

Klaus Uhle

 PREDICTING STOCK MARKET LIQUIDITY
USING NEURAL NETWORKS

Faculty of Engineering and Natural Sciences
Master of Science Thesis

October 2020

ABSTRACT

Klaus Uhle: Predicting Stock Market Liquidity Using Neural Networks
Master of Science Thesis
Tampere University
Industrial Engineering and Management
October 2020

This thesis proposes a long-short term memory prediction model for stock market liquidity. The
prediction task was defined as a time series regression problem of the next step limit order book
quantity. Level 1 depth and multi-level depth of the limit order book were used as a measure of
the stock liquidity. The objective of the thesis was to research the prediction capabilities of neural
networks in this prediction task.

Several popular neural networks were investigated for time series prediction and stock quan-
tities from NASDAQ stocks were analyzed to build long-short term memory prediction model. The
used dataset included intraday limit order book data from five stocks during five full trading days
in 2014. The used stocks were Apple, Facebook, Google, Intel, and Microsoft. The prediction
model was first optimized using Apple stock data and then tested with all the stocks. The perfor-
mance of the long short-term memory prediction model was compared against a naïve prediction
model that was used as a benchmark.

The long short-term memory prediction model performed better than the benchmark model in
the case of the multi-level depth liquidity prediction for Apple stock. Level I depth prediction was
not found suitable for the regression prediction task. The long short-term memory prediction
model proved prediction capabilities only for the Apple stock that was used to optimize the model,
but it was not able to generalize the prediction capability for the other stocks. For them, the naïve
model outperformed the long short-term memory prediction model. This thesis provides evidence
of the prediction capability for the optimized neural network prediction model but does not show
any generalization capability.

Key words: Neural networks, limit order book, stock market liquidity, time series prediction

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

TIIVISTELMÄ

Klaus Uhle: Osakemarkkinoiden likviditeetin ennustaminen neuroverkoilla
Diplomityö
Tampereen Yliopisto
Tuotantotalouden tutkinto-ohjelma
Lokakuu 2020

Tämä diplomityö esittää uuden pitkän lyhytaikaisen muistin neuroverkkoennustemallin osake-
markkinoiden likviditeetin ennustamista varten. Ennustustehtäväksi määritettiin regressiivinen ai-
kasarjaennuste, jossa tavoitteena on ennustaa sekä tarjouskirjan ensimmäisen tason tarjousten
määrää, että useamman tason tarjousten määrää seuraavan tarjouskirjatapahtuman hetkellä.
Diplomityön tavoitteena oli tutkia neuroverkkojen ennustuskykyä tässä ennustetehtävässä.

Työssä tutkittiin useiden tunnettujen neuroverkkojen sopivuutta NASDAQ:in osakkeiden tar-
jousmäärien aikasarjaennustamiseen, minkä perusteella päädyttiin rakentamaan pitkän lyhytai-
kaisen muistin ennustemalli. Käytetty tietoaineisto sisälsi viiden eri osakkeen päivänsisäistä tar-
jouskirjadataa viiden päivän ajalta vuodelta 2014. Tietoaineistoon kuuluvat osakkeet olivat Apple,
Facebook, Google, Intel ja Microsoft. Ennustemalli optimoitiin käyttämällä Applen osakedataa ja
myöhemmin mallia testattiin käyttämällä muiden osakkeiden dataa. Lopuksi pitkän lyhytaikaisen
muistin ennustemallin suorituskykyä verrattiin naiiviin ennustemalliin.

Pitkän lyhytaikainen muistin ennustemalli suoriutui ennustamisesta naiivia ennustemallia pa-
remmin Applen osakkeen tarjouskirjan usean tason tarjousten määrää ennustettaessa. Ensim-
mäisen tason ennustaminen ei sen sijaan soveltunut regressiotehtäväksi. Pitkän lyhytaikainen
muistin ennustemalli osoitti kykyä ennustaa vain Applen osakkeen datalla, jota oli myös käytetty
ennustemallin optimoinnissa. Se ei kuitenkaan kyennyt yleistämään ennustuskykyä muille osak-
keille, vaan naiivi ennustemalli suoriutui paremmin niiden ennustamisessa. Tämä diplomityö
osoittaa ennustuskykyä optimoidulle neuroverkkomallille, mutta ei osoita sen yleistettävyyttä.

Avainsanat: Neuroverkot, tarjouskirja, likviditeetti, aikasarjaennustaminen

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck –ohjelmalla.

PREFACE

I want to especially thank my supervisor Juho Kanniainen for giving me this opportunity

to work on this thesis and for giving me comprehensive guidance. Another big thanks to

Adamantios Ntakaris and Dat Tran for supporting me with the data understanding and

the model development. Finally, thanks to my friends and colleagues for sharing ideas

and inspiring machine learning conversations during lunchtime and after work hours.

Helsinki, 28th October 2020

Klaus Uhle

CONTENTS

1. INTRODUCTION .. 1

1.1 Objective of the thesis .. 2

1.2 Organization of the thesis .. 3

2. LIMIT ORDER BOOK AND MARKET LIQUIDITY ... 4

2.1 Limit order book ... 4

2.2 Stock market liquidity ... 6

2.3 Liquidity measures ... 8

2.4 Liquidity determinants .. 10

2.5 Predicting market liquidity .. 11

2.6 Previous research .. 12

3. METHODS USED ... 13

3.1 Time series prediction .. 13

3.2 Supervised machine learning and regression 14

3.3 Artificial neural networks .. 15

3.3.1 Node ... 15
3.3.2 Architecture ... 16
3.3.3 Learning .. 17

3.4 Feedforward neural networks ... 21

3.4.1 Single-layer perceptron ... 22
3.4.2 Multi-layer perceptron ... 22
3.4.3 Convolution neural network ... 24

3.5 Recurrent neural networks ... 25

4. DATA ANALYSIS .. 29

4.1 Data understanding .. 29

4.2 Descriptive analysis ... 30

4.3 Data pre-processing ... 33

4.4 Model validation ... 33

5. RESULTS ... 35

5.1 Evaluation metrics .. 35

5.2 Models ... 36

5.3 Level 1 depth prediction ... 39

5.4 Multi-level depth prediction ... 40

6. CONCLUSION .. 45

BIBLIOGRAPHY .. 47

LIST OF ABBREVIATIONS AND SYMBOLS

AAPL Ticker for Apple stock
ANN Artificial neural network
CNN Concurrent neural network
FB Ticker for Facebook stock
FNN Feedforward neural network
GOOG Ticker for Google stock
IFRS International financial reporting standards
INTC Ticker for Intel stock
LSTM Long short-term memory
LOB Limit order book
MAE Mean average error
MLP Multi-layer perceptron
MSE Mean squared error
MSFT Ticker for Microsoft stock
RNN Recurrent neural network
OTC Over-the-counter
SLP Singe-layer perceptron
XLM Exchange liquidity measure

𝑏 bias term
𝐶𝑡 cell state

𝐷𝑡 depth at time 𝑡
𝑓𝑡 forget gate

ℎ𝑡 hidden state
𝐼 number of input nodes

𝑖𝑡 input gate
𝐽 number of hidden nodes

𝐿 loss function
𝜇 learning rate

∇ gradient
𝑜𝑡 output gate
𝑞𝑡 quantity at time 𝑡

𝜎(𝑥) non-linear activation function
𝑆 bid-ask spread

𝑠 standard deviation
𝑈 hidden weight matrix

𝑊 weight matrix
𝑧 z-score normalization

.

1

1. INTRODUCTION

Liquidity plays a central role in the operation of financial markets. It can mean different

things, but in the stock markets, the most important dimension of liquidity is the ease with

which market participants can buy or sell stocks, or the ability of stock markets to absorb

purchases or sales of large quantities without any remarkable effect on the stock prices.

(Geithner 2007) Investors find stock market liquidity important, because it affects the

return on their investment as illiquid stocks cost more and sell for less. Because of the

imperfect markets, stocks are always illiquid to some extent, which can be observed in

the bid-ask spread: the stocks cannot be bought and sold for the same price. Thus, the

analysis of liquidity changes is crucial for asset managers as well as for ordinary inves-

tors in evaluating their trading activities. In addition to increased trading costs, the illiquid-

ity is a source of risk for investors. (Faucalt et al. 2013, pp. 5) Investors will thus require

compensation not only for the trading costs, but also for the additional risks related to

the stock market liquidity. Analysis of stock market liquidity is a required tool to support

investment decisions.

The stock market liquidity can be observed in the limit order book (LOB). As LOB is

dependent on the past versions, the researchers have widely examined the LOB with

the objective to predict the future market movements. The high-frequency limit order

book is an intriguing research area due to the complex behavior of the financial markets

and the possible gains and trading strategies yielded from the findings. Mid-price and

mid-price movement prediction have been the most popular research topics (Palguna et

al. 2016; Dixon 2016; Nousi et al. 2019). While the price component of the LOB is widely

researched, the quantity component has received less attention. One previous research

examined on how liquidity in LOB evolves around scheduled and nonscheduled com-

pany announcements (Siikanen et al. 2017). Other research topics have covered liquidity

supply predictions, volatility changes and multi-level order-book imbalance (Elezovic

2009; Härdle et al. 2012; Kang 2018; Xu et al. 2019). The LOB data has also been used

in the creation of a reinforcement learning agent to perform high-frequency trading

(Wang et al. 2019).

The advances in computer science and technology have enabled fully automated high-

frequency trading, boosting the profitability of the trading departments, and attracting

interest in developing the technology further. In the last decade, with the development of

2

machine learning and time series prediction, methods have been shifting from statistical

parametric models to data-driven machine learning approaches. Artificial neural net-

works have found success in numerous pattern recognition and machine learning con-

tests, and they have proven to overcome the challenges represented with statistical mod-

els (Schmidhuber 2014). As statistical models often make unrealistic assumptions about

the distribution of the data, machine learning techniques does not make any assumptions

at all (Nousi et al. 2019). This increases in importance in the area of financial time series

prediction, since LOB is a complex, dynamic and high dimensional entity, leading to

modelling challenges that make statistical methods hard to cope with (Zhang et al. 2019).

As the trading continues for full trading hours, the LOB includes a huge amount data that

is constantly changing with the possibility of crucial patterns forming and deforming too

quickly for human to observe (Kercheval & Zhang 2015). Automation and technical de-

velopment of financial markets has significantly made information analysis more com-

plex, which creates a demand for more complex models as well. (Ntakaris et al. 2019).

Artificial neural networks are machine learning algorithms. They have adaptive learning

behavior, where the algorithm is capable of learning from previous samples and adapting

to new input parameters. (Kyaw & Xiang-Qun 2015) These algorithms are especially

useful for handling non-linear behavior such as financial time series (Speck-Planche &

Cordeiro 2015). Financial time series predictions are considered challenging prediction

tasks since there is not any straightforward method to define the nature of the financial

time series. For example, a time series used to describe stock index is generally non-

linear, non-Gaussian, non-deterministic and non-stationary. (Konar & Bhattacharya

2017, pp. 2) Artificial neural networks are one of the few methods that have found broad

success in time series prediction (Graves 2012).

1.1 Objective of the thesis

The topic of this thesis is to predict stock market liquidity using neural networks. Even

though stock market liquidity and artificial neural networks are widely researched sepa-

rately, there is not any existing research combining these two topics. In the previous

research, some statistical prediction models are presented. However, to the best of

knowledge, none of the existing research has predicted stock market liquidity using neu-

ral networks. The objective of this thesis is to develop prediction models using neural

networks to predict stock market liquidity with LOB data and to clarify the prediction ca-

pabilities of neural networks in liquidity prediction. This thesis aims to answer the two

main research questions:

RQ1: Can stock market liquidity be predicted using neural networks with LOB data?

3

RQ2: How does the proposed model perform against the naïve prediction model?

The first research question underlines the novelty of this thesis and the approach is to

search widely and experiment different prediction models to find evidence for prediction

capabilities. The second research question looks to evaluate the findings against the

simple prediction model to find out the scale of prediction capabilities, if any. This thesis

aims to describe the final solution in detail to enable reproduction attempts. Also, to help

further research, the challenges of the prediction task and model development are ex-

plained to a greater extent.

1.2 Organization of the thesis

The structure of the thesis is the following: First, Chapter 2 provides the relevant theory

background related to the stock market liquidity and LOB. Then, Chapter 3 gives a brief

introduction of time series prediction following a discussion of machine learning and ar-

tificial neural networks. After that, Chapter 4 describes the data used in the modelling. It

is followed by Chapter 5 analyses on the built models and prediction results. Finally,

Chapter 6 concludes the thesis.

4

2. LIMIT ORDER BOOK AND MARKET LIQUIDITY

2.1 Limit order book

In market microstructures, trading mechanisms are separated to order-driven and quote-

driven markets. Quote-driven markets are exchange systems in which market makers

provide the buy and sell prices to the investment products. Markets for government

bonds, currencies and commodities are usually quote-driven. In an order-driven market,

prices are created by market participants posting orders to buy and sell the investment

products. The orders made by market participants are then submitted to a LOB by market

makers. (Schwarz & Weber 1997) Stock markets are typically order-driven, for example,

New York Stock Exchange (NYSE) is an order-driven market.

In the order-driven markets, traders post two kind of orders, limit orders and market or-

ders. A limit order is an order to trade at the price level that equals or is better than the

limit price. The trade will not be executed, if market price does not reach the limit price.

This means that the limit orders have execution uncertainty. (Yang et al. 2016) A market

order is an order that is executed instantly with the best possible price, assuming that

the LOB is not empty. The best possible price is only determined at the time of execution,

which means that market orders have price uncertainty. LOB includes all the outstanding

limit orders, which are presented aggregated and are available for market participants.

The limit orders remain in the LOB until they are executed against market order or can-

celled. The LOB is a dynamic environment, and it is constantly changing due the new

orders and cancellations during the trading hours.

In the order-driven stock markets, a limit order is an order to sell or buy a certain number

of shares with a certain price. There are two sides in the LOB, one for ask orders and

one for bid orders, and the two main components are price and volume. The ask order

is an order to sell and the bid order is an order to buy. The LOB is constructed as follows.

The bid and ask limit orders are on the different sides of the LOB and they are sorted by

the price so that the levels are separated from each other by at least the minimum tick

size. The level 1 is the best price level, meaning the highest bid price and the lowest ask

price. The quantity of the order is a natural number of the stocks that the market partici-

pant is willing to trade. If more than one limit order has the same price, their quantities

are summarized together. LOB consist of all the outstanding orders until they are exe-

cuted or cancelled. The structure of top five levels of a LOB is illustrated in Figure 2.1

5

Figure 2.1. Structure of top five levels of the LOB.

The level 1 on the bid side consist of the orders that have the highest price, and the

sum of their quantities aggregate the level 1 bid quantity. Similarly, the level 1 on the

ask side consists of the orders that have the lowest price, and their sum is the level 1

ask quantity. The bid-ask spread is the difference between the level 1 prices, repre-

sented by the gap between the ask and bid side. An example of a LOB of Apple stock

is represented in Figure 2.2.

Figure 2.2. Top five levels of the LOB of Apple stock on April 14, 2014.

This is the representation of LOB that trading platforms usually use. The bid side of the

LOB is represented in the left side, ask side being on the right. The bid-ask spread can

be calculated from the top row, being currently 0.51. The bars represent the relative size

of the order quantities.

The advantage of the order-driven market compared to the quote-driven markets is that

it accepts both, limit orders and market orders (Zhang et al. 2019). When a market order

0

Level 5

Level 4

Level 3

Level 2

Level 1

Level 1

Level 2

Level 3

Level 4

Level 5

BID SIDE ASK SIDE

Price

Q
u

an
ti

ty

6

is submitted, the buy or sell action happens instantly at the best currently available price.

On the contrary, when submitting a limit order, the trader is willing to buy or sell a financial

instrument under a certain price, but the trade is left unexecuted. The limit orders repre-

sent unexecuted trading activity until a matching market order arrives or the trade is

cancelled. The unexecuted limit orders are divided into levels, which then construct the

LOB. The LOB accepts orders from market participants. Market participants who submit

limit orders provide liquidity to the market and market participants who submit market

orders consume liquidity from the market. (Ntakaris et al. 2019) Contrarily, liquidity is the

advantage of quote-driven market since the market makers are required to transact on

their quoted prices so there is a guarantee of order fulfillment.

2.2 Stock market liquidity

In the perfect markets, buyer and sellers immediately find each other and all the trades

are executed instantly at frictionless prices, generating infinite market liquidity. Real mar-

kets however fall short on delivering such efficiency. Market participants can be con-

strained by reasons such as conflicts of interests, information asymmetry and frag-

mented markets. (Biais et al. 2016) Due the constrains, all the orders are not instantly

executed, but instead they are submitted to LOB as outstanding limit orders.

Liquidity is the stock market’s feature whereby a market participant can sell or buy an

asset without having a far-reaching effect in the stock’s price. In a liquid stock market,

selling quickly and large amounts of stocks cannot be observed from the stock’s price.

On the contrary, in an illiquid market, selling quickly and large amounts will require cutting

the price by observable amount. The same logic applies when buying quickly and large

volumes. In a liquid market, buying quickly and large volumes will not increase the price

much and in an illiquid market buying quickly and large volumes will require an increased

price by some amount. Real markets are always illiquid to some extent, since buying a

stock and selling it immediately would cause loss even without trading costs because of

the bid-ask spread. In a stock market, the market liquidity can be observed in the LOB.

Liquidity is supplied to the LOB by inflow of limit orders provided by market participants.

The non-executed orders constitute the LOB, the consolidated source of liquidity. (Frey

& Gamming 2005) According to Black (1971), liquid stock market should hold the follow-

ing conditions:

1. There are always bid and ask prices for the investor who wants to buy or sell a

small amount of stocks immediately.

2. The difference between the bid and ask prices is always small.

7

3. An investor who is buying or selling a large amount of stock, in the absence of

special information, can expect to do so over a long period of time at a price not

very different, on average, from the current market price.

4. An investor can buy or sell a large block of stock immediately, but at a premium

or discount that depends on the size of the block.

In stock market, liquidity is supplied by the limit orders. The second condition by Black

means that there should always be limit orders in the LOB in liquid market. The liquidity

increases as limit orders are submitted and the liquidity decreases as market orders as

submitted and the limit orders are executed. The liquidity supply is dependent of the

quantities and prices of the limit orders. The higher the volume and the smaller the

spread, the greater the liquidity supply. When the liquidity supply is high, the market

participant can buy or sell the desired quantity of shares immediately with the best price.

If the liquidity supply is lower, the market participant will not be able to buy or sell the

desired quantity with the best price. In this scenario, the market participant would have

to wait until more limit orders flow in or buy or sell the desired quantity with lower price

level, which is naturally a less favorable condition for market participants. The lower li-

quidity supply is creating challenges for market participants and they may have pressure

to complete the orders and avoid decreasing their profits. One instance of the lowering

profit is when the lower liquidity supply forces the market participants to perform multiple

transactions instead of one, which will increase the transaction costs.

All the liquidity is not observable in the stock market because there exists hidden liquidity

that is not visible in the LOB. There are two reasons for hidden liquidity. The first one is

the fragmented markets. Liquidity is often posted on various stock exchanges and other

markets may intervene such as dark trading that happens outside visible trading books

and over-the-counter (OTC) trading (Degryse et al. 2014). The second reason is the

behavior of the existing trading algorithms. The algorithms employ trading strategy that

consists of splitting orders with large quantities into small batches that replenish the or-

ders immediately as they are executed. They are also referred as iceberg orders for the

purpose of hiding the actual order quantity. (Stoikov et al. 2013)

At some point, liquidity is a basic need of all investors, but some investors have more

essential need for liquidity than the others. For example, investors with long maturity

liabilities have less liquidity risk, since the risk of suddenly requiring transaction immedi-

acy in short term is relatively low. These investors could then be able to collect premium

by supplying liquidity for investors who need it short term. (Chacko et al. 2016)

8

During this millennium, equity markets have experienced revolutionary institutional and

technological changes. Decimalization leading to a smaller tick size, increased amount

of algorithmic trading, explosions in sub-second order submission and cancellation, and

trading volume in general have increased the liquidity but also changed the nature of the

stock market liquidity. (Barahedi et al. 2016) The changes in the market liquidity have

changed transaction costs and premiums demanded by traders, and it has been a driver

of the development of new trading strategies.

2.3 Liquidity measures

Liquidity is a complex concept with multiple dimensions and there exists multiple ways

to measure it. In the literature, there have been distinguished four dimensions of the

liquidity, which are width, immediacy, resiliency, and depth. However, the interrelation of

these dimensions creates challenges when trying to measure liquidity. (Verlag 2008)

Width is defined as the available bid-ask spread 𝑆, that is the difference between the

best bid price and the best ask price

𝑆 = 𝑝1
𝑎𝑠𝑘 − 𝑝1

𝑏𝑖𝑑 ,

where 𝑝 is the price of the stock. Assuming that the median value between the best ask

and bid prices reflect the fair value of the asset, the half spread can be interpreted as a

transaction cost. (Hachmeister 2007, pp. 22) This measure is used for example by Rösch

& Kaserer (2013) where they use EURIBOR-EONIA-spread in their research as a meas-

ure of funding liquidity.

Immediacy is the trading time that can be defined as the speed at which trades will be

executed with given cost. Immediacy then reflects the ability to sell or buy quickly. It can

be measured in multiple ways such as the waiting time between two subsequent trades,

number of trades per time unit or the time until the order is completely executed at the

certain price. (Barardehi et al. 2016)

Resilience is the dynamic of how prices react to new information or to new order volumes.

The resilience describes the speed at which prices return to former levels after liquidity

shock such as a large transaction, assuming that there is not any change in the under-

lying asset value. Resilience is the markets ability to recover from the shock. It can be

measured as price-volume elasticity of a given asset. The resilience can only be calcu-

lated over a time period. (Hachmeister 2007, pp. 22)

9

Depth is the volume of stocks demanded at the bid side (bid depth) and the volume of

shares provided at the best ask side (ask depth). The sum of bid depth and ask depth is

referred as depth 𝐷𝑡

𝐷𝑡 = 𝑞𝑡
𝑎𝑠𝑘 + 𝑞𝑡

𝑏𝑖𝑑 ,

where q is the quantity of the limit orders. The depth can be measured on multiple levels

of the LOB. The level 1 depth is the level 1 quantity of the LOB and it could be interpreted

as order the market can absorb without evoking a price change. Multi-level depth will

capture wider view of the liquidity than just the level 1. The measurement concept of

market depth is one of the most common approaches to measure liquidity. (Pristas 2007)

In this thesis, the level 1 depth and multi-level depth are used to measure of a stock

liquidity. Level 1 depth consists of level 1 bid depth and level 1 ask depth, which are the

best bid and ask quantities and referred as level 1 bid and ask quantities. For the level 1

quantity to change, one of these has to happen:

1. A new market order is posted. A new market order will decrease the quantity of

the level 1 by the quantity of the new market order. The new level 1 quantity

would then be 𝑞1
𝑛𝑒𝑤 = 𝑞1

𝑜𝑙𝑑 − 𝑞𝑚. However, if 𝑞𝑚 is large enough and 𝑞1
𝑛𝑒𝑤 would

become negative, it means that all the 𝑞1
𝑜𝑙𝑑 limit orders got executed. Then the

new level 1 quantity will be the highest level that did not got fully executed 𝑞1
𝑛𝑒𝑤 =

 𝑞𝑛
𝑛𝑒𝑤.

2. A new limit order is posted with the same price as the level 1 price. A new limit

order with the same price will increase the quantity of the level 1 by the quantity

of the new limit order. The new level 1 quantity will then be 𝑞1
𝑛𝑒𝑤 = 𝑞1

𝑜𝑙𝑑 + 𝑞𝑙.

3. A new limit order is posted with better price than the current price. A new limit

order with better price than the current level 1 price will then become the new

level 1 quantity. The new level 1 quantity will be 𝑞1
𝑛𝑒𝑤 = 𝑞𝑙.

The level 1 quantity captures a wide range of the market movements as well as the

liquidity supply changes, which is why it is used as one liquidity measure in this thesis.

However, while level 1 depth and bid-ask spread are often used as a liquidity measure,

the literature has also pointed out problems in using only the level 1 depth. Since liquidity

is multidimensional concept, it might be problematic to use only one dimension of the

liquidity as a liquidity measure. Some information of the LOB depth is ignored while fo-

cusing only on level 1. For some investors, it is important to measure LOB liquidity across

multiple price levels to capture depth and width when trading in large quantities. It be-

10

comes more important as new information arrives, since the need for depth and imme-

diacy rises, which makes it relevant to measure multi-level depth of the LOB. (Degryse

et al. 2014; Siikanen 2018, pp. 14)

Multi-level depth is used to capture wider view of the LOB, instead of just the level 1,

which may offer too narrow view of the liquidity. That is why cumulative depth over mul-

tiple levels is also used as a liquidity measurement. In this thesis, in addition to the level

1 depth, cumulative depth of five levels of the LOB is also used as a liquidity measure-

ment. The used multi-level depth is the sum of the five top levels of the LOB quantities

of both sides. Level 5 depth is the cumulative sum of the quantities at the five top levels

𝐷5
𝑎𝑠𝑘 = 𝑞1

𝑎𝑠𝑘 + 𝑞2
𝑎𝑠𝑘 + 𝑞3

𝑎𝑠𝑘 + 𝑞4
𝑎𝑠𝑘 + 𝑞5

𝑎𝑠𝑘

𝐷5
𝑏𝑖𝑑 = 𝑞1

𝑏𝑖𝑑 + 𝑞2
𝑏𝑖𝑑 + 𝑞3

𝑏𝑖𝑑 + 𝑞4
𝑏𝑖𝑑 + 𝑞5

𝑏𝑖𝑑 .

The multi-level depth used as a liquidity measure is the sum of the level 5 ask depth and

level 5 bid depth

𝐷5 = 𝐷5
𝑎𝑠𝑘 + 𝐷5

𝑏𝑖𝑑 .

More sophisticated multi-level measurements would be Exchange Liquidity Measure

(XLM) and separating quantities to different levels with fixed prices (Siikanen 2018, pp.

14).

2.4 Liquidity determinants

In the literature, there exists numerous determinants of the stock market liquidity. First

proposed factor is the trading volume. There is a theoretical explanation that trading ac-

tivity is positively related to liquidity because the increased activity will allow the market

participant to reduce its inventory risk. (Hochmeister 2007, pp. 51) Another proposed

explanation is that the trading amount is positive related to the liquidity because investors

have a tendency to concentrate their trading during same hours which will allow them to

benefit from the increased liquidity supply. However, due adverse selection problem, the

rising trading volumes generate disequilibrium in the market which leads to increased

trading costs that have been offset by enlargement of the spread, decreasing liquidity.

(Ajina et al. 2015) Empirical evidence remains ambiguous.

Price volatility has also been proposed as a determinant for liquidity as it measures the

information content, information arrival and information asymmetry in the market. A

change in the market prices that is followed by change in investors’ expectations will lead

to an increased variance of returns. Price volatility affects especially in inventory holding

costs and risks, that are associated with widening bid-ask spread. (Ajina et al. 2015) It is

11

also found out that increased volatility will increase the portion of limit orders compared

to market orders in the order flow, but at the same time it decreases the aggressiveness

of the limit order prices (Hochmeister 2007, pp. 51). The stock liquidity is also dependent

on the firm’s position compared to competitors. Kale & Loon (2010) show that stock

prices of a firm with strong market position are less sensitive to product order flow, which

will result in greater stock liquidity. In, general, the stock liquidity increases with market

power because it reduces the price volatility (Kale & Loon 2010).

Share price is commonly used to explain stock liquidity and it has been both, positively

and negatively, associated with liquidity. It has been found out that liquidity is impaired

when stock price declines (Rösch & Kaserer 2013). Also, it has been shown that higher

share price induces a lower relative spread, meaning negative relation to liquidity

(Hochmeister 2007, pp. 51).

Other mentioned affecting factors have been firm size, listing country and international

financial reporting standards (IFRS). It has been proposed that stocks of smaller compa-

nies with weaker capitalization are less liquid because they are more sensitive towards

high level of information asymmetry. Also, stock being publicly listed in the U.S. markets

has positive correlation to stock liquidity due the standards and regulations increasing

confidence and attracting investors. Similarly adopting IFRS has enabled investors to

better understand economic reality due more informative reporting. (Ajina et al. 2015)

2.5 Predicting market liquidity

Regardless of the investor type, predicting stock market liquidity is necessary for all the

market participants to perform efficiently. The motivation driving the liquidity prediction is

simply reducing financial risks and increasing expected returns. The results of liquidity

prediction have been source of creating new and improving existing trading strategies.

Banks and other financial institutions have commitments to their shareholders to maxim-

ize profits, which leads to a development in the increased volume of investments. At the

same time, the banks have liabilities to depositors to refund their deposits, which makes

it necessary to retain sufficient liquidity, especially because of the depositors’ rather sto-

chastic behavior. The rising clash of interests calls for a balance between profitability of

longer-term investments and risks due the shorter-term liabilities towards depositors.

The liquidity management is critical for the bank as too much liquidity causes ineffective

allocation of capital while too low liquidity can result into a loss of market and credit.

(Tavana et al. 2018) To perform liquidity risk management efficiently, it is necessary to

be able to predict the market liquidity.

12

Stocks are generally considered to be rather liquid assets, however a need for liquidity

prediction still exists. While smaller equity trades are often executed with price levels

close to the mid-price, larger trades often face far inferior prices. (Breen et al. 2002) In

portfolio management, better estimations of trading costs improve the ability to manage

portfolio successfully. Thus, successful liquidity prediction can be used in creating and

improving optimal order execution strategies. With the results of liquidity prediction, the

trades can be timed efficiently to reduce the transaction costs and to execute the trades

at favorable time. This is especially useful for traders, who are willing to close their posi-

tions overnight to avoid risks. (Härdle et al. 2012)

Since the emergency of high-frequency trading, prediction of the relevant metrics in high-

frequency financial markets and monitoring the dynamics of LOB has become an efficient

way to gain information edge. (Ntakaris et al. 2018) To reduce the numbers of losing

positions, traders in high-frequency markets implement a wide range of prediction mod-

els that predict short-term direction of the markets as well as shortages of liquidity. These

methods allow traders to define the quantities and levels of aggressiveness of their or-

ders based on expectations of surplus or paucity of the market liquidity. (Aldridge 2013,

pp. 17)

2.6 Previous research

Previous research offers evidence of predictability of stock market liquidity. Chan et al.

(2002) describe positive autocorrelation among trading volumes in the stock market,

which can be interpreted as the liquidity is not random, but dependent on the previous

states. Similarly, von Wyss (2004) finds high autocorrelation with vector autoregressive

model and the results are interpreted as liquidity measures have tendency for mean-

reversion. The finding gives evidence that the mean of previous values could be used to

predict liquidity. Breen et al. (2002) use price impact as a liquidity measure in their cross-

sectional regression model for predicting stock market liquidity with promising results.

Härdle et al. (2012) forecast intraday LOB volumes using dynamic semiparametric factor

model and they show that the recent liquidity demand had the strongest impact to the

current state of the LOB. This thesis contributes to the existing research by generating

new models to predict stock market liquidity with the high-frequency LOB.

13

3. METHODS USED

3.1 Time series prediction

A time series is a discrete sequence of a time-valued data samples over time (Konar &

Bhattacharya 2017, pp. 2). Samples in time series are not independent and they need to

be addressed in their time dependent context. There exist a lot of instances such as air

temperature, person’s heart rate and daily closing value of Dow Jones Industrial Aver-

age, where the data is measured with regular intervals of time. The unprocessed data

within given a finite interval of time describes a time series. (Konar & Bhattacharya 2017,

pp. 2). A fundamental feature of the time series is that the adjacent observations are

dependent, which makes it possible to predict future values of a time series from cur-

rently and previously observed values. (George et al. 2016, pp. 2)

The motivation of the time series data collection is the time series analysis and the time

series prediction. Prediction of time series is practical for its extensively implemented

applications, especially in the financial sector. Various financial institutes have their in-

vestments in equities, forex, derivatives, commodities, and other financial instruments.

For these kind of trading activities, a broad speculation is necessary. The speculation is

possible with the time series prediction of the financial instruments. Wrong prediction of

time series causes losses for institutions as well as correct predictions results yields

profits. (Konar & Bhattacharya 2017, pp. 2). Predicting financial markets is also a critical

component of financial risk management.

In time series prediction, some hindrances exist. As time series prediction problems in-

clude the time component, and while time component gives more information about the

problem, it also makes the problem more complex compared to other prediction prob-

lems (Konar & Bhattacharya 2017, pp. 2). Thus, there does not exist any straightforward

technique to determine the exact nature of the time series, which makes it a challenging

prediction task.

In the literature, there exists many different techniques to perform the time series predic-

tion, such as regression, probabilistic techniques, heuristics, neural network based su-

pervised learning and many others (Konar & Bhattacharya 2017, pp. 2). Since the com-

plexity of financial time series, multivariate dynamic models are required to make predic-

tions over time. Lately machine learning has received recognition as being the best prac-

tice of doing time series prediction (Schmidhuber 2014).

14

In addition to performing the time series predictions, it is also necessary to evaluate their

accuracy. This way the risks included in the predictions can be obtained, which then

again can be included in the decision making when considering actions based on the

predictions. (George et al. 2016, pp. 2) The value of a time series prediction is based on

the performance of the prediction capabilities for unseen data, which can be described

as a prediction power.

3.2 Supervised machine learning and regression

Supervised learning is a concept of utilizing a known dataset to make predictions. The

supervised learning is distinguished from unsupervised learning by the requirement of

training instances which are the input and output combinations provided by the known

dataset. The main purpose of the supervised learning techniques is to learn how to pre-

dict a variable 𝑌 based on a set of variables 𝑋, where 𝑌 and 𝑋 depended on the problem

that is been solved. The goal is to find the best predictor 𝑓: 𝑋 → 𝑌, 𝑋 → 𝑓(𝑋) among the

set of all functions 𝐹 = {𝑓: 𝑋 → 𝑌}. (Grischi et al. 2012) In machine learning, the predictor

𝑓 is a neural network and 𝑋 is a task related dataset. The performance of the predictor

is evaluated by a loss function 𝐿 that is dependent on 𝑓, 𝑋 and 𝑌. The predictor 𝑓 is better

than the predictor 𝑔 if 𝐿(𝑓, 𝑋, 𝑌) < 𝐿(𝑔, 𝑋, 𝑌). The loss function is used to estimate the

predictor 𝑓 depending the nature of the 𝑌.

The supervised machine learning techniques are used to perform regression and classi-

fication. In classification, the goal is to identify which category an object belongs to. An

example of classification application is an e-mail spam detector that will label the coming

emails as spam or not spam. In regression, the goal is to predict an attribute associated

with an object. An example of regression application is a prediction of a house price

based on details of the house. The main difference between regression and classification

is that the output variable 𝑌 in regression is continuous while in classification it is discrete.

In this thesis, the regression problem is to predict the LOB depth, where the output will

be a real floating point value.

Despite the great success in financial time series predictions, machine learning methods

are mainly developed through empirical testing (Ntakaris et al. 2019). Feature extraction

is often performed among other machine learning techniques because financial time se-

ries data is stochastic (Zhang et al. 2019). Instead of using the raw dataset as 𝑋, unique

features are identified from the data which will then be used as 𝑋. The benefit of the

features is that they reveal hidden information from the data that is not available in the

15

raw data. The feature extraction is done in order to create machine learning models that

perform better compared to models trained on raw data. (Ntakaris et al. 2019)

3.3 Artificial neural networks

Artificial neural networks (ANNs) are widely utilized in modelling complex real-world

problems and they have a crucial role in learning the dynamic behavior of a financial time

series (Konar & Bhattacharya 2017, pp. 6). ANNs is a subset of artificial intelligence that

provides the ability to automatically learn, similarly as biological neural networks. They

are partly inspired biological neurons and have partly similar architecture as human brain

(Livingstone 2008). ANN is defined as structures comprised of densely interconnected

adaptive simple processing elements that can perform massively parallel computations

for data processing and knowledge representation (Basheer & Hajmeer 2000; Übeyli

2005, pp. 8). The key characteristic of an ANN is its ability to learn (Livingstone 2008).

Other benefits of ANNs arise from information processing capabilities such as high par-

allelism, robustness, ability to handle complex data, failure tolerance, ability to handle

imprecise information and ability to generalize (Basheer & Hajmeer 2000). An ANN con-

sists of three components: node character, network topology and learning rules.

3.3.1 Node
A node is the basic simple processing unit of an ANN. A node receives multiple inputs

from the other nodes of the ANN, that are connected with different weights, and calcu-

lates their weighted sum. If the weighted sum of node inputs is large enough, the node

activates and passes the signal through a transfer function and transmits it to the follow-

ing nodes. A simple network with a few nodes is represented in Figure 3.1.

Figure 3.1. Nodes of the ANN. First nodes are the input nodes and last node is an
output node.

16

 The node receiving and sending signal is modelled with equation

𝑦 = 𝑓 (∑ 𝑤𝑖𝑥𝑖 − 𝑇)

𝑛

𝑖=0

,

where 𝑦 is the output, 𝑓 is the activation function, 𝑤 is the weight, 𝑥 is the input and 𝑇 is

the threshold. (Livingstone 2008) An activation function is a mathematical equation that

determines the output. The activation function is attached to each node in the network.

In its simplest form, it is binary, and it determines whether the node should be activated

or not, for example value being 0 is interpreted as the node will not be activated and

value being 1 is interpreted as the node will be activated. (Keller et al. 2016, pp. 27) The

most commonly used activation function in the construction of ANNs is the sigmoid func-

tion (Keller et al. 2016, pp. 28):

𝑓(𝑥) =
1

1 + 𝑒−𝑥
.

In the sigmoid function, the return value is between 0 and 1. Other widely used activation

function is the hyperbolic tangent function (Li et al. 2017):

tanh(x) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 .

The hyperbolic tangent function can return negative values as well and the return value

is between -1 and 1. The hyperbolic tangent function is plotted in Figure 3.2.

Figure 3.2. Hyperbolic tangent function.

The selection of the activation function should be made based on the problem, training

data and other parameters. Other functions can be used as activation functions as well

which all serve a different purpose. Examples of other activation functions are rectified

linear unit function and identity function. (Keller et al. 2016, pp. 27)

3.3.2 Architecture
The architecture of an ANN consists of multiple layers and it can be designed in multiple

ways. The nodes of the ANN are organized into layers that are linear arrays. The first

17

layer of an ANN is an input layer, the last layer is an output layer and between them there

can be one or more hidden layers. In general, designing the architecture includes deter-

mining the number of layers in the ANN, the number of the nodes in each layer and the

connections of the nodes. (Livingstone 2008) There does not exist any general model

architecture that works well for all problems. Instead, the architecture needs to be tailored

for the specific problem and it usually requires multiple iterations to find the most suitable

architecture for the task being solved. General architecture of an ANN is represented in

Figure 3.3.

Figure 3.3. ANN architecture.

The connections can be one-way connections or loop-back connections. The loop-back

connection allows the output node to be the input node of the previous or the same level

nodes. Based on this observation, ANNs are classified into feedforward neural networks

and feedback networks usually known as recurrent neural networks. (Livingstone 2008)

3.3.3 Learning
The ANNs are trained using learning process during which the weights are adjusted to

desired values with optimization methods. The learning can be supervised or unsuper-

vised. In supervised learning the training is done by using a training set and adjusting

the weights to minimize the error between the network output and the correct output. On

the contrary, unsupervised learning is not using target output values from the training set

and the network tries to capture the underlying patterns only from the input. (Basheer &

Hajmeer 2000; Livingstone 2008)

18

The training of an ANN is done using an existing dataset, but the real benefits of using

the ANN is only realized when it can be applied to new data samples. ANNs are known

for performing well in generalization. However, in order to build the capability to general-

ize, fitting of the ANN to the dataset needs to be done carefully since underfitting or

overfitting will cause poor performance. Overfitting of the training data leads to declining

generalization capabilities of the model and untrustworthy performance when applied to

new unforeseen data. Overfitting happens due the ANN learning the training dataset too

well, capturing the details and noise to the extent that does not represent the actual

patterns anymore. It will then affect negatively to the performance of the ANN with the

new data. The poor performance is explained by that the noise and the random fluctua-

tions in the training data are captured and learned as concepts by the model even though

they do not apply to the new data samples. (Piotrowski et al. 2013) On the contrary,

underfitting refers to the learning process where an ANN does not learn the patterns from

the training data enough meaning that the ANN will perform poorly even with the training

dataset. Thus, the underfitted ANN will certainly perform poorly with new data samples

as well. Examples of underfit, good fit and overfit are represented in Figure 3.4.

Figure 3.4 Examples of underfit, good fit and overfit (Rahul et al. 2014).

On the leftmost side, the line captures only the basic trend of the data points having a

large loss. In the middle, the curve captures the pattern better and the generated loss is

significantly lower than the underfitted line. On the rightmost side, the curve is perfectly

fitted over the data points minimizing the loss while losing the ability to generalize the

trend. (Rahul et al. 2014)

An ANN is trained by adjusting the weights 𝑣 and 𝑤, which is done by solving the optimal

weights using optimization algorithm. Stochastic gradient descent is considered as the

standard optimization algorithm in machine learning and it has been proven to be rela-

tively efficient optimization method (Kingma et al. 2015). Gradient descent algorithm it-

eratively follows the negative gradient to move in the direction of the descent and even-

tually locate the desired minimum. First, the gradient ∇𝐿 of the loss function with respect

19

to each weight 𝑤𝑖𝑗 of the network needs to be calculated. The gradient tells how much a

change in that weight will affect the overall loss. The gradient ∇𝐿 is calculated

𝜕𝐿

𝜕𝑤𝑖𝑗
= −(𝑦𝑗 − 𝑥𝑗)𝑥𝑖.

The gradient descent is then performed by subtracting a small portion 𝜇, called learning

rate, of ∇𝐿 from the weights. The new weight will be

𝑤𝑖𝑗 = 𝑤𝑖𝑗 − 𝜇∇𝑤𝑖𝑗.

The gradient descent algorithm will perform gradient descent iteratively until the algo-

rithm converges to ∇𝐿 = 0. Important considerations are the learning rate and the initial-

ization of the weights. The learning rate in the gradient descent determines how much

the weights are adjusted at each iteration. If the learning rate is too small, the gradient

descent algorithm will take very long time until converging. On the contrary, if the learning

rate is too large, the algorithm does not converge at all. (Chow et al. 2007, pp. 34) The

effect of the learning rate in the scenarios of small and large learning rates are demon-

strated in Figure 3.5.

Figure 3.5. Small (left) and large (right) learning rates (Chow et al. 2007, pp. 34).

The gradient descent algorithm with a small learning rate slowly converges to the mini-

mum. With too large learning rate, the algorithm diverges. To tackle the issue, instead of

choosing a fixed learning rate, the learning rate can be changed during the training pro-

cess to optimize the learning. The way the learning rate changes over time is called

learning rate decay. The simplest way to perform learning rate decay is to decrease the

learning rate linearly from a large initial value to a small value. (Goodfellow et al. 2016,

pp. 294). The second consideration of the gradient descent algorithm is the initialization

of the weights. The initialization of the weights determines the starting point of the algo-

rithm. With some initializations, the algorithm converges to a local minimum instead of

the desired global minimum. The gradient descent algorithm will stop when it converges

to a minimum. Examples of different minimums are visualized in Figure 3.6.

20

Figure 3.6. Local minimums and a global minimum (Andreeva & Chaban 2015).

Only some initializations that are close enough to the global minimum will converge

there. One of the simplest initialization methods is the random weight initialization which

gives generally quite good results, but as seen in the figure, the weights may converge

to different minimums which may not be desired (Thimm & Fiesler 1994).

A stochastic gradient-based optimizer referred as “Adam” proposed by Kingma, Diederik

and Ba (2015) is a replacement algorithm for stochastic gradient descent. Adam is de-

scribed as an algorithm for first-order gradient based optimization of stochastic objective

functions, based on adaptive estimates of lower order moments. Thus, it is a variant of

stochastic gradient descent that only requires first-order gradients. Adam is suitable for

problems with large datasets, since it is computationally efficient and does not require

much processing memory. It is also suitable for problems with very noisy and sparse

gradients. (Kingma et al. 2015)

As a part of the network optimization, a dropout regularization is used to avoid the over-

fitting the training data. A dropout is regularization method for fully connected neural

network layers. The dropout is performed by learning network output weights that provide

a compromise between the original hidden layer outputs and the hidden layer outputs

obtained by applying dropout with a probability value p that is also called the dropout

rate. (Iosifidis et al. 2014) This means that the dropout works by probabilistically dropping

out inputs of a hidden layer making nodes in the network generally more robust to the

inputs. The dropout mechanism is illustrated in Figure 3.7. The crossed nodes represent

the nodes that are ignored during the training.

21

Figure 3.7. Neural network connections without dropout mechanism (left) and with
dropout mechanism (right) (Yang & Yang 2018).

The random selection of the dropout mechanism ignores some of the hidden nodes in

the training process. Due the randomness, each training network might be different. Ig-

noring some of the hidden nodes weakens the connections between the nodes which

makes the network less prone to overfitting. In general, the dropout reduces the cost of

calculation and helps in discovering the most essential characteristics of the data. (Yang

& Yang 2018)

To further avoid overfitting, early stopping mechanism is used to stop the training before

the overfitting happens. Training of an ANN with tens of epochs usually takes a lot of

time and after some number of epochs, the training will not improve the performance

anymore and instead the loss will start to increase. The early stopping mechanism will

monitor the validation loss after each epoch and after the loss will start to increase, the

training is stopped. However, often the first sign of the loss increasing is not the optimal

time to stop the training, because the performance of the ANN may get slightly worse

before improving due the noise in the training data. This is handled by a patience param-

eter, which is added to the early stopping mechanism. Patience parameter is a counter

which counts the epochs in which the loss has increased. After the loss has increased

the determined number of times, the early stopping will be triggered. (Rawat et al. 2020)

Using the patience parameter will thus delay the early stopping over the noise until the

loss increases multiple times and it becomes unlikely that the loss would decrease by

continuing the training.

3.4 Feedforward neural networks

A feedforward neural network (FNN) is an ANN where the connections between the

nodes do not form a cycle. In this type of network, the information moves only forward

from input nodes to possible hidden nodes and finally to the output nodes. There does

not exist any feedback connections in which outputs of the networks are fed back into

22

itself. FNNs are mostly used in the fields of computer vision and text recognition (Kumar

et al. 2013; Zhang et al. 2014).

3.4.1 Single-layer perceptron
The simplest instance of a FNN is a single-layer perceptron (SLP). The perceptron has

a similar structure as a biological neuron. The single-layer perceptron network has a

single layer of output nodes and the inputs are fed directly to the outputs with series of

weights. The input sum is the input of the activation function and if the threshold value is

exceeded, it activates. (Graupe 2013) The architecture of a simple SLP is represented

in Figure 3.8.

Figure 3.8. A simple SLP architecture (Zaccone 2016, pp. 98).

Researchers have used SLPs to various two-class problems. However, SLP is only ca-

pable of learning linearly separable patterns. And for non-linear regression, a multi-layer

perceptron is required. (Hu 2010)

3.4.2 Multi-layer perceptron
Multi-layer perceptron (MLP) is a FNN where the neurons are interconnected in multiple

layers. MLPs are one of the most popular and versatile ANNs and they are useful for

regression prediction tasks where a real value is predicted given a set of inputs. (Castel-

lani 2017) Usually MLPs are used with image data, text data and time series data (Rana

et al. 2018).

MLP includes one input layer, one output layer and at least one hidden layer between

them. Each layer consists of multiple nodes. (Liu et al. 2018) Given a set of features 𝑋 =

 𝑥1, 𝑥2, … , 𝑥𝑛 and a target 𝑦, the MLP is capable of learning a complex function approxi-

mator for either classification or regression task. In classification, the output 𝑦 is the class

with the highest probability and in regression the output 𝑦 is the predicted value. MLP is

also suitable for multi-output tasks, where the sample has more than one output value.

23

(Rana et al. 2018) The architecture of a simple MLP with single output is represented in

Figure 3.9.

Figure 3.9. MLP architecture with a single hidden layer (Fath et al. 2020).

The first layer on the left side is called the input layer and it consists of a set of neurons

that represent the input features. In the middle, there are one or more hidden layers, one

in this simple architecture. The last layer is the output layer that receives the information

from the last hidden layer and transforms it into final output value. The nodes in consec-

utive layers are connected with weighted connections 𝑤 and 𝑣, which will be modified

during the training of the MLP. Each node performs a weighted sum of its inputs followed

by an activation function. The MLP is defined as

𝑦𝑝 = 𝑣0 + ∑ 𝑣𝑗𝑓(𝑤𝑗0 + ∑ 𝑤𝑖𝑗𝑥𝑖)

𝐼

𝑖=1

𝐽

𝑗=1

,

where 𝑦𝑝 is the estimated value of the dependent variable 𝑦, 𝐽 is the number of hidden

nodes, 𝐼 is the number of input nodes and 𝑓 is the activation function. The weights 𝑤 and

𝑣 include thresholds 𝑤0 and 𝑣0 and weights connecting nodes in the consecutive layers

𝑤𝑖𝑗 and 𝑣𝑖𝑗. (Haykin 1999, pp. 32)

The advantages of MLP is its capability to learn non-linear patterns from the input data

and to learn the patterns in real time with partial fitting. The disadvantages of MLP is that

it needs tuning of several parameters such as the number of hidden neurons, the number

of the hidden layers and the number of the iterations. Usually the parameter selection is

done by testing different values and choosing the most suitable one (Parra et al. 2014).

The MLP has also two critical drawbacks. One is that MLP has a non-convex loss func-

tion where exists multiple local minimums, which means that different initialization will

lead to different validation accuracy. The other one is the slowness in learning speed.

MLP is also sensitive to feature scaling, thus data normalization is required. (Byung-Joo

2012)

24

3.4.3 Convolution neural network
Convolution neural networks (CNN) are variations of FNNs that utilize convolutional lay-

ers. A CNN has a multi-layer neural network structure that simulates the operation mech-

anism of a biological vision system. (Winkler 2016; Cao & Wang 2019). CNNs are most

commonly applied in image recognition, but they have also found applications in natural

language processing and financial time series prediction (Zhang et al. 2019). Compared

to regular FNNs with similar number of layers, CNNs have much fewer connections and

parameters due to the local-connectivity and shared-filter architecture in convolutional

layers, which makes them less prone to overfitting. Other advantages of the CNNs are

ease of the training and the pooling operation that improves the generalization capability.

(Wu & Gu 2015)

CNNs consist of consecutive convolutional layers and pooling layers usually followed by

fully connected layers. The convolutional layers and the pooling layers are used to cap-

ture the fine temporal dynamics of the time series. After the convolution and pooling is

completed, the fully connected layers are used to perform the regression to return the

final output value. (Tsantekidis et al. 2018) CNNs can be separated by the dimension of

the convolution they are performing. In time series analysis, one-dimensional (1-D) con-

volutions are used since the input data is one-dimensional. A simple 1-D CNN architec-

ture with one convolutional layer is presented in Figure 3.10.

Figure 3-10. A simple 1-D CNN architecture (Yoon 2014).

Convolutional layers with convolving kernels are applied to the input data to extract fea-

tures that represent the dynamics of the input data. For time series data, 1-D convolution

is applied, and the convolution kernels have the same width as the time series data. The

1-D convolution means that the time dimension is used to calculate the convolution and

the shape of the output is an 1-D array. The 1-D CNN takes an input dataset as an input

that has length 𝑛 and width 𝑘, where the length is the number of timesteps, and the width

is the number of variables. The kernel performs convolution from the beginning of the

25

time series to the end. The elements of the kernel are multiplied with the input so that

the output is enhanced in a desirable way. Subsequently, the results are added together,

and a non-linear activation function is applied generating a filtered time series vector.

The number of the filtered time series vectors will be the same as the number of used

convolution kernels. (Yoon 2014)

Next, global max pooling is applied to each of the filtered time series vectors in the con-

volutional layer. Max pooling is a discretization process, where the purpose is to perform

down sampling for the input data by reducing its dimensionality. For example, max pool-

ing can transform an 8 x 8 matrix into a 6 x 6 matrix. As a result, the max pooling will

reduce the spatial information of the input data. (Hang & Aono 2017) Ideally the pooling

technique is expected to maintain the important information while discarding the irrele-

vant information. Successful max pooling will result in avoidance of overfitting by provid-

ing more abstract form of the representation. Also, it will reduce of the required compu-

tational time. (Wu & Gu 2015) The max pooling is simply performed by choosing the

maximum value from the pool of values. The global max pooling means that the pool is

the whole vector. A new vector is formed from the results of the global max pooling,

which will be the final feature vector that is used as an input to the fully connected layer.

(Wu & Gu 2015) The fully connected layer uses the feature vector as an input to generate

the final prediction similarly as a SLP.

3.5 Recurrent neural networks

Recurrent neural networks (RNN) are ANNs where connections between nodes form

directed cycles, allowing information to be stored inside the network. With the stored

information, RNNs have an internal state, which is convenient for time series prediction.

(Ian et al. 2017) RNNs are thus distinguished from FNNs by a feedback loop that allows

previous outputs to be used as inputs while having hidden states. Unlike FNNs, RNNs

can process arbitrary sequences of inputs using their internal memory state. (Potznyak

et al. 2019) RNNs have found broad success in multiple applications such as natural

language understanding, speech recognition, time series prediction and video pro-

cessing (Sak et al. 2001; Dixon 2018). Previously RNNs haven been applied to LOB to

predict the next event price-flip by Dixon (2018).

A simple RNN is established by applying a function 𝐹ℎ repeatedly to the input data 𝑋 =

 𝑋1, 𝑋2, … , 𝑋𝑛. For each time step 𝑡 the function generates a hidden state ℎ𝑡 from the cur-

rent input 𝑋𝑡 and from the previous output ℎ𝑡−1

ℎ𝑡 = 𝜎(𝑊ℎ𝑋𝑡 + 𝑈ℎℎ𝑡−1 + 𝑏ℎ),

26

where 𝜎(𝑥) is a non-linear activation function, 𝑊 is a weight matrix, 𝑈 is a hidden weight

matrix and 𝑏ℎ is a bias term (Dixon 2018). The information is stored to the hidden state

ℎ𝑡. Since the feedback loop occurs at every time step, each hidden state contains infor-

mation also from the states that preceded ℎ𝑡−1. The final output 𝑌 of the output of the

final hidden state

𝑌 = 𝑊𝑦ℎ𝑡 + 𝑏𝑦.

A simple RNN is a single hidden layer neural network unfolded over all timesteps. The

architecture of a simple RNN with one hidden layer that is unfolded over a sequence of

six timesteps is presented in Figure 3.11.

Figure 3.11. Architecture of a simple RNN with one hidden layer that is unfolded
over a sequence of six timesteps (Dixon 2018).

The designing of the RNN architecture requires decisions about the number of the times

the network in unfolded and the number of the nodes in the hidden layer (Dixon 2018).

Long Short-Term Memory (LSTM) is a specific RNN that consists of one input layer, one

output layer and a series of recurrently connected hidden layers known as memory

blocks. Each memory block has one or more self-recurrent memory cells and three mul-

tiplicative units that are an input gate, an output gate, and a forget gate. (Li et al. 2017)

The memory cell stores the temporal state of the network and controls the information

flow in the network. Due to the memory cell, LSTMs perform well at finding and exploiting

long range dependencies in the data which is often crucial in time series prediction.

(Graves 2014) A memory block with single memory cell is illustrated in Figure 3.12.

27

Figure 3.12. Long short-term memory block (Graves 2014).

The self-recurrent cell state 𝐶𝑡 allows information from previous intervals to be stored.

The memory cell is modified by the forget gate 𝑓𝑡 below the cell state. The forget gates

purpose is to discard long-term dependencies and it tells the memory cell to which infor-

mation to forget. The input gate 𝑖𝑡 controls which information will enter and be stored in

the cell state. The output gate 𝑜𝑡 determines which information will be moved to the next

hidden state ℎ𝑡.

Activation functions are applied in all three gates and they determine the amount of in-

formation to be passed through the gate. The activation functions are usually sigmoidal.

(Soutner & Müller 2013) The output of the sigmoid function is between 0 and 1, where 1

could be interpreted as all the information will be passed through the gate and 0 could

be interpreted as none of the information will be passed through the gate. The outputs

of the activation functions have the following effect to the network. When the output value

of the input gate is close to zero, it flattens the value from the net input, effectively block-

ing that value from entering to the cell state. When the output value of the forget gate is

close to zero, the memory block will effectively delete the previous values stored in the

cell state. When the output value of the output gate is close to zero, effectively none of

the information will be passed to the next hidden state. (Soutner & Müller 2013) The full

architecture of the LSTM is illustrated in Figure 3.13.

28

Figure 3.13. LSTM architecture (Li et al. 2017; Pattanayak 2020).

The first step in LSTM is to determine the information to be removed from the cell state,

which is done by the forget gate 𝑓𝑡 that uses the sigmoid activation function

𝑓𝑡 = 𝜎(𝑊𝑓 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓).

The second step is to determine, what new information will be stored to the cell state.

The input gate 𝑖𝑡 determines the values to be updated and a new vector C̅𝑡 is created

with potential values to be stored into the cell state, which will then be combined to up-

date the cell state

𝑖𝑡 = 𝜎(𝑊𝑖 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)

C̅𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶).

Next, the new cell state can be formed. The previous cell state 𝐶𝑡−1 is updated to the

new cell state 𝐶𝑡 by multiplying it to the forget gate 𝑓𝑡 and the new information to be

added is received by multiplying the input gate 𝑖𝑡 with the new value vector C̅𝑡

𝐶𝑡 = 𝑓𝑡𝐶𝑡−1 + 𝑖𝑡C̅𝑡.

After updating the cell state there is still a need to determine the output that is based on

the cell state. The hyperbolic tangent activation function will be applied to the cell state

that will be multiplied with the output gate 𝑜𝑡

𝑜𝑡 = 𝜎(𝑊𝑜 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)

ℎ𝑡 = 𝑜𝑡 tanh(𝐶𝑡).

(Hochreiter & Schmidhuber 1997; Li et al. 2017) Since the recurrence, the same actions

will be performed to all the following cells states.

29

4. DATA ANALYSIS

The research was conducted using NASDAQ's "TotalView-ITCH" data from 2014. The

dataset contains time series LOB data of five stocks from the Nasdaq stock market in

April. The dataset includes approximately 27 million samples in total extracted over time

of five consecutive trading days. The dataset contains the first ten levels of the LOB.

4.1 Data understanding

The dataset includes five full days of ultra-high frequency intra-day data that was re-

ceived from NASDAQ ITCH feed. The dataset consists of five stocks that are Apple

(AAPL), Facebook (FB), Intel (INTC), Google (GOOG) and Microsoft (MSFT), which are

high technology stocks traded in the Nasdaq stock market. The stocks have lot of trading

activity ensuring continuous flow of trades and changes in the LOB quantities. The details

of the stocks of the dataset are represented in Table 4.1.

Table 4.1. Stocks of the dataset.

ID ISIN Company Samples

AAPL US0378331005 Apple Inc. 2673470

FB US30303M1027 Facebook Inc. 9680014

INTC US4581401001 Intel Corp. 3353984

GOOG US02079K1079 Alphabet Inc. 4518370

MSFT US5949181045 Microsoft Corp. 7135202

Initially Nasdaq stands for National Association of Securities Dealers Automated Quota-

tions. Today, Nasdaq is described as a hybrid market and it offers market participants to

choose between human floor brokers and fully automated electronic market. Almost all

the trades are executed purely electronic, but some large institutional investors rely on

floor brokers. In Nasdaq stock market, the trading hours are from 9.30am to 4.00pm

eastern time. The data does not include records outside the trading hours, pre-opening

period or post-opening period. The auction period is left out to make the LOB unbiased

with less exceptions, making the order book dynamics comparable. The raw data in-

cludes step, time, type and 10 levels of LOB. An example of the LOB data is represented

in Table 4.2.

30

Table 4.2. Example of the LOB data.

Step 43042

Time 34200559

Type ORDER

Ask Price Level 1 5252000

Ask Quantity Level 1 100

Bid Price Level 1 5250100

Bid Quantity Level 1 8

… …

… …

Ask Price Level 10 5254700

Ask Quantity Level 10 5

Bid Price Level 10 5250000

Bid Quantity Level 10 431

4.2 Descriptive analysis

The selected stocks have continuous inflow of orders and the order quantities change

almost constantly during the trading hours. This constantly changing nature of the LOB

quantity is expected to be suitable for regression prediction task. The first prediction task

focuses on the dynamics of the level 1 quantities. The level 1 quantities change when

new orders arrive with the same or better price than the previous level 1 order, or the

current level 1 orders are cancelled. The level 1 quantities are usually relatively low, but

sometimes spikes with very large quantities appear. In general, the LOB seems to be

balanced: the level 1 bid and ask quantities are close to each other throughout the day,

which means that same models can be applied for prediction of both sides of the LOB.

Spikes also happen for both sides, and it is unclear whether they are more frequent on

other side. The intraday curves of the level 1 bid and ask quantities are represented in

Figure 4.1, where rolling averages of level 1 quantities of INTC, MSFT and FB are rep-

resented. INTC is represented by a blue curve, MSFT by a green curve and FB by a red

curve. The solid lines are ask curves and dotted lines are bid curves.

31

Figure 4.1. Rolling averages of the level 1 bid and ask quantities of Intel, Microsoft,
and Facebook on April 8, 2014. Blue: INTC, Green: MSFT, Red: FB. The solid lines are

ask curves and dotted lines are bid curves.

The quantities are rolling averages, so the level 1 quantity spikes are not visible in the

figure, but instead the longer-term patterns. Firstly, it can be observed that different

stocks are traded with different level 1 quantities. Secondly, the level 1 bid and ask quan-

tities are quite close to each other throughout the day. During some hours, the there

exists a gap between the level 1 bid and ask curves, but in general the level 1 quantities

seem to be quite even. Third observation is that the level 1 quantities seem to rise sig-

nificantly during the last trading hour.

The second prediction task focuses on the dynamics of the multi-level quantities. The

multi-level quantity is calculated by summarizing the top five level quantities from both

sides of the LOB. The multi-level quantity captures wider view of the quantities and the

value is higher and changes more often than in the case of level 1 quantity. Also, the

differences of the stocks become clearly observable as other stocks have much larger

trading quantities. The intraday curves of the multi-level quantities are represented in

Figure 4.2., where rolling averages of multi-level quantities of INTC, MSFT and FB are

represented. INTC is represented by a blue curve, MSFT by a green curve and FB by a

red curve.

32

Figure 4.2. Multi-level bid and ask quantities of Intel, Microsoft, and Facebook on
April 8, 2014. Blue: INTC, Green: MSFT, Red: FB.

The magnitude of the multi-level quantities differs from the level 1 quantities, but the

order remains the same. Again, INTC has the largest quantity and FB has the smallest

quantity among these three stocks. Also, similarly as in the case of level 1 quantity, the

quantities seem to get larger towards the end of the trading day. The INTC has more

volatile quantity compared to the other stocks, which may cause challenges to the pre-

dictions.

In addition to the intraday changes, longer-term patterns can be observed on the full 5-

days period. In Figure 4.3, the level 1 quantities of AAPL are represented over 5 days.

The level 1 ask quantity is represented by red curve and the level 1 bid quantity is rep-

resented by a blue curve.

Figure 4.3. Level 1 bid and ask quantities of AAPL during full five trading days. Red:
Ask curve, Blue: Bid curve.

Level 1 ask and bid quantities continue to remain close to each other for this five-day

period, thus it not just an intraday phenomenon. Also, the level 1 quantities do not change

33

by much between days and the curves seem to have similar patterns each day. Most of

the time, the quantities remain at small levels, usually under 200, but some larger quan-

tities still occur. Some spikes may be happening, but they are short-lived, and block

trades do not occur, where the level 1 quantity would remain huge for a longer time-

period.

4.3 Data pre-processing

The data pre-processing is done to transform the input data for the use of machine learn-

ing algorithms. It will increase the efficiency of the model and the processing will be faster

with less biases. The data pre-processing is done by firstly deleting the attributes that

are not used in the modelling. Step, time, and type are metadata that is not required in

the modelling and they are deleted from the dataset. Next, the dataset is normalized

using z-score normalization to change the numeric values to a common scale, without

distorting differences in the ranges of values as recommended in Ntakaris et al. (2018).

Without normalization the features with big values would be outweighed in the model

lowering the performance. The normalization is done using the z-score normalization

𝑧𝑖 =
𝑥𝑖−𝑥̄

s
,

where xi is the input data and x̄ is the mean and s is the standard deviation. After the

data modelling, the z-score values are inverted back to the original unit to report the

findings in the same unit as the original data. Normalized LOB data is used as input data

𝑋 of the models.

4.4 Model validation

Model validation is a method of measuring the predictive performance of the model and

it is used to avoid overfitting the model. In time series prediction, it is relevant to evaluate

the model performance with out of the sample data. To evaluate the model with different

data, it is required to split the dataset to the data to be used in the training and to hold

back some of the data to make predictions with. However, the mostly used validation

methods in machine learning such as k-fold cross-validation and train-test splits are not

suitable for time series problem because they assume the observations are independent,

thus ignoring the temporal time component, which is fundamental in time series predic-

tion. Instead of the common validation methods, the data split must be done with a re-

spect to the order of the samples in the dataset. (Brownlee 2017)

34

A day-based prediction framework is developed following a three-fold split, where the

sequence of the samples is kept the same. The dataset includes 5 full trading days, and

the split is done by using first three days as a training set, fourth day as a testing set and

the fifth day as a validation set. The split mimics a common 60-20-20 train-test-validation

split, but the actual number of samples vary due to different number of samples during a

trading day. The number of samples of each stock in each set are represented in Table

4.3.

Table 4.3. Dataset split and the number of samples in each set.

Set Days AAPL FB GOOG MSFT INTC

Train 1-3 1575420 5373365 2983051 4401184 1936311

Test 4 473920 1986294 872955 1527272 765289

Validation 5 618920 2320355 662364 1206746 652384

35

5. RESULTS

5.1 Evaluation metrics

To quantify the model performance, model evaluation metrics are used. The effective-

ness of the machine learning algorithms can be evaluated using suitable performance

measurements called evaluation metrics. The metrics estimate the performance of the

model for unseen data, how well the model can predict the future. For regression prob-

lems, most used metrics mean squared error (MSE) and mean absolute error (MAE)

(Handelman et al. 2019).

With regression problems, the relationships between variables is demonstrated by an

equation that calculates the distance between the fitted curve and the actual data point.

A measure of a degree that the regression curve fits the data and makes predictions

reliably is represented by MSE. It represents the variance between the predicted values

and realized values. It is applied to observe how much the predicted variables differ from

the actual variables. (Handelman et al. 2019) MSE is the mean deviation from the actual

values

𝑀𝑆𝐸 =
1

𝑛
∑(𝑌𝑖 − Ŷ𝑖)2

𝑛

𝑖=1

,

where 𝑌 is the actual value and Ŷ is the predicted value. Since the error is squared, MSE

treats deviations to either directions in the same way. As MSE squares the differences,

it penalizes even a small error which may lead to over-estimation of how bad the model

is. In this thesis, MSE is the preferred evaluation metric, because it is differentiable and

hence can be optimized better. MSE is a good metric when large errors are undesirable,

since it is sensitive towards outliers.

MSE values are always positive and the smaller the score is, the better the model is

performing. As the error is squared, MSE shows clearly when the model is not performing

well as the MSE score gets very large when the predictions are inaccurate. MSE as an

evaluation metric does not tell whether the predicted values are too large or too small.

To have a better understanding of the directions of the errors, the predictions need to be

plotted against the actual values. After measuring the absolute performance of the

model, the scores can be compared to a benchmark model.

36

5.2 Models

Models were built with Python 3.6.1 using Keras, the most used application programming

interface (API) for building neural networks in Python. Keras is a free open source Python

library for developing machine learning models. Keras is built on top of TensorFlow 2.0

and it allows user to define and train neural networks. Keras supports sequential neural

networks, RNNs and CNNs. Next, the process of developing a neural network model

with Keras is explained and then the details of the developed models are described.

The development begins with creating a sequential model with Keras and then the layers

are added to the model one by one. The input layer is ensured to have the correct input

dimension according to batch size, timesteps and number of features. The number of

hidden layers and their types are determined by the process of trial and error experimen-

tation to find out a network that is large enough to capture the dynamics of the prediction

task. For fully connected layers, the number of the nodes is defined by the desired output.

Activation functions are specified based on the nature of the problem and the type of the

layer. For single-output regression problems, the fully connected layer needs to have a

linear activation function. For other layers, multiple choices are available, and the func-

tion is chosen by trial and experimentation.

After defining the network architecture, the network is compiled and fitted with Keras

using TensorFlow backend. Before compiling the model, some additional properties

need to be defined. A loss function is defined to evaluate a set of weights and an opti-

mizer is defined to search the desired weights of the network. Also, metrics argument is

defined to evaluate the accuracy of the model. After defining the model and compiling it,

the model is trained by calling fit function, which is a built-in function provided by Keras.

The training process runs multiple of iterations, called epochs, that is given as a param-

eter to the model. Another approach is to monitor the training process and apply early

stopping when the training results stop improving their accuracy. The last defined pa-

rameter for training process is batch size. The batch size means the number of training

samples considered before the model updates the weights. Finally, after training the net-

work, it can be used for making predictions on new unforeseen data.

Three models were first developed: MLP, 1-D CNN and LSTM. After early experiments,

the LSTM model presented the most promising results, and the model was then further

developed. The developed LSTM model is a stateful LSTM, where the states of the

nodes are saved for further training session instead of resetting the states. The stateful

approach was chosen over stateless since stateful LSTM can learn dependencies over

the sequences, which was expected to be useful in time series prediction. The developed

37

LSTM model consists of one input layer, one hidden layer and one output layer. The

architecture of developed LSTM model is represented in Figure 5.1.

Figure 5.1. The model architecture of the developed LSTM.

The LSTM model is constructed as follows. The input data was three dimensional includ-

ing dimensions of batch size of 10, 75 timesteps and the LOB data. The input layer is a

LSTM layer with 64 nodes, hyperbolic tangent activation function and without initializa-

tions. After the first LSTM layer, dropout is applied with dropout rate of 50% and the

output is then passed to the second LSTM layer. The second LSTM layer has 32 nodes,

hyperbolic tangent activation function and does not have any initializations. Bias term

was added to the LSTM layers by default. The output layer is a fully connected dense

layer with one node and linear activation function.

Initial parameter choices were done by analyzing the structure of the problem and the

nature of LSTM, but eventually multiple iterations of manually adjustment of the param-

eters were required to develop the model. Next, the chosen parameters are further ex-

plained. The batch size parameter was defined to be 10 since a stateful LSTM requires

a small batch size. The timesteps parameter was defined to be 75 because the LSTM

input gate will control the amount of timesteps that will be added to the cell state, which

means that the number of timesteps could be larger as well. It was observed that the

model was performing better as the number of timesteps were increased. However, the

38

required computational cost, random access memory (RAM) and the training time, in-

creased significantly while increasing the timesteps parameter, which is why there was

not tested larger number than 75. In the LSTM layers, kernel initialization or bias initiali-

zation were not needed, since the LTSM gates will prevent the vanishing gradient prob-

lem. The LSTM cells already include internal hyperbolic tangent and sigmoid activations

functions to capture the non-linearities, so the activation function between the layers was

also defined to be the hyperbolic tangent function. Sigmoid activation function was also

tried, but the hyperbolic tangent function was observed to give better results. For the

output layer, there had to be only one node since the required output was one value.

Also, the activation function of the output layer had to be linear for the output value to be

desired numeric value.

The compiling and training had also few different options. MSE was used as a loss func-

tion since it is sensitive to outliers. Adam was used as an optimizer because of its effi-

ciency. Nesterov was tried as an optimizer, but it was slower, and it affected the perfor-

mance negatively. For training, early stopping was applied with patience of 3 epochs. It

was observed that once the training results start getting worse, the results would keep

getting worse, so the small patience was observed to be enough.

After making the predictions with the LSTM model, the performance was then compared

to a benchmark model. Comparing to the benchmark model is necessary to demonstrate

the prediction capabilities of the LSTM model compared to another prediction model.

Benchmarks are used to check whether the prediction model has adequately utilized the

available information and to measure the accuracy of the prediction. The naïve prediction

model is one of the most used benchmark models for time series prediction. It is simple

and effective and often used as a benchmark against the most of sophisticated models.

For naïve predictions, all predictions are set to be the value of the last observation

ŷ𝑇+ℎ = 𝑦𝑇 ,

where ŷ is the predicted value, 𝑦 is the actual value, 𝑇 is the time and ℎ is the prediction

horizon. The naïve prediction model has proven to work well for economic and financial

time series data, where the values follow a random walk and does not include seasonal-

ity. (Bibhuti et al. 2019)

The LSTM model was developed only with AAPL. After the initial choices of parameters

based on the theory, all the experiments and further adjustments were iteratively made

by testing the model with AAPL. After optimizing the model with AAPL, it was tested with

the other stocks the test the model’s ability to generalize for other stocks.

39

5.3 Level 1 depth prediction

The level 1 depth predictions were completed by predicting separately the bid side and

the ask side. The prediction results were surprising, the LSTM model did not present any

prediction power for level 1 depth. None of the prediction results were significant and

none of them beat the naïve prediction model. The poor performance was experienced

with both sides of the LOB. Next, the poor performance of the LSTM model in level 1

depth prediction is analyzed.

The biggest reason for the poor performance of the LSTM model is that the prediction

problem was not suitable for regression model due the nature of level 1 order quantity.

Most of the time level 1 quantity remained unchanged, which is the main factor for the

naïve model to outperform the LSTM prediction model. The LSTM prediction model is

constantly adjusting predictions slightly based on the new sample. However, the slight

adjustments are insufficient in this kind of prediction task since the actual values are not

changing slightly. Instead of a regression prediction model, a conditional prediction

model would be more suitable for this prediction task. Microstructure of the level 1 ask

quantity predictions compared to the actual values during 100 samples is represented in

Figure 5.2. The actual values are represented by a magenta curve and the predicted

values by a blue curve.

Figure 5.2. Predictions and actual values of the level 1 ask quantity of AAPL over
100 samples. Magenta: actual quantities, Blue: predicted quantities.

The predictions are slightly adjusted on short intervals, but the LSTM model is not capa-

ble of predicting the non-changing quantity of 100. Similar market movements were ob-

served with the bid side of LOB and the LSTM model faced the same problems while

making predictions.

40

The first reason why the LSTM model is performing poorly compared to the naïve pre-

diction model is that for most of the samples, the level 1 ask quantity does not change

compared to the previous sample. Thus, the naïve prediction is exactly correct and does

not generate any prediction error. With AAPL validation set, 572733 samples out of the

total 618920 samples, the level 1 ask quantity remained unchanged compared to the

previous sample. This means that approximately for 92.5% of the samples, the naïve

prediction model predicted the exactly correct value. The big proportion of samples with

unchanging quantities is explained by the behavior of the market participants posting

limit orders instead of only market orders, another explanation being the nature of the

level 1 ask quantity. The level 1 ask quantity will remain the same when limit orders arrive

to the bid side or to the level 2 or below of the ask side. As the LSTM model fails to learn

to adjust to the unchanging quantities, it will perform poorly.

The second reason why the LSTM model performs poorly is the inability to learn the

changes in the quantities. The LSTM model usually makes slight changes to the predic-

tions, but the quantity change usually happens with larger magnitude. This is again ex-

plained by the behavior of market participants. Because of the transaction costs, it does

not make sense for the market participants to post orders with very small quantities. On

the contrary, bigger one-time orders do happen. The distribution of the quantities of

posted orders is quite discontinuous, which makes the prediction task less suitable for

the regression model. The most common change in the order quantity is 100, occurring

11054 times in the AAPL validation set. This is approximately 1.8% of the samples. The

quantity of 100 could be explained by some trading strategy where the stock is sold with

chunks of 100. As the LSTM model fails to predict the larger jumps in quantities as well

as commonly occurring quantities such as 100, the model will perform poorly.

Due the two issues, this prediction task is not suitable for the regression model. Since

the discrete quantity changes such as 0 and 100, the nature of the problem seems more

like a classification problem. Thus, classification model could yield better prediction re-

sults. For example, Dixon (2018) used 3-class classification model to predict the next

price change. Similar approach could be applied to the level 1 depth prediction problem,

predicting the classes whether the next quantity change will be neutral, downwards, or

upwards.

5.4 Multi-level depth prediction

The multi-level depth predictions were completed by taking the top 5 levels of both sides

of the LOB and predicting their summarized quantity. The developed LSTM model

demonstrated prediction capabilities with AAPL, but it was not able to generalize for the

41

other stocks, performing poorly with GOOG, INTC, FB, and MSFT. The model was opti-

mized to make predictions with AAPL, and it demonstrated prediction power outperform-

ing the naïve prediction model with AAPL. With other stocks, the naïve prediction model

gave better prediction results. MSE of the predictions are represented in Table 5.1., best

score being underlined.

Table 5.1. Results of the multi-level depth prediction. MSEs of the LSTM model and
the naïve model with each stock. The LSTM model outperformed the naïve model only

with AAPL.

Model/Stock AAPL FB GOOG INTC MSFT

LSTM 37087 5063032 7778 18013338 26216036

Naïve 45276 327946 2875 1671452 270499

With AAPL, the LSTM model outperformed the naïve prediction model having signifi-

cantly lower MSE. But with the other stocks, the LSTM model could not outperform the

naïve prediction model. In general, the performance of both models varied a lot between

the other stocks. The stocks that have higher MSE with the naïve model, the quantity is

more volatile. The LSTM model performs especially poorly with FB, INTC and MSFT,

which have the most volatile quantities. With AAPL and GOOG, the LSTM model per-

forms better than with the other stocks. However, the LSTM model still loses the naïve

prediction model with GOOG by some margin, even though GOOG has less volatile

quantities than AAPL. Since the LSTM model performed poorly with the other stocks

than AAPL, the model would require changes to improve its performance. Figures of the

performances of the LSTM model with each stock are represented in Appendix A. Next,

the prediction results are analyzed in detail.

The LSTM model performed well with AAPL. To investigate the details of the predictions,

the microstructure of the predictions is represented in Figure 5.3. The actual values are

represented by the magenta curve and the predicted values by the blue curve.

42

Figure 5.3. Predictions and actual values with AAPL during 200 samples. Magenta:
actual quantities, Blue: predicted quantities.

Unlike with other stocks, the direction of the prediction error is not constant, sometimes

the predicted values are too big and sometimes too small. This finding means that there

does not exist any constant bias and the LSTM model is performing well to adapt and

predict the multi-level depth.

The LSTM model performed poorly with FB. In the prediction results, the MSE is signifi-

cantly larger for the LSTM model than it is for the naïve prediction model. To further

investigate the performance of the model, the microstructure is of the predictions with FB

are represented in Figure 5.4. The actual values are represented by the magenta curve

and the predicted values by the blue curve.

Figure 5.4. Predictions and actual values with FB during 200 samples. Magenta: ac-
tual quantities, Blue: predicted quantities.

43

MSE as a metric has a tendency to over-estimate the poor performance of the model

and it can be observed that even though the prediction error is very large, the model is

able to adjust to the market movements quite well. It seems like that the model can adjust

to the multi-level depth changes but does not learn to adapt to the absolute level. This

kind of performance continues for the full trading day, the LSTM model is constantly

predicting the multi-level depth to be approximately two thousand too large. The LSTM

model can only capture the pattern and not the trendline.

Similar performance was observed with INTC and MSFT, the prediction errors were

large, and the predicted value was constantly larger than the actual value. Unlike with

FB, the performance got better towards the end of the validation set, prediction error

being significantly larger at the beginning of the validation set than at the end of the

validation set. The performance of the LSTM model with MSFT is represented in Figure

5.5. The actual values are represented by the magenta curve and the predicted values

by the blue curve.

Figure 5.5. Predictions and actual values with MSFT during full trading day. Ma-
genta: actual quantities, Blue: predicted quantities.

The LSTM model is not capturing the linear trendline. In the LSTM model, the bias term

in final layer 𝑏𝑦 is responsible for changing the scale of the series without having an

impact to the pattern recognition. In this case, the bias term was not able to capture the

linear trendline. The reason for this could be that the model did not learn to adjust the

bias term and more training could lead to correct scale predictions. The model did run

fewer epochs with FB, INTC and MSFT than with AAPL and GOOG, which could explain

their larger errors. This could be explained by the early stopping having been triggered

too early and increasing the patience term may improve the performance of the LSTM

model.

44

The main driver of the prediction errors is the inability of the model to capture the linear

trendline. For further improvement, a linear autoregressive component could be added

to the prediction model. The LSTM would then try capture the patterns and the linear

autoregressive component would try to capture the trendline. To otherwise improve the

prediction results, better models could be found by continuing empirical research. The

LSTM model could be optimized for each individual stock separately to make better pre-

dictions or the whole model architecture and learning methods could be changed to seek

generalization capabilities. Without a doubt, better models could be found by continuing

empirical research. Also, to improve the prediction results in general, feature engineering

could be applied to the LOB data as Ntakaris et al. (2019) suggests. Suitable features

for this prediction task could be for example bid-ask spread, mean quantity and quantity

derivation.

45

6. CONCLUSION

This thesis studied the use of neural networks and their prediction capabilities for stock

market liquidity with LOB data. A new LSTM model was developed to predict stock mar-

ket liquidity and it was tested against the naïve prediction model to demonstrate the pre-

diction power. The prediction task was defined as a time series regression problem of

the next step of level 1 depth and multi-level depth of the LOB, which were used as a

measure of the stock liquidity. The neural networks were trained, tested and validated

with LOB data of five different stocks during five full trading days.

The first research question was to assess whether the neural networks can predict the

stock market liquidity. None of the experimented models showed any prediction capabil-

ity for the level 1 depth prediction task. The poor performance of the neural network

prediction models is explained by the unsuitability of the prediction task. Due the dis-

creteness of the data changes in level 1 order quantity, the problem was found out to be

more like a classification task than a regression task. For further model development,

reproduction with classification model is suggested.

For multi-level depth prediction task, the developed LSTM model showed prediction

power with AAPL. The model was optimized with AAPL, which explains its success com-

pared to other stocks. The finding is narrow, providing proof of prediction power for one

model and for one stock only. However, the finding of the prediction evidence encour-

ages for further research to develop more robust and accurate prediction models for

stock market liquidity using neural networks.

The second research question was to assess the model’s performance against the naïve

prediction model. For multi-level depth prediction task, the developed LSTM model out-

performed the naïve prediction model with AAPL having significantly lower MSE. With

GOOG, the LSTM model lost to the naïve prediction model by some margin. With FB,

INTC and MSFT, the LSTM model performed poorly and had large MSE compared to

the naïve prediction model. The poor performance is mostly explained by the inability of

the LSTM model to capture the linear trendline, capturing only the patterns. For further

model development, a linear autoregressive component is suggested to capture the

trendline as well.

As machine learning methods are developed mainly through empirical testing, better

performing models could be simply found by continuing empirical testing. The developed

LSTM model outperformed the naïve prediction model with the one stock that was used

46

to optimize it. The developed model could outperform the naïve prediction model with

other stocks as well if it would be separately optimized for each stock. For further re-

search, exploratory model development, individual model optimization, a linear auto-

regressive component and feature engineering is suggested.

47

BIBLIOGRAPHY

Ajina, A., Sougne, D. & Lakhal, F. (2015). Corporate disclosures, information asymmetry
and stock-market liquidity in France, Journal of applied business research, Vol. 31(4), pp.
1223–1232.

Aldridge, I. (2013). High-frequency trading a practical guide to algorithmic strategies and
trading systems, 2nd ed. Wiley, Hoboken, N.J.

An, Y. & Chan, N.H. (2017). Short-Term Stock Price Prediction Based on Limit Order Book
Dynamics, Journal of Forecasting, Vol. 36(5), pp. 541–556.

Andreeva, N.A. & Chaban, V.V. (2015). Global minimum search via annealing: Nanoscale
gold clusters, Chemical Physics Letters, Vol. 622 pp. 75–79.

Avellaneda, M., Reed, J. & Stoikov, S. (2011). Forecasting prices from level-I quotes in the
presence of hidden liquidity, Algorithmic Finance, Vol. 1(1), pp. 35–43.

Barardehi, Y.H., Bernhardt, D. & Davies, R.J. (2019). Trade-time measures of liquidity, Re-
view of Financial Studies, Vol. 32(1), pp. 129–179.

Basheer, I.A. & Hajmeer, M. (2000). Artificial neural networks: fundamentals, computing,
design, and application, Journal of microbiological methods, Vol. 43(1), pp. 3–31.

Biais, B., Declerck, F. & Moinas, S. (2017). Who supplies liquidity, how and when? IDEAS
Working Paper Series from RePEc.

Bibhuti, S., Ramakar, J., Ansuman, S. & Deepak, K. (2019). Long short‑term memory
(LSTM) recurrent neural network for low‑fow hydrological time series forecasting, Acta geo-
physica, 2019, Vol.67(5), p.1471–1481.

Box, G.E.P. (2016). Time series analysis: forecasting and control, 5th ed. Wiley, Hoboken,
New Jersey.

Breen, W.J., Hodric, L.S. & Korajczyk, R.A. (2002). Predicting Equity Liquidity, Manage-
ment Science, Vol. 48(4), pp. 470–483.

Byung-Joo, K. (2012). Improved multi layer perceptron with a prior knowledge applied sys-
tem identification, Convergence and Hybrid Information Technology, Vol. 7425, pp. 165–
172.

Cao, J. & Wang, J. (2019). Stock price forecasting model based on modified convolution
neural network and financial time series analysis, International Journal of Communication
Systems, Vol. 32(12).

Cartea, Á & Jaimungal, S. (2013). Modelling Asset Prices for Algorithmic and High-Fre-
quency Trading, Applied Mathematical Finance, Vol. 20(6), pp. 512–547.

Castellani, M. (2018). Competitive co-evolution of multi-layer perceptron classifiers, Soft
Computing, Vol. 22(10), pp. 3417–3432.

Chow, T.W.S. & Cho, S. (2007). Neural networks and computing learning algorithms and
applications, Imperial College Press, London.

Crisci, C., Ghattas, B. & Perera, G. (2012). A review of supervised machine learning algo-
rithms and their applications to ecological data, Ecological Modelling, Vol. 240 pp. 113–
122.

48

Dixon, M. (2018). Sequence classification of the limit order book using recurrent neural net-
works, Journal of Computational Science, Vol. 24, pp. 277–286.

Elezović, S. (2009). Functional modelling of volatility in the Swedish limit order book, Com-
putational Statistics and Data Analysis, Vol. 53(6), pp. 2107–2118.

Frey, S. & Grammig, J. (2006). Liquidity supply and adverse selection in a pure limit order
book market, Empirical Economics, Vol. 30(4), pp. 1007–1033.

Foucalt, T.A., Röell, A. & Pagano, M. (2013). Market liquidity: theory, evidence, and policy,
New York, Oxford University Press.

Galeshchuk, S. (2016). Neural networks performance in exchange rate prediction, Neuro-
computing, Vol. 172 pp. 446–452.

Graupe, D. (2013). Principles of artificial neural networks, 3rd ed. World Scientific, Singa-
pore.

Graves, A. (2012). Supervised Sequence Labelling with Recurrent Neural Networks, Stud-
ies in computational intelligence, Vol. 385, pp. 1–141.

Graves, A. (2014). Generating Sequences With Recurrent Neural Networks, pp. 1–43.

Geithner, T. (2007). Liquidity and Financial Markets. Keynote address at the 8th Annual
Risk Convention and Exhibition, Global Association of Risk Professionals, New York City.

Hang, S.T. & Aono, M. (2017). Bi-linearly weighted fractional max pooling: An extension to
conventional max pooling for deep convolutional neural network, Multimedia tools and ap-
plications, Vol. 76(21), pp. 22095–22117.

Hashemi F., A., Madanifar, F. & Abbasi, M. (2018). Implementation of multilayer perceptron
(MLP) and radial basis function (RBF) neural networks to predict solution gas-oil ratio of
crude oil systems, Petroleum, Vol. 6(1), pp. 80–91.

Hochreiter, S. & Schmidhuber, J. (1997). Long Short-Term Memory, Neural computation,
Vol. 9(8), pp. 1735–1780.

Hu, Y. (2010). A single-layer perceptron with PROMETHEE methods using novel prefer-
ence indices, Neurocomputing, Vol. 73(16), pp. 2920–2927.

Härdle, W.K., Hautsch, N. & Mihoci, A. (2012). Modelling and forecasting liquidity supply
using semiparametric factor dynamics, Journal of Empirical Finance, Vol. 19(4), pp. 610–
625.

Kale, J.R. & Loon, C.Y. (2010). Product market power and stock market liquidity, Journal of
Financial Markets, Vol. 14(2), pp. 376–410.

Kang, H. & Kim, S. (2018). Order Imbalance and Return Predictability: Evidence from Ko-
rean Index Futures, Information, Vol. 21(4), pp. 1283–1291.

Keller, J.M., Liu, D. & Fogel, D.B. (2016). Fundamentals of computational intelligence: neu-
ral networks, fuzzy systems, and evolutionary computation, IEEE Press/Wiley, Hoboken,
New Jersey.

Kercheval, A.N. & Zhang, Y. (2015). Modelling high-frequency limit order book dynamics
with support vector machines, Quantitative Finance: Special Issue on High Frequency Data
Modeling in Finance, Vol. 15(8), pp. 1315–1329.

Haykin, S. (1999). Neural Networks: A Comprehensive Foundation, 2nd ed., Prentice-Hall,
New York.

Kingma, D. & Ba, J. (2017). Adam: A Method for Stochastic Optimization.

49

Kumar, S., Singh, M.P., Goel, R. & Lavania, R. (2013). Hybrid evolutionary techniques in
feed forward neural network with distributed error for classification of handwritten Hindi
'SWARS', Connection Science, Vol. 25(4), pp. 197–215.

Li, X., Peng, L., Yao, X., Cui, S., Hu, Y., You, C. & Chi, T. (2017). Long short-term memory
neural network for air pollutant concentration predictions: Method development and evalua-
tion, Environmental Pollution, Vol. 231, pp. 997–1004.

Liu, Y., Liu, S., Wang, Y., Lombardi, F. & Han, J. (2018). A Stochastic Computational Multi-
Layer Perceptron with Backward Propagation, IEEE Transactions on Computers, Vol.
67(9), pp. 1273–1286.

Livingstone, D.J. (2009). Artificial Neural Networks: Methods and Applications.

Nousi, P., Tsantekidis, A., Passalis, N., Ntakaris, A., Kanniainen, J., Tefas, A., Gabbouj, M.
& Iosifidis, A. (2019). Machine Learning for Forecasting Mid-Price Movements Using Limit
Order Book Data, IEEE Access, Vol. 7(99), pp. 64722–64736.

Ntakaris, A., Magris, M., Kanniainen, J., Gabbouj, M. & Iosifidis, A. (2018). Benchmark da-
taset for mid‑price forecasting of limit order book data with machine learning methods,
Journal of Forecasting, Vol. 37(8), pp. 852–866.

Ntakaris, A., Mirone, G., Kanniainen, J., Gabbouj, M. & Iosifidis, A. (2019). Feature Engi-
neering for Mid-Price Prediction with Deep Learning, IEEE Access, Vol. 7(99), pp. 82390–
82412.

Palguna, D. & Pollak, I. (2016). Mid-Price Prediction in a Limit Order Book, IEEE Journal of
Selected Topics in Signal Processing, Vol. 10(6), pp. 1083–1092.

Parra, O., Garcia, G. & Daza, B. (2014). LAN traffic forecasting using a multi layer percep-
tron model, Internet of Things, Smart Spaces, and Next Generation Networks and Systems,
Vol. 8638, pp. 399–407.

Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M. & Iosifidis, A. (2018). Temporal Bag-of-
Features Learning for Predicting Mid Price Movements Using High Frequency Limit Order
Book Data, IEEE Transactions on Emerging Topics in Computational Intelligence, Vol. 99,
pp. 1–12.

Piotrowski, A.P. & Napiorkowski, J.J. (2013). A comparison of methods to avoid overfitting
in neural networks training in the case of catchment runoff modelling, Journal of Hydrology,
Vol. 476, pp. 97–111.

Poznyak, T., Chairez, O.I. & Poznyak, A.S. (2018) Ozonation and biodegradation in envi-
ronmental engineering, Elsevier.

Rawat, A. & Solanki, A. (2020). Sequence Imputation using Machine Learning with Early
Stopping Mechanism, International Conference on Computational Performance Evaluation,
IEEE, pp. 859–863.

Rana, A., Singh, R, Bijalwan, A. & Bahuguna, H. (2018). Application of Multi Layer (Per-
ceptron) Artificial Neural Network in the Diagnosis System: A Systematic Review, Interna-
tional Conference on Research in Intelligent and Computing in Engineering, pp. 1–6.

Rösch, C. & Kaserer, C. (2013). Market liquidity in the financial crisis: The role of liquidity
commonality and flight-to-quality, Journal of Banking and Finance, Vol. 37(7), pp. 2284–
2302.

Sak, H., Senior, A. & Beaufays, F. (2014). Long Short-Term Memory Based Recurrent Neu-
ral Network Architectures for Large Vocabulary Speech Recognition, pp. 1–5.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview, Neural Networks,
Vol. 61 pp. 85–117.

50

Schwartz, R.A. & Weber, B.W. (1997). Next-Generation Securities Market Systems: An Ex-
perimental Investigation of Quote-Driven and Order-Driven Trading, Journal of Manage-
ment Information Systems, Vol. 14(2), pp. 57–79.

Sharma, A. (2018). Guided Stochastic Gradient Descent Algorithm for inconsistent da-
tasets, Applied Soft Computing Journal, Vol. 73 pp. 1068–1080.

Sharma, R., Nori, A. & Aiken, A. (2014). Bias-variance tradeoffs in program analysis, Pro-
ceedings of the 41st ACM SIGPLAN-SIGACT Symposium on principles of programming
languages, Vol. 49(1), pp. 127–137.

Siikanen, M., Kannianen, J. & Luoma, A. (2017). What Drives the Sensitivity of Limit Order
Books to Company Announcement Arrivals? Economic Letters, Vol. 159, pp. 65–68.

Siikanen, M. (2018). Investors, Information Arrivals, and Market Liquidity: Empirical Evi-
dence from Financial Markets, Doctoral dissertation, Tampere University of Technology,
pp. 1–68.

Soutner, D. & Müller, R. (2013). Application of LSTM neural networks in language model-
ling, Text, Speech, and Dialogue, Vol.8082, p.105–112.

Speck-Plancke, A. & Cordeiro, M.N. (2015). Artificial Neural Networks, Methods in Molecu-
lar Biology, Vol. 1260, pp. 45–64.

Tavana, M., Abtahi, A., Di Caprio, D. & Poortarigh, M. (2018). An Artificial Neural Network
and Bayesian Network model for liquidity risk assessment in banking, Neurocomputing,
Vol. 275, pp. 2525–2554.

Thimm, G. & Fiesler, E. (1997). High-order and multilayer perceptron initialization, IEEE
Transactions on Neural Networks, Vol. 8(2), pp. 349–359.

Tsantekidis, A., Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M. & Iosifidis, A. (2018).
Using Deep Learning for price prediction by exploiting stationary limit order book features,
Applied Soft Computing Journal, Vol. 93, pp. 1–10.

Übeyli, E.F. (2005). A Mixture of Experts Network Structure for Breast Cancer Diagnosis,
Journal of Medical Systems, Vol. 29, pp. 569–579.

Verlag, C. (2008). Limit Order Book Dynamics and Asset Liquidity, Doctoral dissertation,
University of Zurich. pp. 1–149.

Wang, Y., Mangu, L. & Decker, K. (2019). Model-based Reinforcement Learning for Predic-
tions and Control for Limit Order Books, Association for the Advancement of Artificial Intelli-
gence.

Winkler, J. & Vogelsang, A. (2016) Automatic classification of requirements based on con-
volutional neural networks, IEEE 24th International Requirements Engineering Conference
Workshops, pp. 39–45.

Witten, I.H., Frank, E. & Hall, M.A. (2011). Data mining practical machine learning tools and
techniques, 3rd ed. Elsevier/Morgan Kaufmann.

Wu, H. & Gu, X. (2015). Max-pooling dropout for regularization of convolutional neural net-
works, Neural Information Processing, Vol.9489, pp. 46–54.

Xu, K., Gould, M.D. & Howison, S.D. (2019). Multi-Level Order-Flow Imbalance in a Limit
Order Book, Market microstructure and liquidity, Vol.4, pp. 1–42.

Yoon, K. (2014). Convolutional Neural Networks for Sentence Classification, Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP),
1746–1751.

51

Zaccone, G. (2016). Getting started with TensorFlow: get up and running with the latest nu-
merical computing library by Google and dive deeper into your data, Packt Publishing.

Zhang, Y., Wang, S., Ji, G. & Phillips, P. (2014). Fruit classification using computer vision
and feedforward neural network, Journal of Food Engineering, Vol. 143 pp. 167–177.

Zhang, Z., Zohren, S. & Roberts, S. (2018). BDLOB: Bayesian Deep Convolutional Neural
Networks for Limit Order Books, Third workshop on Bayesian Deep Learning, pp. 1–6.

Zhang, Z., Zohren, S. & Roberts, S. (2019). DeepLOB: Deep Convolutional Neural Net-
works for Limit Order Books, IEEE Transactions on Signal Processing, Vol. 67(11), pp.
3001–3012.

Zheng, B., Moulines, E. & Abergel, F. (2013). Price jump prediction in a limit order book,
IDEAS Working Paper Series from RePEc, pp. 1–16.

52

APPENDIX A. PREDICTION RESULTS

Figure 1. Predictions and actual values with Apple stock during full trading day.
Magenta: actual quantities, Blue: predicted quantities.

Figure 2. Predictions and actual values with Facebook stock during full trading day.
Magenta: actual quantities, Blue: predicted quantities.

Figure 3. Predictions and actual values with Google stock during full trading day.

Magenta: actual quantities, Blue: predicted quantities.

53

Figure 4. Predictions and actual values with Intel stock during full trading day.

Magenta: actual quantities, Blue: predicted quantities.

Figure 5. Predictions and actual values with Microsoft stock during full trading day.

Magenta: actual quantities, Blue: predicted quantities.

