
Tuomo Hartikainen

FEATURE SELECTION IN
HIGH-DIMENSIONAL FEATURE SPACES

FOR TREE SPECIES CLASSIFICATION
FROM QUANTITATIVE STRUCTURE

MODELS

Master of Science Thesis
Faculty of Engineering and Natural Sciences

Examiners: Assoc. prof., Pasi Raumonen
D.Sc. (Tech.), Markku Åkerblom

November 2020

i

ABSTRACT

Tuomo Hartikainen: Feature selection in high-dimensional feature spaces for tree species classi-
fication from quantitative structure models
Master of Science Thesis
Tampere University
Master’s Programme in Science and Engineering
November 2020

The possibility for computation of thousands of structural tree features from Quantitative Struc-
ture Models (QSMs) has unlocked new potential for statistical tree species classification of trees.
Previously it has only been done using a dozen or so features and the classification accuracy
has been limited by those features’ distinctiveness in the species that are classified. Since every
possible combination of those features could be tested in practice, the focus has been on testing
and optimizing different classification methods. With thousands of features it is no longer possible
to test all feature combinations and thus the focus of this work is on feature selection.

A method for selecting multiple feature sets for classification of each species separately was
developed. The method, called decimated input ensembles for one vs all classification (DIE1VA),
is a filter-wrapper hybrid that generates a user-defined number of feature sets for each class
to perform One-vs-All classification and determine the final prediction by majority voting. Initial
feature sets are generated based on filter rankings and the ones with the highest accuracy are
refined by adding features one by one if they improve accuracy. The method is able to utilize more
of the abundance of data available than just selecting one set of features to classify all species
and achieves higher accuracy as a result. The method’s parameters affect its computational time
and the resulting accuracy of the classifier.

In about 24 hours the method selected feature sets that could be used to classify five tree
species with total accuracy of 91.5% and producer accuracies of at least 64% for each species
compared to 80% total accuracy or 57% producer accuracies on the same data when choosing
from 17 features. Common finnish species Pine, Spruce and Birch could be classified with 98.5%
accuracy after about an hour of feature selection. Five tropical species could be classified with
84.9% accuracy in 4 hours and 20 minutes.

A few of the parameters of the method were tested with different values but due to having many
parameters that also affect each other in some ways, optimizing and researching the method thor-
oughly for different kinds of applications and data would require more time. There are also ways
to improve the method that could be worth researching, such as changing certain parameters or
observation weights during the method’s execution. This study proves that in some cases there is
added value in having thousands of features instead of a dozen or so to choose from for classifi-
cation of trees and the flexibility of the method in addition to the accuracies that it achieves mean
that it could be used in a number of practical applications.

Keywords: feature selection, high-dimensional feature spaces, classification, quantitative struc-
ture models, species recognition

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

TIIVISTELMÄ

Tuomo Hartikainen: Ominaisuuksien valinta korkeadimensioisissa ominaisuusavaruuksissa puu-
lajien luokitteluun kvantitatiivisista rakennemalleista
Diplomityö
Tampereen yliopisto
Teknis-luonnontieteellinen tutkinto-ohjelma
Marraskuu 2020

Kvantitatiiviset rakennemallit mahdollistavat tuhansien rakenteellisten ominaisuuden laskemi-
sen puista, joka puolestaan avaa uusia mahdollisuuksia puiden aikaisempaa tarkempaan tilas-
tolliseen luokitteluun. Aikaisemmissa tutkimuksissa puiden luokitteluun on käytetty noin tusinaa
ominaisuutta ja luokittelutarkkuutta on rajannut se, kuinka hyvin ne erottavat kullekin lajille omi-
naiset piirteet. Koska kaikki mahdolliset kombinaatiot näistä ominaisuuksista on ollut mahdollista
testata käytännössä, tutkimus on keskittynyt testaamaan ja optimoimaan eri luokittelumetodeja.
Tuhansien ominaisuuksien tapauksessa on mahdotonta testata kaikkia mahdollisia kombinaatioi-
ta ja siksi tämä työ keskittyy ominaisuuksien valintaan.

Kehitetty metodi valitsee useamman ominaisuusjoukon jokaisen luokan luokitteluun. Metodi,
nimeltään desimoidut syötekokonaisuudet yksi vastaan kaikki luokitteluun on suodatin-kääre hy-
bridi, joka tuottaa käyttäjän määrittelemän määrän ominaisuusjoukkoja jokaiselle luokalle suorit-
tamaan yksi vastaan kaikki luokittelun, jonka tulokset määrittelevät lopullisen ennustuksen enem-
mistöäänestyksellä. Alustavat ominaisuusjoukot tuotetaan suodatinsijoitusten perusteella ja niitä,
joilla on suurin tarkkuus, jalostetaan lisäämällä ominaisuuksia yksi kerrallaan jos ne parantavat
tarkkuutta. Täten metodi käyttää enemmän dataa hyödyksi kuin jos käytettäisiin vain yhtä omi-
naisuusjoukkoa kaikkien luokkien luokitteluun, saavuttaen korkeamman luokittelutarkkuuden sen
seurauksena. Metodin parametrit vaikuttavat sen käyttämään laskennalliseen aikaan ja lopullisen
luokittelijan tarkkuuteen.

Noin 24 tunnissa metodi valitsee ominaisuusjoukot, jotka luokittelevat viisi puulajia 91.5% tark-
kuudella niin, että jokainen yksittäinen laji luokitellaan vähintään 64% tarkkuudella. Tämä on huo-
mattava parannus aikaisempiin tutkimuksiin, joissa 17 ominaisuudesta valitsemalla saavutettiin
80% kokonaistarkkuus tai vähintään 57% tarkkuus jokaiselle lajille samaa dataa käyttäen. Suo-
messa yleiset lajit mänty, kuusi ja koivu saatiin luokiteltua 98.5% tarkkuudella tunnissa. Viisi troop-
pista lajia saatiin luokiteltua 84.9% tarkkuudella 4 tunnissa ja 20 minuutissa.

Muutamien metodin parametrien vaikutusta testattiin, mutta koska parametrejä on monta ja
ne myös vaikuttavat toisiinsa, perusteellinen metodin tutkiminen ja optimointi eri sovelluksille ja
datalle vaatisi enemmän aikaa. Metodia voi vielä parantaa tavoilla jotka voisivat olla tutkimuksen
arvoisia, esimerkiksi joitain parametrejä voisi muuttaa metodin suorituksen aikana. Tämä tutki-
mus todistaa, että joissain tapauksissa siitä että luokitteluun voi valita tuhansista ominaisuuksis-
ta reilun tusinan sijaan on lisäarvoa puiden luokitteluun. Kehitetyn metodin joustavuuden ja sen
saavuttamien tarkkuuksien ansiosta sitä voitaisiin käyttää monenlaisissa sovelluksissa.

Avainsanat: ominaisuuksien valinta, korkeadimensioiset ominaisuusavaruudet, luokittelu, lajintun-
nistus, kvantitatiiviset rakennemallit

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.

iii

PREFACE

Developing a method for automatic tree species classification proved to be an interesting
and worthwhile challenge and I am grateful for the opportunity to do it paid for my home
town university. A great deal of work that was done in the field of tree species classifi-
cation prior to this work contributed to making it easy to focus on what was essential to
classification in high-dimensional feature spaces, namely feature selection. This thesis
was written between April and November 2020 in Tampere University.

The biggest enabler to this thesis was my instructor, manager and examiner Pasi Rau-
monen, who offered the job to do it and guided me throughout the process of doing this
thesis. Large parts of the text explaining QSMs in Chapter 3 were provided by him as
well as the MATLAB script that computes over 13000 features from QSMs. In addition
to Pasi Raumonen, Markku Åkerblom also provided lots of comments and suggestions
for improvement on the text and is largely responsible for it being more scientific than it
would have otherwise. Dr. Kim Calder (Ghent University), Prof. Raisa Mäkipää (Natural
Resources Institute Finland) and Dr. Olivier Martin-Ducup (AMAP, University Montpellier)
provided the data sets used in the experiments.

In Tampere, 19th November 2020

Tuomo Hartikainen

iv

CONTENTS

1 Introduction . 1

2 Theoretical background . 3

2.1 Principal Component Analysis . 3

2.2 Feature Selection . 4
2.2.1 The χ2 test . 5
2.2.2 Minimum redundancy maximum relevance algorithm 6
2.2.3 ReliefF . 7
2.2.4 Fisher score . 8
2.2.5 Constraint score . 9
2.2.6 Combining filters with wrappers . 10
2.2.7 Other improvements . 11

2.3 Classification methods . 11
2.3.1 k-nearest neighbors . 12
2.3.2 Support vector machine . 13

3 Materials and methods . 14

3.1 Computing structural tree features from QSMs 14

3.2 Data . 17
3.2.1 Wytham woods, UK . 17
3.2.2 Punkaharju, Finland . 17
3.2.3 Bouamir, Cameroon . 17

3.3 Preprocessing . 18

3.4 The method: Decimated Input Ensembles for One Vs All Classification
(DIE1VA) . 18
3.4.1 Overview . 19
3.4.2 Details of the method . 20

4 Results . 24

4.1 Wytham . 24
4.1.1 The effect of the number of feature subsets used and the chosen

feature filter . 24
4.1.2 Robustness of DIE1VA . 25
4.1.3 Combining SVM and 1NN . 28
4.1.4 Selected features . 30

4.2 Punkaharju . 34

4.3 Bouamir . 35

5 Discussion . 38

5.1 General notes . 38

v

5.2 Wytham . 39

5.3 Other datasets . 40

5.4 Ideas for further research . 40

6 Conclusion . 42

References . 44

Appendix A Matlab code of the DIE1VA method . 46

Appendix B Matlab code of addToImproveAccuracy 52

Appendix C Matlab code of removeToImproveAccuracy 55

vi

LIST OF FIGURES

3.1 A QSM of a Sycamore tree (left) and a close-up of the tree crown (right). It
consists of circular cylinders and each color represents a branch. 15

3.2 An example of the third type of feature: the differences (difference1, differ-
ence2) of two observations (tree1, tree2) to a reference distribution (refer-
ence) are shown. 15

3.3 Flow chart of the DIE1VA method. 20

4.1 Weighed accuracies (left) and time consumptions of DIE1VA (in seconds,
right) with different FS methods and numbers of feature subsets n used for
One-vs-All classification of each species. 25

vii

LIST OF TABLES

3.1 Number of trees in each dataset before and after preprocessing. 18
3.2 Parameters of DIE1VA with suggested values. 23

4.1 Parameter sets used in the robustness experiments. 26
4.2 Average accuracies p, weighed accuracies pw, elapsed times t and their

standard deviations σp, σpw and σt over 10 executions of DIE1VA on the
Wytham dataset. 26

4.3 Confusion matrices using parameters in Sets 1 and 2 with different class
weights and classification methods. Producer accuracies (p) for each species
are at the end of each row and positive predictive values (PPV) at the end
of each column. Total accuracy is in the bottom right corner. Elapsed time
(in seconds) is in brackets. 27

4.4 Confusion matrices using 2 classifiers for each species, combining 1NN
and SVM (top) and using only 1NN (bottom). Producer accuracies (p) for
each species are at the end of each row and positive predictive values
(PPV) at the end of each column. Total accuracy is in the bottom right
corner. 28

4.5 Confusion matrices using 6 (top half) and 10 (bottom half) classifiers for
each species, combining 1NN and SVM (upper) and using only 1NN (lower).
Producer accuracies (p) for each species are at the end of each row and
positive predictive values (PPV) at the end of each column. Total accuracy
is in the bottom right corner. 29

4.6 Confusion matrix using 10 1NN & SVM classifiers for each species. Pro-
ducer accuracies (p) for each species are at the end of each row and pos-
itive predictive values (PPV) at the end of each column. Total accuracy is
in the bottom right corner. 30

4.7 Three feature sets generated by DIE1VA to distinguish FRAXEX and AC-
ERPS from the rest of the species in the Wytham dataset. # is the number
of selected features. p is the accuracy of the One-vs-All classifier. 31

4.8 Three feature sets generated by DIE1VA to distinguish QUERRO, CORYAV,
and CRATMO from the rest of the species in the Wytham dataset. # is the
number of selected features. p is the accuracy of the One-vs-All classifier. . 32

4.9 Confusion matrix using 3 1NN classifiers for each species with the feature
sets in Tables 4.7 and 4.8. Producer accuracies (p) for each species are
at the end of each row and positive predictive values (PPV) at the end of
each column. Total accuracy is in the bottom right corner. Elapsed time is
in brackets. 33

viii

4.10 Average accuracies p, elapsed times t and their standard deviations σp

and σt over 10 executions of DIE1VA on the Punkaharju dataset, using
1NN (left) or SVM (right) classifiers. 34

4.11 Confusion matrices using 1 (top), 2 (middle) and 3 (bottom) 1NN (left) or
SVM (right) classifiers for Birch (B), Pine (P) and Spruce (S). Producer
accuracies (p) for each species are at the end of each row and positive
predictive values (PPV) at the end of each column. Total accuracy is in the
bottom right corner. Elapsed time is in brackets. 34

4.12 Confusion matrix from using PCA for feature extraction before performing
1NN classification for all species. Producer accuracies (p) for each species
are at the end of each row and positive predictive values (PPV) at the end
of each column. Total accuracy is in the bottom right corner. The amount
of explained variance is in brackets. 35

4.13 Parameter sets used to test the effect of multiple feature subsets for each
species on the Bouamir data. 36

4.14 Confusion matrices using 1 1NN classifier for all species, with features
generated by a modified version of DIE1VA using parameters in Set 1 (top),
2 (middle) and 3 (bottom). Producer accuracies (p) for each species are
at the end of each row and positive predictive values (PPV) at the end of
each column. Total accuracy is in the bottom right corner. Elapsed time is
in brackets. 36

4.15 Confusion matrices using the original DIE1VA with parameters in Set 1
(top), 2 (middle) and 3 (bottom), and 1NN classifiers for each species.
Producer accuracies (p) for each species are at the end of each row and
positive predictive values (PPV) at the end of each column. Total accuracy
is in the bottom right corner. Elapsed time is in brackets. 37

ix

LIST OF SYMBOLS AND ABBREVIATIONS

C set of cannot-link constraints

E allowed error in support vector machines

Hj nearest hits in ReliefF

I(x, y) mutual information of two random variables x and y

M set of must-link constraints

MSVM margin used in support vector machines

Mj(C) nearest misses of an observation of class C in ReliefF

Ri randomly selected observation

S subset of features that we are seeking

Z reduced data space used in Fisher score

Ω set of all features

ΩS set of features not yet selected by mRMR

µ̃ overall mean vector in reduced data space

µ̃k mean vector of kth class in reduced data space

I the identity matrix

S̃b between-class scatter matrix

S̃t total scatter matrix

zi the ith observation

ν number of degrees in freedom in χ2 distribution

ρ correlation

σ standard deviation

a number of fitted parameters in χ2 distribution

c number of classes

d a distance metric

f numerical feature

h classification variable

k number of nearest neighbors

m user-defined parameter of how many times ReliefF process should
be repeated

x

mHFS size of the block in HFS

n number of feature subsets for each class’s One-vs-All classifier

nC number of observations of class C

nHFS number of top feature sets that are combined with the rest to form
new feature sets in HFS

nobs number of observations

nb number of subsequent blocks HFS is executed for

nc number of candidate features to look for before choosing

nf number of features

nk number of observations of kth class

ns number of selected features

p, P probability (in the context of classification, probability of correct
classification)

xe end point of a reference distribution

xm middle point of a reference distribution

xs starting point of a reference distribution

DBH diameter at breast height

DIE1VA decimated input ensembles for one vs all classification

DR dimension reduction

FE feature extraction

FS feature selection

HFS hybrid method for feature selection

Inf infinity

kNN k-nearest neighbors

MID mutual information difference

MIQ mutual information quotient

mRMR minimum redundancy maximum relevance algorithm

NaN not a number

PC principal component

PCA principal component analysis

PPV positive predictive value

QSM quantitative structure model

SVM support vector machine

1

1 INTRODUCTION

Statistical classification allows us to categorise new observations based on data we al-
ready have about previous observations where the category is known. It can be used
to automate tasks and sometimes even achieves a higher accuracy in categorising than
experts of the field. The data we have about observations consists of the same set of
features that have been measured for every observation. This set of features is called
the feature space and every observation is represented by a point in that space. The
categories are called classes and predicting the class of a new observation based on the
data from observations where the class is known is called classification.

One example of statistical classification is classifying tree species based on features com-
puted from quantitative structure models (QSMs). In previous research the approach has
been used to define a small number of features and to test and optimize a few classifiers
that classify all of the species [1, 2]. Since there have been a small number of features
(15-17) it has been possible to test all possible feature combinations in reasonable time.
But since QSMs make it possible to compute thousands of features, the approach of this
thesis is to focus on developing a feature selection (FS) method for high-dimensional fea-
ture spaces, where testing all feature combinations is no longer possible due to possible
time constraints. Having thousands of features instead of a dozen or so (assuming that
the features are sensible) offers great potential to improve classification accuracy if we
are able to select the most relevant features.

The main objectives of this thesis are the following. First is to develop a useful FS and
classification method for tree species classification from high-dimensional QSM feature
spaces. Second is to test and evaluate the method with data that has been previously
used in [1, 2] and see if, and by how much, classification accuracy improved by selecting
from thousands of features instead of a dozen or so.

In general there are three kinds of FS methods, filters, wrappers and embedded methods
[3]. Filters use intrinsic qualities in the data to rank the features fast, but do not consider
the classification method used when selecting features. Wrappers evaluate the perfor-
mance of candidate subsets of features with the chosen classification method, which
makes them slower, but able to reach higher accuracies than filters in practice. In high-
dimensional feature spaces it is practically necessary to use some kind of a filter in order
to keep time consumption sensible, but wrappers can be combined with filters to achieve
higher accuracies than with filters alone [4].

2

The abundance of features offers many different perspectives through which we can look
at tree species classification in the form of possible feature sets that we can select for
the classifier to use. Instead of there being one clearly optimal set of features to use in
classifying all trees for example, we will see that there are many feature sets that are
close to optimal in terms of the accuracy and that can correctly classify some of the
observations that the optimal set misclassifies. The feature sets that are best suited for
distinguishing a particular species from the rest also differ between species.

Taking all of this into account, we will present a method that utilizes more data to achieve
a higher classification accuracy by selecting multiple feature sets for classifying each
species instead of selecting one subset of features for classifying all of the species. The
method is a filter-wrapper hybrid that uses so-called One-vs-All classifiers that are built to
distinguish one species from the rest, classifying observations either as that species or
other. For each species, the same number of feature sets are selected and the One-vs-All
classifiers vote on the final prediction using those feature sets.

The theoretical background of feature selection and classification methods used in this
thesis is presented in Chapter 2. The method and the data used in the experiments is
presented in Chapter 3. In Chapter 4 the results of the experiments using the method
on different datasets with different parameters, classification methods and filters are pre-
sented. In Chapter 5 the results are analyzed and compared to previous work and the
implications and possibilities for further research are discussed. Lastly, conclusions are
presented in Chapter 6.

3

2 THEORETICAL BACKGROUND

To be able to statistically classify objects, we need to have information about them as well
as already classified members of possible classes they belong to. To get data for classi-
fication, we measure some features of the objects we want to classify. All of the features
measured from one object constitutes an observation, and a collection of observations is
called a sample. If the number of features we measure is nf , we can think of observations
as points in a nf -dimensional space called a feature space. With nobs observations, the
data can be represented by a (nf × nobs)-matrix.

When it comes to classification problems in high-dimensional feature spaces (thousands
of features), extracting the most useful information or selecting the most relevant features
is an important step, because using all of the features increases computational time and
can (and usually does) degrade accuracy [4]. This phenomenon is also known as the
curse of dimensionality [4]. Dimension reduction (DR) methods are used to reduce the
number of features so that the classification can be done efficiently and accurately [4].

There are generally two kinds or DR methods: feature selection (FS) and feature ex-
traction (FE) [5, 6]. In FS dimensionality is reduced by selecting a subset of the initial
features to be used by the classifier. The rest of the features are discarded. The problem
is determining which features are the most relevant to the classification problem at hand.
One benefit of this is that the selected features are clearly defined, and could provide
insight into what are the structural features that differentiate certain species of trees, for
example. In FE the original feature space is projected into a lower dimensional subspace.
As such, some information about most of the original features is also present in the new
subspace, but the extracted features are often linear combinations of the original features
and thus harder to interpret. Most FE methods have high time complexity and are not as
viable for data sets with thousands of features. The most common FE method — and the
one used in our experiments — is called principal component analysis (PCA).

2.1 Principal Component Analysis

Principal component analysis transforms a data set consisting of interrelated variables
to a new set of variables called principal components (PCs), which are uncorrelated and
retain all of the variation in the data set. The PCs are ordered in terms of the variation
they retain, such that starting from the first PC we can add PCs until some threshold
percentage of variation we want retained is explained by as few PCs as possible. Let

4

us represent the data by an nf × nobs matrix X where each row represents a feature
and each column represents an observation. First we find a vector α1 of nf constants
α11, α12, . . . , α1nf

that maximizes the variance in the data when X is mapped to the first
principal component

t1 = α1X. (2.1)

Then we subtract the first principal component from the data matrix X

X1 = X−Xα1α
T
1 (2.2)

and find the vector α2 that is orthogonal to α1 and maximizes the variance in t2 = α2X1.
The process repeats so that the ith principal component is the vector

ti = αiXi−1 = αi(Xi−2 −Xαi−1α
T
i−1) (2.3)

with maximum variance so that αi is orthogonal to α1, α2, . . . , αi−1 [7]. Singular value
decomposition can be used to find PCs.

2.2 Feature Selection

There are generally three kinds of FS methods, filters, wrappers and embedded meth-
ods [3]. Filters use weighing functions to evaluate feature relevancies and select the top
ranked features [4]. They are computationally fast, but do not consider the learning algo-
rithm used in classification [4]. Wrappers on the other hand evaluate candidate subsets
of features based on their performance with the target learning algorithm, choosing the
best subset for each learning algorithm, but with hundreds or even thousands of features
they require far too much time to evaluate all possible subsets [4]. Some methods com-
bine filters and wrappers to get the best of both worlds: reasonable computational time
with higher accuracy when combined with a specific classifier [4]. Embedded methods
perform feature selection as part of constructing the classifier [3].

Another way to divide FS methods is into supervised, unsupervised and semi-supervised
methods. Supervised methods use supervision information (usually class labels) of each
observation in addition to the measured data. Unsupervised methods do not use any
supervision information. This information is usually very useful for FS and in cases where
we have it, supervised methods commonly outperform unsupervised ones [8]. However,
sometimes getting supervision information is difficult or expensive, in which case we have
to resort to unsupervised or semi-supervised methods (using supervision information
for the portion of observations for which we have it). We will focus on supervised FS
methods, since the information was available for us.

Since using some kind of a filter is practically necessary to keep computational time rea-
sonable in applications that deal with high-dimensional data, we will first test a few filters
and then see if classification accuracy can be improved by combining them with wrappers
in Section 2.2.6. Filters generally work by calculating a score for each feature that reflects

5

its importance in determining the class of a sample. Features are then selected starting
with the highest (or lowest) score. There are many ways to calculate such a score.

In addition to how well the mathematical formulas used in each method reflect aspects
that are useful in whatever classification we are doing, the features of different filters
(not to be confused with the features they are scoring) determine how they perform in
different classification tasks with different types of data. These features also affect how
the filters can be improved or combined with certain wrappers to produce better results.
Examples of these kinds of features are what kind of supervision information is used
if any, whether or not redundancies of features are taken into account, or features being
ranked individually versus incrementally adding features to an ordered set based on which
features have already been selected.

2.2.1 The χ2 test

The χ2 test can be used to measure how well the frequency distribution of a random
sample of nobs observations that has been classified into c mutually exclusive classes fits
the expected distribution. It offers a way to perform FS using a value that quantifies how
dependent a predictor variable (feature) is of the response (class). We can evaluate a
score for each feature and select a certain amount of the ones with highest scores. Sup-
pose that we have a null hypothesis which gives probabilities pi (i = 1, 2, . . . , c) that an
observation falls into the ith class. Then the expected number of observations belonging
to each class are mi = npi, where

c∑︂
i=1

pi = 1,
c∑︂

i=1

mi = nobs. (2.4)

Now suppose that as a result of a classification, there are observed numbers xi (i =

1, 2, . . . , c) of members of each class. Pearson [9] proposed the quantity

X2 =
c∑︂

i=1

(xi −mi)
2

mi
=

c∑︂
i=1

x2i
mi
− nobs (2.5)

as a test criterion for the null hypothesis being correct. When the null hypothesis holds,
the limiting distribution of X2 as nobs −→∞ and pi remain fixed is the χ2 distribution

Pν(χ
2)dχ2 =

1

2ν/2(ν2 − 1)!
(χ2)(ν/2)−1e−

1
2
χ2
dχ2, (2.6)

where ν is the number of degrees of freedom in χ2 [9]. In Pearson’s χ2 test for goodness
of fit ν = c − a, where a is the number of fitted parameters in the distribution e.g. when
performing a χ2 test for a single feature to determine its importance, a = 1. We can
then compare X2 to the χ2 distribution with ν degrees of freedom to find out the level of
confidence (p-value) it would allow us to have in our null hypothesis. This can be thought
of as an importance score for a feature in terms of FS since the similarity in the theoretical

6

probabilities and observed frequencies of the mutually exclusive classes is assumed to
be based on actual measurable differences in that particular feature between different
classes.

A drawback of the χ2 test when performed on each feature on their own is that it does
not take into account possible redundancies between top features. The reason many top
features get high scores in the test is often because they correlate highly with some other
top feature, especially in high-dimensional feature spaces, making them mostly redundant
in the presence of the other feature, sometimes even resulting in lower classification
accuracy. Theoretically the test could be performed on sets of more than one feature but
it would result in the same problems of computational complexity that exist in wrappers.
Nonetheless, the χ2 test is a simple and fast way to perform FS that works in some cases.

2.2.2 Minimum redundancy maximum relevance algorithm

The minimum redundancy maximum relevance (mRMR) algorithm was developed to
tackle the issue of redundancy in feature sets obtained by simply selecting a certain
number of top features ranked by some filter method. The algorithm adds new features
to the feature set by minimizing their redundancy to the already selected features while
maximizing their relevance to the response [10]. For discrete variables, both redundancy
and relevance are measured using the mutual information I of two random variables x

and y, which is defined by

I(x, y) =
∑︂
i,j

p(xi, yj) log
p(xi, yj)

p(xi)p(yj)
, (2.7)

where p(xi, yj) is the joint probability of xi and yj , i.e. the probability of both xi and
yj occurring at the same time (xi and yj are certain discrete values of x and y) and
p(xi), p(yj) are the marginal probabilities of xi and yj . A high value of I(x, y) means that
x and y are mutually dependent and if they are both features, the other one is highly
redundant in the presence of the other. If y is the response variable, it means that x is
highly relevant to the classification problem.

Let S denote the subset of features we are seeking. The minimum redundancy condition
is

minWI , WI =
1

| S |2
∑︂
i,j∈S

I(i, j), (2.8)

where I(i, j) represents the mutual information of the ith and jth features and | S | is the
number of features in S. Let h denote the classification variable. The maximum relevance
condition is

maxVI , VI =
1

| S |
∑︂
i∈S

I(h, i). (2.9)

The mRMR algorithm optimizes the conditions in Equations (2.8) and (2.9) simultane-
ously by combining them into a single criterion function, for which there are two simple

7

alternatives:

max(VI −WI), (2.10)

max(VI/WI). (2.11)

Let ΩS denote the set of features not yet selected by the algorithm (ΩS = Ω − S, where
Ω is the set of all features). The conditions in Equations (2.8) and (2.9) can be simplified
for the algorithm into

max
i∈ΩS

I(h, i), (2.12)

min
i∈ΩS

1

| S |
∑︂
j∈S

I(i, j), (2.13)

where (2.12) is equivalent to Eq. (2.9) and (2.13) is an approximation of Eq. (2.8),
where 1

|S|2 is replaced by 1
|S| . The first feature is selected according to (2.12) and the

rest are incrementally added to S according to (2.10) or (2.11) (called Mutual Information
Difference (MID) and Mutual Information Quotient (MIQ) respectively) or variants thereof
[10]. For continuous variables, Ding and Peng presented different conditions for minimum
redundancy and maximum relevance in [10], but in practical applications, continuous
variables can often be discretized which allows us to use the conditions defined above.

2.2.3 ReliefF

The ReliefF algorithm is based on the idea that the quality of a feature can be estimated
by how well it distinguishes between observations that are near each other in the feature
space [11]. The algorithm randomly selects an observation Ri and searches for k of
its nearest neighbors from the same class and k nearest neighbors from each of the
other classes. These neighbors are called nearest hits Hj and nearest misses Mj(C),
where j = 1, 2, . . . , k and C denotes a class. Features that give different class values for
neighbors of the same class are penalized while those that give different class values to
neighbors of different classes are rewarded.

The difference between values of a numerical feature f for two observations z1 and z2 is
defined as

diff(f, z1, z2) =
| value(f, z1)− value(f, z2) |

max f −min f
(2.14)

and it is also used to find the nearest neighbors by summing the differences over all
features (also known as Manhattan distance) [11]. The quality estimate W [f] is initialized

8

as 0 for all features and updated according to

W [f]←W [f]−
k∑︂

j=1

diff(f,Ri, Hj)

m · k

+
∑︂

C ̸=class(Ri)

P (C)

1− P (class(Ri))

k∑︂
j=1

diff(f,Ri,Mj(C))

(m · k)
,

(2.15)

where m is a user-defined parameter for how many times the whole process should be
repeated. The term

∑︁
C ̸=class(Ri)

P (C)
1−P (class(Ri))

weights each miss (C ̸= class(Ri)) with
the prior probability of its class (P (C)) occurring among all possible misses (divided by
1 − P (class(Ri))) so that in each step the contributions of hits and misses are in the
interval [0, 1] [11].

2.2.4 Fisher score

The idea behind Fisher score is to minimize the distance between observations of the
same class, while maximizing the distance between observations of different classes in
the data space spanned by the selected features. Given ns selected features, the Fisher
score of the reduced data space Z ∈ Rns×nobs is

F (Z) = tr{(S̃b)(S̃t + γI)−1}, (2.16)

where tr is the trace of a square matrix, defined as the sum of the elements on the main
diagonal tr{A} =

∑︁n
i=1 aii and γ is a positive regularization parameter. S̃b and S̃t are

called the between-class scatter matrix and total scatter matrix respectively, defined as

S̃b =
c∑︂

k=1

nk(µ̃k − µ̃)(µ̃k − µ̃)T (2.17)

S̃t =

nobs∑︂
i=1

(zi − µ̃)(zi − µ̃)T , (2.18)

where µ̃k and nk are the mean vector and number of observations of the kth class re-
spectively in the reduced data space, µ̃ is the overall mean vector of the reduced data,
zi is the ith observation and c and nobs are the number of classes and observations
respectively. A perturbation term γI is added to S̃t to make it positive semi-definite.
In high-dimensional feature spaces choosing the best ns features is a very challenging
combinatorial optimization problem and to alleviate the difficulty, Fisher scores can be
computed individually for each feature [12]. The Fisher score of the jth feature is

F (xj) =

∑︁c
k=1 nk(µ

j
k − µj)2∑︁c

k=1 nk(σ
j
k)

2
, (2.19)

where µj
k and σj

k are the mean and standard deviation of the kth class corresponding to
the jth feature, and µj is the mean of the whole data set corresponding to the jth feature.

9

After computing the Fisher score for each feature, we can select the top ns features
with the highest scores, but since the score for each feature is computed individually the
resulting subset is suboptimal because the scores don’t reflect the fact that two features
with low individual scores might have a very high score when combined. Additionally,
Fisher score does not take into account redundancy between features [12]. Despite this,
it performs well in some classification tasks.

2.2.5 Constraint score

Unlike most supervised feature selection methods, constraint score does not use class
labels directly as supervision information. Instead it uses pairwise constraints, which
specify whether a pair of observations belong in the same class or not and can naturally
be derived from labeled data. Constraint score can be used when no explicit class label
information is available but we know whether or not two observations belong in the same
class or in applications where it is more practical to consider pairwise constraints than
to try to obtain class labels. Another advantage of pairwise constraints is that they can
sometimes be obtained automatically.

Pairs of observations in matrix X = [x1,x2, . . . ,xn] form the sets of must-link constraints
M = {(xi,xj) | xi and xj belong to the same class} and cannot-link constraints C =

{(xi,xj) | xi and xj belong to different classes}. The score of the rth feature using con-
straints in C and M is evaluated by

C1
r =

∑︁
(xi,xj)∈M (fri − frj)

2∑︁
(xi,xj)∈C(fri − frj)2

, or (2.20)

C2
r =

∑︂
(xi,xj)∈M

(fri − frj)
2 − λ

∑︂
(xi,xj)∈C

(fri − frj)
2, (2.21)

where fri denotes the value of the rth feature of the ith observation. Equation (2.21)
has a regularization coefficient λ to balance the contributions of the two terms and in the
typical case where the distance between observations from the same class is smaller
than that in different classes it should be set to λ < 1 [13].

The intuition of constraint score is similar to that of Fisher score; if two observations are
from the same class, they should be close to each other and if they are from different
classes, they should be far away from each other. Thus, the ’best’ features are the ones
with the lowest scores. Like all other scores that are computed individually for each fea-
ture, Constraint score has the same drawbacks, i.e., not taking redundancies of features
into account and possibly missing pairs of features that might have a high score when
combined. Nevertheless, it has been found to perform well in comparison to other meth-
ods on some datasets, in particular achieving similar classification accuracies to Fisher
score while using much less supervision information [13].

10

2.2.6 Combining filters with wrappers

The problem with many FS methods is that they do not take dependancies or interactions
(whether positive or negative) between features into account. Even those that take re-
dundancies of features into account (e.g. mRMR) often miss positive interactions where
a pair of complementary features are highly relevant and useful for the classifier even
though they might be useless on their own. To the best of my knowledge there are no
widely known reliable ways to predict or quantify which features benefit from the inclusion
of which other features and by how much (especially when there are so many possi-
ble combinations), but some researchers have developed ways to combine filters with
wrappers to test different combinations of the features with high filter scores and re-rank
features during FS based on already selected features [14, 15]. Usually these methods
can improve classification accuracy somewhat at the expense of some computational
time or reduce the number of features needed to achieve similar accuracies to just using
filters.

Hybrid method for feature selection

The authors of [14] presented two ways to add features to the selected subset based on
the order of their filter ranking depending on if classification accuracy improves by doing
so. One of the methods in [14], here called hybrid method for feature selection (HFS),
starts by ranking the features and setting a limit for classification accuracy by computing
it using only the first ranked feature. Then it combines each of the top nHFS features with
every other feature so that all the possible subsets of two features where at least one of
them is in the top nHFS features are evaluated. Subsets that have classification accuracy
below the limit are discarded and the rest are sorted in the order of their accuracy. This
becomes the new ranking and the new limit is set as the accuracy of the first ranked
subset. Then the nHFS best subsets are combined with every other feature subset that
was kept and the resulting subsets are evaluated. Subsets with accuracies below the limit
are once again discarded, the rest of the subsets are sorted and the highest accuracy
is set as the new limit. The process of combining, evaluating, discarding and sorting the
new subsets and updating the limit repeats until accuracy does not improve anymore.

Consider an example of the process:
1. A filter is used to generate an initial ranking of the features, obtaining f1, f2, f3, f4, f5.
2. The limit is set as the classification accuracy obtained by using only the first feature of
the previous ranking (f1), which is 31.2%.
3. Since nHFS = 2, subsets are generated by combining f1 and f2 with each of the
rest of the features and we end up with the following combinations and corresponding
accuracies:
a) using feature f1: (f1, f2 – 35.1%),(f1, f3 – 28.8%),(f1, f4 – 43.2%),(f1, f5 – 26.5%)
b) using feature f2: (f2, f3 – 33.3%),(f2, f4 – 30.3%),(f2, f5 – 41.2%)
4. Ranking the subsets that had higher accuracy than the previous best subset leaves

11

the following: (f1, f4 – 43.2%),(f2, f5 – 41.2%),(f1, f2 – 35.1%),(f2, f3 – 33.3%) and the
new limit is 43.2%.
5. New subsets are generated combining (f1, f4) and (f2, f5) with the rest of the subsets
in the previous ranking and we end up with the following subsets and corresponding
accuracies:
a) using subset (f1, f4): (f1, f4, f2, f5 – 52.3%),(f1, f4, f2 – 48.5%),(f1, f4, f2, f3 – 42.5%)
b) using subset (f2, f5): (f2, f5, f1 – 50.2%),(f2, f5, f3 – 40.2%)
5. Ranking the subsets that had higher accuracy than the previous best subset leaves
the following: (f1, f4, f2, f5 – 52.3%),(f2, f5, f1 – 50.2%),(f1, f4, f2 – 48.5%), the new limit
is 52.3% and there is no more ways to combine these subsets to form new ones, so the
selected subset is (f1, f4, f2, f5).

A higher value of nHFS usually leads to higher accuracy but it also makes the method very
time-consuming especially in high-dimensional feature spaces and if we have hundreds
or thousands of features, even with a small value of nHFS, the method would not be
practical to use because of time constraints.

2.2.7 Other improvements

Another way to reduce the computational time of a wrapper or improve the accuracy is
to re-rank the features based on already selected features during incremental feature
selection. This way features that correlate with the already selected features will be at
the end of the new ranking and features that are conditionally relevant to the class based
on already selected features will be at the top of the ranking [15].

Using an ensemble of classifiers with different feature sets where the prediction is made
by majority voting also improves accuracy and generalization [16]. Intuitively it makes
sense that while pines for example have certain distinguishing features, not all pines are
as easy to classify using the same set of features. The environment in which a tree grows
affects some of its features, making those features more or less distinguishable than they
would be in other conditions. Also, spruce and birch trees have different distinguishing
features, so it would make sense to use different features for classifying each one versus
all the other species.

All of these improvements (combining filters with wrappers, using HFS, re-ranking fea-
tures and using an ensemble of classifiers with different feature sets) are essential to our
method in either improving accuracy or reducing computational time.

2.3 Classification methods

Classification methods generally work by dividing a feature space into parts according
to where observations belonging to different classes are located. The result is a model,
where each element maps to a single class or multiple classes, and test points are then
classified according to the partition depending on where they are located.

12

The quality of a classifier is usually measured as the accuracy by which it classifies
observations, i.e., the portion of observations that are correctly classified (or classification
loss, the portion that is misclassified), but it is not always the only relevant metric. In
some cases depending on the application, we have to consider the individual accuracies
of classifying observations to certain classes that are deemed important, or make sure
that the accuracy is not too low for any one class. Another metric that can be used is
the positive predictive value (PPV), which is the portion of predictions of a certain class
that was correct. If classifying a certain species is deemed more important than some
other species, observations of that species can be weighed so that their contribution to
the classification loss is larger than for members of the other species.

Default class weights mean that every observation is regarded as equally important for
the classifier (they all have an observation weight of 1/nobs, where nobs is the total num-
ber of observations) and consequently every species’ importance is proportionate to its
representation, often making the classifier biased towards the dominant species depend-
ing on the degree of dominance. Balanced class weights mean that observations are
weighed so that each class as a whole is equally important for the classifier regardless of
its representation (observation weights for members of class C are 1/(nCc), where nC is
the number of observations of class C and c is the number of classes, in which case the
sum of weights of each class is 1/c). In calculating the (weighed) accuracy, we add up the
observation weights of every correctly classified observation. These weights can be used
to guide a wrapper towards either maximizing total accuracy or the average producer ac-
curacy (classification accuracy among true members of a particular class) across of all
species.

Accuracy is usually estimated by partitioning the data set into a training set, which is
used to train the model and a test set against which the model is tested. This can be
done multiple times in what is called cross-validation to get a more reliable estimation that
does not depend on the particular way the original data was divided. For example, 10-
fold cross-validation means that the data is divided in 10 parts with 1

10 of the observations
each, and each of them is used once as a test set while the others are used as the training
set. In this thesis all the accuracies are computed with 10-fold cross-validation and the
reported accuracy is the average of the 10 test sets.

2.3.1 k-nearest neighbors

The k-NN algorithm classifies an unknown point as the class that has the most points
among the k observations from the known data that are closest to the unknown point.
Given a training set of vectors (x1, · · · ,xnobs) where each vector is an observation, a
corresponding vector of known classes C = [c1, · · · , cnobs] for each observation, and a
distance metric d, the nearest neighbor to a new observation x is the xj that satisfies

d(xj,x) = min d(xi,x) i = 1, 2, · · · , nobs (2.22)

13

and thus the new observation is classified as cj , if we choose k = 1 [17]. Choosing
a bigger k will make the classifier more robust to possible outliers that happen to be
closest to the new point in a cluster otherwise dominated by samples from a different
class. In that case, the k nearest neighbors determine the class of the new observation
by majority voting. Different weighting schemes can be applied to give the votes of nearer
points more weight, which might further improve the accuracy.

2.3.2 Support vector machine

A support vector machine (SVM) works by trying to find the optimal hyperplane that sep-
arates members of different classes in the feature space. The hyperplane divides the
feature space into two parts, so naturally a single SVM performs binary classification.
However, multiple SVMs can be combined to perform multiclass classification. Each SVM
can vote between a pair of classes (one classifier for every possible pair), and new ob-
servations can be determined to belong to the class that gets the most votes out of these
two-class SVMs. If, for example, there are 3 classes C1, C2 and C3, we would have one
classifier voting between each possible pair (C1, C2), (C1, C3), (C2, C3) and if the votes
are C2, C3, C2 respectively, the final prediction would be C2.

The optimal hyperplane is defined as the one with the biggest margin, i.e. the distance
between the hyperplane and the closest point. This can be formulated as an optimization
problem,

max
βj ,j=1,...,nf

MSVM (2.23)

subject to

⎧⎨⎩
∑︁nf

j=1 β
2
j = 1

yi(β0 + β1xi1 + · · ·+ βnf
xinf

) ≥MSVM

(2.24)

where MSVM ∈ R is the margin, nf is the number of variables, xik is the kth variable of the
ith observation and yi ∈ {−1, 1}, i = 1, . . . , nobs [18]. In real world applications, classes
are sometimes not separable and thus the optimization problem has no solution unless
we introduce slack variables ϵi to allow a certain amount of error E:

max
βij ,ϵi,i=1,...,nobs;j=1,...,nf

MSVM (2.25)

subject to

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑︁nf

j=1 β
2
j = 1

yi(β0 + β1xi1 + · · ·+ βnf
xinf

) ≥MSVM(1− ϵi)

ϵi ≥ 0;
∑︁nobs

i=1 ϵi ≤ E

(2.26)

Large E values increase the penalty for misclassifications on the training data, which
leads to tighter margins and thus fewer misclassified observations on the training data.
This may result in overfitting to the training data and make the classifier generalize poorly
to new observations [18].

14

3 MATERIALS AND METHODS

A quantitative structure model (QSM) of a tree is a model of the woody structure of the
tree that describes quantitatively its basic topological (branching structure), geometric
and volumetric properties. These include properties such as number of branches in total
and in any branching order, the parent-child relations of the branches and lengths, vol-
umes, and angles of individual branches and branch size distributions. A QSM consist of
building blocks, which usually are some geometric primitives such as cylinders or cones,
see Figure 3.1. The circular cylinder is often used for trees because it is the most ro-
bust choice and, in most cases, a very accurate choice for estimating diameters, lengths,
directions, angles and volumes [19].

A QSM offers a compact representation of the tree from which we can compute a huge
number of structural features. Features computed from QSMs have shown to be useful
in tree species classification [1, 2]. The QSMs for this work were reconstructed with the
TreeQSM [https://github.com/InverseTampere/TreeQSM, different versions were used for
different datasets [20, 21]] method from terrestrial laser scanner data.

3.1 Computing structural tree features from QSMs

It is possible to compute thousands of different structural tree features from QSMs. For
the purpose of this work a MATLAB script that computes about 13000 features from each
QSM was written. The script is available in GitHub [DOI: 10.5281/zenodo.4244231, src/-
compute_features.m]. We have basically three types of features: one type is simply some
kind of "tree attribute", for example stem volume, mean branching angle, 1st-quartile
value of branch diameter, mean area of 3rd-order branches, etc. Some of these are quite
standard in forestry and easily interpretable but others are already quite imaginative and
hard to interpret and certainly hard to measure manually.

The second type consists of possible ratios of the features of the first type, for example
stem volume/mean branching angle. These include some standard measures such as
stem volume/dbh (diameter at breast height) but mostly these are non-standard and hard
to interpret, and to measure manually.

The third type is comparison of different distributions to different reference distributions.
For example, let us take the volume distributed for different branching orders and we
compare it to, e.g., a certain approximate Gaussian distribution or triangular distribution
(defined over same branching orders) by computing the mean or the maximum difference

15

Figure 3.1. A QSM of a Sycamore tree (left) and a close-up of the tree crown (right). It
consists of circular cylinders and each color represents a branch.

Figure 3.2. An example of the third type of feature: the differences (difference1, dif-
ference2) of two observations (tree1, tree2) to a reference distribution (reference) are
shown.

in these distributions (the difference at each bin, then average of these or the maximum).
The idea of these distribution comparisons is that we want to consider more information

16

than just averages or medians: for example, two trees may have practically the same
mean branching angle but the branching angle distributions may still be totally different
and then when we compare these to different reference distributions they will show a
difference, which was not in the average.

As another example, we can define certain vertical/height distributions and compare them
to different reference distributions that cover the cases from bottom-heavy to uniform to
top-heavy types and thus species that differ in “vertical profiles” should be distinguished
with these types of distribution comparisons. An example of the third type of feature is
shown in Figure 3.2.

The third type of features are named systematically and abbreviations are used to keep
the names short. Volume (Vol), area (Are) and length (Len) of cylinders (Cyl) are dis-
tributed according to their diameter (Dia), height (Hei), azimuth (Azi) and zenith (Zen)
angles. Triangle (triad), normal (normd) and uniform (unid) distributions are used as ref-
erence distributions. First, the distribution that is compared to a reference distribution is
defined. For example, VolCylZen represents the distribution of the volumes of cylinders
as a function of their zenith angle. Then the reference distribution is defined. For exam-
ple, VolCylZen_triad_1_1_3 means that the previously defined distribution is compared to
a triangle distribution where the starting point xs = 1, middle point xm = 1 and end point
xe = 3. Lastly, either mean or max specifies whether the value is the mean or maximum
difference to the reference distribution. Different branch distributions are also compared.
In addition to the distribution of volume, area and length, the distribution of the number of
branches (Num) is also compared to reference distributions.

The relative heights, diameters and zenith angles of different percentages of bottom vol-
ume, area or length are also computed. For example, Rel_branch_Hei_bottom_30%_Vol
means the relative branch height of the bottom 30% of branch volume. These are also
computed for the 1st-order of branches, in which case there is branch1 in the name.

There are also a number of path-length based features. The path lengths from each
branch’s tip and base to the tree’s base are calculated. From these, means, maximums,
minimums, standard deviations and different ratios of those values are computed. Values
for different percentiles of path lengths are calculated on their own and in relation to
tip, base or tree height, for example 20%_base_path_length/base_height_ord1 means
the 20th percentile of base path lengths divided by the base height of the first order of
branches. Path lengths are also compared to reference distributions. Some of these
features are also computed for first, second and third order (ord) branches separately.

Cylinder and branch volumes, areas and lengths as well as the number of branches
between certain diameter and height classes and branch orders are also divided by other
treedata. For example, AreCylDia_0.4_0.8/CrownRatio means the area of cylinders that
have a relative diameter between 0.4 and 0.8 divided by the crown ratio, which is the
height of the tree crown divided by the total tree height.

In previous research [1, 2], only a dozen or so features of the first and second type have

17

been used and from those, every possible feature combination was tested. Our approach
differs from the one used in [1, 2] in that it focuses on developing a method for FS out
of necessity; while it is possible to test all possible feature combinations with 15 or 17
features to see which one performs the best, with thousands of features it would take a
prohibitively long time.

3.2 Data

We had several datasets of QSMs of trees for which the species were known. The QSMs
were obtained from UK, Finland and Cameroon; different kinds of environments, each
with their own set of species. Each dataset has a different amount of species and trees
and they are distributed differently, e.g. the data from UK has one clearly dominant
species while the data from Cameroon does not.

3.2.1 Wytham woods, UK

The study area is a 1.4 ha plot in Wytham Woods (Oxford, UK) and it is dominated by five
tree species: Acer Pseudoplatanus (ACERPS, Sycamore), Fraxinus excelsior (FRAXEX,
European/Common ash) and Crataegus monogyna (CRATMO, Common hawthorn) con-
stitute 88 % of the trees. Another 8 % is Corylus avellana (CORYAV, Common Hazel)
and Quercus robur (QUERRO, Pedunculate/English oak). The dataset of QSMs consists
of 755 identified and living trees of which 547, 81, 64, 37 and 26 trees are ACERPS,
FRAXEX, CORYAV, QUERRO and CRATMO, respectively. More information about the
plot, the species, the laser scanning and the QSMs can be found in [2]. The data was
received from Dr. Kim Calder (Ghent University).

3.2.2 Punkaharju, Finland

This dataset consists of three single-species plots from Punkaharju, Finland. The plots
consist of Silver birch (B, Betula pendula Roth), coniferous Scots pine (P, Pinus sylvestris
L.) and Norway spruce (S, Picea abies [L.] Karsten) species. There are 358 birches, 457
pines and 276 spruces in our dataset of QSMs. More information about the plot, the
species, the laser scanning and the QSMs can be found in [1]. The data was received
from Prof. Raisa Mäkipää (Natural Resources Institute Finland).

3.2.3 Bouamir, Cameroon

This dataset consists of 368 tropical trees of 94 different species. The forest plot is from
Bouamir, Cameroon. For our experiments we only included species that had at least
15 observations, which reduced the data to 120 trees of 5 species, Greenwayodendron
suaveolens (Green), Tabernaemontana crassa (Taber), Sorindeia grandifolia (Sorin), Ua-
paca guineensis (Uapac) and Strombosia pustulata (Strom). The data was received from

18

Dr. Olivier Martin-Ducup (AMAP, University Montpellier).

3.3 Preprocessing

For each dataset, the preprocessing steps were the same (although some of them weren’t
necessary for some datasets), as follows. Based on the QSMs, 13567 features were
computed for each tree. Any reciprocals of other features were removed. Trees that had
only 0-values were removed and NaNs were located. Features and trees with too many
NaNs (> 10% of all values) were removed. Constant features were removed and the
features were scaled to the interval [0, 1]. Finally, features that correlated strongly (|ρ| >
0.99) with some other feature were removed until there were no more such correlations.
The number of trees in each dataset before and after preprocessing is reported in Table
3.1.

For the Bouamir data, Inf and NaN-values were replaced by each species maximum and
mean for the corresponding feature respectively to be able to perform PCA for comparison
using the Matlab function pca. For the Punkaharju data, trees with a height of 5 meters
or less and trees with 10 branches or less were removed.

Table 3.1. Number of trees in each dataset before and after preprocessing.

Dataset before only 0 > 10% NaN after

Wytham 755 0 1 754

Punkaharju 1091 0 0 1091

Bouamir 120 1 0 119

3.4 The method: Decimated Input Ensembles for One Vs All
Classification (DIE1VA)

Decimated input ensembles for one vs all classification (DIE1VA) is a filter-wrapper hy-
brid, implementing some parts and ideas of other hybrid and wrapper methods. The goal
is to achieve higher classification accuracy than any of the presented filters could on their
own with the expense of some computational time. The method chooses features for
a user-defined number of ’One-vs-All’ classifiers for all classes, so that each individual
classifier is built to differentiate one species from the rest with different feature sets. The
idea is that using different feature sets for different classes allows us to use better feature
sets for classifying each individual class than using the same features for classifying all
classes, thus achieving higher accuracy.

Having multiple classifiers for each class with different feature sets makes the method
able to detect each class in more than one way, which could be useful in cases where
certain conditions (e.g. growth environment or tree age) might affect which features are
the most useful for the classification of a certain class. The final prediction of an observa-

19

tion will be correct even if only one of the correct species’ One-vs-All classifiers classifies
the observation correctly, as long as none of the other species’ One-vs-All classifiers mis-
classifies it. Moreover, in high-dimensional feature spaces it is often easier to find many
good feature sets that are complementary to each other, than to find a single feature
set that is significantly better. More often than not, using a combination of multiple good
feature sets results in more accurate classification than using one slightly more accurate
feature set.

3.4.1 Overview

A flow chart of DIE1VA is presented in Figure 3.3. DIE1VA starts by picking a class
and combining all the other classes into a new class called other. Features are then
ranked based on this One-vs-All class divide using a filter. After ranking the features the
HFS method is used to generate a user-defined number of feature sets from consecutive
blocks of features in the ranking (the size of one block also being user-defined). The idea
is to quickly generate enough decent feature sets that can be further improved upon.
Since some blocks might have lots of redundant features — resulting in subpar feature
sets being generated — we usually want the number of feature sets generated by HFS
to be somewhat larger than the number of final subsets used for the classification. After
HFS and any time features are added in later steps, the method checks if removing any
features improves accuracy since the added features might be somewhat redundant with
already selected ones and removing them might further improve accuracy with the added
benefit of simplifying the classifier.

The best feature sets generated by HFS are combined with other HFS-generated feature
sets to see if accuracy improves enough. The amount of improvement required for each
new feature is set by the parameter minimpr. This is done to avoid ending up with feature
sets that are too large in the sense that they cannot be much further improved because
there is too much redundancy between already selected features and possible additions.
Similar or higher accuracies can often be achieved with a fewer number of features if we
do not add every feature that marginally improves the accuracy.

In the last phase of FS the method re-ranks the features based on already selected
features before adding new features one by one in the order of the new ranking to see if
accuracy improves. This step is repeated until no more significant improvement is made
as parameters minimpr and maxtime make sure that we do not spend too much time on
minor improvements that may not be worth it. After FS is done for every class, One-vs-All
predictions are made using all of the final subsets for each class and these predictions
are combined to make a final prediction based on majority voting.

20

Figure 3.3. Flow chart of the DIE1VA method.

3.4.2 Details of the method

In this section we will take a closer look at how the method is implemented, what are
the parameters and how they affect each other and the performance of the method. The
MATLAB code of DIE1VA is available in Appendix A and in GitHub [DOI: 10.5281/zen-
odo.4244231]. The codes of two functions used in DIE1VA are available in Appendices
B and C. The idea of the method is to generate a predetermined number of good feature
subsets to distinguish each individual class from the rest, so we go through each class
using the same steps.

First we combine the other classes into one and rank the features using the filter of
our choosing. If we choose to prioritize the average accuracy of all classes we apply
weights to each observation so that each class’ contribution to the calculated accuracy

21

will be equal regardless of their share in the sample. Then we can start using HFS
to generate feature subsets. After each execution of HFS we check if removing any
features from the generated subset improves accuracy by removing each feature one by
one, and evaluating the accuracy of the resulting model. HFS is performed for different
sets of features based on the ranking and the parameters mHFS and nb. For example, if
mHFS = 30 and nb = 5 we use features ranked 1-30, 31-60, 61-90, 91-120 and 121-150
to generate five subsets using HFS.

The performance (time consumption vs. accuracy) of HFS is significantly affected by the
number of top feature sets (nHFS) that are combined with the rest to form new feature
sets, because the other features are added based on their performance with the first
nHFS features in the block’s ranking. If nHFS is small compared to mHFS there is a greater
chance that none of the nHFS top features in the block are a good starting point for HFS.
The parameter nb should be large enough so that we get enough good subsets that
can be further refined, but not so large that we waste time on generating more subsets
than we need. The parameter mHFS should be large enough so there are enough non-
redundant features to combine in a block, but also not so large that it would take too much
time to test every combination. With larger nHFS values, the number of combinations to
test grows more rapidly with mHFS. The optimal values for these parameters depend on
how much redundancy there is between features in a block and how much the order in
which we combine the features coupled with our parameter choices ends up essentially
wasting time by combining redundant features.

We can think of the mutually exclusive features for each subset generated at this point
as different perspectives to use in classification. Often they correctly classify different
observations so that when they are combined we can correctly classify a larger range
of observations from the same species than with only one set of features. This does
not guarantee that a single feature could not end up in more than one of the final sub-
sets generated by DIE1VA (which is not a problem necessarily), but usually they do not
because the features added later depend on the HFS-generated subsets.

After HFS the method starts to refine the subsets, starting with the most accurate until
no more significant improvement can be made. First the method combines the selected
subsets with all other HFS-generated subsets to see if accuracy improves enough after
also removing any redundant features that lower the accuracy. Although this step does
not usually result in improvements for most of the subsets, it is a fairly inexpensive step
that can sometimes save time or improve accuracy significantly, if enough of the features
in both subsets have positive interactions with each other.

After this, the method re-ranks the features based on the already selected features by
using Fisher scores; each feature is combined with the already selected subset to form
a reduced data space matrix Z and the score for that feature is determined by Equation
(2.16). Using this new ranking, features are added one by one to the subset of already
selected features and the new classification accuracies are evaluated. Each feature that
improves accuracy more than the amount specified by minimpr is saved as a candidate

22

until the method has found nc candidates, at which point the feature that resulted in the
lowest loss of accuracy is selected.

Re-ranking and adding the features one by one to the subset of already selected features
is repeated until no more significant improvement (>minimpr) to the accuracy is made
in a reasonable time (<maxtime). The parameter nc should be large enough so that we
do not settle for slight improvements when bigger improvements are possible, but not so
large that we end up wasting time on trying to find a marginally better new feature. When
the accuracy of the subset can no longer be improved by at least minimpr in less than
maxtime, the final subset is saved and the method moves on to refine the next best HFS
generated subset (if we have less than n subsets for the current class), start over with a
new class (if we don’t have subsets for every class yet) or make One-vs-All predictions.
These predictions are made by each class’ subsets classifying observations as members
of that class or the class other by using the same One-vs-All class divide for each class as
was used in the feature ranking. Final predictions are then made by majority voting; each
observation is classified as the most predicted class (excluding other) for that observation
in the One-vs-All predictions. If an observation has the same number of votes for two or
more of the most predicted classes, the final prediction is picked at random from them.

The method has many parameters, some of which are only used in some parts of the
method (e.g. nHFS in HFS) and a few that are used for DIE1VA as a whole (e.g. the
number n of One-vs-All classifiers for each species). Some of the parameters greatly
affect the computational time and for some, the optimal value (in terms of the trade-off
between computational time and classification accuracy for example) depends on the
data and other parameters. For each parameter, tuning them is at least partly a matter
of finding the optimal trade-off between accuracy and time, where larger values usually
lead to a higher accuracy, but requiring a longer time.

In addition to parameters we naturally have to choose the filter used to rank the features
and the classification method used for the prediction. In the experiments in this thesis I
used the methods presented in Chapter 2, first testing all of the presented filters using
1NN and then using Fisher score with 1NN and SVM classifiers on different datasets.
Fisher score was used for re-ranking as it was able to score groups of more than one
feature. Some other filters could also be defined for ranking groups of features. The
method has an option to use balanced class weights instead of default class weights in
calculating classification accuracy, essentially maximizing the average producer accuracy
instead of the total accuracy. Matlab methods fitcknn and fitcsvm, which are part of the
Statistics and Machine Learning toolbox, were used for classification. Table 3.2 contains
descriptions of all the parameters and suggested values for our data.

23

Table 3.2. Parameters of DIE1VA with suggested values.

Parameter Description Suggested value (explanation)

n
Number of feature subsets for

each class’s One-vs-All classifier

3-10 (depends on number of classes

and computational time constraints)

nHFS

Number of top feature sets that

are combined with the rest to

form new feature sets in HFS

3-10 (classification accuracy vs.

computational time constraints)

mHFS Size of the block in HFS
30-50 (depends on how redundant

features tend to be grouped)

nb
Number of subsequent blocks

HFS is executed for

5-20 (nb ≥ n, depends on how many

useful features there are)

minimpr

Minimum improvement in

classification accuracy required

per each new feature (after HFS)

0.005-0.05 (depends on how many

features we want and what is possible)

nc
Number of candidate features

to look for before choosing

1-10 (classification accuracy vs.

computational time constraints)

maxtime

(seconds)

Time allowed for searching

for one candidate feature

30-300 (classification accuracy vs.

computational time constraints)

24

4 RESULTS

In this section the results of the experiments using DIE1VA on the three datasets de-
scribed in Section 3.2 are presented. Depending on the goal, the performance of a
feature set used in classification is evaluated during the execution using either default or
balanced class weights in calculating the accuracy, and features are chosen according
to that evaluation. The performance of DIE1VA is also evaluated using the same (de-
fault or balanced) class weights that are used during its execution. The accuracy that is
calculated using balanced class weights is referred to as weighed classification accuracy
(while using default class weights, the performance is evaluated using the regular clas-
sification accuracy). All evaluations are done using 10-fold cross-validation, i.e. the set
of observations is randomly split into 10 parts, each of which is used once as a test set
while the other parts are used as the training set. The reported accuracy is the average
of the 10 test sets.

In Section 4.1 the effects of the most important parameters and the robustness of the
method is studied on the Wytham data. Then the limits of classification accuracy DIE1VA
can achieve when given more time are tested, as well as using the combination of SVM
and 1NN classifiers. A few feature sets the method selects for classification of each
species in the Wytham data are reported. The performance of DIE1VA is also tested
on Punkaharju data in Section 4.2 so it can be compared to the results of [1]. Lastly
in Section 4.3 the effect of using One-vs-All classifiers with different feature subsets for
each species instead of one feature subset for all species is studied on Bouamir data.
The FS method used in DIE1VA is also compared to PCA. The experiments were done
in Matlab R2020a using an Intel Core i5-9600K (3.7 GHz) processor and 16 GB or RAM.

4.1 Wytham

4.1.1 The effect of the number of feature subsets used and
the chosen feature filter

The effect of the number of feature subsets (n) used for each class’s One-vs-All classi-
fier and the chosen filter to weighed classification accuracy and time consumption on the
Wytham dataset was studied by letting n range from 1 to 5 and setting the other param-
eters as constants (nHFS = 3,mHFS = 30, nb = 10, minimpr = 0.05, nc = 1, maxtime =

60) with each of the FS methods presented in Section 2.2. 1NN classification was used

25

with balanced class weights. All other parameters used for the classification method were
default parameters of the fitcknn function. Figure 4.1 shows the weighed accuracies and
time consumptions of each FS method by the number of feature subsets used.

We can see that Constraint score has significantly lower accuracies with DIE1VA than all
the other methods, that use class labels directly as supervision information. While mRMR
is the most accurate its time consumption is further exacerbated since the ranking is done
five times (once for every species). All the other FS methods have weighed accuracies
within 5 percentage points of each other and time consumptions within 20 minutes of each
other. The slight differences in weighed accuracies could be up to chance as they are
within 2 standard deviations of each other according to the experiments on robustness
with similar parameters. The weighed accuracy does not seem to consistently improve
much after n = 3 with the parameters used here.

Since the features are grouped in the blocks in a way that does not take into account
their interactions with other features in the same block (except to some extent when
using mRMR), the redundancies and positive interactions within that block that affect the
performance of any feature subset that can emerge from it are random. Additionally,
since the subsets that do emerge are largely dictated by the first nHFS features in any
given block, if nHFS is small compared to block size mHFS there is more randomness in
the resulting accuracy of those subsets.

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

n

w
ei

gh
ed

ac
cu

ra
cy

Weighed accuracies

Fisher
mRMR
Chi2
ReliefF
Constraint

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

·104

n

el
ap

se
d

tim
e

(s
)

Elapsed times

Fisher
mRMR
Chi2
ReliefF
Constraint

Figure 4.1. Weighed accuracies (left) and time consumptions of DIE1VA (in seconds,
right) with different FS methods and numbers of feature subsets n used for One-vs-All
classification of each species.

4.1.2 Robustness of DIE1VA

To test the robustness of DIE1VA it was executed 10 times with two different sets of pa-
rameters (Table 4.1) on the Wytham dataset using 1NN and SVM classifiers with both
default and balanced class weights and Fisher score to rank the features. Average accu-
racies, weighed accuracies, elapsed times and their standard deviations are presented in
Table 4.2 and a few confusion matrices from that test in Table 4.3.

26

Table 4.1. Parameter sets used in the robustness experiments.

Set n nHFS mHFS nb minimpr nc maxtime

1 3 3 30 5 0.050 1 60

2 5 5 40 8 0.005 3 120

Table 4.2. Average accuracies p, weighed accuracies pw, elapsed times t and their stan-
dard deviations σp, σpw and σt over 10 executions of DIE1VA on the Wytham dataset.

Set Classifier p (%) σp (pp) pw (%) σpw (pp) t (s) σt (s)

default class weights

1 1NN 84.88 0.87 63.68 2.18 2359 87.0

1 SVM 78.90 0.31 40.65 0.99 1290 50.4
2 1NN 87.68 0.99 71.03 2.13 9020 855.6

2 SVM 79.48 0.40 39.79 1.63 4349 235.5

balanced class weights

1 1NN 84.12 1.14 62.67 2.47 2303 126.1

1 SVM 70.52 1.03 62.98 1.34 2039 77.7

2 1NN 87.79 0.82 72.11 2.00 7909 350.3

2 SVM 80.89 0.49 71.18 1.44 7511 387.4

The standard deviations of classification accuracies are smaller across the board than in
[2] while using the same classifiers and class weights. Although DIE1VA might choose
somewhat different feature sets in different executions of the method, the results are
more robust than by using the same set of features for all species repeatedly. Time
consumption does not change much between different executions of the method with
the same parameters; the standard deviation is always less than 10% of the mean time
consumption and in most cases it is closer to 5%.

The parameters affect time consumption significantly. Using higher values for n, nHFS,

mHFS, nb, nc and maxtime and a lower value for minimpr means that the method is more
thorough in the search for the best subset, which leads to 2.80–3.67 percentage points
higher accuracy and 7.35–9.44 percentage points higher weighed accuracy at the cost
of more than triple the computational time, when using 1NN classifiers. Class weights do
not seem to have much of an effect on either accuracy or weighed accuracy while using a
1NN classifier; accuracies and weighed accuracies for both parameter sets using default
class weights are within one standard deviation from those using balanced class weights.
For SVM classifiers on the other hand they do make a difference. With default class
weights there is a heavy bias towards the dominant species which only becomes heavier
with larger n values (which keeps the overall accuracy from increasing much, while hurt-
ing the weighed accuracy), but with balanced class weights the bias flips when n is high
enough. The 1NN classifiers have higher accuracy overall, but they tend to be somewhat
biased towards the dominant species, even while using balanced class weights. The
number of ACERPS predictions is in many cases more than 10% higher than their true

27

Table 4.3. Confusion matrices using parameters in Sets 1 and 2 with different class
weights and classification methods. Producer accuracies (p) for each species are at the
end of each row and positive predictive values (PPV) at the end of each column. Total
accuracy is in the bottom right corner. Elapsed time (in seconds) is in brackets.

Set 1, default class weights, 1NN classifiers (2312 s)

Actual\predicted FRAXEX ACERPS QUERRO CORYAV CRATMO p (%)

FRAXEX 27 49 1 4 0 33.3

ACERPS 11 533 0 2 0 97.6

QUERRO 1 13 23 0 0 62.2

CORYAV 2 14 0 45 3 70.3

CRATMO 1 6 0 6 13 50.0

PPV (%) 64.3 86.7 95.8 78.9 81.3 85.0

Set 1, default class weights, SVM classifiers (1239 s)

Actual\predicted FRAXEX ACERPS QUERRO CORYAV CRATMO p (%)

FRAXEX 5 69 3 1 3 6.2

ACERPS 1 536 4 3 2 98.2

QUERRO 0 29 8 0 0 21.6

CORYAV 2 14 3 44 1 68.8

CRATMO 3 7 3 10 3 11.5

PPV (%) 45.5 81.8 38.1 75.9 33.3 79.0

Set 2, default class weights, SVM classifiers (4384 s)

Actual\predicted FRAXEX ACERPS QUERRO CORYAV CRATMO p (%)

FRAXEX 3 72 2 3 1 3.7

ACERPS 2 540 3 1 0 98.9

QUERRO 0 28 9 0 0 24.3

CORYAV 0 16 0 46 2 71.9

CRATMO 0 10 0 16 0 0

PPV (%) 60.0 81.1 64.3 69.7 0 79.3

Set 2, balanced class weights, SVM classifiers (7136 s)

Actual\predicted FRAXEX ACERPS QUERRO CORYAV CRATMO p (%)

FRAXEX 48 23 3 7 0 59.3

ACERPS 45 468 17 9 7 85.7

QUERRO 0 6 31 0 0 83.8

CORYAV 7 0 0 57 0 89.1

CRATMO 1 2 0 15 8 30.8

PPV (%) 47.5 93.8 60.8 64.8 53.3 81.2

28

number. The species that get the most mixed up are FRAXEX and ACERPS, which often
grow to the same size and have similar, round crowns. CORYAV and CRATMO are the
second most similar pair, both resembling a bush more than a tree and consequently the
most mixed up pair without ACERPS.

4.1.3 Combining SVM and 1NN

To see if weighed SVM and 1NN classifiers could be combined to balance out their biases
towards the different species and to test the limits of time consumption vs. classification
accuracy, DIE1VA was executed using both SVM and 1NN-classifiers with parameters
n = 10, nHFS = 10,mHFS = 50, nb = 20, minimpr = 0.005, nc = 3, maxtime = 180,
balanced class weights and Fisher score to rank the features. This took about 24 hours.
Then majority voting was performed using the One-vs-All classifiers with the lowest loss
for each species so that the best 1, 3 and 5 1NN One-vs-All predictions for each species
were combined with the best 1, 3 and 5 SVM One-vs-All predictions for each species
respectively (using a total of 2, 6 and 10 classifiers) and compared to the best 2, 6 and 10
1NN classifiers. The confusion matrices are shown in Tables 4.4 and 4.5. The confusion
matrix from using all 10 1NN and SVM classifiers is shown in Table 4.6.

Table 4.4. Confusion matrices using 2 classifiers for each species, combining 1NN and
SVM (top) and using only 1NN (bottom). Producer accuracies (p) for each species are
at the end of each row and positive predictive values (PPV) at the end of each column.
Total accuracy is in the bottom right corner.

1 1NN & SVM classifier for each species, weighed accuracy 76.7%

Actual\predicted FRAXEX ACERPS QUERRO CORYAV CRATMO p (%)

FRAXEX 58 17 1 4 1 71.6

ACERPS 40 495 5 4 2 90.7

QUERRO 0 3 34 0 0 91.9

CORYAV 6 0 0 58 0 90.6

CRATMO 4 4 0 8 10 38.5

PPV (%) 53.7 95.4 85.0 78.4 76.9 86.9

2 1NN classifiers for each species, weighed accuracy 75.9%

Actual\predicted FRAXEX ACERPS QUERRO CORYAV CRATMO p (%)

FRAXEX 45 30 1 4 1 55.6

ACERPS 10 528 3 4 1 96.7

QUERRO 0 7 30 0 0 81.1

CORYAV 5 3 1 54 1 84.4

CRATMO 1 5 0 4 16 61.5

PPV (%) 73.8 92.1 85.7 81.8 84.2 89.3

The results show that the bias towards the dominant species ACERPS is stronger when

29

Table 4.5. Confusion matrices using 6 (top half) and 10 (bottom half) classifiers for each
species, combining 1NN and SVM (upper) and using only 1NN (lower). Producer accura-
cies (p) for each species are at the end of each row and positive predictive values (PPV)
at the end of each column. Total accuracy is in the bottom right corner.

3 1NN & SVM classifiers for each species, weighed accuracy 84.3%

Actual\predicted FRAXEX ACERPS QUERRO CORYAV CRATMO p (%)

FRAXEX 54 20 2 5 0 66.7

ACERPS 13 524 2 6 1 96.0

QUERRO 0 1 36 0 0 97.3

CORYAV 4 1 0 59 0 92.2

CRATMO 2 2 0 4 18 69.2

PPV (%) 74.0 95.6 90.0 79.7 94.7 91.6

6 1NN classifiers for each species, weighed accuracy 80.5%

Actual\predicted FRAXEX ACERPS QUERRO CORYAV CRATMO p (%)

FRAXEX 42 37 0 2 0 51.9

ACERPS 3 541 1 1 0 99.1

QUERRO 0 3 34 0 0 91.9

CORYAV 1 5 0 58 0 90.6

CRATMO 0 4 0 4 18 69.2

PPV (%) 91.3 91.7 97.1 89.2 100.0 91.9

5 1NN & SVM classifiers for each species, weighed accuracy 84.4%

Actual\predicted FRAXEX ACERPS QUERRO CORYAV CRATMO p (%)

FRAXEX 52 24 2 3 0 64.2

ACERPS 14 519 6 6 1 95.1

QUERRO 0 1 36 0 0 97.3

CORYAV 5 0 0 59 0 92.2

CRATMO 1 2 0 4 19 73.1

PPV (%) 72.2 95.1 81.8 81.9 95.0 90.8

10 1NN classifiers for each species, weighed accuracy 78.8%

Actual\predicted FRAXEX ACERPS QUERRO CORYAV CRATMO p (%)

FRAXEX 34 44 1 1 1 42.0

ACERPS 1 541 2 2 0 99.1

QUERRO 0 4 33 0 0 89.2

CORYAV 0 6 0 58 0 90.6

CRATMO 1 4 0 2 19 73.1

PPV (%) 94.4 90.3 91.7 92.1 95.0 90.8

30

Table 4.6. Confusion matrix using 10 1NN & SVM classifiers for each species. Producer
accuracies (p) for each species are at the end of each row and positive predictive values
(PPV) at the end of each column. Total accuracy is in the bottom right corner.

10 1NN & SVM classifiers for each species, weighed accuracy 85.6%

Actual\predicted FRAXEX ACERPS QUERRO CORYAV CRATMO p (%)

FRAXEX 52 23 2 4 0 64.2

ACERPS 9 521 9 6 1 95.4

QUERRO 0 0 37 0 0 100.0

CORYAV 2 1 0 61 0 95.3

CRATMO 0 3 0 4 19 73.1

PPV (%) 82.5 95.1 77.1 81.3 95.0 91.5

using only 1NN classifiers and increasing the number of One-vs-All classifiers for each
species exacerbates the bias to the point that between using 6 and 10 1NN classifiers
for each species, the total classification accuracy as well as the weighed accuracy de-
creases. Using one 1NN and SVM classifier for each species the bias is towards the
other species with 51 false negatives compared to 24 false positives, but as we increase
the number of 1NN and SVM classifiers the difference in the number of false negatives
and false positives mostly disappears. The total accuracy is highest using 6 1NN classi-
fiers and second highest using 3 1NN and 3 SVM classifiers, but the weighed accuracy
(i.e. the average of the producer accuracies, which we are trying to maximize by using
balanced class weights) keeps increasing as we increase the number of SVM and 1NN
classifiers, albeit only slightly after using 3 of them for all species. It is not clear how well
these results generalise to other data. Other datasets used in the experiments did not
have such a strong majority for a single species that it resulted in as heavy a bias in the
classifier.

4.1.4 Selected features

To see which features DIE1VA selects for classification of each species in the Wytham
dataset, it was executed using 1NN classification and Fisher score to rank the fea-
tures, and parameters n = 3, nHFS = 10,mHFS = 50, nb = 20, minimpr = 0.05, nc =

3, maxtime = 120. The selected feature sets are presented in Tables 4.7 and 4.8 along
with the number of features and classification accuracies for each set. The accuracies
are reported in terms of the One-vs-All classification each feature set would perform be-
fore the majority voting. They do not necessarily reflect the accuracy of the final classifier
for any of the species, as we can see from the resulting confusion matrix in Table 4.9.

Every feature is included only once even though it is theoretically possible to choose
the same feature for multiple feature sets after HFS and there is little difference in the
accuracies of the One-vs-All classifiers for each species despite them having completely
different feature sets. This is most likely due to an abundance of good features and

31

Table 4.7. Three feature sets generated by DIE1VA to distinguish FRAXEX and ACERPS
from the rest of the species in the Wytham dataset. # is the number of selected features.
p is the accuracy of the One-vs-All classifier.

Features # p (%)

FRAXEX

’MaxBranchOrder/CrownRatio’, ’VolCylZen_triad_1_1_3_max’,
’Rel_branch_Hei_bottom_30%_Vol’,

’Rel_branch1_Hei_bottom_50%_Len’,
’Rel_branch1_Hei_bottom_45%_Num’, ’mean_base_path_length_ord1’,

’10%_base_path_length_ord3’

7 90.5

’AreCylDia_0.4_0.8/CrownRatio’, ’LenCylDia_0.6_1/CrownRatio’,
’VolCylZen_triad_1_1_2_max’, ’AreCylZen_triad_0_0_1_max’,

’Rel_branch1_Hei_bottom_20%_Are’,
’Rel_branch1_Hei_bottom_65%_Len’,
’Rel_branch1_Hei_bottom_70%_Len’,

’Base_path_length_triad_1_2_4_mean’,
’NumBranch1Zen_unid_1_4_max’, ’branch_or2_angle_mean’,

’branch_or2_height_mean/or0_order_mean’

11 92.3

’TrunkLength/CrownLength’, ’AreCylHei_0.6_1/TotalVolume’,
’AreCylDia_triad_0_0_4_max’, ’LenCylZen_normd_1_2_max’,

’40%_tip_path_length_all’, ’10%_base_path_length/base_heigth_ord1’
6 90.5

ACERPS

’VolBranchOrd_2_4/TotalVolume’, ’NumBranchOrd_1_2/TreeHeight’,
’NumBranchOrd_4_4/CrownVolumeConv’,

’Rel_cyl_Zen_bottom_75%_Vol’, ’VolCylZen_triad_0_1_1_mean’,
’VolCylZen_triad_1_2_2_max’, ’AreCylZen_triad_1_2_3_max’,

’AreCylZen_normd_3_1_max’, ’LenCylZen_triad_1_1_4_mean’,
’NumBranchZen_unid_2_4_mean’, ’branch_or0_zenith_median’,

’30%_tip_path_length/tree_height_all’,
’55%_tip_path_length/tree_height_ord2’,

’60%_tip_path_length/tree_height_ord3’, ’LenCylZen_unid_1_5_max’

15 87.5

’NumBranchOrd_5_5/TotalVolume’, ’VolCylDia_0.2_0.4/TotalArea’,
’VolCylDia_0.2_0.6/TotalArea’, ’NumBranchOrd_2_3/DBHcyl’,

’Rel_cyl_Zen_bottom_95%_Vol’, ’VolCylZen_triad_1_2_2_mean’,
’AreCylZen_triad_2_2_4_max’, ’20%_tip_path_length/tree_height_all’,

’45%_tip_path_length/tree_height_ord2’,
’70%_base_path_length/tree_height_ord1’

10 86.7

’LenBranchOrd_2_3/TotalVolume’, ’AreCylDia_0.2_1/TrunkLength’,
’LenCylDia_0_0.4/DBHcyl’, ’LenBranchOrd_4_4/CrownVolumeConv’,

’VolCylDia_triad_2_3_4_mean’, ’VolCylHei_normd_1_1_mean’,
’AreCylZen_normd_1_1_max’, ’15%_base_path_length/tree_height_all’,

’35%_base_path_length/tree_height_ord2’,
’min(base_path_length/base_height)_ord3’

10 86.7

the mutually exclusive feature sets generated by HFS having positive interactions with
different features because of that exclusivity.

32

Table 4.8. Three feature sets generated by DIE1VA to distinguish QUERRO, CORYAV,
and CRATMO from the rest of the species in the Wytham dataset. # is the number of
selected features. p is the accuracy of the One-vs-All classifier.

Features # p (%)

QUERRO

’StemBranchLength’, ’VolCylDia_0_0.8/DBHcyl’,
’LenCylDia_unid_1_2_mean’, ’VolBranch1Dia_triad_1_2_4_mean’,

’branch_or3_area_mean’
5 99.2

’VolBranchOrd_3_3/NumberBranches’,
’AreBranchOrd_1_4/NumberBranches’, ’AreCylDia_triad_0_3_4_mean’,

’AreCylDia_triad_1_2_3_mean’, ’AreCylDia_triad_1_4_4_max’,
’AreCylDia_unid_1_4_mean’

6 99.1

’DBH/TreeHeight’, ’VolCylDia_0.2_1/TreeHeight’,
’VolBranchOrd_1_3/TotalLength’, ’VolCylHei_0.2_0.6/TotalArea’,

’VolCylHei_0.2_1/TotalArea’
5 99.1

CORYAV

’VolCylDia_0.2_0.6/TrunkVolume’, ’Rel_cyl_Zen_bottom_55%_Vol’,
’VolCylZen_triad_0_1_4_mean’, ’VolCylZen_normd_2_1_mean’,

’LenCylZen_triad_1_2_3_mean’, ’LenCylZen_normd_1_1_mean’,
’NumBranchZen_triad_1_2_3_mean’,

’AreCylHei_0.4_0.6/BranchLength’

8 98.0

’TotalArea/CrownAreaConv’, ’NumBranchOrd_2_2/TotalVolume’,
’NumBranchOrd_4_5/TrunkArea’, ’AreCylDia_0.2_0.8/CrownLength’,

’NumBranchOrd_3_3/CrownVolumeAlpha’,
’LenCylDia_unid_3_4_mean’, ’AreCylZen_triad_1_2_2_max’,

’VolBranchHei_triad_3_4_4_mean’, ’LenBranchHei_triad_0_1_3_mean’,
’NumBranchZen_unid_2_3_max’,

’20%_base_path_length/base_heigth_ord1’,
’40%_base_path_length/tree_height_ord2’

12 97.5

’VolBranchOrd_1_3/TrunkVolume’,
’NumBranchOrd_4_5/BranchVolume’,

’LenCylDia_0.4_0.6/CrownLength’, ’LenCylDia_0.2_0.4/CrownRatio’,
’Rel_cyl_Zen_bottom_60%_Vol’, ’Rel_cyl_Zen_bottom_65%_Vol’,

’LenCylZen_triad_0_1_1_mean’, ’Rel_branch_Zen_bottom_30%_Num’,
’NumBranchZen_triad_0_1_1_mean’,

’95%_base_path_length/tree_height_all’

10 97.5

CRATMO

’BranchLength/TotalArea’, ’VolCylDia_0.2_0.4/TotalVolume’,
’NumBranchOrd_1_5/CrownAreaConv’, ’VolCylDia_triad_1_3_4_max’,

’AreCylDia_normd_3_2_mean’, ’AreCylHei_triad_3_4_4_max’,
’Rel_cyl_Zen_bottom_95%_Len’,

’Base_path_length_triad_1_2_4_mean’

8 98.8

’NumBranchOrd_2_5/CrownAreaAlpha’,
’NumBranch1Hei_triad_3_4_4_max’

2 98.8

’VolBranchOrd_1_3/TotalVolume’, ’LenCylDia_0_0.8/CrownAreaConv’,
’NumBranchOrd_3_5/CrownVolumeAlpha’

3 98.8

33

Table 4.9. Confusion matrix using 3 1NN classifiers for each species with the feature sets
in Tables 4.7 and 4.8. Producer accuracies (p) for each species are at the end of each
row and positive predictive values (PPV) at the end of each column. Total accuracy is in
the bottom right corner. Elapsed time is in brackets.

3 1NN classifiers for each species (18635 s)

Actual\predicted FRAXEX ACERPS QUERRO CORYAV CRATMO p (%)

FRAXEX 42 36 0 3 0 51.9

ACERPS 10 532 1 3 0 97.4

QUERRO 0 5 32 0 0 86.5

CORYAV 2 6 0 56 0 87.5

CRATMO 0 9 0 2 15 57.7

PPV (%) 77.8 90.5 97.0 87.5 100.0 89.8

For FRAXEX, DIE1VA selects many features that are the relative branch height of some
percentage of bottom volume, length or area, most of them being for the first order of
branches. This might be because the tips of the branches curve upwards, making the
height distribution of branches different from the other tall trees with round crowns. There
are also some path length based features and distribution comparisons which separate
FRAXEX from the more bush-like species in the dataset. For ACERPS there are a lot
of path length based features and distribution comparisons, with path lengths commonly
being divided by tree height and distributions being functions of the zenith angle or di-
ameter of a cylinder. This might be because ACERPS has the most consistent and thick
crown, with longer path lengths than the other trees of similar height.

QUERRO is the most easily separable among the species in this dataset, with the highest
accuracies overall among the non-dominant species in the experiments. 5 features is
enough for 99% accuracy in the One-vs-All classifiers. The second and third feature sets
of QUERRO contain many similar features within the sets. Some of them might very
well be close to redundant in the presence of the others, but end up in the same feature
set during HFS by slightly improving accuracy. The area and volume distributions as
functions of diameter and height being selected could be reflecting the fact that QUERRO
has strong, thick first-order branches and there is more of a range in the thickness of
branches compared to FRAXEX and ACERPS.

For the bush-like species CORYAV and CRATMO, branch distributions and the numbers
of branches are used more commonly than for the other species. It seems that branch
distributions separate them from the other species while also containing the most useful
information about the structure of the bushes. CRATMO requires only two features to
achieve nearly 99% accuracy in the One-vs-All classifiers, but since there are only a few
observations of it and the ACERPS classifiers are biased (misclassifying CRATMO as
ACERPS, affecting the result of the majority vote), CRATMO’s producer accuracy is low.

34

4.2 Punkaharju

We executed DIE1VA on the Punkaharju dataset to see if the results in [1] could be
improved upon and at what cost. The method was executed 10 times with parameters
nHFS = 3,mHFS = 30, minimpr = 0, nc = 10, maxtime = 60, and n ranging from 1 to
3 while having nb = 3n. Both 1NN and SVM classifiers were used with default class
weights and Fisher score to rank the features. Mean accuracies, time consumptions and

Table 4.10. Average accuracies p, elapsed times t and their standard deviations σp and
σt over 10 executions of DIE1VA on the Punkaharju dataset, using 1NN (left) or SVM
(right) classifiers.

n p (%) σp (pp) t (s) σt (s)

1NN

1 97.13 0.62 1952 425.2
2 98.37 0.41 3578 463.1

3 98.92 0.49 7619 826.5

n p (%) σp (pp) t (s) σt (s)

SVM

1 95.35 0.27 1364 294.2
2 96.06 0.34 3482 402.3

3 96.59 0.61 5476 622.6

Table 4.11. Confusion matrices using 1 (top), 2 (middle) and 3 (bottom) 1NN (left) or
SVM (right) classifiers for Birch (B), Pine (P) and Spruce (S). Producer accuracies (p) for
each species are at the end of each row and positive predictive values (PPV) at the end
of each column. Total accuracy is in the bottom right corner. Elapsed time is in brackets.

1 1NN classifier (2064 s)

Act.\pred. B P S p (%)

Birch 355 2 1 99.2

Pine 12 438 7 95.8

Spruce 3 1 272 98.6

PPV (%) 95.9 99.3 97.1 97.6

1 SVM classifier (2042 s)

Act.\pred. B P S p (%)

Birch 351 4 3 98.0

Pine 22 430 5 94.1

Spruce 5 10 261 94.6

PPV (%) 92.9 96.8 97.0 95.5

2 1NN classifiers (4164 s)

Act.\pred. B P S p (%)

Birch 357 0 1 99.7

Pine 6 448 3 98.0

Spruce 4 2 270 97.8

PPV (%) 97.3 99.6 98.5 98.5

2 SVM classifiers (3552 s)

Act.\pred. B P S p (%)

Birch 351 6 1 98.0

Pine 21 431 5 94.3

Spruce 5 8 263 95.3

PPV (%) 93.1 96.9 97.8 95.8

3 1NN classifiers (7776 s)

Act.\pred. B P S p (%)

Birch 358 0 0 100.0

Pine 2 455 0 99.6

Spruce 5 0 271 98.2

PPV (%) 98.1 100 100 99.4

3 SVM classifiers (5269 s)

Act.\pred. B P S p (%)

Birch 357 0 1 99.7

Pine 20 429 8 93.9

Spruce 5 4 267 96.7

PPV (%) 93.5 99.1 96.7 96.5

35

the corresponding standard deviations are reported in Table 4.10 and confusion matrices
from these results in Table 4.11.

In about an hour DIE1VA achieved over 98% accuracy using 2 1NN classifiers for each
species, which is one percentage point higher than the highest accuracy in [1]. More
than 2 hours was needed to achieve about 99% accuracy with 3 1NN classifiers for each
species. Accuracies improved for both kNN and SVM classifiers from those in [1] and kNN
is superior while using DIE1VA too. The standard deviation of accuracy is lower than in
[1] using the same classifiers. The standard deviation of time consumption is higher as
a percentage of the mean than on Wytham data, here more than 10% in each case and
more than 20% when using one classifier for each species. Although Pine has the largest
population in this dataset, all of the results are slightly biased towards the other species.

4.3 Bouamir

To test the effect of using multiple feature subsets for each species instead of one for all
as well as the feature selection method used in DIE1VA, a modified version of DIE1VA
was executed, which ranks and selects features based on the original class divide instead
of One-vs-All and only uses the subset with the lowest classification loss. Three sets of
parameters were used and the original version of DIE1VA was executed with the same
parameters for comparison. The modified version of DIE1VA was also compared to using
PCA for feature extraction before performing 1NN classification using 22 principal com-
ponents which explained 80% of the variance. Confusion matrices and parameter sets
used are shown in Tables 4.12, 4.13, 4.14 and 4.15.

Table 4.12. Confusion matrix from using PCA for feature extraction before performing
1NN classification for all species. Producer accuracies (p) for each species are at the
end of each row and positive predictive values (PPV) at the end of each column. Total
accuracy is in the bottom right corner. The amount of explained variance is in brackets.

1NN classifier for all species based on 22 PCs (~80% explained variance)

Actual\predicted Green Taber Sorin Uapac Strom p (%)

Green 5 2 2 4 2 33.3

Taber 3 8 7 6 6 26.7

Sorin 3 5 1 7 5 4.8

Uapac 3 7 6 9 4 31.0

Strom 7 5 3 2 7 29.2

PPV (%) 23.8 29.6 5.3 32.1 29.2 25.2

Even by using the modified DIE1VA, we get significantly higher accuracies for all species
in 10 minutes than by using PCA to extract features. By using One-vs-All classifiers for
each species we get another significant increase in accuracy. Nearly all of the producer
accuracies as well as the total accuracies are significantly higher when using One-vs-
All classifiers for each species instead of one classifier for all species with the same

36

Table 4.13. Parameter sets used to test the effect of multiple feature subsets for each
species on the Bouamir data.

Set n nHFS mHFS nb minimpr nc maxtime

1 1 3 30 2 0.010 3 120

2 3 5 40 5 0.010 3 120

3 5 10 50 10 0.005 5 180

Table 4.14. Confusion matrices using 1 1NN classifier for all species, with features gen-
erated by a modified version of DIE1VA using parameters in Set 1 (top), 2 (middle) and 3
(bottom). Producer accuracies (p) for each species are at the end of each row and pos-
itive predictive values (PPV) at the end of each column. Total accuracy is in the bottom
right corner. Elapsed time is in brackets.

1 1NN classifier for all species, Set 1 (610 s)

Actual\predicted Green Taber Sorin Uapac Strom p (%)

Green 7 0 3 2 3 46.7

Taber 3 14 1 6 6 46.7

Sorin 0 4 11 4 2 52.4

Uapac 5 5 3 11 5 37.9

Strom 2 8 2 3 9 37.5

PPV (%) 41.2 45.2 55.0 42.3 36.0 43.7

1 1NN classifier for all species, Set 2 (1457 s)

Actual\predicted Green Taber Sorin Uapac Strom p (%)

Green 10 1 0 2 2 66.7

Taber 4 16 1 6 3 53.3

Sorin 1 2 5 6 7 23.8

Uapac 5 5 5 9 5 31.0

Strom 0 4 2 4 14 58.3

PPV (%) 50.0 57.1 38.5 33.3 45.2 45.4

1 1NN classifiers for all species, Set 3 (7504 s)

Actual\predicted Green Taber Sorin Uapac Strom p (%)

Green 6 0 3 4 2 40.0

Taber 2 19 3 4 2 63.3

Sorin 2 3 7 5 4 33.3

Uapac 4 3 3 18 1 62.1

Strom 1 1 3 3 16 66.7

PPV (%) 40.0 73.1 36.8 52.9 64.0 55.5

parameters. The One-vs-All classifiers also have a higher accuracy in a shorter time
when using different parameters compared to the one classifier, which would indicate that

37

Table 4.15. Confusion matrices using the original DIE1VA with parameters in Set 1 (top),
2 (middle) and 3 (bottom), and 1NN classifiers for each species. Producer accuracies
(p) for each species are at the end of each row and positive predictive values (PPV) at
the end of each column. Total accuracy is in the bottom right corner. Elapsed time is in
brackets.

1 1NN classifier for each species (1396 s)

Actual\predicted Green Taber Sorin Uapac Strom p (%)

Green 10 2 0 0 3 66.7

Taber 6 15 5 3 1 50.0

Sorin 3 3 11 2 2 52.4

Uapac 1 5 3 14 6 48.3

Strom 1 3 2 6 12 50.0

PPV (%) 47.6 53.6 52.4 56.0 50.0 52.1

3 1NN classifiers for each species (3662 s)

Actual\predicted Green Taber Sorin Uapac Strom p (%)

Green 11 0 1 3 0 73.3

Taber 3 26 1 0 0 86.7

Sorin 3 3 10 4 1 47.6

Uapac 5 1 2 20 1 69.0

Strom 5 4 2 2 11 45.8

PPV (%) 40.7 76.5 62.5 69.0 84.6 65.5

5 1NN classifiers for each species (15499 s)

Actual\predicted Green Taber Sorin Uapac Strom p (%)

Green 15 0 0 0 0 100

Taber 0 30 0 0 0 100

Sorin 2 3 14 1 1 66.7

Uapac 0 1 2 24 2 82.8

Strom 0 2 3 1 18 75.0

PPV (%) 88.2 83.3 73.7 92.3 85.7 84.9

at least by using the method of FS used in DIE1VA it is more efficient to select feature
sets for each species individually than to look for one feature set to classify all species.
In less than 25 minutes, DIE1VA achieved an accuracy of 52.1% using parameters in Set
1 while the modified version achieved an accuracy of 45.4% in about the same amount
of time using parameters in Set 2. In just over an hour, DIE1VA achieved an accuracy
of 65.5% using parameters in Set 2 while the modified version took more than 2 hours
to achieve an accuracy of 55.5% using parameters in Set 3. In about 4 hours and 20
minutes DIE1VA achieved an accuracy of 84.9% using parameters in Set 3.

38

5 DISCUSSION

In this chapter we will discuss how DIE1VA could be used based on results from the ex-
periments, compare the results to previous research and present ideas for improvement
and further research of the method.

5.1 General notes

The results of the experiments indicate that by changing the parameters to make the
search for the best feature sets more thorough we are able to achieve higher accuracy
on all of the datasets at the cost of additional time consumption. The method is in part
a wrapper and features are only added if the model that is built on the new feature set is
evaluated to have higher accuracy than the previous one.

When a dataset is randomly partitioned for 10-fold cross-validation during the evaluation
there is a range of accuracies the classifier can get because of that randomness. If that
range is larger than minimpr it is possible for a feature to be added simply because of
chance in the way a particular partitioning happened to result in a higher accuracy than
we previously had, which has nothing to do with the additional feature actually being
useful to the classification task. However, in practice the possible negative effect of this
is small compared to the benefits of using a wrapper. Especially since many times the
features that improve accuracy the most are not ranked even in the top 5% by any filters
while the ones that are, are often redundant to many of the already selected features.

Building the models to evaluate the accuracies is time-consuming, which means that in
practical applications an important thing to consider when using DIE1VA is the trade-off
between time consumption and classification accuracy. Which of them is prioritized over
the other, and by how much, depends on the application and affects the optimal choice
of parameters in terms of the trade-off. However, for typical applications in tree species
classification the time consumption, if it is not excessive such as over a week, is not an
important factor and maximum classification accuracy can be pursued if desired.

Experience with the given data can guide parameter choices. For example, if we are
trying to raise the classification accuracy for some data, from 96% to as close to 100% as
possible, the value of minimpr should be relatively low (maybe even 0), because as we
get closer to 100% the possible improvements get smaller. If we know how long it takes
to go through a certain percentage of the top ranked features and that useful features
would not be found after that point, we can set that time as maxtime.

39

Information of the distribution of accuracies from HFS-generated subsets could be used
in deciding the ratio of n/nb. It is important to note, that a higher value of n does not nec-
essarily lead to higher classification accuracy. A higher value of n further exacerbates the
bias of 1NN classifiers with balanced class weights on the Wytham data in Section 4.1.3,
resulting in lower accuracy (between using 6 and 10 1NN classifiers for each species, the
total classification accuracy as well as the weighed accuracy decreases while the number
of ACERPS predictions increases). These biases could be neutralized by combining dif-
ferent classifiers or by adjusting class weights for example, and research could be done
regarding what is the most effective way to do it and why.

Even though optimizing the parameters and running the method takes time, once FS is
done the classification is fast and the selected feature subsets can be saved for later use.
This way we could continually improve the accuracy of our classifier by finding more and
more feature sets and keeping the best ones for each species. Feature sets found on
different datasets (with the same species growing in different environmental conditions,
or among a different set of other species) could also be combined. Research could be
done regarding whether or not (or to what extent) this makes the classifier generalise to
a larger range of conditions or to a larger set of possible other species.

5.2 Wytham

The results show some improvement over those presented in [2], especially when using a
kNN classifier. With default class weights DIE1VA achieved on average 84.88% accuracy
in about 40 minutes, almost 5 pp higher and with a significantly lower standard deviation
than the corresponding result in [2] (time consumption was not reported). Given enough
time, the improvements in total and producer accuracies DIE1VA can achieve over those
in [2] are significant across the board. As the most extreme example of this, in 24 hours
using 10 weighed 1NN and SVM classifiers, DIE1VA achieved a total accuracy of 91.5%
with producer accuracies of at least 64% for each species (three of them having producer
accuracies above 95%). Using only one feature subset and classifier for all species re-
sulted in either 80% total accuracy or producer accuracies above 57% for each species in
[2]. The producer accuracy of the dominant species ACERPS, while using default class
weights, was somewhat lower in many cases compared to that in [2]. This is most likely
because the classifier used in [2] (misclassifying 122 other trees as ACERPS while mis-
classifying ACERPS only 8 times) was even more heavily biased towards ACERPS than
the ones in the experiments of this paper.

It seems that when we try to find a single feature set to maximize total accuracy in a
dataset where one of the species has such a strong majority, that subset has a tendency
to be biased towards classifying the dominant species over others (because it has the
largest effect on total accuracy). Consequently, the subset can only be used to correctly
classify members of other species if they have enough of a distance to members of the
dominant species in the space spanned by that same subset. The subset might be com-

40

pletely useless in distinguishing one of the species from the dominant one though, and
if the species are close to each other in the feature space, a majority of the k nearest
neighbors is very likely to be of the dominant species due to it having significantly more
representation. Using different features for different species could give the less domi-
nant species a better chance to be found by the One-vs-All classifiers, while using more
subsets for each species could lower the chance that enough of the dominant species’
One-vs-All classifiers are biased to the point that it affects the final outcome of the major-
ity vote.

Only one of the 118 selected features is among the 17 features used in [2] (’StemBranch-
Length’ for classifying QUERRO). This seems to indicate that many of the thousands of
additional features that are left after preprocessing (7000 – 10000 on the datasets used
in the experiments) can be as useful in classification as the 17 manually chosen features
in [2], at least on this dataset and in combination with other features. Further research
could be done on what is the relationship of the selected features (which are more difficult
to understand) to the simpler original 17 features, e.g. by studying their correlations.

5.3 Other datasets

On the Punkaharju data there was much less room for improvement in terms of accuracy,
but it seems that a few more observations of each species can be found as a result of
using different features for different species and a few more by using multiple different
feature sets in classifying each species.

The results on Bouamir data show that using multiple One-vs-All classifiers for each
species with different features enables us to achieve higher classification accuracy in
a shorter time than using only one feature set for all species. The modified version of
DIE1VA also achieves higher accuracy than using PCA in combination with the chosen
classification method, so at least some of the improvement in terms of accuracy is due to
the algorithm used to build and refine the subset for the classifier to use.

5.4 Ideas for further research

There are ways to tweak DIE1VA to achieve a more specific objective than to just max-
imize overall classification accuracy. The voting method could be modified to introduce
some desirable bias; for example, if we want to minimize the number of false positives for
class A even at the expense of accuracy, we can change the voting so that any time at
least one of the One-vs-All classifiers classifies an observation as a class other than A,
the final prediction cannot be A. The voting could also be modified so that each vote is
weighed according to the One-vs-All classifier’s accuracy for example, which was evalu-
ated during the execution of the method and could be a more reasonable tie-breaker than
picking the class at random and also provide some insight into how confident we can be
of the classifiers prediction.

41

Further research could be done to see if the performance can be improved by changing
some of the parameter values during the execution. Intuitively it would make sense that
we lower the values of minimpr and nc as each One-vs-All classifier gets closer to 100%
accuracy and good additional features are increasingly hard to find. The way in which
this should be done is far from trivial and likely also depends on the kind of data we are
dealing with. Observation weights could also be modified during the execution to make
the method pay more attention to observations that have not been correctly classified
yet, which could help the final classifier take a wider range of observations into account.
Research could also be done on using One-vs-One classifiers that distinguish between
a pair of species instead of One-vs-All. The time-based parameter maxtime could be re-
placed by an iteration-based maxiter that would not affect the performance of the method
depending on the hardware it is executed on.

42

6 CONCLUSION

Since QSMs enable the computing of thousands of tree features, there is potential to
improve tree classification from previous studies which had only a fraction of the feature
data that is now available. The abundance of features forces us to focus on feature selec-
tion and use a different approach than in previous studies [1, 2], when it was possible to
test and optimize classifiers using every possible feature combination. On the other hand,
we could use more of the features by using them only in some part of the classification
(e.g. for a single species) instead of the classification as a whole (i.e. for all species).

A new method was developed to select features from high-dimensional QSM feature
spaces to be used in tree species classification. The method, called DIE1VA, is a filter-
wrapper hybrid that selects multiple feature sets for One-vs-All classification of each of
the species and combines the votes of the One-vs-All classifiers to make the final predic-
tion. Using multiple feature sets for each species DIE1VA is able to utilize more data in
the classification than only using one feature set for all species.

The method was tested on three datasets (QSMs acquired from Wytham (UK), Punka-
harju (Finland) and Bouamir (Cameroon)) and experiments showed that, given enough
computational time, it achieved higher classification accuracies than previous experi-
ments on the Wytham and Punkaharju data, although the improvement in Punkaharju
data was small in part due to the accuracy already being close to 100%. The increase in
accuracy is in part due to having thousands of features to choose from instead of a dozen
or so, but also due to the method utilizing more of the data by using more features.

On the Wytham dataset the method achieved an accuracy of 84.88% in less than an
hour, which is almost 5 percentage points higher than in previous experiments. In 24
hours it reached an accuracy of 91.5%, while having at least 64% accuracy for each
class compared to previous studies having either 80% total accuracy or 57% producer
accuracies. On the Punkaharju dataset the method achieved up to 98.9% accuracy, 2
percentage points higher than in previous studies. On Bouamir data a modified version
of DIE1VA, which only selected one feature set to be used to classify all species, achieved
significantly higher accuracies than performing principal component analysis before using
one kNN classifier for all species. Using the original version of DIE1VA to select multiple
feature sets for each species instead of one for all species resulted in another significant
improvement in accuracy.

The presented method has several parameters that greatly affect its performance and

43

experiments were done to study some of their effect, but there is still a need for more
research, whether it is optimizing the parameters for different kinds of data or improving
the method itself. Even though the method often takes hours to run, once the feature
sets for each class are selected they can be saved and the classification is fast. The
method could be used as is for more accurate tree species classification than previously,
but there are still ways to improve it or tune it for a specific task. Further improvements to
the method could make it viable for even more species and applications.

44

REFERENCES

[1] Åkerblom, M., Raumonen, P., Mäkipää, R. and Kaasalainen, M. Automatic tree
species recognition with quantitative structure models. Remote Sensing of Envi-
ronment 191 (2017), 1–12.

[2] Terryn, L., Calders, K., Disney, M., Origo, N., Malhi, Y., Newnham, G., Raumonen,
P., Åkerblom, M. and Verbeeck, H. Tree species classification using structural fea-
tures derived from terrestrial laser scanning. ISPRS journal of photogrammetry and
remote sensing 168 (2020), 170–181.

[3] Guyon, I. and Elisseeff, A. An Introduction to Variable and Feature Selection. Jour-
nal of Machine Learning Research 3 (2003), 1157–1182.

[4] Seyyedi, S. H. and Minaei-Bidgoli, B. Using learning automata to determine proper
subset size in high-dimensional spaces. Journal of Experimental & Theoretical Ar-
tificial Intelligence 29 (2017), 415–432.

[5] Duda, R. O., Hart, P. E. and Stork, D. G. Pattern classification. Wiley, 2001.
[6] Fukunaga. Introduction to statistical pattern recognition. Academic Press, 1990.
[7] Jolliffe, I. T. Principal component analysis. Springer, 2002.
[8] Love, B. Comparing supervised and unsupervised category learning. Psychonomic

bulletin & review 9 (2002), 829–835.
[9] Pearson, K. On the criterion that a given system of deviations from the probable in

the case of a correlated system of variables is such that it can be reasonably sup-
posed to have arisen from random sampling. The London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science 50 (1900), 157–175.

[10] Ding, C. and Peng, H. Minimum redundancy feature selection from microarray gene
expression data. Computational Systems Bioinformatics 2 (2003), 523–528.

[11] Robnik-Sikonja, M. and Kononenko, I. Theoretical and Empirical Analysis of ReliefF
and RReliefF. Machine Learning 53 (2003), 23–69.

[12] Gu, Q., Li, Z. and Han, J. Generalized Fisher Score for Feature Selection. Uncer-
tainty in Artificial Intelligence 27 (2011), 266–273.

[13] Zhang, D., Chen, S. and Zhou, Z. Constraint Score: A new filter method for feature
selection with pairwise constraints. Pattern Recognition 41 (2008), 1440–1451.

[14] Ruiz, R., Riquelme, J. C., Aguilar-Ruiz, J. and García-Torres, M. Fast feature selec-
tion aimed at high-dimensional data via hybrid-sequential-ranked searches. Expert
Systems with Applications 39 (2012), 11094–11102.

[15] Bermejo, P., de la Ossa, L., Gámez, J. A. and Puerta, J. M. Fast wrapper fea-
ture subset selection in high-dimensional datasets by means of filter re-ranking.
Knowledge-Based Systems 25 (2012), 35–44.

[16] Turner, K. and Oza, N. C. Decimated input ensembles for improved generalization.
International Joint Conference on Neural Networks 5 (1999), 3069–3074.

45

[17] Cover, T. and Hart, P. Nearest neighbor pattern classification. IEEE Transactions
on Information Theory 13 (1967), 21–27.

[18] Guenther, N. and Schonlau, M. Support Vector Machines. The Stata Journal 16
(2016), 917–937.

[19] Åkerblom, M., Raumonen, P., Kaasalainen, M. and Casella, E. Analysis of Geo-
metric Primitives in Quantitative Structure Models of Tree Stems. Remote sensing
7 (2015), 4581–4603.

[20] Raumonen, P., Kaasalainen, M., Åkerblom, M., Kaasalainen, S., Kaartinen, H., Vas-
taranta, M., Holopainen, M., Disney, M. and Lewis, P. Fast Automatic Precision Tree
Models from Terrestrial Laser Scanner Data. Remote Sensing 5 (2013), 491–520.

[21] Calders, K., Newnham, G., Burt, A., Murphy, S., Raumonen, P., Herold, M., Cul-
venor, D., Avitabile, V., Disney, M., Armston, J. and Kaasalainen, M. Non-destructive
estimates of above-ground biomass using terrestrial laser scanning. Methods in
Ecology and Evolution 6 (2015), 198–208.

46

A MATLAB CODE OF THE DIE1VA METHOD

1 function [pred ,preds ,acc ,elapsedTime ,finalsubsets ,finallosses] = ...
2 DIE1VA(X,Y,n,n_HFS ,m,n_b ,minimpr ,n_c ,maxtime ,NameValueArgs)
3

4 arguments
5 % Feature values
6 X
7 % Class labels
8 Y
9 % Parameters of DIE1VA

10 n
11 n_HFS
12 m
13 n_b
14 minimpr
15 n_c
16 maxtime
17 NameValueArgs.FSMethod string = ’fisher ’
18 NameValueArgs.CMethod string = ’knn’
19 NameValueArgs.NumNeighbors uint32 = 1
20 NameValueArgs.Distance string = ’euclidean ’
21 NameValueArgs.Weighed string = ’off’
22 end
23

24 tStart = tic;
25 unqspecies = unique(Y);
26 finalsubsets = zeros(length(unqspecies)*n,20);
27 finallosses = zeros(length(unqspecies)*n,1);
28 for i=1: length(unqspecies)
29

30 % Combine other species into one class, ’other’
31 otheri = 1: length(unqspecies);
32 otheri(i) = [];
33 other = categories(removecats(unqspecies(otheri)));
34 onevsall = mergecats(Y,other ,’other ’);
35

36 % Apply balanced or default class weights
37 if strcmp(NameValueArgs.Weighed ,’on’)
38 W = applyWeights(onevsall);
39 else
40 W = ones(length(Y) ,1);
41 end
42

47

43 % Rank features using the chosen filter
44 if strcmp(NameValueArgs.FSMethod ,’fisher ’)
45 scores = fisherScore(X,onevsall ,[] ,0);
46 scores = sortrows(scores ,2,’descend ’);
47 idx = scores (:,1) ’;
48 elseif strcmp(NameValueArgs.FSMethod ,’chi2’)
49 [idx ,~] = fscchi2(X’,onevsall);
50 elseif strcmp(NameValueArgs.FSMethod ,’mrmr’)
51 [idx ,~] = fscmrmr(X’,onevsall);
52 elseif strcmp(NameValueArgs.FSMethod ,’relief ’)
53 [idx ,~] = relieff(X’,onevsall ,1);
54 elseif strcmp(NameValueArgs.FSMethod ,’constraint ’)
55 scores = constraintScore(X,onevsall ,50 ,10 ,0.1);
56 scores = sortrows(scores ,2,’descend ’);
57 idx = scores (:,1) ’;
58 end
59

60 % Generate feature subsets using HFS and save their losses
61 subsets = zeros(n_b ,20);
62 losses = zeros(n_b ,1);
63 for j=1:n_b
64 [subset ,loss] = HybridFS(X,onevsall ,idx ’,n_HFS ,m,W, ...
65 ’CMethod ’,NameValueArgs.CMethod , ...
66 ’NumNeighbors ’,NameValueArgs.NumNeighbors , ...
67 ’Distance ’,NameValueArgs.Distance);
68

69 % Check if accuracy can be improved by removing features
70 while length(subset) > 1
71 [subset ,betterloss] = removeToImproveAccuracy(X,onevsall , ...
72 subset ,loss ,’CMethod ’,NameValueArgs.CMethod , ...
73 ’Weighed ’,NameValueArgs.Weighed , ...
74 ’Distance ’,NameValueArgs.Distance , ...
75 ’NumNeighbors ’,NameValueArgs.NumNeighbors);
76

77 % Move on if accuracy did not improve
78 if loss == betterloss
79 break;
80 end
81

82 % Save new loss if accuracy improved
83 loss = betterloss;
84 end
85 subsets(j,1: length(subset)) = subset;
86 losses(j) = loss;
87 idx (1:m) = [];
88 end
89

90 % Sort HFS-generated subsets according to their losses
91 subsets = [subsets , losses];
92 subsets = sortrows(subsets ,size(subsets ,2));
93 losses = subsets(:,end);
94 subsets = subsets (:,1:end -1);

48

95

96 % Refine HFS-generated subsets starting with the one with the lowest
97 % loss
98 for x=1:n
99 subset = subsets(1,subsets (1,:) > 0);

100 prevloss = losses (1);
101 subsets (1,:) = [];
102

103 % Combine HFS-generated subsets to see if accuracy improves enough
104 for j=1: size(subsets ,1)
105 newsubset = union(subset ,subsets(j,subsets(j,:) > 0));
106 if newsubset (1) == 0
107 newsubset (1) = [];
108 end
109

110 % Build classifier
111 if strcmp(NameValueArgs.CMethod ,’knn’)
112 mdl = fitcknn(X(newsubset ,:) ’,onevsall ,’KFold ’,10, ...
113 ’Weights ’,W,’NumNeighbors ’,NameValueArgs.NumNeighbors ,

...
114 ’Distance ’,NameValueArgs.Distance);
115 elseif strcmp(NameValueArgs.CMethod ,’svm’)
116 mdl = fitcsvm(X(newsubset ,:) ’,onevsall ,’Weights ’,W, ...
117 ’KFold ’ ,10);
118 end
119

120 % Evaluate loss
121 loss = kfoldLoss(mdl);
122

123 % Check if accuracy can be improved by removing features
124 while length(newsubset) > 1
125 [newsubset ,betterloss] = removeToImproveAccuracy(X, ...
126 onevsall ,newsubset ,loss , ...
127 ’CMethod ’,NameValueArgs.CMethod , ...
128 ’Weighed ’,NameValueArgs.Weighed , ...
129 ’Distance ’,NameValueArgs.Distance , ...
130 ’NumNeighbors ’,NameValueArgs.NumNeighbors);
131

132 % Move on if accuracy did not improve
133 if loss == betterloss
134 break;
135 end
136

137 % Save new loss if accuracy improved
138 loss = betterloss;
139 end
140

141 % If improvement is not at least minimpr for each new feature,
142 % it is not considered enough
143 if loss < prevloss - minimpr *(length(newsubset) - ...
144 length(subset))
145 subset = newsubset;

49

146 prevloss = loss;
147 end
148 end
149

150 % Add or remove features one by one until there’s little to no improvement
151 while length(subset) > 1
152

153 % remove features if it improves performance
154 [subset ,loss] = removeToImproveAccuracy(X,onevsall ,subset , ...
155 prevloss ,’Weighed ’,NameValueArgs.Weighed , ...
156 ’CMethod ’,NameValueArgs.CMethod , ...
157 ’NumNeighbors ’,NameValueArgs.NumNeighbors , ...
158 ’Distance ’,NameValueArgs.Distance);
159

160 % If accuracy did not improve by removing features, try adding them
161 if loss == prevloss
162

163 % Re-rank features based on their fisher scores with already
164 % selected features
165 fisherscores = fisherScore(X,onevsall ,subset ,0);
166 fisherscores = sortrows(fisherscores ,2,’descend ’);
167 idx = fisherscores (:,1);
168

169 % add a feature if it improves performance
170 [subset ,loss] = addToImproveAccuracy(X,onevsall , ...
171 subset ,prevloss ,idx ’,n_c ,minimpr ,maxtime , ...
172 ’CMethod ’,NameValueArgs.CMethod , ...
173 ’Weighed ’,NameValueArgs.Weighed , ...
174 ’Distance ’,NameValueArgs.Distance , ...
175 ’NumNeighbors ’,NameValueArgs.NumNeighbors);
176

177 % Move on if accuracy did not improve
178 if loss == prevloss
179 break;
180 end
181 end
182

183 % Save new loss if accuracy improved
184 prevloss = loss;
185 end
186

187 % Save the final subset and corresponding loss
188 finalsubsets ((i-1)*n+x,1: length(subset)) = subset;
189 finallosses ((i-1)*n+x) = loss;
190 end
191 end
192

193 % Make One-vs-All predictions for every species using features obtained for
194 % each species
195 preds = categorical(zeros(length(unqspecies)*n,length(Y)));
196 for i=1: length(unqspecies)
197 for x=1:n

50

198

199 % Combine other species into one class, ’other’
200 otheri = 1: length(unqspecies);
201 otheri(i) = [];
202 other = categories(removecats(unqspecies(otheri)));
203 onevsall = mergecats(Y,other ,’other ’);
204

205 % Apply balanced or default class weights
206 if strcmp(NameValueArgs.Weighed ,’on’)
207 W = applyWeights(onevsall);
208 else
209 W = ones(length(Y) ,1);
210 end
211

212 % Build classifier
213 if strcmp(NameValueArgs.CMethod ,’knn’)
214 mdl = fitcknn(X(finalsubsets ((i-1)*n+x, ...
215 finalsubsets ((i-1)*n+x,:) > 0) ,:)’, ...
216 onevsall ,’Weights ’,W,’KFold ’,10, ...
217 ’Distance ’,NameValueArgs.Distance , ...
218 ’NumNeighbors ’,NameValueArgs.NumNeighbors);
219 elseif strcmp(NameValueArgs.CMethod ,’svm’)
220 mdl = fitcsvm(X(finalsubsets ((i-1)*n+x, ...
221 finalsubsets ((i-1)*n+x,:) > 0) ,:)’, ...
222 onevsall ,’Weights ’,W,’KFold ’ ,10);
223 end
224

225 % Make One-vs-All predictions
226 preds((i-1)*n+x,:) = kfoldPredict(mdl);
227 end
228 end
229

230 % Combine One-vs-All predictions to make final prediction based on their
231 % votes
232 pred = categorical(zeros(1,length(Y)));
233 for i=1: size(preds ,2)
234

235 % Get all votes that are not ’other’ from one observation
236 notother = preds(preds(:,i) ~= ’other ’,i);
237

238 % If only one vote was not ’other’, assing final prediction as that class
239 if length(notother) == 1
240 pred(i) = notother;
241

242 % If all votes were ’other’ assign final prediction randomly from the
243 % included species
244 elseif isempty(notother)
245 pred(i) = unqspecies(randi(length(unqspecies)));
246

247 % If there were more than one vote for specific species, assign final
248 % prediction as the species with most votes
249 else

51

250 [~,~,C] = mode(notother);
251

252 % If there is a tie, assign final prediction randomly from the
253 % species with most votes
254 pred(i) = C{1}(randi(length(C)));
255 end
256 end
257

258 % If there are extra categories that were not in the predictions, remove them
259 pred = removecats(pred);
260

261 % Calculate accuracy of predictions
262 acc = nnz(pred == Y)/length(Y);
263

264 % Record time consumption
265 elapsedTime = toc(tStart);
266 end

52

B MATLAB CODE OF ADDTOIMPROVEACCURACY

1 function [subset ,bestloss] = addToImproveAccuracy(FV,species ,subset ,
bestloss ,featureOrder ,ncand ,minimpr ,maxtime ,NameValueArgs)

2 %ADDTOIMPROVEACCURACY Add a feature to a subset if it improves
3 %classification accuracy
4 % Add features to subset one by one according to featureOrder to see if
5 % classification accuracy improves. Finds ncand number of candidate
6 % subsets that have at least minimpr lower loss than bestavgloss and
7 % returns the one with the lowest loss. Specify maxtime (in seconds) to
8 % terminate execution after a certain amount of time has passed after the
9 % last improvement.

10 arguments
11 % Feature values
12 FV
13 species
14 subset
15 bestloss
16 % Ranking of features acquired from a filter
17 featureOrder
18 % Parameters of DIE1VA
19 ncand
20 minimpr
21 maxtime
22 NameValueArgs.CMethod string = ’knn’
23 NameValueArgs.NumNeighbors uint32 = 1
24 NameValueArgs.Distance string = ’euclidean ’
25 NameValueArgs.Weighed string = ’off’
26 end
27

28 % Temporary subset where we add new features to the already selected feature set
29 tempsubset = [subset ,0];
30

31 % Matrix and vector for saving candidate subsets and their losses
32 candidatesubsets = zeros(ncand ,size(tempsubset ,2));
33 betterlosses = ones(ncand ,1);
34

35 % The index where we save new candidate subsets and their losses
36 k = 1;
37

38 % Apply balanced or default class weights
39 if strcmp(NameValueArgs.Weighed ,’on’)
40 W = applyWeights(species);
41 else

53

42 W = ones(length(species) ,1);
43 end
44

45 % Start the clock and go through features in the order of their ranking
46 elapsedTime = 0;
47 for i=1: size(featureOrder ,2)
48 tic
49

50 % If feature has not been selected yet, add it to tempsubset
51 if ~ismember(featureOrder(i),tempsubset)
52 tempsubset(end) = featureOrder(i);
53

54 % If feature has already been selected, move on to the next feature
55 else
56 continue;
57 end
58

59 % Build classifier
60 if strcmp(NameValueArgs.CMethod ,’knn’)
61 mdl = fitcknn(FV(tempsubset ,:) ’,species ,’KFold ’,10, ...
62 ’NumNeighbors ’,NameValueArgs.NumNeighbors ,’Weights ’,W, ...
63 ’Distance ’,NameValueArgs.Distance);
64 elseif strcmp(NameValueArgs.CMethod ,’svm’)
65 mdl = fitcsvm(FV(tempsubset ,:) ’,species ,’KFold ’,10,’Weights ’,W);
66 end
67

68 % Evaluate loss
69 loss = kfoldLoss(mdl);
70

71 % If improvement in accuracy is more than minimpr, save new candidate subset
72 if loss < bestloss - minimpr
73

74 % Reset the clock, since an improvement was found
75 elapsedTime = 0;
76

77 % Save new candidate subset and corresponding loss
78 betterlosses(k) = loss;
79 candidatesubsets(k,:) = tempsubset;
80

81 % If there are ncand candidate subsets, select the one with the lowest
82 % loss and stop searching
83 if k == ncand
84 [bestloss ,besti] = min(betterlosses);
85 subset = candidatesubsets(besti ,:);
86 break;
87 end
88

89 % Move on to next index
90 k = k + 1;
91 end
92

93 % Keep track of elapsed time and stop searching if it exceeds maxtime

54

94 elapsedTime = elapsedTime + toc;
95 if maxtime < elapsedTime
96 break;
97 end
98 end
99

100 % If any candidate subsets were found, choose the one with the lowest loss
101 % (betterloss == 1 if no improvements were found)
102 [betterloss ,besti] = min(betterlosses);
103 if betterloss ~= 1
104 bestloss = betterloss;
105 subset = candidatesubsets(besti ,:);
106 end
107 end

55

C MATLAB CODE OF
REMOVETOIMPROVEACCURACY

1 function [subset ,loss] = removeToImproveAccuracy(FV,species ,subset ,loss ,
NameValueArgs)

2 %REMOVETOIMPROVEACCURACY Remove a feature if it improves accuracy.
3 % Removes the one feature that improves classification accuracy the most
4 % (if any). Rows of FV correspond to features, columns
5 % to observations.
6 arguments
7 % Feature values
8 FV
9 species

10 subset
11 loss
12 NameValueArgs.CMethod string = ’knn’
13 NameValueArgs.NumNeighbors uint32 = 1
14 NameValueArgs.Distance string = ’euclidean ’
15 NameValueArgs.Weighed string = ’off’
16 end
17

18 len = length(subset);
19

20 % Create all possible feature combinations that can be made by removing one
21 % feature from the subset, initialize vector to save the corresponding losses
22 featuresubsets = nchoosek(subset ,len -1);
23 iter = size(featuresubsets ,1);
24 losses = zeros(iter ,1);
25

26 % Loop through every possible combination
27 for k=1: iter
28

29 inputspace = FV(featuresubsets(k,:) ,:);
30

31 % Create partition and initialize the number of incorrect predictions
32 cv = cvpartition(length(species),’KFold’ ,10);
33 wrong = 0;
34

35 % Loop through test sets in evaluating the classifier
36 for i=1:cv.NumTestSets
37

38 % Get training and test sets
39 trainSet = cv.training(i);

56

40 testSetIdx = find(cv.test(i));
41

42 % Apply balanced or default class weights on the training set
43 if strcmp(NameValueArgs.Weighed ,’on’)
44 W = applyWeights(species(trainSet));
45 else
46 W = ones(nnz(trainSet) ,1);
47 end
48

49 % Build classifier based on training set
50 if strcmp(NameValueArgs.CMethod ,’knn’)
51 mdl = fitcknn(inputspace (:,trainSet)’,species(trainSet), ...
52 ’NumNeighbors ’,NameValueArgs.NumNeighbors ,’Weights ’,W, ...
53 ’Distance ’,NameValueArgs.Distance);
54 elseif strcmp(NameValueArgs.CMethod ,’svm’)
55 mdl = fitcsvm(inputspace (:,trainSet)’,species(trainSet) ,...
56 ’Weights ’,W);
57 end
58

59 % Predict the class of each observation in test set
60 for j=1:cv.TestSize(i)
61 label = predict(mdl ,inputspace (:, testSetIdx(j))’);
62

63 % If prediction was incorrect, update the number of incorrect
64 % predictions
65 if label ~= species(testSetIdx(j))
66 wrong = wrong + 1;
67 end
68 end
69 end
70

71 % Save the loss of this feature set
72 losses(k) = wrong/length(species);
73 end
74

75 % Get the subset with the lowest loss
76 [newloss ,besti] = min(losses);
77 newsubset = featuresubsets(besti ,:);
78

79 % If new loss is less than the old one, update subset and loss
80 if newloss < loss
81 subset = newsubset;
82 loss = newloss;
83 end
84 end

	Introduction
	Theoretical background
	Principal Component Analysis
	Feature Selection
	The χ2 test
	Minimum redundancy maximum relevance algorithm
	ReliefF
	Fisher score
	Constraint score
	Combining filters with wrappers
	Other improvements

	Classification methods
	k-nearest neighbors
	Support vector machine

	Materials and methods
	Computing structural tree features from QSMs
	Data
	Wytham woods, UK
	Punkaharju, Finland
	Bouamir, Cameroon

	Preprocessing
	The method: Decimated Input Ensembles for One Vs All Classification (DIE1VA)
	Overview
	Details of the method

	Results
	Wytham
	The effect of the number of feature subsets used and the chosen feature filter
	Robustness of DIE1VA
	Combining SVM and 1NN
	Selected features

	Punkaharju
	Bouamir

	Discussion
	General notes
	Wytham
	Other datasets
	Ideas for further research

	Conclusion
	References
	Appendix Matlab code of the DIE1VA method
	Appendix Matlab code of addToImproveAccuracy
	Appendix Matlab code of removeToImproveAccuracy

