrier unification is mostly straightforward recursion. Unlike in
subtyping function effects must be equal and width subtyping of records is not permitted
in rule UEMPTY.

Unsurprisingly bool unifies with itself. Syntactically equal type and unification variables
also unify as long as they are in scope.

78

UARROW
Γ ⊢ ΣRd ∼ ΣLd ⊣ Θ⇝ γd ΘΘ⊢ΣLc ∼ ΣRc ⊣ ∆⇝ γc

Γ ⊢ ΣLd →ι ΣLc ≈ ΣRd →ι ΣRc ⊣ ∆⇝ γd → γc

URECORD

Γ ⊢ ΣL ∼ ΣR ⊣ Θ⇝ γ ΘΘ⊢{y : Σy, y′ : Σy′} ≈ {x′ : Σ′
R} ⊣ ∆⇝ {x′ : γ′}

Γ ⊢ {y : Σy,x : ΣL, y′ : Σy′} ≈ {x : ΣR, x′ : Σ′
R} ⊣ ∆⇝

{︁
x = γ, x′ = γ′

}︁
UEMPTY

Γ ⊢ {} ≈ {} ⊣ Γ⇝ {}

UTYPE
Γ ⊢ Ξl ∼ Ξr ⊣ ∆⇝ γ

Γ ⊢ [= Ξl] ≈ [= Ξr] ⊣ ∆⇝ [= γ]

UBOOL

Γ ⊢ bool ≈ bool ⊢ Γ⇝ bool
URIGID

Γ[α] ⊢ α ≈ α ⊢ Γ⇝ α
UREFL

Γ[α̂] ⊢ α̂ ≈ α̂ ⊣ Γ⇝ α̂

UINSTANTIATEL
α̂ ̸∈ fuv(τ) β̂ = {β̂ ∈ fuv(τ) | Γ′[β̂]} ∆ = Γ, {β; θ, β̂}∧ ∆ ⊢ τ

Γ, {β; θ[α̂]}∧,Γ′ ⊢ α̂ ≈ τ ⊣ [α̂ = τ]∆, (Γ′ − β̂)⇝ τ

UINSTANTIATER
α̂ ̸∈ fuv(τ) β̂ = {β̂ ∈ fuv(τ) | Γ′[β̂]} ∆ = Γ, {β; θ, β̂}∧ ∆ ⊢ τ

Γ, {β; θ[α̂]}∧,Γ′ ⊢ τ ≈ α̂ ⊣ [α̂ = τ]∆, (Γ′ − β̂)⇝ τ

Figure 7.24. Unification II

The initialization of unification variables in UINSTANTIATEL and UINSTANTIATER is basi-
cally an easier version of SFORGET. An occurs check α̂ ̸∈ fuv(τ) is made, the unification
variables β̂ below the level of α̂ are lifted and the type must be well scoped in the new
upper context ∆ of α̂ before finally initializing α̂.

79

8 METATHEORY OF R1ML

It turns out that a fair amount of careful analysis is
required to avoid false and embarrassing claims of type

soundness for programming languages.

Luca Cardelli

This section investigates the soundness, decidability and completeness of R1ML. These
basic metatheoretic properties were defined way back in Section 4.1.1. As usual, detailed
proofs are not provided because they would be very long and tedious.

Actually I would go as far as to argue that to be really convincing such proofs would need
to be mechanized in a proof assistant like Coq as was done in [40]. But at this point I do
not have the time to learn Coq and then write 13,000-line proof script.

8.1 Soundness

Usually the soundness of a type system is proven by proving progress and preserva-
tion [32, sec. 8.3]. Progress means that a normalization step applies to any well-typed
expression and preservation means that the normalization step will produce a term of the
same type.

Soundness is handled differently in elaborating type systems like R1ML. Given the sound-
ness of the target language (System Fc in this case) what remains to be proven is that all
elaborated terms are well-typed and all elaborated types well-kinded in the target system:

Theorem 8.1 (Correctness of R1ML elaboration). Let Γ (with scopes flattened out) be a
well-formed Fc environment.

1. If Γ ⊢ T ⇝ Ξ ⊣ ∆, then ∆ ⊢ [∆]Ξ : type.

2. If Γ ⊢ E ⇒ι Σ ⊣ ∆⇝ e or Γ ⊢ E ⇐ι Σ ⊣ ∆⇝ e, then ∆ ⊢ e : [∆]Σ.

3. If Γ ⊢ x(: T)? = E ⇒ι⊣ ∆[x : Σ]⇝ x = e, then ∆ ⊢ e : Σ.

4. If Γ ⊢ Ξ <:occ Ξ′ ⊣ Θ⇝ f and Γ ⊢ Ξ : type and Γ ⊢ Ξ′ : type then ∆ ⊢ f : [∆]Ξ →
[∆]Ξ′.

5. If Γ ⊢ Ξ ∼ Ξ′ ⊣ Θ⇝ γ and Γ ⊢ Ξ : type and Γ ⊢ Ξ′ : type, then ∆ ⊢ γ : [∆]Ξ ∼ [∆]Ξ′.

6. If Γ ⊢ Σ ≫ Σ ⇝ Σ′ ⊣ ∆⇝ f and Γ ⊢ Σ : type and Γ ⊢ Σ′ : type, then ∆ ⊢ f :

[∆]Σ → [∆]Σ′.

80

7. If Γ ⊢ α̂ :≫ Σ⇝ Σ ⊣ ∆, then Σ has the same outer shape as Σ.

8. All generated axioms are consistent.

We also needed to prove that coercion functions had the expected type and coercion
types the expected equality kind, although those can be regarded as special cases of
well-typed terms and well-kinded types. The requirement for consistent axioms is unique
to Fc.

Because elaboration is correct and Fc is sound given consistent axioms, R1ML is also
sound:

Theorem 8.2 (Soundness of R1ML typing). If ϵ ⊢ E ⇒ι Σ⇝ e, then either e ↑ or e ↪→∗ v

such that ϵ ⊢ v : Σ and v is a value.

8.2 Decidability

Articulation is non-recursive so it is not even potentially nonterminating. All recursive
judgements except normalization, subtyping and unification are syntax-directed and in-
ductive, which guarantees termination.

Normalization incorporates β-reduction in rule RAβ. In untyped lambda-calculus that
can lead to nontermination. However as in Fω our type level functions are essentially
simply-typed lambda-calculus, which is strongly normalizing. And all R1ML contexts are
well-formed since type elaboration only produces well-kinded types, so normalization will
also terminate.

To prove termination of subtyping and unification some measures for semantic types are
needed. These weight functions are defined in Figure 8.1.

Roughly, S is the number of abstract syntax tree nodes in the type and Q is the number
of quantified variables. They can be combined into a total weight W . Weights can be
added pointwise (⟨Q,S⟩ + ⟨Q′, S′⟩ = ⟨Q + Q′,W + W ′⟩ and compared lexicographically
(⟨Q,S⟩ < ⟨Q′, S′⟩ = Q < Q′ ∨ (Q = Q′ ∧ S < S′)). A couple of key lemmas can be stated
in terms of weights:

Lemma 8.3 (Weight reduction under substitution).

1. QJ[θ]ΞK = QJΞK

2. W J[θ]ΞK < ⟨1, 0⟩+W J[θ]ΞK

3. W J[θ]ΞK ≤ ⟨|θ|, 0⟩+W J[θ]ΞK

Lemma 8.4 (Resolution progress).

1. Let Γ be a well-formed environment, Γ ⊢ Ξ and Γ ⊢ Ξ′ and Γ ⊢ Ξ <:occ Ξ′ ⊣ ∆⇝ f ,
then |unsolved(∆)| − |unsolved(Γ)| ≤ QJΞK +QJΞ′K.

2. Let Γ be a well-formed environment, Γ ⊢ Ξ and Γ ⊢ Ξ′ and Γ ⊢ Ξ ∼ Ξ′ ⊣ ∆⇝ γ,
then |unsolved(∆)| < |unsolved(Γ)| or |unsolved(∆)| = |unsolved(Γ)| = 0.

81

SJ∃α.ΣK = SJΣK
SJ∀α.Σ →ι ΞK = 1 + SJΣK + SJΞK

SJ∀α.{} →A ΣK = 1 + SJΣK

SJ{x : Σ}K = 1 +
∑︂

SJΣK

SJ[= Ξ]K = 1 + SJΞK
SJλα.τK = 1 + SJτK

SJτf τaK = 1 + SJτf K +
∑︂

SJτaK

SJαK = 1

SJα̂K = 1

SJboolK = 1

QJ∃α.ΣK = |α|+QJΣK
QJ∀α.Σ →ι ΞK = |α|+QJΣK +QJΞK

QJ∀α.{} →A ΣK = |α|+QJΣK

QJ{x : Σ}K =
∑︂

QJΣK

QJ[= Ξ]K = QJΞK
QJλα.τK = 0

QJτf τaK = 0

QJαK = 0

QJα̂K = 0

QJboolK = 0

W JΞK = ⟨QJΞK, SJΞK⟩

Figure 8.1. Type weights

In subtyping and unification the weight W JΞK+W JΞ′K+ ⟨fuv(Ξ)+ fuv(Ξ′), 0⟩ gets smaller
for all premises. SSOLVEL and SSOLVER use articulation which increases the weight by
adding unification variables but the following subtyping recursion will immediately solve
the new unification variables.

The weight reduction in subtyping and unification shows that they are inductive after all
and thus decidable. So in conclusion:

Theorem 8.5 (Decidability of R1ML elaboration). All R1ML elaboration judgements are
decidable.

82

8.3 Completeness

Since this thesis never defined a declarative version of the R1ML type system1, it is not
possible to formulate precise statements about completeness. However R1ML surely in-
herits the incompleteness issues of 1ML. Unification variables cannot handle width sub-
typing of records, in particular articulation fails on record types. There are also some
rather obscure issues with the combination of functors and the value restriction. But as
the 1ML paper points out, SML already had both issues (although not exactly since it
does not have record subtyping).

The capture restriction in SFORGET is another source of incompleteness for R1ML. It
can be triggered by certain combinations of applicative functors and implicit functions.
Although the capture issue was not identified in 1ML [38], I suspect a similar restriction
should actually be added to 1ML as well.

1For space reasons.

83

9 FUTURE WORK

1ML, as shown here, is but a first step. There are many
possible improvements and extensions.

1ML – Core and Modules United [38]

With regard to this thesis I have achieved what I set out to do: an algorithmic type system
for recursive first-class modules. In the bigger picture R1ML is not a language that is
ready to be used tomorrow, lacking essential practical features and an implementation
beyond a sketchy type checker prototype1. I also believe that engaging with some further
research questions would result in a substantially more expressive design.

9.1 Declarative System

As remarked in the previous chapter, R1ML currently lacks a declarative type system. A
declarative type system can act as the specification for typechecking in language defini-
tions. It is mostly useful for determining the completeness of type checking algorithms.
Almost every programmer relies on their internalized informal model of typing instead of
a formal declarative type system. Indeed most practical programming languages do not
even have formal semantics, static (declarative type system) or dynamic (evaluation), with
SML being a notable exception.

The idea of a declarative elaborating type system is somewhat ill-defined, since semantic
types and elaboration seem very much like algorithmic implementation details. In 1ML
the declarative system seems to mean the use of non-syntax-directed generalization and
instantiation rules and guessing of monotypes instead of introducing unification variables.

9.2 Practicality

As usual for research type system languages, R1ML is far from a complete language
design. In fact the system presented in this thesis is not practical at all since it lacks basic
facilities like integers and strings. At least first class recursive modules forced it to fully
support recursive functions, parametric polymorphism and records.

Any ML dialect should have algebraic datatypes and pattern matching. Those features
1Available at https://github.com/nilern/r1ml.

https://github.com/nilern/r1ml

84

are largely orthogonal to modules although pattern matching on modules with type mem-
bers would require pattern matching extensions similar to existential datatypes [17] and
the more advanced Generalized Algebraic Datatypes (GADTs) [10]. Even GADTs could
be added since they are already implemented on top of System Fc in GHC [46].

Unlike the R1ML prototype, serious compilers should use surface syntax to hide the im-
plementation detail of semantic types in type error messages. That should not be very
difficult or theoretically interesting. However even non-elaborating type checkers tend to
show too large or otherwise unintuitive types if compiler writers do not prioritize the quality
of error messages.

9.3 Well-Founded Recursion

In SML and OCaml the well-foundedness of recursive definitions is guaranteed by syn-
tactic restrictions. Those restrictions cannot be lifted without some other way to prevent
forward references that access uninitialized values.

Using dynamic initialization checks like Scheme or the recursive modules of OCaml tech-
nically recovers soundness. But like Java’s ClassCastException, that solution still leaves
room for paranoia. It would also prevent the tracking of exceptions in an extended effect
system (although we could designate a special untracked class of exceptions like Java’s
RuntimeError which could also include OutOfMemory exceptions and the like).

Dreyer has presented a type system for well-founded recursion [5]. However I know of no
type inference algorithm for that system. I suspect that flow analysis like those used for
definite assignment in Java [13, ch. 16] would be a more suitable solution.

9.4 Recursive Linking

This thesis and various preceding papers have solved the double vision problem which
concerns type abstraction in the presence of recursive modules. There is also the prob-
lem of module abstraction (functors) in the presence of recursive modules. Functor fix-
points are the natural way to handle that and present no problems to type checking (as-
suming sufficient type annotations).

Unfortunately the recursion in functor fixpoints is not well-founded. Dreyer [5] provides
a patchwork solution with explicit single-assignment references and a kind of parameter
strictness effect. MixML argues that functors are fundamentally at odds with recursive
linking and should be replaced with mixin modules, but it would be a shame to abandon
the elegant unification of functors and functions, generativity and computational purity of
1ML. Lazy evaluation would sidestep the whole initialization issue by replacing access to
uninitialized values with divergence, but it seems strange to treat premature access as
an infinite loop.

Programming language features should be as few and general as possible. On the other

85

hand it does not seem prudent to make pervasive changes to the ML module system just
because of the rather obscure issues with functor fixpoints.

9.5 Row Typing

Using width subtyping for fields is natural for modules but makes type inference incom-
plete for records. It could be argued that this is not that bad since Standard ML does
not even have record subtyping and still has incomplete type inference for records. Or
width subtyping could be replaced with row inference [19]. That might be convenient for
records but incomplete for modules since the predicativity restriction would also concern
row variables.

9.6 Effect System

R1ML inherits 1ML’s effect system. As explained in Chapter 5 effect-typing is necessary
to prevent abstraction leaks from applicative functors. This very coarse-grained effect
system (just P or I) and does not support effect polymorphism. If we are going to have
an effect system, it should track individual side effects like mutation and exceptions sep-
arately, perhaps using row types for this as well like Koka [21] and Multicore OCaml.
Incidentally the operation signatures of custom algebraic effects seem like a use case
for module signatures.

A practical effect system should provide effect polymorphism to avoid code duplication
between pure and impure versions of the same code, e.g. fmap and traverse in Haskell.
Supporting effect polymorphism between generative and applicative functors leads to
generativity polymorphism where the equality of abstract types can depend on runtime
effects. Implementing such a type system has turned out to be quite complicated due to
the different quantifier structure of pure and impure functors. [37]

As explained in [37], in a language with first class functors effect polymorphism implies
generativity polymorphism. Perhaps System Fc type functions could be utilized, poten-
tially using some methodology from the GHC type families implementation [41].

9.7 Impredicative Instantiation

Predicative instantiation prevents abstraction over large types. Arguably it is not often
needed. However that may be, in a system of row-typed modules impredicative instanti-
ation could become pervasive.

Despite its infamy, impredicative instantiation by itself is not that problematic. The core
issue is just that when unifying a unification variable and a quantified type the decision be-
tween solving the unification variable with the quantified type (impredicative instantiation)
on one hand and instantiating the quantifier (predicative instantiation) on the other hand
is undecidable. For instance HMF [20] just requires type annotations in that ambiguous

86

situation if impredicative instantiation is desired.

What really causes problems (undecidability in the form of nontermination instead of mere
ambiguity) is the combination of impredicative instantiation with contravariance. Sys-
tems like MLF and HMF only have invariant type constructors. GHC recently removed
contravariance (and covariance) and subsequently was able to finally add impredicative
instantiation [42].

But covariance and contravariance are essential to ML module signature matching, so
we seem to be stuck with predicativity if we want a decidable system. On the other hand
decidability can be imposed in practice with arbitrary recursion limit like in GHC with
UndecidableInstances. Such arbitrary limits compromise completeness, but in practice
one can just increase the limit enough to make a valid program compile; programs that
trigger nontermination will hit any finite limit eventually. Also any system with Turing-
complete macros is already subject to nonterminating compilation.

So impredicativity can be supported by unprincipled limits in compilers. But it would
seem that that the undecidability of contravariant impredicative instantiation is not yet
fully understood. Demonstrating that e.g. Turing machines can be encoded as System
Fη typechecking problems proves undecidability but offers little insight for recovering de-
cidability. Perhaps there is subtler way towards decidability than the complete removal of
either impredicativity (like ML modules) or contravariance (like MLF and GHC)?

9.8 Implicit Parameters

Like 1ML, R1ML only has implicit arguments of type type. Those are trivial to implement
if type argument inference is already in place. Adding a resolution step in the style of
[30] would enable ad-hoc polymorphism and convenient generic programming similar to
Haskell type classes, Scala implicits and expecially the experimental OCaml modular
implicits [47].

Since resolution potentially has the computational power of Prolog, it would seem like
a substantial and complicated addition. However if one looks closely at the resolution
rules of [30], it becomes clear that it is almost identical to our subtyping system. We
would just need to add mechanisms for backtracking (i.e. undoing solution of unification
variables and application of substitutions) and also for delaying and later triggering implicit
resolution.

9.9 Non-Continuations

I suspect that the suggested continuations from 1ML [38] to extend applicative functors or
go in the direction of irreducibly dependent types would be too complicated to be worth it.
Especially when combined with the more practically enticing extensions towards recursive
module abstraction, row inference, algebraic effects, modular implicits and impredicative
instantiation.

87

10 CONCLUSION

Like the Hindley-Milner type system of core ML, the ML module system is a masterpiece
of design. Like ALGOL 60, the hierarchical namespacing of structures, the direct repre-
sentation of interfaces as module signatures, the flexible data abstraction of sealing and
the statically typed generic programming of functors made the ML module system “so far
ahead of its time that it was not only an improvement on its predecessors but also on
nearly all its successors.” [14].

On the other hand SML does have its limitations and inelegances. The prenex polymor-
phism of HM is very limited and the stratification into core and modules results in much
duplication of functionality and a boundary that can become an obstacle.

Milner’s type inference and MacQueen’s modules are elegant and impressive. So is
Rossberg’s demonstration that they can be unified into 1ML instead of merely layered
into SML. This chapter has mentioned my desire to also integrate implicit resolution and
algebraic effects with first-class modules. Indeed the only language design statement
that inspires me more than the 1ML paper is the customary introduction paragraph of
Revised Reports on Scheme:

“Programming languages should be designed not by piling feature on top of
feature, but by removing the weaknesses and restrictions that make additional
features appear necessary. Scheme demonstrates that a very small number
of rules for forming expressions, with no restrictions on how they are com-
posed, suffice to form a practical and efficient programming language that is
flexible enough to support most of the major programming paradigms in use
today.” [43]

First and foremost I would like to make a language like 1ML a practical tool for software
engineering instead of a few articles (and now a thesis!) about type theory. Too often
research languages do not lead to useful implementations while pragmatic languages
largely ignore research.

This thesis has shown a way to typecheck recursive first-class ML modules. Having read
the most relevant papers [38] [6] [39] I was sure that I could achieve as much, which
made it a usable subject for my master’s thesis.

For quite a while now I have been far more intrigued by the truly tough problems en-
countered on the way. Can functor fixpoints be accommodated elegantly or is MixML the

88

only way forward? Could impredicative instantiation coexist with contravariance? These
seem like the very edges of tractability: “In mathematics and computability theory, self-
reference (also known as Impredicativity) is the key concept in proving limitations of many
systems.” [48].

89

REFERENCES

[1] A. W. Appel. Compiling with Continuations. USA: Cambridge University Press,
2007. ISBN: 052103311X.

[2] D. L. Botlan and D. Rémy. Recasting MLF. Information and Computation 207.6
(2009), 726–785. ISSN: 0890-5401. DOI: https : / / doi . org / 10 . 1016 / j . ic .

2008.12.006. URL: http://www.sciencedirect.com/science/article/pii/
S0890540109000145.

[3] L. Damas and R. Milner. Principal type-schemes for functional programs. Proceed-
ings of the 9th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages (Jan. 1982), 207–212. DOI: 10.1145/582153.582176.

[4] O. Danvy and L. R. Nielsen. A first-order one-pass CPS transformation. Theoretical
Computer Science 308.1 (2003), 239–257. ISSN: 0304-3975. DOI: https://doi.
org/10.1016/S0304-3975(02)00733-8. URL: http://www.sciencedirect.com/
science/article/pii/S0304397502007338.

[5] D. Dreyer. A Type System for Well-Founded Recursion. Proceedings of the 31st
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
POPL ’04. Venice, Italy: Association for Computing Machinery, 2004, 293–305.
ISBN: 158113729X. DOI: 10.1145/964001.964026. URL: https://doi.org/10.
1145/964001.964026.

[6] D. Dreyer. A Type System for Recursive Modules. Proceedings of the 12th ACM
SIGPLAN International Conference on Functional Programming. ICFP ’07. Freiburg,
Germany: Association for Computing Machinery, 2007, 289–302. ISBN: 9781595938152.
DOI: 10.1145/1291151.1291196. URL: https://doi.org/10.1145/1291151.
1291196.

[7] D. Dreyer. Recursive type generativity. Journal of Functional Programming 17.4-5
(2007), 433–471. DOI: 10.1017/S0956796807006429.

[8] D. Dreyer, R. Harper and K. Crary. Understanding and Evolving the ML Module
System. AAI3166274. PhD thesis. USA, 2005. ISBN: 0542015501.

[9] J. Dunfield and N. R. Krishnaswami. Complete and Easy Bidirectional Typecheck-
ing for Higher-Rank Polymorphism. CoRR abs/1306.6032 (2013).

[10] J. Dunfield and N. R. Krishnaswami. Sound and Complete Bidirectional Typecheck-
ing for Higher-Rank Polymorphism with Existentials and Indexed Types. CoRR
abs/1601.05106 (2016). arXiv: 1601.05106. URL: http://arxiv.org/abs/1601.
05106.

[11] C. Flanagan, A. Sabry, B. F. Duba and M. Felleisen. The Essence of Compiling with
Continuations. SIGPLAN Not. 28.6 (June 1993), 237–247. ISSN: 0362-1340. DOI:
10.1145/173262.155113. URL: https://doi.org/10.1145/173262.155113.

https://doi.org/https://doi.org/10.1016/j.ic.2008.12.006
https://doi.org/https://doi.org/10.1016/j.ic.2008.12.006
http://www.sciencedirect.com/science/article/pii/S0890540109000145
http://www.sciencedirect.com/science/article/pii/S0890540109000145
https://doi.org/10.1145/582153.582176
https://doi.org/https://doi.org/10.1016/S0304-3975(02)00733-8
https://doi.org/https://doi.org/10.1016/S0304-3975(02)00733-8
http://www.sciencedirect.com/science/article/pii/S0304397502007338
http://www.sciencedirect.com/science/article/pii/S0304397502007338
https://doi.org/10.1145/964001.964026
https://doi.org/10.1145/964001.964026
https://doi.org/10.1145/964001.964026
https://doi.org/10.1145/1291151.1291196
https://doi.org/10.1145/1291151.1291196
https://doi.org/10.1145/1291151.1291196
https://doi.org/10.1017/S0956796807006429
https://arxiv.org/abs/1601.05106
http://arxiv.org/abs/1601.05106
http://arxiv.org/abs/1601.05106
https://doi.org/10.1145/173262.155113
https://doi.org/10.1145/173262.155113

90

[12] R. Garcia, J. Jarvi, A. Lumsdaine, J. G. Siek and J. Willcock. A Comparative Study
of Language Support for Generic Programming. SIGPLAN Not. 38.11 (Oct. 2003),
115–134. ISSN: 0362-1340. DOI: 10.1145/949343.949317. URL: https://doi.org/
10.1145/949343.949317.

[13] J. Gosling, B. Joy, G. L. Steele, G. Bracha and A. Buckley. The Java Language
Specification, Java SE 8 Edition. 1st. Addison-Wesley Professional, 2014. ISBN:
013390069X.

[14] C. A. R. Hoare. Hints on Programming Language Design. Tech. rep. Stanford, CA,
USA, 1973.

[15] B. W. Kernighan and D. M. Ritchie. The C Programming Language. USA: Prentice-
Hall, Inc., 1978. ISBN: 0131101633.

[16] G. Kuan and D. MacQueen. Efficient Type Inference Using Ranked Type Variables.
Proceedings of the 2007 Workshop on Workshop on ML. ML ’07. Freiburg, Ger-
many: Association for Computing Machinery, 2007, 3–14. ISBN: 9781595936769.
DOI: 10.1145/1292535.1292538. URL: https://doi.org/10.1145/1292535.
1292538.

[17] K. Läufer and M. Odersky. Polymorphic type inference and abstract data types.
ACM Trans. Program. Lang. Syst. 16 (Sept. 1994), 1411–1430. DOI: 10.1145/
186025.186031.

[18] D. Le Botlan and D. Rémy. MLF: Raising ML to the Power of System F. SIGPLAN
Not. 38.9 (Aug. 2003), 27–38. ISSN: 0362-1340. DOI: 10.1145/944746.944709.
URL: https://doi.org/10.1145/944746.944709.

[19] D. Leijen. Extensible records with scoped labels. Trends in Functional Program-
ming. Vol. 6. Trends in Functional Programming. Intellect, 2005, 179–194.

[20] D. Leijen. HMF: Simple Type Inference for First-Class Polymorphism. SIGPLAN
Not. 43.9 (Sept. 2008), 283–294. ISSN: 0362-1340. DOI: 10.1145/1411203.1411245.
URL: https://doi.org/10.1145/1411203.1411245.

[21] D. Leijen. Koka: Programming with Row-Polymorphic Effect Types. Tech. rep. MSR-
TR-2013-79. Aug. 2013. URL: https://www.microsoft.com/en-us/research/
publication/koka-programming-with-row-polymorphic-effect-types/.

[22] X. Leroy. The ZINC experiment: an economical implementation of the ML language.
Technical report 117. INRIA, 1990.

[23] X. Leroy. Applicative Functors and Fully Transparent Higher-Order Modules. Pro-
ceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages. POPL ’95. San Francisco, California, USA: Association for
Computing Machinery, 1995, 142–153. ISBN: 0897916921. DOI: 10.1145/199448.
199476. URL: https://doi.org/10.1145/199448.199476.

[24] X. Leroy. A Modular Module System. J. Funct. Program. 10.3 (May 2000), 269–
303. ISSN: 0956-7968. DOI: 10.1017/S0956796800003683. URL: https://doi.org/
10.1017/S0956796800003683.

[25] D. MacQueen. Modules for Standard ML. Proceedings of the 1984 ACM Sympo-
sium on LISP and Functional Programming. LFP ’84. Austin, Texas, USA: Associ-

https://doi.org/10.1145/949343.949317
https://doi.org/10.1145/949343.949317
https://doi.org/10.1145/949343.949317
https://doi.org/10.1145/1292535.1292538
https://doi.org/10.1145/1292535.1292538
https://doi.org/10.1145/1292535.1292538
https://doi.org/10.1145/186025.186031
https://doi.org/10.1145/186025.186031
https://doi.org/10.1145/944746.944709
https://doi.org/10.1145/944746.944709
https://doi.org/10.1145/1411203.1411245
https://doi.org/10.1145/1411203.1411245
https://www.microsoft.com/en-us/research/publication/koka-programming-with-row-polymorphic-effect-types/
https://www.microsoft.com/en-us/research/publication/koka-programming-with-row-polymorphic-effect-types/
https://doi.org/10.1145/199448.199476
https://doi.org/10.1145/199448.199476
https://doi.org/10.1145/199448.199476
https://doi.org/10.1017/S0956796800003683
https://doi.org/10.1017/S0956796800003683
https://doi.org/10.1017/S0956796800003683

91

ation for Computing Machinery, 1984, 198–207. ISBN: 0897911423. DOI: 10.1145/
800055.802036. URL: https://doi.org/10.1145/800055.802036.

[26] R. Milner. A theory of type polymorphism in programming. Journal of Computer
and System Sciences 17.3 (1978), 348–375. ISSN: 0022-0000. DOI: https://doi.
org/10.1016/0022-0000(78)90014-4. URL: http://www.sciencedirect.com/
science/article/pii/0022000078900144.

[27] R. Milner, M. Tofte and D. Macqueen. The Definition of Standard ML. Cambridge,
MA, USA: MIT Press, 1997. ISBN: 0262631814.

[28] J. C. Mitchell. Polymorphic Type Inference and Containment. Inf. Comput. 76.2–3
(Feb. 1988), 211–249. ISSN: 0890-5401. DOI: 10.1016/0890-5401(88)90009-0.
URL: https://doi.org/10.1016/0890-5401(88)90009-0.

[29] C. Okasaki. Purely Functional Data Structures. USA: Cambridge University Press,
1998. ISBN: 0521631246.

[30] B. C. Oliveira, T. Schrijvers, W. Choi, W. Lee and K. Yi. The Implicit Calculus: A
New Foundation for Generic Programming. SIGPLAN Not. 47.6 (June 2012), 35–
44. ISSN: 0362-1340. DOI: 10.1145/2345156.2254070. URL: http://doi.acm.org/
10.1145/2345156.2254070.

[31] S. Peyton Jones, D. Vytiniotis, S. Weirich and M. Shields. Practical Type Infer-
ence for Arbitrary-Rank Types. J. Funct. Program. 17.1 (Jan. 2007), 1–82. ISSN:
0956-7968. DOI: 10.1017/S0956796806006034. URL: https://doi.org/10.1017/
S0956796806006034.

[32] B. C. Pierce. Types and Programming Languages. 1st. The MIT Press, 2002. ISBN:
0262162091, 9780262162098.

[33] B. C. Pierce and D. N. Turner. Local Type Inference. ACM Trans. Program. Lang.
Syst. 22.1 (Jan. 2000), 1–44. ISSN: 0164-0925. DOI: 10.1145/345099.345100. URL:
https://doi.org/10.1145/345099.345100.

[34] D. Rémy. Simple, Partial Type-Inference for System F Based on Type-Containment.
Proceedings of the Tenth ACM SIGPLAN International Conference on Functional
Programming. ICFP ’05. Tallinn, Estonia: Association for Computing Machinery,
2005, 130–143. ISBN: 1595930647. DOI: 10.1145/1086365.1086383. URL: https:
//doi.org/10.1145/1086365.1086383.

[35] D. Rémy and J. Vouillon. Objective ML: A Simple Object-Oriented Extension of
ML. Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. POPL ’97. Paris, France: Association for Computing
Machinery, 1997, 40–53. ISBN: 0897918533. DOI: 10.1145/263699.263707. URL:
https://doi.org/10.1145/263699.263707.

[36] J. A. Robinson. A Machine-Oriented Logic Based on the Resolution Principle. J.
ACM 12.1 (Jan. 1965), 23–41. ISSN: 0004-5411. DOI: 10.1145/321250.321253.
URL: https://doi.org/10.1145/321250.321253.

[37] A. Rossberg. 1ML with Special Effects. A List of Successes That Can Change the
World: Essays Dedicated to Philip Wadler on the Occasion of His 60th Birthday. Ed.
by S. Lindley, C. McBride, P. Trinder and D. Sannella. Cham: Springer International

https://doi.org/10.1145/800055.802036
https://doi.org/10.1145/800055.802036
https://doi.org/10.1145/800055.802036
https://doi.org/https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/https://doi.org/10.1016/0022-0000(78)90014-4
http://www.sciencedirect.com/science/article/pii/0022000078900144
http://www.sciencedirect.com/science/article/pii/0022000078900144
https://doi.org/10.1016/0890-5401(88)90009-0
https://doi.org/10.1016/0890-5401(88)90009-0
https://doi.org/10.1145/2345156.2254070
http://doi.acm.org/10.1145/2345156.2254070
http://doi.acm.org/10.1145/2345156.2254070
https://doi.org/10.1017/S0956796806006034
https://doi.org/10.1017/S0956796806006034
https://doi.org/10.1017/S0956796806006034
https://doi.org/10.1145/345099.345100
https://doi.org/10.1145/345099.345100
https://doi.org/10.1145/1086365.1086383
https://doi.org/10.1145/1086365.1086383
https://doi.org/10.1145/1086365.1086383
https://doi.org/10.1145/263699.263707
https://doi.org/10.1145/263699.263707
https://doi.org/10.1145/321250.321253
https://doi.org/10.1145/321250.321253

92

Publishing, 2016, 336–355. ISBN: 978-3-319-30936-1. DOI: 10.1007/978-3-319-
30936-1_18. URL: https://doi.org/10.1007/978-3-319-30936-1_18.

[38] A. Rossberg. 1ML - Core and modules united. J. Funct. Program. 28 (2018), e22.
[39] A. Rossberg and D. Dreyer. Mixin’ Up the ML Module System. ACM Trans. Program.

Lang. Syst. 35.1 (Apr. 2013). ISSN: 0164-0925. DOI: 10.1145/2450136.2450137.
URL: https://doi.org/10.1145/2450136.2450137.

[40] A. Rossberg, C. Russo and D. Dreyer. F-ing modules. Journal of Functional Pro-
gramming 24.5 (2014), 529–607. DOI: 10.1017/S0956796814000264.

[41] T. Schrijvers, S. Peyton Jones, M. Chakravarty and M. Sulzmann. Type Check-
ing with Open Type Functions. ICFP 2008. Submitted to ICFP’08. Apr. 2008. URL:
https://www.microsoft.com/en-us/research/publication/type-checking-

with-open-type-functions/.
[42] A. Serrano, J. Hage, S. Peyton Jones and D. Vytiniotis. A quick look at impredica-

tivity. International Conference on Functional Programming (ICFP’20). ACM. ACM,
Aug. 2020. URL: https://www.microsoft.com/en-us/research/publication/a-
quick-look-at-impredicativity/.

[43] A. Shinn, J. Cowan and A. A. Gleckler. Revised7 Report on the Algorithmic Lan-
guage Scheme. 2013.

[44] M. Sulzmann, M. Chakravarty, S. Peyton Jones and K. Donnelly. System F with type
equality coercions. ACM SIGPLAN International Workshop on Types in Language
Design and Implementation (TLDI’07). ACM, Jan. 2007, 53–66. ISBN: 1-59593-393-
X. URL: https://www.microsoft.com/en-us/research/publication/system-f-
with-type-equality-coercions/.

[45] D. Vytiniotis, S. Peyton Jones and T. Schrijvers. Let Should Not Be Generalized.
Proceedings of the 5th ACM SIGPLAN Workshop on Types in Language Design
and Implementation. TLDI ’10. Madrid, Spain: Association for Computing Machin-
ery, 2010, 39–50. ISBN: 9781605588919. DOI: 10.1145/1708016.1708023. URL:
https://doi.org/10.1145/1708016.1708023.

[46] D. Vytiniotis, S. Peyton jones, T. Schrijvers and M. Sulzmann. Outsidein(x) Modular
Type Inference with Local Assumptions. J. Funct. Program. 21.4–5 (Sept. 2011),
333–412. ISSN: 0956-7968. DOI: 10.1017/S0956796811000098. URL: https://
doi.org/10.1017/S0956796811000098.

[47] L. White, F. Bour and J. Yallop. Modular implicits. Electronic Proceedings in Theo-
retical Computer Science 198 (Dec. 2015), 22–63. ISSN: 2075-2180. DOI: 10.4204/
eptcs.198.2. URL: http://dx.doi.org/10.4204/EPTCS.198.2.

[48] Wikipedia contributors. Self-reference — Wikipedia, The Free Encyclopedia. [On-
line; accessed 1-July-2020]. 2020. URL: https://en.wikipedia.org/w/index.
php?title=Self-reference&oldid=965391442.

[49] N. Wirth. The programming language Pascal. Acta informatica 1.1 (1971), 35–63.

https://doi.org/10.1007/978-3-319-30936-1_18
https://doi.org/10.1007/978-3-319-30936-1_18
https://doi.org/10.1007/978-3-319-30936-1_18
https://doi.org/10.1145/2450136.2450137
https://doi.org/10.1145/2450136.2450137
https://doi.org/10.1017/S0956796814000264
https://www.microsoft.com/en-us/research/publication/type-checking-with-open-type-functions/
https://www.microsoft.com/en-us/research/publication/type-checking-with-open-type-functions/
https://www.microsoft.com/en-us/research/publication/a-quick-look-at-impredicativity/
https://www.microsoft.com/en-us/research/publication/a-quick-look-at-impredicativity/
https://www.microsoft.com/en-us/research/publication/system-f-with-type-equality-coercions/
https://www.microsoft.com/en-us/research/publication/system-f-with-type-equality-coercions/
https://doi.org/10.1145/1708016.1708023
https://doi.org/10.1145/1708016.1708023
https://doi.org/10.1017/S0956796811000098
https://doi.org/10.1017/S0956796811000098
https://doi.org/10.1017/S0956796811000098
https://doi.org/10.4204/eptcs.198.2
https://doi.org/10.4204/eptcs.198.2
http://dx.doi.org/10.4204/EPTCS.198.2
https://en.wikipedia.org/w/index.php?title=Self-reference&oldid=965391442
https://en.wikipedia.org/w/index.php?title=Self-reference&oldid=965391442

	Introduction
	ML and Modules
	A Brief History of Standard ML and OCaml
	ML Modules
	Structures
	Paths
	Signatures
	Signature Matching
	Type Refinement
	Sealing
	Functors
	Functor Generativity

	Recursion in ML
	Recursive Types
	Recursive Terms
	Recursive Modules
	Double Vision

	First-Class Modules
	R1ML

	Untyped Lambda-Calculus
	Term Equivalence
	Evaluation
	Evaluation Strategies

	Type Theory Preliminaries
	Simply Typed Lambda-Calculus
	Type Checking
	Extensions
	Type Assignment

	Subtyping
	Record Subtyping
	Impact on Other Extensions

	System F
	Type Checking
	Existential Types
	Type Assignment

	HM and MLF
	System Fη
	Quantifier Subtyping
	Elaborating Expression Typing and Focalization

	System Fω
	Decidability

	F-ing Modules and 1ML
	Semantic Types
	Effects
	Structures
	Type Members
	Sealing
	Functors

	System Fc
	Term Typing
	Type Kinding
	Coercion Kinding

	The R1ML Type System
	Syntax
	Semantic Types
	Type Environments

	Lookup
	Types
	Elaboration
	Normalization
	Well-Formedness

	Terms
	Expression Type Synthesis
	Expression Type Checking
	Definition Typing
	Compilation Units

	Type Matching
	Focalization and Articulation
	Subtyping
	Unification

	Metatheory of R1ML
	Soundness
	Decidability
	Completeness

	Future Work
	Declarative System
	Practicality
	Well-Founded Recursion
	Recursive Linking
	Row Typing
	Effect System
	Impredicative Instantiation
	Implicit Parameters
	Non-Continuations

	Conclusion
	References

