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ABSTRACT

Jaakko Järvi: Community Evolution in Bitcoin Investor Networks
Master of Science Thesis
Tampere University
Master’s Programme in Industrial Engineering and Management
October 2020

The rise of cryptocurrencies is one of the phenomena characterizing the past decade. What
sets cryptocurrencies apart from the traditional ones is that no central party is required for en-
forcing the transaction rules and the transactions are also publicly available. Meanwhile, network
analysis tools have become widely popular for explaining the complex world shaped by social in-
teraction. Even though the Complex Networks approach has been used for inspecting Bitcoin, the
most widely adapted cryptocurrency, no prior study investigates the dynamics of investor commu-
nities in Bitcoin networks. The existing studies mostly focus on directed Bitcoin transfer networks
while behavioural synchronization networks have not been sufficiently addressed.

This thesis sheds a light on the social aspect of Bitcoin by exploring the dynamics of clusters
of investors who time their trades similarly. To conduct such a research, we retrieve the public
ledger of Bitcoin transactions and extract over 170 million Bitcoin wallets from the anonymous
data. A network of active wallets is formed for each month from 2009 until the end of 2019, and two
wallets are connected if their trade timing passes a statistical similarity test. Network analysis tools
are used for detecting communities in the formed networks, and community evolution analysis is
performed by analyzing the community structure of subsequent monthly networks.

Our results show that Bitcoin investor communities are mostly short-lived but some persist for
months or even years. We also find out that the long-lived investor communities prefer splitting
over merging when it comes to persistence methods. This research not only produces novel
information, which is valuable as such, but also lays a solid basis for future studies concerned with
the evolution of Bitcoin communities by bringing together best practices of varying disciplines.

Keywords: Bitcoin, Complex Networks, Network Analysis, Community Evolution, Community De-
tection, Statistically Validated Networks

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.
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TIIVISTELMÄ

Jaakko Järvi: Yhteisöjen kehittyminen Bitcoin-sijoittajien verkostoissa
Diplomityö
Tampereen yliopisto
Tuotantotalouden DI-ohjelma
Lokakuu 2020

Kryptovaluuttojen suosion räjähdysmäinen nousu on eräs menneen vuosikymmenen merkit-
tävistä ilmiöistä. Krypto- ja perinteisten valuuttojen merkittävin ero on se, että kryptovaluutois-
sa ei tarvita pankin kaltaista keskitettyä tahoa varmistamaan transaktion turvallisuutta, ja lisäk-
si kryptovaluuttojen transaktiotiedot ovat julkisesti saatavilla. Toinen tiedemaailmaa muovaava il-
miö on maailman alati kasvava monimutkaisuus, jonka tutkimiseen ja selittämiseen käytetään yhä
useammin verkostoanalyysin työkaluja. Verkostoanalyysin menetelmiä on käytetty myös tutkit-
taessa kaikkein suosituinta kryptovaluuttaa Bitcoinia, mutta yksikään aiempi tutkimus ei ole pereh-
tynyt Bitcoin-verkoston sijoittajayhteisöjen kehittymiseen. Aiemmat tutkimukset keskittyvät ennen
kaikkea suunnattuihin, Bitcoin-siirtojen verkostoihin, kun taas käyttäytymisen synkroniaa mallinta-
via verkostoja ei ole tutkittu riittävissä määrin.

Tämä diplomityö lisää tietoisuutta Bitcoinin sosiaalisesta ulottuvuudesta tutkimalla sellaisten
sijoittajien ryhmiä, jotka ajoittavat kaupankäyntinsä samankaltaisesti. Tutkimus toteutetaan hake-
malla Bitcoin-transaktioiden julkinen pääkirja ja tunnistamalla anonyymistä datasta yli 170 miljoo-
naa sijoittajalompakkoa. Aktiivisista lompakoista rakennetaan verkosto kullekin kuukaudelle vuo-
den 2009 alusta vuoden 2019 loppuun, ja verkostoissa lompakoiden välille asetetaan linkki, mikäli
kaupankäyntiajoitusten samankaltaisuus on tilastollisesti merkittävä. Kunkin kuukauden verkos-
tosta tunnistetaan sijoittajayhteisöjä verkostoanalyysin keinoin, minkä jälkeen yhteisöjen kehitty-
mistä tutkitaan vertailemalla peräkkäisten kuukausien verkostoja.

Tutkimuksen tulokset osoittavat, että pääosa sijoittajayhteisöistä on hyvin lyhytikäisiä, mutta
kuitenkin osa säilyy hengissä useita kuukausia, jopa vuosia. Tutkimus myös näyttää, että pit-
käikäiset sijoittajayhteisöt suosivat jakautumista ennemmin kuin yhdistymistä selviytymiskeinona.
Täysin uuden tiedon tuottamisen lisäksi tämä diplomityö luo perustan tuleville Bitcoin-yhteisöjen
tutkimuksille yhdistelemällä eri tieteenhaarojen parhaita käytänteitä.

Avainsanat: Bitcoin, Monimutkaiset verkostot, Verkostoanalyysi, Yhteisöjen kehittyminen, Yhteisö-
jen tunnistaminen, Tilastollisesti vahvistetut verkostot

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.
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It was December 2018. Having barely survived an overloaded semester of work and

studies, there I was sitting in an unevenly lighted meeting room, chit-chatting with my

employer about the past, the present and the future. As there were only a couple of

courses and a Master’s thesis between me and my graduation, it was only natural for him

to say that I would be young-yet-experienced when graduating. Little did he know...

So here I am, on a different decade and on a different quarter of life, turning in a thesis

the completion of which has not always been as certain as death and taxes. Therefore, it

is time to express gratitude towards the brilliant people who have made this happen. First,

I would like to thank Kęstutis Baltakys, the main supervisor of this thesis, who has shared

his expertise throughout the process. What is more, Kęstutis could have made me feel

guilty for the slight inconsistency of my commitment and the challenges in time allocation

but instead he decided to make the collaboration work. I would also like to thank professor

Juho Kanniainen not only for his advice and help, but also for his great courses which led

me to this research topic.

Even though having a great pair of supervisors did smoothen the thesis process, the

journey involved many more people. I would like to thank my wonderful colleagues at

work and at school – and especially the handful of people at the intersection of those two

– who have been there to shape the path and share the highs and lows of it. As this is

most likely the end of my journey in the Finnish school system, I will also thank my family

for guiding me and being supportive through the whole 18-year cruise.

Just as Finnish sports legend Lasse Urpalainen said right after becoming a World Cham-

pion, right now it mostly feels empty, the journey is the meaningful part.

Espoo, 28th October 2020

Jaakko Järvi
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1 INTRODUCTION

Cryptocurrencies have become widely popular over the past decade and Bitcoin, launched

in 2009, is the first and most important driver of the boom. Cryptocurrencies enforce the

transaction rules without a central party verifying each transfer of currency (Narayanan

et al. 2016). Such an unconventional system is fascinating from a technological point of

view but, what is more, regulation becomes rather challenging. The rise of Bitcoin price

from less than $0,10 to almost $20 000 has created a new class of crypto millionaires

(Investopedia 2020) but Bitcoin is also the favorite currency for various criminal activities

(Brown 2016). The Bitcoin drama simply offers something for everyone’s appetite.

Even though technological innovations like Bitcoin shape the world we live in, the world

is much more complex than that. The social interaction between humans forms com-

plex social networks, and the social structure affects our behavior and decision-making

(Baltakys, Baltakienė et al. 2019; Siikanen et al. 2018). Thus, unsurprisingly, the field

of network analysis has developed rapidly in terms of popularity and methodology. What

is more, complex networks methods have proved to be highly useful in several domains,

including but not limited to economy, communication, biology and many other (Costa et al.

2011; Emmert-Streib et al. 2018). Other studies, for example, highlight the systemic risk

in the financial system (Battiston et al. 2012), explain the topological collapse of inter-

bank networks causing the financial crisis of 2008 (Squartini et al. 2013), hint a trial-stage

drug to be toxic (Asur et al. 2009), recommend products and services (Baltakiene et al.

2018) and extract clusters of investors with similar trading strategies from the stock mar-

ket (Baltakienė et al. 2019; Baltakys, Kanniainen et al. 2018; Bohlin and Rosvall 2014;

Musciotto et al. 2016).

As complex networks approach has helped researchers obtain novel, meaningful insights

on topics of varying nature, the idea of utilizing such methods on Bitcoin data is intriguing.

Therefore, several studies have studied the properties of Bitcoin user network from dif-

ferent perspectives. For example, Ron and Shamir (2013) create a Bitcoin user network

and compute basic network properties and other statistics from it, whereas Tasca et al.

(2018) extract and investigate super clusters — massive groups of addresses belonging

to a single party. Vallarano et al. (2020) compare the properties of Bitcoin user network

to Bitcoin price and analyze the evolution of basic properties over time.
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However, no previous research has investigated the evolution of community structure in

Bitcoin investor networks over a period of time. Bohlin and Rosvall (2014), Baltakienė

et al. (2019) and Musciotto et al. (2016) have obtained interesting results when carrying

out similar studies on stock market investors. This thesis enters the uncharted territory

and aims to gain novel information regarding Bitcoin. The research questions are defined

as follows:

1. Are there communities of Bitcoin investors who follow a similar trading strategy?

2. If there are investor communities, how do they evolve over time.

To answer the questions in a structured manner, Chapter 2 presents the theory required

for understanding the phenomena. Chapter 3 describes how the Bitcoin transaction data

is retrieved from the launch of Bitcoin until the end of 2019 and how the raw, anonymous

transactions can be transformed into a wallet-level transaction log. Having created the

wallet-level transaction log, we can apply the network analysis tools on the data. Chap-

ter 4 explains how trading similarity is evaluated and how the trader communities are de-

tected. In addition, Chapter 4 describes the framework used for characterizing community

evolution. Chapter 5 presents the results whereas Chapter 6 concludes the thesis.
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2 THEORY AND PHENOMENA

This section aims to explain the techonologies and the phenomena relevant for under-

standing the content and methodological choices of this research. As this thesis inves-

tigates a network formed by the users of cryptocurrency named Bitcoin, the following

chapters will give an overview of cryptocurrencies and Blockchain before diving deeper

into Bitcoin. The latter part of this section presents the core concepts of complex networks

and a few popular techniques for quantifying and analyzing them.

2.1 Cryptocurrencies

There are several suitable approaches for defining and describing cryptocurrencies. This

paper provides a brief explanation by comparing cryptocurrencies with traditional fiat cur-

rencies which are widely used in today’s world.

Currencies are primarily used as medias of exchange (Investopedia 2019). As a fiat

currency itself has no value, unlike a silver coin for example, the system relies on common

rules that are to be accepted by different parties. The enforcement of such common

rules is what sets traditional and cryptocurrencies apart. In contrast to fiat currencies

where a central party enforces the rules, cryptocurrencies apply a set of cryptographic

techniques to store the rules in the system itself (Narayanan et al. 2016). In other words,

cryptocurrencies offer an alternative, secure channel for strangers to exchange services

or products for currency without relying on financial institutions (Vigna and Casey 2016).

Even though Bitcoin is the invention that made cryptocurrencies known for the public,

it is not the first cryptocurrency nor it claims to be that. In fact, when Nakamoto et al.

(2008) published Bitcoin in a white paper, the paper credited several earlier innovations,

such as b-money (Dai 1998) and HashCash (Back et al. 2002), and combined the earlier

achievements with their own innovations. Thus, Bitcoin is merely an implementation of a

cryptocurrency. However, Bitcoin did pave way for other cryptocurrencies as the creators

also invented a public-yet-secure data storage protocol, which builds on top of innovations

like the Blockchain.
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2.2 Blockchain

Blockchain is a technology, or a group of technologies, which can be used to create

distributed ledgers (Lewis 2018). The nature of events stored in the ledger may differ but

the basic concept remains the same: new events are bundled in a block of data which is

then inserted on top of previous data blocks (Antonopoulos 2017). Even though Bitcoin

blockchain is only one implementation of blockchain technologies, let us take a look at

how it solves the challenges commonly related to public ledgers.

The security of Bitcoin blockchain, or generally any blockchain, relies heavily on cryp-

tography. Each block calculates its identifier by using a cryptographic hash function and,

therefore, it is necessary to be familiar with the very basics of hash functions to under-

stand blockchain. Cryptographic hash functions receive a message of varying length as

an input and convert it to a fixed-length digest, known as the hash (Preneel 1993). Such

a function must be deterministic, computing the hash should be effortless and reversing

the computation should be difficult, or at least impractical (Lewis 2018; Preneel 1993).

One part of the difficulty of reversing the computation is the design where a slight change

to the input message results in a drastically different output digest (Lewis 2018). The

principle was originally proposed by Feistel (1973) and it is also known as the avalanche

effect. Table 2.1 presents example inputs and outputs for MD5 hash function.

Table 2.1. Two messages hashed with MD5 hash function. The avalance effect produces
greatly different cryptographic hashes even though the messages are almost identical.

Message Digest

10 BTC from Alice to Bob e3ea6484c72671d69d4aadd677ea2e7c

50 BTC from Alice to Bob 6c029eea9185371952af240ce284ac28

As can be discovered from the table, the two result hashes have barely any similarities,

apart from the length, even though the inputs were almost identical. The avalanche effect

is one of the reasons why cryptographic hash functions are extremely useful in blockchain

– the public ledger would be meaningless if the transaction data could be tampered after-

wards. For example, Bitcoin blockchain builds on the earlier work of Haber and Stornetta

(1990) who have described how a digital document can be timestamped unforgeably by

using hashes. Bitcoin blockchain uses a similar approach: each block links to its prede-

cessor, the parent block, by calculating a hash value of the parent block’s content and then

storing the hash in its own header (Antonopoulos 2017; Nakamoto et al. 2008). Figure

2.1 visualizes the principle of chaining new blocks on top of existing ones.

Let us imagine a situation in which Bob becomes greedy and tries to modify the ledger.

If, for example, Bob modifies the contents of the second block to receive Carla’s funds,

the block hash – which is the result of applying a hash function on the contents – will not
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block_hash: aabbcc
prev_block: aaaaaa
time: t0

height: h0

transactions: [
10 BTC from Alice to Bob

]

block_hash: bbccdd
prev_block: aabbcc
time: t0 + t
height: h0 + 1
transactions: [

2 BTC from Carla to David
1 BTC from Erica to Fabio

]

block_hash: cceedd
prev_block: bbccdd
time: t0 + 2t
height: h0 + 2
transactions: [

4 BTC from Gary to Hannah
]

Figure 2.1. Each blockchain block is linked to its predecessor, and the prev_block refer-
ence must match the hash of the parent block.

remain unchanged either. As a result, the third block’s prev_block is now pointing to a

block that does not exist. Figure 2.2 shows the new, erroneous state.

block_hash: aabbcc
prev_block: aaaaaa
time: t0

height: h0

transactions: [
10 BTC from Alice to Bob

]

block_hash: ppqqrr
prev_block: aabbcc
time: t0 + t
height: h0 + 1
transactions: [

2 BTC from Carla to Bob
1 BTC from Erica to Fabio

]

block_hash: cceedd
prev_block: bbccdd
time: t0 + 2t
height: h0 + 2
transactions: [

4 BTC from Gary to Hannah
]

Figure 2.2. Invalid blockchain due to data tampering

As the ledger is distributed, meaning it is stored on a remarkable amount of Bitcoin users’

computers, Bob’s version of the ledger will not be considered the universal truth. To con-

vince the honest users of Bitcoin network, Bob would have to recalculate the hashes for

all blocks that have been inserted into blockchain after the block he modified (Nakamoto

et al. 2008). As trivial as that may sound, the creation of a new block, which will be ex-

plained in more detail in the following sections, requires solving a cryptographic problem

which happens to be computationally expensive. The sky-high electricity bill would make

it demotivating to rebuild the chain (Antonopoulos 2017) and, what is more, the task of

catching and surpassing the chain built by honest users would be next to impossible un-

less Bob has more computational power than all the honest nodes combined (Nakamoto

et al. 2008). Due to the described blockchain feature, it is often stated that each new

block reinforces the existing ones (Nakamoto et al. 2008).

Even though the many features of blockchain technologies are most efficiently described

by using an actual implementation as an example, the concept of blockchain exists in-

dependently of cryptocurrencies. Therefore, distributed blockchain ledgers could and

should be used in different domains. For example, proving the authenticity of various

documents is necessary to guarantee the security and fairness of international trade.

Similarly, global supply chains could benefit from a system where the true origin of a

product can be tracked effortlessly. With the described system in place, one would have
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no need to worry whether the content of an expensive wine bottle actually matches the

etiquette.

2.3 Bitcoin transactions

Bitcoin is a cryptocurrency making use of the blockchain technology. However, there is

much more to Bitcoin than the general principles of cryptocurrencies and blockchains.

Let us begin by explaining the paradox of having a publicly available yet anonymous

transaction history.

Similarly as with traditional currencies, a typical Bitcoin transaction is an event in which

some amount of Bitcoin is transferred from one party to another. Contrary to the traditional

model where a third party, a bank for example, acts as a middle man to hide sensitive

details, Bitcoin provides privacy by using pseudonyms (Nakamoto et al. 2008). In other

words, the sender’s address, transacted amount and the recipient’s address are known

but the public are unable to link the data to any real-life identities. Even though the

from-alice-to-bob notation was practical while explaining the fundamentals of blockchain,

Figure 2.3 presents a more realistic Bitcoin transaction.

transaction_hash: ebbb09fdf03b3ce4861e4d470849193e

inputs outputs

Addr: 7f6db5daba8166fe8db919aa13e3dd9b
BTC: 10

Addr: b27fad39cc2bfa5c2fb3aefbc1ee1fa1
BTC: 10

Figure 2.3. Alice sending 10 Bitcoin from her address to Bob’s address

When the transaction is broadcast to the Bitcoin network – the peer-to-peer network

consisting of Bitcoin users – the network nodes will verify that Alice’s digital signature

permits the spending of Bitcoin which were previously sent to the address starting with

b27fad39. After a miner node has verified the contents and included the transaction in a

new blockchain block, anyone can search the public ledger and see that 10 Bitcoin was

transferred from b27fad39 to another address beginning with 7f6db5da. However, the

public information does not expose Alice and Bob’s identities, only their pseudonyms.

Let us imagine that Bob owes Carla 7 Bitcoin and is willing to erase the debt with his

recently acquired funds. Bitcoin transactions require the sender to specify a destina-

tion address for the whole amount to be sent (Antonopoulos 2017; Nakamoto et al.

2008). In other words, if Bob happened to broadcast a transaction that has Bob’s ad-

dress 7f6db5da as an input and the output section has only Carla’s address receiving
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7 Bitcoin, the difference of 3 Bitcoin would be considered transaction fee (Antonopoulos

2017). Simply put, Bob would compensate the block miner with an extremely generous

fee. To avoid donating his Bitcoin, Bob has to define an output address which belongs

to him and, assuming Bob values security and privacy, he follows the best practice of

generating a new address for the change (Nakamoto et al. 2008). Figure 2.4 visualizes

the transaction from Bob to Carla where Bob receives 3 Bitcoin as change.

transaction_hash: 01466d4f061950327f608fb4b1201ebb

inputs outputs

Addr: 3532a78d0454ac2830905874122c2148
BTC: 7

Addr: 7f6db5daba8166fe8db919aa13e3dd9b
BTC: 10

Addr: 9313e22efdfee9128f95082520f6aff5
BTC: 3

Figure 2.4. Bob transferring 7 Bitcoin to Carla, receiving 3 Bitcoin as a change

In addition to receiving change, one can also combine multiple inputs if they do not have

sufficient funds in a single address (Nakamoto et al. 2008). If, for example, Carla has

received 2 Bitcoin to another address prior to the transaction with Bob, she can send 8

Bitcoin to David in one transaction by combining the inputs as shown in Figure 2.5.

transaction_hash: 1aff6f6601caec96c3e388842345d178

inputs outputs

Addr: eecfe6cdce097029c1360b48a55215fc
BTC: 8

Addr: 3532a78d0454ac2830905874122c2148
BTC: 7

Addr: 68e2a77b1890c3c17461e6f942c15ff8
BTC: 1

Addr: aea6830a518c7aae08d6400ed5689c65
BTC: 2

Figure 2.5. Carla combining inputs to send 8 Bitcoin to David, receiving 1 Bitcoin as a
change

To conclude the transaction logic, each transaction input is an output from an earlier

transaction and each transaction can have multiple inputs and multiple outputs. Contrary

to a common misconception, Bitcoin is not moved from wallet to another but it actually

remains in the blockchain (Antonopoulos 2017). The public can see which addresses

hold the unspent transaction outputs but the only one who can spend the currency is the

user who has the corresponding private key in their wallet.
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2.4 Bitcoin wallets

Bitcoin wallets perform many tasks. On one hand, they are merely a storage for a Bitcoin

user’s public and private keys (Antonopoulos 2017; Narayanan et al. 2016). As stated

earlier, the actual currency is stored in the blockchain and the users are supposed to

store their keys which are needed for sending and receiving Bitcoin. On the other hand,

from a regular user’s point of view, Bitcoin wallets are software applications which provide

a user interface for managing one’s Bitcoin, keys, and transactions (Antonopoulos 2017;

Narayanan et al. 2016). Thus, they hide the majority of the more complex parts of Bitcoin

system and allow the users to focus on exchanging Bitcoin.

What is relevant for this research is the relation between users, wallets and addresses.

Each user must have a wallet of some sort to participate in transactions. However, noth-

ing prevents a user from having multiple wallets – the situation is actually quite similar

to having multiple bank accounts. In such a case, we do not have a single wallet repre-

senting the user in the constructed wallet network. Therefore, users and wallets have a

one-to-n relationship.

As already stated briefly, the best practice is to generate new addresses instead of re-

using the old ones (Antonopoulos 2017; Nakamoto et al. 2008). As a result, it is not

only possible but also very likely that a wallet contains multiple addresses and, therefore,

there is a one-to-n relationship between wallets and addresses, too. Studying the Bitcoin

network on an address level would be of little use considering the topic of this thesis and,

hence, we will have to cluster addresses which most likely belong to the same wallet.

Section 3.3 presents the methodology for extracting wallets from transaction data.

2.5 Block mining in Bitcoin blockchain

Even though this thesis focuses on Bitcoin transactions, understanding the dynamics of

Bitcoin mining is relevant for some of the logic needed to process the transaction data.

What is more, it is an essential part of Bitcoin and, thus, a fascinating product of en-

gineering. As Nakamoto et al. (2008) describe in the original Bitcoin white paper, new

transactions are broadcast to all nodes and then, following their own preference, each

node bundles the transactions into a block and starts working on a cryptographic puzzle

which must be solved for a block to be included in the blockchain. That is a plenty to

process at a time and, thus, a light should be shed on each of those three steps.

Let us return to Alice and Bob’s transaction. As Alice is the sending party, she is the one

with the keys needed to sign the transaction. As a result, Alice – or the wallet software

Alice is using – is the one to broadcast the transaction to other nodes in the Bitcoin

network (Antonopoulos 2017). Alice’s wallet is connected to some amount of other active

Bitcoin users, just as the concept of peer-to-peer-network suggests, and when these
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other nodes receive the transaction, they will verify the content and forward the verified

transaction to their neighbour nodes (Antonopoulos 2017; Nakamoto et al. 2008). As all

nodes forward the information, Alice’s transaction data will spread quickly in the network,

even if Alice herself broadcast the information to a small number of nodes. Now Alice has

created a valid transaction and the network has been acknowledged, which means that

Alice’s mandatory tasks are done.

A subset of the Bitcoin network nodes is interested in participating in a computationally

expensive task known as block mining. When a miner node is selecting transactions to be

included in the block, it has to take into account that there is a limit for the amount of data

that can be stored in one block (Antonopoulos 2017). A direct consequence of that is the

miners’ preference to pick transactions where the ratio of fee, which is the gap between

the sum of inputs and the sum of outputs, and the amount of data is relative high. If

Alice and Bob’s transaction is not lucrative enough, it may not be included in the very next

block. Even though the network is conscious of Alice and Bob’s willingness to commit a

transaction, the transaction will remain unconfirmed until included in a blockchain block

(Antonopoulos 2017).

Now that the miner node has selected which transactions it wants to include in the block,

the only task remaining is solving the cryptographic puzzle, known as the proof-of-work

(Antonopoulos 2017; Nakamoto et al. 2008). The block contents must be hashed so that

the result begins with a certain amount of 0 bits (Nakamoto et al. 2008). However, hash

functions are deterministic and, thus, the resulting hash is always the same unless the

block contents are changed. Hence, a varying component must be introduced to modify

the result hash. This variable is simply a number, known as the nonce, and now the

task of mining becomes functionally rather trivial: alter the nonce until the proof-of-work

condition is met (Antonopoulos 2017; Nakamoto et al. 2008).

The basic idea of mining new blocks can be simulated with a fairly straightforward Python

3 program. To further simplify the concept, let us imagine that the block content to be

hashed is merely a simple text "5 BTC from Alice to Bob 2020-04-24 00:00:00".

May the proof-of-work condition be that the resulting hash begins with six 0s. By writing

a few lines of code, we have a program that runs until it finds a suitable nonce.
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Listing 2.1. The concept of Bitcoin mining simulated with a simple Python 3 program.

1 import hash l i b

2

3 message = ’ 5 BTC from A l i ce to Bob 2020−04−24 00:00:00 ’

4 nonce = 1

5 nonce_found = False

6

7 while not nonce_found :

8

9 # Concatenate message and nonce , conver t i n t o bytes

10 message_as_bytes = ( message + st r ( nonce ) ) . encode ( )

11

12 # Ca lcu la te the hash and swi tch from bytes

13 # to hexadecimal rep resen ta t i on

14 hash_hex = hash l i b .md5( message_as_bytes ) . hexdigest ( )

15

16 # I f the hash meets our " proof−of−work " cond i t i on ,

17 # we have found a s o l u t i o n

18 i f hash_hex [ 0 : 6 ] == ’ 000000 ’ :

19 nonce_found = True

20 pr in t ( ’ Nonce { } , hash { } ’ . format ( nonce , hash_hex ) )

21

22 else :

23 nonce += 1

Simply put, we will start from number 1 and try nonces one by one until finding a solution.

There is no such thing as an optimal starting nonce as the avalanche effect makes it im-

possible to estimate which nonce would be close to a correct solution. Table 2.2 presents

the first few hashes and the first hash which meets our proof-of-work condition. In addi-

tion, a few other solutions are shown to emphasize the fact there are multiple solutions,

all of which are of equal quality.

The last row of Table 2.2 demonstrates how the difficulty of mining can be adjusted. By

requiring the first seven digits to be 0s, it takes our mining algorithm over 730 million

attempts to meet the proof-of-work condition. The basic principle of Bitcoin block mining

is the same as in our trivial example, though, Bitcoin mining difficulty is adjusted on a bit

level whereas our example applied the same principle on a hexadecimal digit level. Thus,

the slightest adjustment our hexadecimal example model permits is a change of four bits,

as 24 = 16. The Bitcoin network adjusts the difficulty so that a new block is mined

approximately every 10 minutes (Antonopoulos 2017), and considering that the electricity

consumption of the Bitcoin network was the same magnitude as that of Ireland in 2018

(Economist 2018), the difficulty of finding a solution is absurd. However, when someone

finds a solution and broadcasts it to other nodes in the network, it is effortless for the

others to verify the correctness of the successful miner’s block. By presenting a correct
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Table 2.2. Simulating the concept of Bitcoin mining by hashing a simple message and a
varying nonce with MD5.

Nonce Hash

1 128d9b4e32e4f2b4b4552f6f6215fa47

2 13f0c1920da3cfe22dab03fd794bedfe

3 44d14a0b9e32b4957ed23dfb182a33fe

...

6 403 901 000000f9915a652c58ef99c518a6515d

40 501 148 000000acb79a84ec4a23a83eaeba17b8

69 956 735 000000b337e3ded717d5917b3c138d95

...

732 420 615 000000048d6125a5c249428b8ae875c6

solution to the cryptographic problem, the miner has proven their hard computational

work, thus the concept is called proof-of-work.

The mining process may also be considered a very specific type of voting system. When

the majority of Bitcoin network agrees on something, that is considered the truth. How-

ever, as explained in the original Bitcoin paper, allowing each computer or IP address

to vote once would give the power to someone who has the ability to generate such ad-

dresses (Nakamoto et al. 2008). As anyone can create nodes in the Bitcoin network and,

hence, have over 50 % of Bitcoin network nodes in their possession, a more sophisticated

and secure protocol is needed. As Nakamoto et al. (2008) explain, Bitcoin solves the com-

plex problem by relying on the proof-of-work: the longest chain of blocks corresponds to

the greatest amount of computational work, the greatest number of votes that is. When

a node receives information that there exists a new version of the Bitcoin blockchain, it

verifies the content and compares its local version with the fresh information. If the new

version of Blockchain is the longer one, the node considers it the new truth and shows its

acceptance by starting to work on finding a new block to extend the chain.

2.6 Networks & graph theory

A simple network consists of individual points which are connected by lines. What makes

networks intriguing is the fact that systems of varying complexity and nature can be con-

sidered networks and analyzed accordingly. (Newman 2018) Network science bases on

graph theory, which is a branch of mathematics (Barabási et al. 2016). The most ba-

sic terms of network science are nodes and links, also known as vertices and edges

(Barabási et al. 2016; Newman 2018). Figure 2.6 presents a network where the nodes

are computers and the links are connections – be it wired or wireless – between the

computers.
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1

2

3 4

Figure 2.6. A computer network and its graph representation, edited from Barabási et al.
(2016)

The links of a network may also be directed or weighted (Barabási et al. 2016; Newman

2018), even though the links in Figure 2.6 are neither. For example, a supply chain could

be presented as a directed network and, depending on the research topic, weights could

be added to represent delivery times, transaction volume or some other property. If we

were to construct a Bitcoin user network or a Bitcoin address network, the transactions

would be directed links from sender to receiver. However, as this thesis aims to identify

similar wallets, the links represent similarity and, thus, are undirected.

Nodes and links are the core of any network but what is of great interest to this research

is community detection. Barabási et al. (2016) define community as a group of nodes

that have a higher probability of connecting to other nodes inside the group than from

outside the group. Generally, the definition states that there are many links between

the nodes of the community – or at least they are less connected to other nodes of the

network. Figure 2.7 presents a network of two communities. Even though nodes 7 and

8 are linked, the network does not merge into one community but merely has a bridge

between two communities.

1

2

3

5

4

6

7 8

9

10

11

12

13

Figure 2.7. A network with two communities. Even though nodes 7 and 8 are linked, they
belong to different communities.

Even though using common sense is a sufficient community detection algorithm for the
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tiny network presented in Figure 2.7, a more sophisticated method is needed for extract-

ing communities from larger, more complex networks. Several algorithms have been

proposed to tackle the challenge which, after all, is rather vaguely defined. For example,

the Louvain algorithm aims to maximize modularity (Blondel et al. 2008), the DEMON al-

gorithm lets each node vote which community would be the most fitting for its neighbours

(Coscia et al. 2012) and the Infomap algorithm uses a random walker to simulate infor-

mation flow in a network (Rosvall et al. 2009). No algorithm is perfect but most of them

are highly useful for discovering groups of similar nodes.
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3 DATA

This chapter describes how the Bitcoin blockchain was retrieved and how we verified the

retrieved data set. What is more, this chapter also explains the process of extracting

wallets from the anonymous Bitcoin transaction log.

3.1 Retrieving the blockchain

This thesis analyzes Bitcoin transactions from the very beginning, which is January 2009,

until the end of 2019. Each block within the 11-year timespan is of our interest, as well as

each transaction included in those blocks. The last block of the timespan is the one with

a height of 610 690 and a hash ending with fb33aeb93. In other words, our data consists

of the first 610 691 blocks, one of which is the genesis block.

The interval is roughly 96 341 hours long and, as a new block is to be mined every ten

minutes, there should be approximately 580 000 blocks. Though, the slight offset is only

logical when we take into consideration the fact that the mining difficulty is calibrated

every 2 016 blocks, around two weeks, and bases on the actual performance of mining

the previous batch of blocks (Antonopoulos 2017). Consequently, if the computational

power of network nodes grows constantly, at the latter stages of a 2 016-block batch the

miners are expected to find a proof-of-work in slightly under 10 minutes.

As stated several times, Bitcoin is based on a public ledger. However, there is no single

correct method for obtaining the ledger. The obvious method is to join the Bitcoin network

and receive the whole blockchain from other network nodes. The other approach is to use

some of the third-party services on the Internet. This thesis fetched the blockchain data

from a RESTful API provided by blockchain.info. We consumed these two end-points:

1. https://blockchain.info/blocks/{timestamp}?format=json

2. https://blockchain.info/rawblock/{block_hash}

The first end-point allows us to get the hash of each block added to the blockchain on

a certain day, which is passed in parameter timestamp. It should be noted that using

this this end-point is not functionally mandatory as we could just fetch the most recent

block and then, as each block contains a reference to its parent, fetch the parent block.

However, it would be time-consuming and tiresome to query the API block by block. To
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solve the issue, the first end-point is used to fetch all block hashes for each day spanning

from 2009 until the end of 2019. Listing 3.1 presents a JSON-format response from the

first end-point, though, for practical reasons, not all 145 blocks of December 31st 2019

are included.

Listing 3.1. Daily Bitcoin blocks. JSON-formatted response from RESTful API.

{

" b locks " : [

{

" he igh t " : 610546 ,

" hash " : "0000000000000000000fa3b65e43e4240d . . . " ,

" t ime " : 1577754335

} ,

. . .

{

" he igh t " : 610690 ,

" hash " : "00000000000000000005f0cc9b56533624 . . . " ,

" t ime " : 1577835692

}

]

}

By passing a block hash as an argument, the second end-point gives us the contents of

a blockchain block, including transaction details. Even though including full transaction

details is of great help, the large block size results in the API responding rather slowly.

However, having used the first end-point to push the block hashes to a queue, we can

have multiple asynchronous workers using the blockchain.info API and storing the results

in a document database. Simply put, a program which mostly waits for an external API

and a local database to do their work, is a lightweight-yet-slow one and, considering the

amount of data, rather inconvenient. Therefore, it makes sense to work on multiple blocks

simultaneously.

At this point, no data is modified – the JSON documents are stored in a local MongoDB

instance as such. Overall, this thesis tries to follow the same ideology of performing the

time-consuming tasks in a way which prevents the need for re-doing every tasks if an

error happens to occur at some of the later stages. In the sense of managing risks, it

would be a sub-optimal approach to modify the data at this point. Listing 3.2 contains a

JSON-format representation of the last block in our data set.
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Listing 3.2. API response payload: blockchain block in JSON format label

{

" ver " : 1073733632,

" next_b lock " : [ ] ,

" t ime " : 1577835692,

" b i t s " : 387300560,

" fee " : 2255310 ,

" nonce " : 281267184,

" n_tx " : 744 ,

" s i ze " : 283571 ,

" he igh t " : 610690 ,

" hash " : "00000000000000000005f0cc9b565336243d08e65f . . . " ,

" prev_block " : "0000000000000000001292920 f327724599f . . . " ,

" mrk l_ roo t " : " d0245fe9ffa995cac9bccf16ecb17028a751e . . . " ,

" t x " : [ . . . ]

}

The tx property holds a list of transactions, each of which is structured as shown in

Listing 3.3. Some properties have been omitted to save space and to emphasize the

ones which are of greater significance for our needs.

Listing 3.3. API response payload: JSON representation of a Bitcoin transaction.

{

" hash " : "1 e34fd3391f4c7b55bdbfc4ae . . . " ,

" b lock_he igh t " : 610690 ,

" i npu ts " : [

{

" s c r i p t " : "473044022070826cf227b3066a6e4a . . . " ,

" prev_out " : {

" value " : 153042875,

" addr " : "1BaYzjAbQfvdyu1ZVb2hoiFzonPY4GTH7v "

}

}

] ,

" out " : [

{

" value " : 1279990 ,

" addr " : "3JprvwhSrR83wmBHjWRDKTstsGDwWzurQZ"

} ,

. . .

{

" value " : 147540115,

" addr " : "19rNsMmTXoYcRHfuA7gyMUdMYZ758siNnm"

}

]

}



17

The input, output and fee amounts are expressed as satoshis, which is a denomination of

Bitcoin. One Bitcoin consists of 100 000 000 satoshis (Antonopoulos 2017), similarly as a

euro is equal to 100 cents.

3.2 Verifying the retrieved data

As a third-party service is used for retrieving the data, there is a clear need for verifying

the content. In addition, it is necessary to confirm that our own program functions as

desired. To ensure the quality of our data, certain tests may be carried out.

First, as each block references the previous block, it is rather trivial to confirm that the

retrieved data set contains the parent block of each retrieved block. Running such a

test revealed that there were 14 blocks which the blockchain.info service was unable

to return, despite re-trying multiple times. To overcome the shortage, the Bitcoin Core

software (Nakamoto et al. 2009) is used to retrieve the missing blocks. Bitcoin Core is

a reference implementation of Bitcoin node, originally developed by Satoshi Nakamoto

and, since 2011, maintained by the open-source community (Antonopoulos 2017). By

running a Bitcoin node with Bitcoin Core, the missing blocks were acquired and, as the

data included transaction hashes, a separate blockchain.info end-point was used to fetch

the transactions in an identical format to the other other blocks.

Having filled the void of 14 blocks, the parent block hash test passes. The integrity of

blockchain is also verified by inspecting the block heights. Each block contains an ordinal

number indicating its place in the blockchain. In the retrieved set of 610 691 blocks, the

block heights range from 0 to 610 690 with no duplicates, further confirming the assump-

tion that the blockchain has been fetched successfully.

However, as this study focuses on the transaction data, verifying block headers is not

sufficient, even though necessary. Thus, the retrieved transaction data is verified by com-

paring the blockchain.info data to the blockchain data obtained via Bitcoin Core. The test

script runs three tests on the contents of each block. First, it is checked that the n_tx
property has the same value in both sources. Then we ensure that the tx property, which

holds an array of transactions, has the same length as n_tx indicates. Finally, we com-

pare the transaction hashes contained in the two sources: the list of transactions must be

the same regardless of the source.

The final test dives one level deeper and compares the addresses that participate in a

transaction. Our two data sources have a vastly different approach to presenting transac-

tion inputs and, therefore, we will mostly focus on comparing outputs. The test shows that

some more complex transactions have been decoded in a different way in our two data

sources, especially around block height 350 000. Therefore, some addresses are missing

from our main source, though the amount is relatively low and allows us to go proceed
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with the study.

3.3 Extracting wallets from transaction data

As the Bitcoin network relies on the use of pseudonyms, it is not possible to link transac-

tions to real-life identities without off-chain data sources. However, as this thesis studies

the transaction network as a phenomenon, it is sufficient to identify which addresses

belong to the same user, regardless of the user’s actual identity. Several studies have

carried out a similar task of mapping Bitcoin addresses to user wallets, commonly known

as address clustering (Androulaki et al. 2013; Bovet, Campajola, Lazo et al. 2018; Bovet,

Campajola, Mottes et al. 2019; Ermilov et al. 2017; Harrigan and Fretter 2016; Meiklejohn

et al. 2013; Ron and Shamir 2013; Tasca et al. 2018; Vallarano et al. 2020).

Each study has a slightly different approach for extracting wallets. Overall, most studies

take advantage of these two heuristics, both of which are based on Bitcoin features:

1. Common spending

2. One-time change address

The first behavior pattern, common spending, suggests that whenever multiple input ad-

dresses are included in a transaction, all those addresses belong to the same wallet. As

a consequence, if addresses A and B are the inputs in one transaction and addresses

B and C are inputs in another one, all three addresses are considered to belong to the

same user. As the sender is the one whose digital signature is needed for the transac-

tion, having multiple users’ inputs in one transaction can be considered rare, or at least

non-trivial for an average user.

However, it should be noted that there are third-party mixing services for creating multi-

party transactions, due to which a transaction can have multiple different users’ inputs

(Antonopoulos 2017). After all, the multi-input heuristic is used very often in address-

to-wallet mapping and, as Harrigan and Fretter (2016) describe it, the technique is very

practical even if not completely accurate. Harrigan and Fretter (2016) also show in their re-

search that utilizing the common spending heuristic does not create a suspicious amount

of superclusters, stating that the amount of false positives in wallet merging is fairly lim-

ited.

The first heuristic is quite straightforward to implement. The address-to-wallet mapper

iterates over the blockchain blocks in chronological order and associates each observed

address with a wallet ID. Input addresses always belong to the same wallet and, hence,

these will be associated with the same wallet ID. There is no heuristic for output addresses

and it would be too bold to assume they all belong to the same user. Hence, each previ-

ously unobserved output address is given a new wallet ID from the wallet ID sequence. It
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should be noted that even those addresses which are observed together as transaction

inputs have previously been observed as transaction outputs – as every input is a former

output. Consequently, wallets are merged frequently. Figure 3.1 shows the concept of as-

sociating input addresses with the same wallet ID and updating the address-wallet pairs

accordingly.

transaction_hash: tx1

inputs outputs

Addr: A1
BTC: 1

Addr: A2
BTC: 2

Addr: A3
BTC: 2,5

Addr: A4
BTC: 0,4

address : wallet id

A0 : 0
A1 : 1
A2 : 2

address : wallet id

A0 : 0
A1 : 1
A2 : 1
A3 : 3
A4 : 4

t0 t1 t1

Figure 3.1. Address clustering heuristic I: all inputs belong to a single wallet.

In Figure 3.1, addresses A3 and A4 were observed for the very first time and, thus, they

were associated with completely new wallet IDs. Having processed the transaction, the

wallet mapper continues analyzing transactions one by one. If we happen to observe

address A2 again as an input, the other input addresses are associated with wallet 1.

Figure 3.2 presents a transaction which results in merging wallets 1 and 4.

transaction_hash: tx2

inputs outputs

Addr: A2
BTC: 1

Addr: A4
BTC: 0,4

Addr: A5
BTC: 1,3

address : wallet id

A0 : 0
A1 : 1
A2 : 1
A3 : 3
A4 : 4

address : wallet id

A0 : 0
A1 : 1
A2 : 1
A3 : 3
A4 : 1
A5: 5

t1 t2 t2

Figure 3.2. Address clustering heuristic I: address A2 enables further merging.

Even though heuristic I is powerful, it is not perfect. In addition to false positives, the multi-

party inputs discussed earlier, this heuristic also results in false negatives: contents of an

actual wallet may be split into several wallets. As it is generally recommended to generate

new addresses instead of re-using the existing ones (Antonopoulos 2017; Nakamoto et

al. 2008), it is possible that address A2 occurs only once as an input. Consequently,

address A4 in Figure 3.2 would be paired with some other input than A2 and, therefore,

A4 would not be associated with the same wallet as addresses A1 and A2.

To tackle the limitations of heuristic I, we will introduce heuristic II. Androulaki et al. (2013)
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were the first ones to implement such a heuristic and, as the research was carried out at

an early stage of Bitcoin, they had a rather simple condition for the change address: if

transaction has exactly two outputs and exactly one of them has been observed earlier,

the new address is the change address. Meiklejohn et al. (2013) continue the work and

propose a more detailed set of rules. For a transaction to have a change address, they

require it to have exactly one new output address and none of the input addresses is

allowed to be an output address, called a self-change address. They also clarify that the

transaction must not be a coin generation one. In their study, Bovet, Campajola, Mottes

et al. (2019) consider an output to be a change address if the address is a new one and

the amount transferred to it is lower than the smallest input. Guided by these studies, this

thesis defines the change address heuristic conditions as follows:

0. The transaction has at least two output addresses

1. This is the first observation of the address

2. The address receives fewer Bitcoin than the smallest input sends

3. Conditions 1 and 2 are met by exactly one address

4. The transaction is not a coin generation

5. The outputs do not contain self-change addresses

Let us walk through the conditions one by one. Condition 0 is a trivial one but rather

easy to forget while writing code. However, it must not be forgotten as otherwise most

transactions with one input and one output would be classified as pointless transactions

transferring Bitcoin inside the wallet.

Condition 1 bases on the idea of Bitcoin wallets automatically generating a new address

for receiving the change. Most wallets do not bother the user with the concept of using

each address only once – instead they follow the best practice of automatically generating

a new address for the change. Even though there are some wallet applications which

allow the user to manually define the change address, avoiding false positives is of great

importance and motivates us to enforce condition 1.

Condition 2, the address must receive fewer Bitcoin than the smallest input sends, is de-

rived from the concept of transaction fees being based on the amount of data. Therefore,

including redundant input addresses in transactions would make little sense. Figure 3.3

visualizes a transaction where the second input address is merely a waste of bytes.

Our condition 3, conditions 1 and 2 must not be met by more than one wallet, has its roots

in the rules proposed by Meiklejohn et al. (2013) but has been slightly modified from the

original version. Whereas Meiklejohn et al. (2013) require the transaction to have exactly

one new input address, this thesis combines the requirement with the idea that a change

address must receive a lower value than the smallest input sends. Overall, the aim is
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transaction_hash: tx1234

inputs outputs

Addr: receiver1
BTC: 2,5

Addr: sender3
BTC: 1,4

Addr: sender1
BTC: 3

Addr: sender2
BTC: 1

Figure 3.3. Redundant transaction input. If the sender wants to send 2,5 Bitcoin to the
receiver, there is no need to include the second input address. In fact, it increases the
size of the transaction and, therefore, raises the transaction fee.

to reduce false positives by skipping transactions with more than one change address

candidate and, when put that way, the condition is actually quite identical with the original

one. Figure 3.4 presents a transaction which has two new output addresses but only one

of them meets the condition of receiving fewer Bitcoin than the smallest input sends. The

re-defined condition 3 allows us to identify a change address even though the version

proposed by Meiklejohn et al. (2013) would have skipped this one.

transaction_hash: tx5678

inputs outputs

Addr: new1
BTC: 4

Addr: new2
BTC: 0,9

Addr: known1
BTC: 3

Addr: known2
BTC: 2

Figure 3.4. Heuristic II, condition 3: only output new2 meets both conditions 1 and 2.
Assuming the sender would rather not pay extra fees, including the second input address
indicates that new1 is the receiver address and new2 is for collection the change.

Conditions 4 and 5 are fairly trivial. First of all, coin generation transactions do not have

an input address and, consequently, trying to identify the change address is not relevant

in those transactions. Condition 5 states that if any of the input addresses occurs also as

an output in the same transaction, the safest bet is to assume the change is sent to that

address.

With these rules in place, the address-to-wallet mapper can be made to apply both heuris-
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tics. Now the address clustering program functions as shown in Figure 3.5.

transaction_hash: tx1

inputs outputs

Addr: A1
BTC: 1

Addr: A2
BTC: 2

Addr: A3
BTC: 2,5

Addr: A4
BTC: 0,4

address : wallet id

A0 : 0
A1 : 1
A2 : 2
A3 : 3
A5 : 4

address : wallet id

A0 : 0
A1 : 1
A2 : 1
A3 : 3
A4 : 1
A5 : 4

t0 t1 t1

Figure 3.5. Heuristics I and II in action. Addresses A1 and A2 belong to the same wallet
as they are inputs in the same transaction. A4 meets the conditions of a one-time change
address.

Our one-time change address conditions state that there must be exactly one address

which both is a new one and receives an amount lower than the smallest input. These

conditions are met only by address A4 and, thereafter, the wallet mapping algorithm as-

sociates address A4 with the same user ID as addresses A1 and A2. What is more, if

A4 is seen together with address A5, it is safe to state that the same user controls ad-

dresses A1, A2, A4 and A5. Thus, heuristic II enables us to detect a single wallet with

four addresses whereas heuristic I alone would have resulted in two separate wallets con-

taining two addresses. Figure 3.6 shows the described transaction and the changes in

address-wallet pairings.

transaction_hash: tx2

inputs outputs

Addr: A4
BTC: 1

Addr: A5
BTC: 0,4

Addr: A6
BTC: 1,3

address : wallet id

A0 : 0
A1 : 1
A2 : 1
A3 : 3
A4 : 1
A5 : 4

address : wallet id

A0 : 0
A1 : 1
A2 : 1
A3 : 3
A4 : 1
A5 : 1
A6 : 5

t1 t2 t2

Figure 3.6. Former change address A4 is used in a multi-input transaction, A5 can be
assigned to the same wallet as A4. As heuristic II identified A4 as the one-time change
address in the previous transaction, we can assign A1, A2, A4 and A5 to the same wallet.

Considering that our goal is not to track any specific users but to construct a network

for studying the phenomenon, our address clustering script should be accurate enough.

Even though neither this thesis nor any of the previous researches manages to construct

a completely accurate representation of the network, a sanity check may be performed.
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Table 3.1 compares the results of some existing papers to our algorithm when applied to

the same timespan.

Table 3.1. Benchmarking address clustering results with several other studies, some of
which only apply heuristic I.

Research H. I H. II Addresses Wallets Ratio

Androulaki et al. (2013) X 1 632 648 1 069 699 1,5

This paper X 1 632 252 1 224 451 1,3

Androulaki et al. (2013) X X 1 632 648 693 051 2,5

This paper X X 1 632 252 660 047 2,5

Ron and Shamir (2013) X 3 730 218 2 460 814 1,5

This paper X 3 730 472 2 461 002 1,5

This paper X X 3 730 472 1 150 931 3,2

Meiklejohn et al. (2013) X X 12 056 684 3 354 831 3,6

This paper X X 12 055 131 2 710 944 4,4

Bovet, Campajola, Mottes et al. (2019) X X 304 111 529 16 749 939 18,2

This paper X X 345 851 379 96 921 461 3,6

As Table 3.1 shows, both the number of addresses and the clustering results are aligned

to a great extent. The research carried out by Bovet, Campajola, Mottes et al. (2019)

seems to be an outlier when considering the ratio of addresses and wallets. The same

results are reported in an overview article written by mostly the same authors (Vallarano

et al. 2020) and, thus, the authors most likely use a more aggressive algorithm for ad-

dress clustering. Another option is a programming error – after all, the authors state the

algorithm aims to avoid false positives (Bovet, Campajola, Mottes et al. 2019; Vallarano

et al. 2020).

Even though the results presented in Table 3.1 indicate that the used algorithm clusters

addresses quite successfully, it should be noted that other techniques and approaches

have been proposed as well. For example, machine learning can be used for classifying

users – such as exchanges, mixing services, mining pools and personal users – and,

for example, mixing services can be identified with around 95 % accuracy (Burks et al.

2017; Ermilov et al. 2017). With such a technique, the multi-input heuristic could be

skipped on transactions where mixing service addresses seem to be present. However,

the authors used proprietary data sets to train their machine learning models which makes

the technique a less-intriguing option for this thesis.

Other methods have been applied, too. Meiklejohn et al. (2013) associate addresses

to real-life identities by collecting off-chain data and participating in several transactions

with known exchanges. The authors use the collected data to merge wallets that their

clustering algorithm was unable to associate with each other. Regardless of the clustering
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algorithm, the method can be used to further enhance clustering results, even though

collecting such data requires some work.

3.4 Creating a wallet-level transaction log

Having performed address clustering, we can transform the transaction data to wallet

level. Figure 3.7 presents two simultaneous transactions in which addresses have been

mapped to wallet IDs.

transaction_hash: 1aff6f6601caec…
time: 2019-12-25 13:29

Wallet ID: 1
BTC: 7

Wallet ID: 1
BTC: 2

inputs

Wallet ID: 2
BTC: 8

Wallet ID: 1
BTC: 0,99

outputs

transaction_hash: 6c029eea918…
time: 2019-12-25 13:29

Wallet ID: 1
BTC: 3

inputs

Wallet ID: 3
BTC: 2

Wallet ID: 1
BTC: 0,99

outputs

Figure 3.7. Transaction log can be enriched with the newly obtained Wallet IDs. This way
we can actually see which part of the input was sent to another wallet and which is the
change.

Now we can form a transaction log. When creating the log, coin generation transactions

are omitted, as they form a very specific type of transaction which is fairly distant from

the general idea of using currency as a medium for exchange. In addition, all within-

wallet transfers are ignored as they would lead to problems in some of the latter stages.

Table 3.2 presents a complete transaction log based on the transactions of Figure 3.7.

Table 3.2. Transaction log for the transactions presented in Figure 3.7

Wallet ID Timestamp Role BTC

1 2019-12-25 13:29 Sender 10

2 2019-12-25 13:29 Receiver 8

3 2019-12-25 13:29 Receiver 2

What should be noted is that wallet 1 has only one entry in the table: the rows are grouped

by wallet ID, timestamp and transaction role. In addition, the sent amount does not nec-

essarily match the sum of inputs but the outputs to other wallets. After these steps, the

transaction log is in rather universal format and, hence, we are able to use non-Bitcoin-

specific methods from this point onwards.
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4 METHODOLOGY

This section introduces the methodology used for analysing the wallet-level transaction

log, the output of data pre-processing. The first subsection presents how a transaction

log – be it Bitcoin or some other asset – can be converted into investor states and investor

networks. The latter parts describe how this thesis extracts the underlying community

structure of the formed investor networks and how the evolution of such communities can

be quantified.

4.1 Deriving investor networks from transaction log

Having clustered Bitcoin addresses to wallets, we could effortlessly construct a Bitcoin

user network where transactions form the links between users. However, as we are trying

identify clusters of wallets with similar behavior patterns, a different approach is needed.

Tumminello et al. (2011) introduce the method of statistically validated networks in which

nodes are linked if the similarity is too high to be explained by randomness. The authors

demonstrate the usefulness of statistically validated networks by applying the method to

three systems of varying sizes and domains. The method has also proved itself useful

when, for example, comparing stock portfolio structure and trading behavior (Bohlin and

Rosvall 2014) and analyzing the existence of investor clusters in the stock market (Bal-

takienė et al. 2019; Baltakys, Kanniainen et al. 2018; Musciotto et al. 2016). Given the

similarity of this thesis’ objectives, our methodology is aligned with the aforementioned

studies to a great extent.

To make use of the methodology of statistically validated networks, a metric is needed for

evaluating wallet similarity. First, we re-sample the wallet-level transaction log to hourly

slots and, having done that, we proceed to assign a categorical state variable for each

active wallet for each one-hour slot. To assign the categorical variable characterizing

trading behavior, a scaled net volume ratio is calculated for each wallet w and time span

t, similarly as Musciotto et al. (2016) and Baltakienė et al. (2019):

r(w, t) =
Vb(w, t)− Vs(w, t)

Vb(w, t) + Vs(w, t)
(4.1)

The variables Vb and Vs represent the buying (receiving) and selling (sending) volume.
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Even though Bitcoin can also be used as a currency, this thesis chooses to use term

buying (selling) to represent a transaction where a user receives (sends) Bitcoin. When

Bitcoin is sent from person A to person B, it is highly likely that person B sends some

amount of fiat currency the other way, though, it is possible that B offers services or

physical goods. For the scaled net volume ratio to be of any relevance, it is vital to remove

self-transactions from the transaction log, as described in Chapter 3.4. As our transaction

log is composed of inter-wallet transactions, we can proceed and assign the categorical

state variables by defining a threshold value θ as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
b (primarily buying), if r(w,t) > θ

s (primarily selling), if r(w,t) < −θ

bs (buying and selling), if − θ ≤ r(w,t) ≤ θ

As this research focuses on the alignment of wallet behavior, we are mainly interested in

events where two wallets i and j both are in buying state or alternatively both in selling

state. To compare trading states, an hourly trading vector is constructed for each wallet

and for each month. In other words, a 30-day month is represented by a vector of length

T = 720, as 30∗24 = 720 hours, where zeros represent inactive hours and ones indicate

activity. Then, the similarity can be assessed by performing a hypergeometric test (Rice

2006). If wallet i is NP
i times in state P, wallet j is NQ

j times in state Q and the whole span

is of length T, the probability of having X random co-occurrences can be obtained from

the hypergeometric distribution as follows (Baltakienė et al. 2019; Rice 2006; Tumminello

et al. 2011):

H(X|T,NP
i , N

Q
j ) =

(︁
NP

i
X

)︁(︁T−NP
i

NQ
j −X

)︁
(︁

T
NQ

j

)︁ (4.2)

Given that we are mainly interested in the event where the wallets are in the same state,

the Q may be replaced with P . Furthermore, if we use NP
i,j notation to represent the

number of hours the wallets i and j are in the same state, a p-value can be calculated as

follows (Tumminello et al. 2011):

p(NP
i,j) = 1−

NP
i,j−1∑︂
X=0

H(X|T,NP
i , N

P
j ) (4.3)

As we apply Equation 4.3 to a pair of active wallets in a given month, we will obtain a

p-value which can then be compared to a certain threshold. The fundamental concept is

to have a null hypothesis which states that the co-occurrences are due to randomness

and, if the obtained p-value is very low, the null hypothesis may be discarded. A typical
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threshold for statistical significance is either 0.05 or 0.01 (Rice 2006), which some studies

further lower by performing a multiple test correction (Baltakienė et al. 2019; Tumminello

et al. 2011), such as the Bonferroni correction (Bonferroni 1936) or the False-Discovery

Rate correction (Benjamini and Hochberg 1995).

However, there is no clear consensus of when and how the multiple-test correction should

be used, if at all (Cabin and Mitchell 2000; Moran 2003; Perneger 1998). Perneger (1998)

argues that the multiple test correction is relevant only when the research is focused on

testing the global null hypothesis and, by lowering the threshold of statistical significance,

the amount of false negatives will rocket, which can be considered problematic, too. Ac-

cording to Perneger, the use of Bonferroni correction in our wallet similarity testing would

indicate that we are actually investigating if there are any wallets that trade similarly. How-

ever, we take the existence of such aligning trading patterns for granted and rather aim

to extract clusters of wallets behaving similarly. Considering our goal, false negatives

are equally harmful as false positives and, thus, this research uses a fixed threshold of

α = 0.001 for each month of data.

To conclude, we construct a similarity network for each month, having a separate network

for buying and selling state alignment. Two wallets are linked in the network if the hyper-

geometric test suggests that the wallets take the same trading position too often to be

explained by randomness.

4.2 Grouping identical wallets to reduce testing

When there are n active wallets in a given month, the number of wallet pairs to be tested

is n ∗ (n− 1)/2. Therefore, the number of tests to be performed increases exponentially

as the number of active wallets grows. As the amount of active wallets has been relatively

high for the last few years, we reduce the number of tests needed by grouping identical

trading vectors, similarly as Bohlin and Rosvall (2014). For example, if we have six wallets,

as presented in Table 4.1, the number of tests needed is 6 ∗ 5/2 = 15.

Table 4.1. Six wallets with two unique trading position vectors

Wallet ID Activity vector

W1 [’2018-05-17 23:00’,’2018-05-18 21:00’]

W2 [’2018-05-17 23:00’,’2018-05-18 21:00’]

W3 [’2018-05-17 23:00’,’2018-05-18 03:00’]

W4 [’2018-05-17 23:00’,’2018-05-18 03:00’]

W5 [’2018-05-17 23:00’,’2018-05-18 03:00’]

W6 [’2018-05-17 23:00’,’2018-05-18 03:00’]

Wallets 1 and 2 have identical buying states, as do wallets 3, 4, 5 and 6. We can group
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the wallets as shown in Table 4.2.

Table 4.2. Wallet groups representing unique trading vectors

Wallet group ID Activity vector

G1 [’2018-05-17 23:00’,’2018-05-18 21:00’]

G2 [’2018-05-17 23:00’,’2018-05-18 03:00’]

By comparing wallet groups, which represent unique trading vectors, the number of tests

required decreases significantly. For example, we would have only one inter-group pair-

test with the groups presented in Table 4.2, though, it should be noted that now there is a

need to test the self-link as well: if pair (G1, G1) is statistically significant, there is a link

between each pair of wallets belonging to group G1.

4.3 Community detection

The pair-wise testing helps us determine whether two nodes behave similarly enough

for them to be linked in our statistically validated network of Bitcoin users. However, as

Bitcoin is largely an investment asset and not only a currency, it would be fascinating to

identify not only groups of similar investors in addition to pairs of individuals. As demon-

strated by Bohlin and Rosvall (2014), the complex networks toolbox provides methods for

extracting community structure, namely the map equation algorithm Infomap.

As the Infomap algorithm is based on simulating information flow within a network (Bohlin,

Edler et al. 2014), it needs the nodes and links of a network to function as intended. To

cope with our hardware limitations and the fact our monthly similarity networks may have

tens of millions of links even on the wallet group level, the community detection algorithm

is run for the said wallet groups. The resulting community structure would most likely be

largely similar was Infomap run on wallet level. After all, the authors of the algorithm have

detected communities from a grouped set of data in their stock market research (Bohlin

and Rosvall 2014).

Infomap provides a fairly straight-forward, user-friendly API, whereas some other commu-

nity detection algorithms require the user to define a set of parameters. Infomap ignores

self-links by default but, other than that, there are few decisions to make before and argu-

ments to pass in while running the algorithm. By writing the monthly group-level similarity

network nodes and links to a text file in Pajek’s .net format (Bohlin, Edler et al. 2014) and

running Infomap, we will obtain a list of nodes and their communities as an output. It is

worth mentioning that Infomap associates each node with exactly one community (Bohlin,

Edler et al. 2014) while, for example, the Clique Percolation Method is likely to produce

communities which may overlap and some nodes are left out altogether (Barabási et al.

2016; Palla et al. 2007). When our database is enriched with the newly acquired commu-
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nity IDs, we have data similar to the format presented in Table 4.3.

Table 4.3. Community detection results on group level

Timestamp Buying or selling Group ID Community ID

2018-01 B G1 1

2018-02 B G1 28

2018-02 B G2 104

However, we must go back to wallet level to be able to compare months and the evolution

of communities. Even though the groups in Table 4.3 represent nodes which have an

identical trading state vector, the groups are only concerned with the data of that particular

month. For example, the wallet-level representation of Table 4.3 could be as shown in

Table 4.4.

Table 4.4. Community detection results on wallet level

Timestamp Buying or selling Wallet ID Group ID Community ID

2018-01 B W1 G1 1

2018-01 B W2 G1 1

2018-02 B W1 G1 28

2018-02 B W2 G2 104

From the wallet-level representation of Table 4.4 we notice that wallets W1 and W2 be-

longed to the same community in January 2018 but had timed their trades differently

enough in February to end up in separate communities. Therefore, when comparing sim-

ilarity networks of different months, the analysis must be done on wallet level.

4.4 Community evolution

Most often network analyses focus on single snapshots of networks. However, while such

analyses may be able to derive useful results regarding the complex structure, they fail

to provide insights on how the network evolves over time (Greene et al. 2010; Hopcroft

et al. 2004). Thus, another type of approach is needed for characterizing the properties

of a temporal network.

As community evolution research focuses on dynamic networks, a set of change events

must be defined. As Dakiche et al. (2019) state, most studies (Asur et al. 2009; Bródka

et al. 2013; Chen et al. 2010; Greene et al. 2010; Palla et al. 2007; Takaffoli et al. 2010)

define events in a fairly similar manner. Generally, the events related to communities in a

dynamic network can be listed as follows (Dakiche et al. 2019):

• Birth
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• Death

• Growth

• Shrinking

• Merging

• Splitting

While most studies agree on the events related to the lifespan of a community, there are

several different sets of methods for detecting such events. Dakiche et al. (2019) classify

the techniques into 4 main categories:

1. Detecting communities independently and then matching

2. Detecting communities based on previous network snapshots

3. Simultaneously detecting communities for all snapshots

4. Dynamically detecting communities based on previously found ones and changes

in network

This thesis takes the first approach by building the network for each month and then us-

ing Infomap to detect communities for the given month. Methodologically we are close to

Bródka et al. (2013), Asur et al. (2009) and Greene et al. (2010). However, to be able to

match the communities of subsequent snapshots — to detect that community i of snap-

shot t1 is the same as community j in snapshot t2 — a set of metrics must be defined to

quantify the similarity of two communities.

Metrics for defining community evolution events

Before defining any similarity metrics, we should agree on some of the network-related

notations. As we are interested in groups of nodes, we will refer to the members of a

community with C. Moreover, a specific community i at time t is denoted with C i
t and,

thus, |C i
t | is the number of Bitcoin wallets included in the community. When there is a

need to refer to all active wallets at time t, we will do that with Gt.

Having introduced the common language, we can move on to discussing similarity mea-

sures. Firstly, Bródka et al. (2013), Asur et al. (2009) and Greene et al. (2010) all rely

on node overlap while comparing communities. Asur et al. (2009) do not have a specific

similarity function but instead alter the sets of nodes for which the overlap is computed. In

other words, they perform different calculations while extracting merging events than, for

example, when analyzing whether a community has dissolved. Contrary to that approach,

the other two studies have defined a similarity function which will be applied on pairs of

communities.



31

Greene et al. (2010) make use of Jaccard coefficient for binary sets and calculate the

similarity of two communities as follows:

sim(C i
t , C

j
t+1) =

|C i
t ∩ Cj

t+1|
|C i

t ∪ Cj
t+1|

(4.4)

From the definition it follows that the Jaccard coefficient similarity is a symmetric function.

What is more, it is very robust method for comparing how identical two communities are.

Bródka et al. (2013) have a slightly different approach. Where the Jaccard coefficient

similarity focuses on the number of matching nodes, Bródka et al. (2013) have defined a

similarity function which which also is also concerned with the relevance of overlapping

nodes. Thus, in addition to comparing the quantity of overlap, they aim to evaluate the

quality of overlap. Their metric inclusion I is calculated as the product of quantity and

quality, and the authors use their own Social Position function SP for the quality measure:

I(C i
t , C

j
t+1) =

|C i
t ∩ Cj

t+1|
|C i

t |
∗

∑︁
x∈(Ci

t∩C
j
t+1)

SPCi
t
(x)∑︁

x∈(Ci
t)
SPCi

t
(x)

(4.5)

The Inclusion function is slightly less readable but the main idea behind it is clear. First,

the function inspects which nodes of community C i
t are present in community Cj

t+1. Hav-

ing done that, the sum of importance is calculated for the nodes present in both commu-

nities and the obtained value is then compared to the original importance of the original

C i
t . As both quantity and quality receive values from range [0,1], the values of inclusion

range from 0 to 1, too.

Given the definitions, it should be noted that sim(C i
t , C

j
t+1) = sim(Cj

t+1, C
i
t) but most

often I(C i
t , C

j
t+1) ̸= I(Cj

t+1, C
i
t). The difference of these functions is best demonstrated

by applying them on a pair of communities (C i
t , C

j
t+1) where |C i

t | ≪ |Cj
t+1|. Even if

all nodes of C i
t are included in Cj

t+1, the Jaccard coefficient similarity states that these

communities are similar only to a small extent. However, the inclusion metric returns

value 1, as all nodes of C i
t have ended up in Cj

t+1.

This thesis does not copy any of the approaches described above but follows them quite

closely, especially the one by Bródka et al. (2013). Firstly, it should be remembered that

the networks of active Bitcoin wallets vary significantly from month to month. To be able

to compare relevant numbers, we will define a separate similarity function for comparing

the overlap of those nodes which were active both months:

ActiveOverlap(C i
t , C

j
t+1) =

|C i
t ∩ Cj

t+1|
|C i

t ∩Gt+1|
(4.6)
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However, the intersection C i
t ∩Gt+1 returns an empty set when none of C i

t members are

active at time t+1. To handle the risks related to relative values, another helper function

is defined to identify dissolving communities prior to applying Active Overlap on them.

Active Size return the relative amount of members of community C i
t which are active at

time T:

ActiveSize(C i
t , T ) =

|C i
t ∩GT |
|C i

t |
(4.7)

Having defined these functions, we can go on to define the boundaries for different com-

munity evolution events.

Dissolving

Dissolving, the end of lifespan for a community, occurs when a community is considered

not to be present in the next snapshot. Asur et al. (2009) have the strictest rule: commu-

nity C i
t dissolves if none of its members are active in the subsequent snapshot. Bródka

et al. (2013) have a similar idea but do allow some overlap. They consider community C i
t

to dissolve if there is no Cj
t+1 so that I(C i

t , C
j
t+1) ≥ 10% or I(Cj

t+1, C
i
t) ≥ 10%.

Greene et al. (2010) have a slightly more relaxed definition. They do not require a commu-

nity to be active at every step, but instead consider it dissolved only when a similar-enough

community has not been observed for d successive snapshots. However, running their

algorithm with a parameter value d = 1 would result in a very similar event log as the

other definitions. With d = 1, a given community C i
t dissolves if there is no such a pair of

communities (C i
t , C

j
t+1) for which sim(C i

t , C
j
t+1) > θ.

This thesis follows the other researches quite closely. A community C i
t is considered a

dissolving one when ActiveSize(C i
t , t+1) < θActiveSize or if there is no community Cj

t+1

which meets the following two conditions:

ActiveOverlap(C i
t , C

j
t+1) ≥ θoverlap

and

ActiveOverlap(Cj
t+1, C

i
t) ≥ θoverlap_reverse

In other words, there is no need to compare the overlap of active wallets if only a tiny frac-

tion of the members of C i
t are active at t+1. However, if a reasonable share are active,

the community is compared with each of the t+1 communities. We are mostly interested

in the forward-looking ActiveOverlap(C i
t , C

j
t+1), which answers the question where the

nodes of C i
t are at t + 1. Moreover, a looser sanity check ActiveOverlap(Cj

t+1, C
i
t) is

performed to evaluate whether C i
t is of any significance as a source of nodes for Cj

t . The
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reverse-order inspection is done to add safety to situations where |C i
t | ≪ |Cj

t+1|. If a 28-

node community matches with a 9000-node one, intuition suggests we will have a more

realistic community evolution timeline by considering C i
t a dissolving community.

Merging

Merging, the event where multiple communities become one, is quite different from dis-

solving but still the same metrics are useful. For example, Greene et al. (2010) use the

Jaccard coefficient similarity to test each pair of communities (C i
t , C

j
t+1), and if multiple

communities match with the same Cj
t+1, it is classified as a merging event. Bródka et al.

(2013) mine merging events in a similar fashion. They consider (C i
t , C

j
t+1) a merging can-

didate if I(C i
t , C

j
t+1) ≥ α and I(Cj

t+1, C
i
t) < β, where α and β are process parameters.

Having tested each pair, a merging event is registered if more than 1 C i
t have matched

with the same Cj
t+1.

As noted earlier, Asur et al. (2009) do not have a similarity function but define specific

calculations for each event. While extracting merging events, they compare pairs of com-

munities at time t to a community at time t+1. According to their definition, communities

C i
t and Cj

t merge into Ck
t+1 if the following condition is met:

|(C i
t ∪ Cj

t ) ∩ Ck
t+1|

max(|C i
t ∪ Cj

t |, |Ck
t+1)|

> θmerge

The definition by Asur et al. (2009) might be the most accurate when focusing solely on

merging events. However, our goal is to define events in such a robust way that each

community is assigned one event. To achieve the goal, it is preferable option to use

aligning metrics for defining each event, and, thus, we will perform the same tests as

when extracting dissolving events. If a community does not meet the ActiveSize thresh-

old ActiveSize(C i
t , t + 1) ≥ θActiveSize, it will not exist in snapshot t + 1. If the size

threshold is met, the non-symmetric ActiveOverlap function will be applied on C i
t and

each Cj
t+1 with both argument orders. If the pair survives both ActiveOverlap thresholds,

it is considered a match. If multiple communities of snapshot t match the same commu-

nity of t+ 1, the communities merge.

Splitting

Splitting event is basically the opposite of a merge: one community continues as multiple

new communities. Thus, for example, Greene et al. (2010) compare each pair (C i
t , C

j
t+1)

similarly as when testing for merging events. If the similarity threshold θ is exceeded,

the pair is considered a match, and then the count of pairs determines the exact event

type. When it comes to observing splitting events, the same C i
t must match with multiple



34

communities Cj
t+1 of the next snapshot. Bródka et al. (2013) take a comparable approach

by applying their inclusion function on all pairs, counting matches and then requiring a

splitting event to have multiple communities matching with the same destination. Contrary

to the pair-count approach, Asur et al. (2009) once again define the splitting event by

testing both communities simultaneously:

|(Cj
t+1 ∪ Ck

t+1) ∩ C i
t |

max(|Cj
t+1 ∪ Ck

t+1|, |C i
t)|

> θsplit

Moreover, the authors require that for both resulting communities Cj
t+1 and Ck

t+1 over

50 % of their nodes must exist in the source community C i
t . Overall, even though the

three definitions differ, they can not be considered conflicting. The basic idea behind the

definitions is the same, and after that the question is about how much value is given to

each property.

Our split definition follows the one of merging events. A community must pass the ac-

tivity test ActiveSize(C i
t , t + 1) ≥ θActiveSize to continue to pair-wise testing. Just as

with merging events, the pair is considered a match if ActiveOverlap(C i
t , C

j
t+1) and

ActiveOverlap(Cj
t+1, C

i
t) meet the thresholds. A community is said to split if it matches

with multiple Cj
t+1 communities.

Continuing, growing and shrinking

Continuing, growing and shrinking are very similar events in the sense that each of them

has one input and one output community. As finding a pair of matching communities is

still fundamentally the same task as with the above-mentioned events, the events can be

extracted with largely similar rules. However, contrary to split and merge events which

have a one-to-many relation between source and destination communities or vice versa,

now C i
t must match with exactly one Cj

t+1 and that particular Cj
t+1 is allowed to match

with only one C i
t . Both Bródka et al. (2013) and Greene et al. (2010) follow this same

logic.

After identifying a pair where C i
t and Cj

t+1 only match with each other, the only task

remaining is determining whether we have a continuing, growing or shrinking event. The

relative size change is calculated as follows:

∆s =
|Cj

t+1| − |C i
t |

|C i
t |

and then the obtained value is compared to a threshold value which could be, for example,

in the region of 10 per cent.
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
growing, if ∆s > θcontinue

shrinking, if ∆s < −θcontinue

continuing, if − θcontinue ≤ ∆s ≤ θcontinue

Even though continuing events may seem trivial and not worth mentioning, considering

our highly dynamic data set and the non-transparent nature of Bitcoin investor move-

ments, all aforementioned survival events are of great interest for us. If the research were

to focus on some other topic, forming and dissolving events could be the most interesting

ones, but for Bitcoin similarity networks it is likely the other way around.

Forming

As forming events are basically the opposite of dissolving events, the definition is also very

similar. However, when extracting forming events, we are looking backwards to answer

the question, whether any C i
t−1 matches with this month’s Cj

t . Mathematically expressed,

C i
t forms at time t if there is no Cj

t−1 meeting these three conditions:

1. ActiveSize(Cj
t−1, t) ≥ θActiveSize

2. ActiveOverlap(Cj
t−1, C

i
t) ≥ θActiveOverlap

3. ActiveOverlap(C i
t , C

j
t−1) ≥ θActiveOverlapReverse

In addition, we will define that each community active at t0 has a forming event at that

point. The first snapshot has no predecessor and, thus, the same logic can not be ap-

plied. However, it is natural to have a forming event at the start of a timeline.

Extracting events and creating community timelines

As all our event definitions are based on the logic of testing each pair (C i
t , C

j
t+1) and the

definitions are supposed not to overlap, the set of rules can be presented as a decision

tree. Such a decision tree is shown in Figure 4.1. This thesis also chooses to perform

the event extraction only for communities with 10 or more members. The absolute size

threshold is used to improve the validity of our relative metrics.

In addition to using the proposed framework for extracting community evolution events,

we can use the events to build community evolution timelines. For this task, we take a

similar approach as Greene et al. (2010): new steps are added at the end of a community

evolution vector until the community dissolves. It should be noted that when a community

splits, the original community vector is duplicated so that each of the split destinations can

be added to a different vector. Figure 4.2 presents a four-timeframe community evolution

and Table 4.5 shows how the vectors are built from the event log.
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For each Ci
t ,

calculate
ActiveSize(Ci

t , t+ 1)

Dissolve

< θActiveSize

For each pair (Ci
t , C

j
t+1):

IF AO(Ci
t , C

j
t+1) ≥ θOverlap AND

AO(Cj
t+1, C

i
t) ≥ θOverlapReverse,

Ci
t has a match.

Count how many
matches Cj

t+1 has

Merge

> 1

Calculate relative size change
|Cj

t+1|−|Ci
t |

|Ci
t |

Grow

> θContinue

Shrink

< −θContinue

Continue

otherwise

1

1 match

Split

> 1 match

Dissolve

0 matches

≥ θActiveSize

Figure 4.1. Community evolution event definitions presented as a decision tree. If Cj
t+1

is not the target community for any C i
t , the Cj

t+1 community is born at time t+1. We also
discard communities with less than 10 members. ActiveOverlap function is abbreviated
to AO.
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Having defined the events and the creation of community evolution vectors in a systematic

manner, we can carry out multiple tests which must pass regardless of the choice of

parameters. First, each monthly community must be assigned a community evolution

event. If the inspected month is the forming month of a community, the community must

be associated with a forward-looking event, too. The rule goes both ways: if a community

has two events, one of them must be a forming one. In no situation is a community

allowed to have more than two events in a single month.

C11 C21

C22

C31

C32

C41

t=1 t=2 t=3 t=4

Form

Form

Continue
Shrink
Grow

Merge

Split

Split and merge

Continue
Shrink
Grow

Dissolve

Figure 4.2. Different community evolution events demonstrated in a span of 4 snapshots,
edited from Greene et al. (2010). Due to our event definitions, C22 splits into C31 and C32,
but C21 makes the event also a merge. To avoid problems at following stages, only a split
event is registered for C22, even though C21 is still considered to merge into C31.

Similar tests can be run for the program creating the community evolution vectors. First,

each extracted community event must be included in a community evolution vector. In

addition, if an event is included in more than one vector, the vector must also contain at

least one split or merge event.

Table 4.5. Parsing community evolution vectors from the events of Figure 4.2. The split
event also splits the vector into two separate branches which share the same initial step.
Merging event does not reduce the number of vectors but makes the mergers share the
following steps.

Vector ID Start of span Last active snapshot Communities

V1 t=1 t=4 [C11, C21, C31, C41]

V2 t=2 t=4 [C22, C31, C41]

V3 t=2 t=3 [C22, C22]
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The last set of tests verifies the sanity of community evolution vectors. Without comparing

the events of a vector, the following two tests can be run. First of all, each vector must

have exactly one forming event and there must not be another event prior to that. The

same logic can be applied the other way, too: each vector must have a dissolving event

and all the other events must have a timestamp earlier than the one of dissolving event.

Though, the end of our timespan, December 2019, is slightly different as there is no next

month. If we assign a dissolving event for each community alive at December 2019, the

test can be run as-is.
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5 RESULTS

This section introduces the results obtained by applying the research methodology de-

scribed in Chapter 4. The first part presents the results of community evolution analysis,

and the latter part displays key observations related to Bitcoin network snapshots and

similarity networks.

5.1 Community evolution

The community evolution results are analyzed from different perspectives. First, the sen-

sitivity of parameter choices is inspected by analyzing different result sets. The second

part focuses on the events obtained by running the event extraction algorithm on a given

parameter set. The third subsection investigates long-lived communities from several per-

spectives.

Sensitivity analysis on process parameters

To be able to apply the community event extraction algorithm to our monthly snapshots,

we will need to choose a set of threshold parameters. To understand how the parameters

affect the event extraction results, a sensitivity analysis is carried out. Figure 5.1 visual-

izes how varying θActiveSize and θActiveOverlap are related to the amount of communities

surviving at least n months. As the sanity check parameter θActiveOverlapReverse is not of

similar interest to us, it is fixed at 0.10.

Based on Figure 5.1, it seems that (0.30; 0.30) is too strict of a threshold to have any

reasonable amount of surviving communities. That itself can be considered an interesting

result if we consider the traditional thresholds by Bródka et al. (2013), Greene et al. (2010)

and other studies. It is quite common to require the similarity to be from range [0.5; 1],

but our Bitcoin trader communities would not survive such a requirement, as the active

overlap threshold of 0.30 is already eliminating most of the persistence.

Even though other studies use higher thresholds, it does not necessarily indicate that the

same values should be applied on the Bitcoin network. It should be remembered that

the communities in phone call, email or collaboration networks are of completely different

nature than the one we are analyzing. For example, changes in email network might be a
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Figure 5.1. Experimenting different (θActiveOverlap, θActiveSize) pairs. Parameter set (0.30;
0.30) eliminates almost all continuity whereas (0.20; 0.20) is not strict enough.

result of organizational changes, which often occur infrequently. Phone calls are common

between family members, and families remain relatively unchanged when analyzing a few

weeks or months of data. On the other hand, the timing of Bitcoin trades might base on

following a specific group of information sources. For example, a single news article or a

change in Bitcoin price may result in significant changes in the structure of Bitcoin investor

communities.

The other side of the spectrum shows that a threshold of (0.15; 0.15) would result in a

drastically different distribution of community life spans. Intuition and Figure 5.1 suggest

that (0.15; 0.15), and most likely (0.20; 0.20), are too forgiving. Choosing a threshold that

low would basically mean that our results would have a plenty of persisting communities,

even though the similarity between snapshots would be so limited that it would be uncom-

fortable to call it the same community. After all, the goal of this thesis is not to maximize

the number of persisting communities but to quantify a real-world phenomenon.

If we continue to inspect the region of (0.25; 0.25) and vary one parameter at a time,

we can analyze how sensitive the event extraction algorithm is to changing each of the

parameters. Figure 5.2 presents the results of that test.

Figure 5.2 shows that altering θActiveSize within range [0.20; 0.30] has little effect on the

lifespan distribution. However, lowering θActiveOverlap to 0.20 would result in clearly differ-

ent distribution, whereas a stricter threshold of 0.30 would return a result set roughly half

the size of the one with θActiveOverlap = 0.25. Both parameter choices would probably be

equally correct but we will continue with the value 0.25 to have a larger set of community

lifespans to analyze.

Community evolution event distribution



41

3 4 5 6 7 8 9 10 11 12
Community lifespan (months)

0

500

1000

1500

2000

2500

3000

Co
un

t

Thresholds (overlap, size)
(0,25; 0,30)
(0,25; 0,25)
(0,25; 0,20)

(a) θActiveOverlap = 0.25

3 4 5 6 7 8 9 10 11 12
Community lifespan (months)

0

500

1000

1500

2000

2500

3000

Co
un

t

Thresholds (overlap, size)
(0,30; 0,25)
(0,25; 0,25)
(0,20; 0,25)

(b) θActiveSize = 0.25

Figure 5.2. Sensitivity analysis on the two main thresholds. Adjusting θActiveSize has little
effect, whereas θActiveOverlap is much more sensitive to changes.

The following section focuses on a result set obtained by running community evolution

event extraction with the parameters presented in Table 5.1. Communities with less than

10 members are excluded from the analysis due to the challenges related to determining

significant overlap for tiny communities.

Table 5.1. Thresholds for community evolution analysis.

Threshold Value

θActiveSize 0.25

θActiveOverlap 0.25

θActiveOverlapReverse 0.10

θContinueSize 0.10

Community size at least 10

When the algorithm is run with the given parameters, the vast majority of events are form-

ing and dissolving ones. The results also show that splitting is a more common method for

surviving than the opposite event, merging. In addition, the total count of growing events

is over twice the sum of continuing and shrinking events. Table 5.2 presents the event

count on a yearly level. It should be noted that the count of forming and dissolving events

does not necessarily have to match even if each community timeline starts with a forming

event and ends in dissolving one. Due to merging events, two or more communities may

form independently, become one community at some point and then dissolve together.

Split events are the opposite: form once, dissolve at least twice.

When the monthly forming and dissolving events are plotted as a function of time, we

can observe multiple characteristics of Bitcoin investor community evolution. First of all,

the trend lines for buying and selling networks have a fairly similar shape. Secondly, the

amount of forming communities has an inclining trend and peaks at the end of 2017.
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Table 5.2. Yearly number of community evolution event types. Forming and dissolving
events dominate the table. Splits are more common than merges.

Year Form Dissolve Merge Split Grow Continue Shrink

2009 0 0 0 0 0 0 0

2010 455 454 0 0 2 0 0

2011 17 763 17 931 36 182 151 37 44

2012 22 463 22 749 62 435 393 96 102

2013 40 542 41 442 245 1 158 1 071 233 415

2014 61 923 63 222 273 1 184 1 410 424 591

2015 82 077 83 140 375 971 1 598 325 479

2016 104 945 105 294 103 259 1 149 207 197

2017 120 087 120 193 57 181 1 133 185 154

2018 121 153 121 490 144 522 1 652 310 284

2019 124 234 124 812 180 338 1 448 285 236

Total 695 642 700 727 1 475 5 230 10 007 2 102 2 502

The end of 2017 happens to be the point in time when Bitcoin flirted with the all-time-

high $20k exchange rate, which resulted in a very high transaction volume for that month.

Radical changes in Bitcoin price also tend to lure new investors to join the Bitcoin network,

and both the existing and the newly-joined investors may interpret the market situation in

various ways. Thus, it is only natural that the amount of communities at the end of 2017

was higher than other months. Figure 5.3 presents forming event count and the ratio of

forming and dissolving events for buying and selling networks.
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Figure 5.3. Forming events and forming/dissolving ratio as a function of time. The trend
is inclining and reaches its peak at the end of 2017 when Bitcoin price peaked, too. The
ratio of forming and dissolving events is close to 1.0 all the time.

As the volume of forming and dissolving events is relatively high compared to so-called

survival events, it is not possible to observe any meaningful survival patterns from Fig-
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ure 5.3. Instead, we will plot the monthly distribution of survival events separately and

show it in Figure 5.4. A few interesting observations can be made from the plot. First of

all, the earliest survival event peaks occur in the summer of 2011 in the buying network

whereas the selling communities do not reach a similar event volume until year 2013. It is

highly likely that the temporal emergence of continuous buying communities is related to

Bitcoin pricing climbing to a new high of $32 in the summer of 2011. The exchange rate

did not reach similar heights until 2013.
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Figure 5.4. Survival events as a function of time. Increasing community size increases
over time, which favors growing events over shrinking ones. Splitting is more common
than merging. Buying communities have their first survival peak almost 2 years earlier
than the selling ones.

Another observation is that the amount of survival events is higher between 2013 and

2015 than in the following years, even though the amount of communities increases quite

steadily as discussed earlier and shown in Figure 5.3. In other words, the relative amount

of surviving communities was remarkably higher during 2013–2015. That could indicate

that the communities of 2013, 2014 and 2015 were fitter for survival or the environment

was more favorable in one way or another. Another possibility is that the consistently

grown number of investors adds significant layer of noise on top of the actual communities,

which makes it challenging to track the evolution of communities. Of course, it may merely

be that the communities are not as fit as they were in the earlier stages of Bitcoin.

The last thing to discuss of Figure 5.4 is the frequency of different event types. Even

though we register community evolution events from the point of view of a source com-

munity, which most likely boosts the count of merging events, splitting seems to be a

much more common survival method. In addition, as the pair-matching technique relies

on finding a t + 1 community with high enough overlap, it would not even be possible

to have any splitting events with θActiveOverlap = 0.50, whereas merging events can be

found even when the parameter is assigned a value of 1.0. In that sense, the frequency

of splitting events compared to merging ones is rather intriguing.
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The three other event types — continuing, growing and shrinking — are responsible for

the majority of survival events. With the continuing threshold set to 10 % change in size,

which is actually a rather strict threshold, most of the events are classified as growing

ones. As we earlier noted that splitting is a more popular survival method than merging,

it is quite unintuitive that growing events are much more frequent than continuing and

shrinking ones. However, as the average community size increases over time, it could

also be that new traders join the communities regardless of the event type. For example,

a splitting event does not necessarily mean that the new branches would have a lower

amount of members than the original one. Instead, the definition merely states that the

original community continues its life span as two or more independent communities.

Long-lived communities

While analyzing the distribution of community events gives a good overview of the evo-

lution, it lacks the perspective of individual communities. We are especially interested in

communities which exist for multiple consecutive snapshots. For example, if two com-

munities each live for 2 months, we have two survival events. However, we may have a

similar log of survival events if a community exists for 3 subsequent months. Therefore, it

is useful to inspect the results from another point of view.

As trivial as that may sound, first we have to define how to count active communities. As

we create community evolution vectors according to the methodology presented in Fig-

ure 4.2 and Table 4.5, the same community may be included in multiple vectors. There-

fore, it is possible to either count the active vectors or the unique communities under

such vectors. Table 5.3 presents the problem by showing two community evolution vec-

tors which merge at t = t3. Given the data presented in Table 5.3, one may say that we

have two long-lived community evolution vectors active at t3 while the other interpreta-

tion is that the number of active communities is 1, even though no community dissolves

between t2 and t3.

Table 5.3. Two long-lived community evolution vectors.

Vector 1 Vector 2 Active vectors Active communities

t1 C11 - 1 1

t2 C21 C22 2 2

t3 C31 C31 2 1

t4 - - 0 0

Of the two interpretations illustrated in Table 5.3, we will go forward with the latter one:

counting unique communities under active vectors. Consequently, if we plot the number

of active, long-lived vectors as a function of time, the sum of communities forming or

staying alive at t = t1 does not necessarily match the sum of communities staying alive
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or dissolving at t = t2. However, it would be at least equally weird to count a community

twice at t = t1 merely due to a split event at t = t1 + n.

Figure 5.5 presents the amount of active, long-lived communities as a function of time.

The figure considers community a long-lived one if it does not form and dissolve the same

month. With such a relaxed threshold, the figure is dominated by forming and dissolving

events. In other words, and as the color coding shows, around half of the active com-

munities have formed that month and approximately similar amount of communities will

dissolve the next month. Consequently, Figure 5.5 is very similarly shaped as Figure 5.4,

which presents the distribution of survival events.
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Figure 5.5. The number of long-lived community evolution vectors as a function of time.
Every community living longer than 1 month is considered a long-lived one. The figure is
dominated by two-month communities and, consequently, the shape follows the survival
event distribution of Figure 5.4 very closely.

As Figure 5.5 is so heavily dominated by two-month community evolution vectors, there

is a clear motivation for plotting a similar graph but with the two-month communities ex-

cluded. If we focus only on those community vectors which live for three months or longer,

the plot takes a slightly different shape. While the selling communities have a fairly simi-

lar shape as the buying ones in Figure 5.5, the three-or-more-months version shows that

selling communities start to vanish with the stricter conditions, whereas the buying com-

munity graph still has a similar shape as earlier but it just covers a smaller area. Most

months have around 50 to 80 active buying communities but the number of long-lived

selling communities reaches similar heights only rarely. In addition, the selling communi-

ties never bounce back to the activity levels of year 2013—2015, even though the buying

communities do. Figure 5.6 presents the number of active community evolution vectors,

which live at least three months, as a function of time.

As we continue in a similar fashion and raise the threshold of lifespan length to six months,

the results obtained by comparing the 3 and 6-month distributions are well aligned with the

insights gathered by comparing 2 and 3-month distributions. Little remains of the selling
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Figure 5.6. The number of long-lived community evolution vectors as a function of time,
but with two-month vectors excluded.

communities when the 6-month threshold is applied. Contrary to the selling communities,

the stricter threshold does not affect the shape of the plot of buying communities. The

amount of active communities remains quite stable from mid-2012 to the end of our data

set. Figure 5.7 presents active community vectors, with a length of 6 or more months, as

a function of time.
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Figure 5.7. The number of long-lived community evolution vectors as a function of time,
but with everything shorter than six months excluded.

Another way to analyze the community lifespans is to carry out a similar test as Palla et al.

(2007) do in their research. They compared the average lifespan of a community with a

given size to the average lifespan of all communities. To be specific, they used the size

of the first active month as the size of community. To perform a similar test, we pick each

unique starting community and associate it with the longest community evolution vector.

For example, if community C1 splits into C2 and C3, and then only C2 survives for another

month, C1 of size |C1| is considered to have a lifespan of 3 steps.
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Figure 5.8. The average lifespan for a given size ⟨τ(s)⟩, compared to the average lifespan
for all communities ⟨τ⟩, as a function of community size s. Communities have been
grouped by slicing the size range into ten buckets which are equidistant on a logarithmic
scale.

As our data consists of a wide range of community sizes, the validity of the test is improved

by grouping the communities by size. This is done to avoid completely conflicting results

for, let us say, communities of sizes 6126 and 6127. From our point of view, those are

of identical size and, thus, the results would tell more about individual communities than

the big picture if no grouping was done. Hence, we assign the communities to 10 buckets

of the logarithmic space from 10 to 100 000. In other words, the bucket thresholds are

equidistant on a logarithmic scale.

By performing the aforementioned test, we obtain a few new pieces of information. First

of all, it seems that the community size has little to do with the expected lifespan. All

observation points are within the range [0.97; 1.07] which means that no group has a

significantly larger lifespan expectation than another. The result may be compared to

the one obtained by Palla et al. (2007), who plot an increasing trend in which the higher

values are in the region of 2.8. Simply put, in their study the larger communities have a

tendency to live longer than the average, but the results can not be generalized to our

Bitcoin investor communities.

However, when the same test is performed so that single-month communities are ex-

cluded from the data, it seems that size matters. Both buying and selling communities

have higher values in the region from 1 000 to approximately 10 000 members. Figure 5.8

presents the results.

5.2 Similarity network snapshots

In addition to analyzing the evolution of communities, we can look at the results ob-

tained while building the monthly similarity networks and detecting communities. For
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each month, we have a network similar to the one presented in Figure 5.9 and we can,

for example, analyze the number of active wallets and the distribution of similarity links

between such wallets. Figure 5.9 also clarifies why network analysis relies on a wide

range of algorithms. As the figure shows, the amount of links between communities is

still significant even though the density is higher inside the community. Human eye and

common sense are not able to perform community detection on such a granular level.

Figure 5.9. Largest seller communities, May 2015. Infomap is able to detect multiple
communities regardless of the inter-community links.

If we merely look at the number of active wallets, buying and selling networks have a very

similar shape. For both networks, the highest activity month is December 2017 when

Bitcoin price reached its famous peak of almost $20k. Plotting the two series next to

Bitcoin price series, both on a logarithmic scale, shows that the price series develops in

a very similar fashion as the number of wallets does. That is actually a rather interesting

observation as it is often said that Bitcoin price is not based on anything. Of course, it

may still be that the speculative investors purely hope to get lucky, but at least there is a

clear correlation between the number of active wallets and the Bitcoin price. Figure 5.10

presents the number of active wallets as a function of time.

The other very basic property is the number of links, which here means similarity of two

wallets when it comes to timing trades. The amount of links in buying networks peaks

between 2014 and 2016, approximately the same span as the number of long-lived buying
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Figure 5.10. Active wallets as a function of time. To be considered active, a wallet must
be at least once (one hour) in buying or selling state

communities reached its highest values. Figure 5.11 presents the number of similarity

network links as a function of time.
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Figure 5.11. The number of similarity links in monthly similarity networks. The buying
networks have their highest values from 2014 to 2016, approximately the same span as
the number of long-lived buying communities peaked.

Another way to look at the number of links is to calculate the average degree, which

is basically the same as combining Figure 5.10 and Figure 5.11. The selling network

snapshots have their highest average degrees in the region of 40 whereas the average

degree in buying networks is frequently over 100, sometimes over 1 000. Figure 5.12 plots

the average degree for each monthly snapshot.

The actual number of links may also be compared to the theoretical maximum. In prac-

tice, the number of links is divided by n∗ (n− 1)/2, where n is the number of nodes. This

metric is known as density, and in this particular research, density also represents the rel-

ative amount of pairs passing the hypergeometric test while building the monthly similarity

networks. Real-world networks tend to become sparser when growing (Newman 2018),
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Figure 5.12. Average degree. Buyer network exceeds the threshold of 1 000 multiple
times whereas the highest monthly averages are in the region of 40 in the seller network.

and our similarity networks seem to follow that pattern to some extent. For the selling

network snapshots, the trend is clearly declining. However, the density increases in the

buying networks until mid-2015. Monthly network density is presented in Figure 5.13.
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Figure 5.13. Network density as a function of time. The selling networks become sparser
over time, but the density increases until the latter half of 2015 in the buying network.

Even though we mostly focus on Bitcoin wallets, the nodes of our network, it should be

remembered that the links determine the information flow in the network and, thus, are

the basis of community detection. Therefore, they have a significant role in a research

investigating community structure and the evolution of it. When it comes to the community

detection performed for our monthly snapshots, the trend line seems to have a few local

peaks but, other than that, it climbs quite steadily. Figure 5.14 shows the number of

detected communities for each monthly snapshot.

It should be noted that the number of communities in Figure 5.14 are not necessarily

aligned with the number of forming events in Figure 5.3. The main reason for that is the
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Figure 5.14. Detected communities

decision to cut off communities with less than 10 members from the community evolution

analysis.

The last piece of results to be presented is the number of distinct trading patterns – the

wallet groups in pair-wise testing – per month. As Figure 5.10 shows, there are around 5

million active buying wallets in the busiest months. When we only look at unique trading

patterns, the highest number of distinct buyer groups is slightly under 500 000. Basically

the ten-fold difference means that the required CPU work would have been hundred-fold

had we not grouped wallets for pair-wise testing.

If we look at the statistically validated links between wallet groups, the amount is very

well aligned with the number of distinct trading patterns. Figure 5.15 shows the monthly

number of distinct trading patterns and statistically validated similarity links between those

patterns.
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Figure 5.15. Pair-wise testing: wallet groups and statistically validated links between
similar groups.

The shape of the plot in Figure 5.15 basically indicates that the peaks in monthly average
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degrees, presented in Figure 5.12, are resulted by wallets being unequally distributed to

wallet groups. Some trading patterns are chosen by masses of traders and, even though

there is only a couple of links on group level, there is a high-density cluster of wallets in

the wallet-level similarity network.
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6 CONCLUSIONS

With no prior research in place for analyzing the evolution of Bitcoin investor communities,

this thesis penetrates the uncharted territory to provide novel information about Bitcoin as

a social phenomenon. To conduct such a research, best practices of multiple disciplines

are brought together. This paper extracts Bitcoin wallets from anonymous transaction

data, builds a statistically validated network of Bitcoin users for each month and applies

battle-tested network analysis tools on the created networks. What is more, the subse-

quent network snapshots are compared to extract events characterizing the evolution of

dynamic communities.

The obtained results show that the vast majority of communities are short-lived but some

communities survive for months, even years. We also find out that few selling commu-

nities persist for 6 months or longer whereas the corresponding number for buying com-

munities is significantly higher, though still limited. When it comes to survival methods,

communities prefer splitting over merging.

As this thesis presents some promising results regarding the underlying community struc-

ture of Bitcoin investor networks, the topic definitely deserves more attention. One pos-

sible route would be to further analyze the properties of long-lived communities. For ex-

ample, while analyzing the investor clusters of the stock market, Baltakienė et al. (2019)

perform a statistical test to find out if any investor attributes are overexpressed in the

communities they detect. The anonymous nature of Bitcoin transactions undeniably com-

plicates such a test but there are still some ways to enrich the data. For example, one

could classify Bitcoin wallets with machine learning methods similarly as Ermilov et al.

(2017). Another decent option would be to use off-chain data to bring a new dimension

to the research as Meiklejohn et al. (2013) do.

It should also be remembered that this research constructs a multi-stage pipeline for

transforming anonymous Bitcoin transaction data to dynamic Bitcoin investor community

lifespans, which consist of a varying set of community members and events characterizing

each step of the lifespan. The task is non-trivial and there are several points where one

might decide to take a different approach. For example, the address-to-wallet mapping

algorithm can always be improved. What is more, this thesis inspects monthly snapshots,

and within those snapshots the timespan is sliced into hourly slots. The research could
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even use a drastically different resolution as there is no single correct choice.

This paper also chooses to analyze buying and selling networks independently whereas,

for example, Musciotto et al. (2016) construct a trading state vector so that the three

individual state vectors – buying, selling and buying-and-selling – are concatenated and

then the pair-wise testing is carried out for the concatenated trading state vectors. With

our approach, it is possible to compare the structure of buying and selling networks but, on

the other hand, we do not find out whether the synchronized buyers are also synchronized

sellers later on. There are multiple cross-roads but one must choose a path.
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