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ABSTRACT

Tuomo Tuunanen: Real-time Sound Event Detection With Python
Master of Science Thesis
Tampere University
Information Technology
October 2020

Python is a popular programming language for rapid research prototyping in various research
fields, owing it to the massive repository of well-maintained 3rd party packages, built-in capabilities
of the language and strong community. This work investigates the feasibility of Python for the
task of performing sound event detection (SED) in real-time, which is important in demonstrating
project research results to any interested parties or utilise it for practical purposes such as acoustic
health care monitoring, e.g. in attempts to reduce the transmission of the COVID-19 disease.

The relevant background theory for detecting sound events based on a pre-determined sound
recordings is first provided, which is followed by introduction to the basic of concepts that enable
performing the same in real-time. Then, Python real-time system designs based on two related
approaches are proposed and their feasibility is also evaluated with the help of corresponding ref-
erence system implementations. The results acquired with the implementations strongly suggest
that Python is indeed very feasible for performing real-time SED, even when using a sophisticated
model that possess 3.7M total parameters.
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TIIVISTELMÄ

Tuomo Tuunanen: Äänitapahtumien Reaaliaikainen Tunnistus Pythonilla
Diplomityö
Tampereen yliopisto
Tietotekniikka
Lokakuu 2020

Tutkimusprojektien prototyyppien kehittämisessä Python on suosittu valinta ohjelmointikielek-
si ja tätä tilannetta ovat edistäneet osaltaan ainakin seuraavat tekijät: laaja valikoima kolmannen
osapuolen paketteja, ohjelmointikielen kattavat ominaisuudet ja laaja Python-yhteisön tuki. Tässä
opinnäytetyössä selvitetään Pythonin soveltuvuutta reaaliaikaisessa äänitapahtumien tunnistuk-
sessa, jota voidaan soveltaa tutkimustulosten havainnollistamisen lisäksi myös tärkeissä käytän-
nön sovelluskohteissa, kuten akustisessa terveyden valvonnassa esim. hillitsemään COVID-19
-taudin leviämistä.

Työssä aluksi esitellään oleellinen taustateoria äänten luokittelemiseksi valmiiksi taltioidun ää-
nisignaalin perusteella ja näitä apuna käyttäen esitellään Pythonilla reaaliaikaprosessoinnin mah-
dollistavat käsitteet. Sitten esitellään kaksi toisiinsa liittyvää Python -ratkaisuprototyyppiä, joiden
perusteella toteutettuja järjestelmiä käytetään arvioimaan solveltuvuutta reaaliaikaprosessointiin.
Toteutuksien avulla saatujen tulosten perusteella Python soveltuu mainiosti reaaliaikaiseen ääni-
tapahtumien tunnistukseen jopa silloin, kun järjestelmä käyttää suhteellisen monimutkaista 3.7M
parametria sisältävää neuroverkkomallia.

Avainsanat: reaaliaikainen, äänitapahtumien tunnistus

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.
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1 INTRODUCTION

Considerable effort has been put into the analysis of speech signals, primarily to solve the
problem of automatic speech recognition (ASR). The related field of sound event detec-
tion, which is the focus of this work, is attracting increasing amounts research interest and
has benefited from the substantial amount of ASR research conducted during the past
decades. Sound event is characterised as a text-labelled segment of audio correspond-
ing to any activity or event of interest [1]. The acoustic sources producing sound events
can be virtually anything, e.g. humans, animals or specific ambient noises. These events
can be detected in the digital domain by utilising signal processing and machine learn-
ing algorithms in order to generalise the behaviour of related sound events. Importantly,
new observed events can be categorised with the help of the resulting generalisations –
that is, performing SED on previously unobserved acoustic source signals. SED is being
researched in application areas such as automatic audio tagging [2], audio surveillance
[3], health care monitoring [4] and identifying audio context of surroundings [5]. Fur-
thermore, there also exists companies that have adopted SED as part of their business
model, serving the needs of consumers and other businesses.

Real-time SED systems are needed for demonstrations, proof-of-concepts and practi-
cal applications that potentially benefit from live interaction with the surrounding sound
sources – or in other words, with the sound scene. One might want to acoustically moni-
tor occurring events of interest during some time interval or perform some actions based
their presence, e.g. detecting anomalous breathing sounds or coughing could be use-
ful contextual information in health care monitoring applications related to the ongoing
COVID-19 pandemic. Another interesting possibility is to automatically tag photos and
videos shared to the social media based on the detected sound events. [6, p. 4]

This work describes the requirements and procedure for implementing a SED system
that is capable of processing monophonic sound events in real-time. The type of real-
time processing involved is considered to be soft real-time, where occasionally missing a
task deadline is allowed, although still undesirable [7, p. 35]. Soft real-time processing is
utilised in consumer grade hardware equipped with general-purpose operating systems
(OS). Those are, e.g. many popular Linux distributions, MacOS, Windows or certain
embedded systems where soft real-time is still a reasonable choice over fully determin-
istic and time independent hard real-time systems. In research communities, SED sys-
tems are typically designed for obtaining and validating research results, in which case
processing audio from files is already sufficient. Performing SED in real-time becomes
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suitable, when system prototype or demo is designed for illustration purposes or for ap-
plicable industrial or commercial scenarios. Additionally, it could be also useful to extend
the system to collect more data for future machine learning experiments.

Real-time SED system obtains input from an audio stream instead of a file. This change
into stream processing data flow on a desktop OS leads to utilising concurrent execution
model of program code, instead of executing instructions sequentially one after the other.
In computing, concurrency refers to a system performing several independent tasks in
parallel [8, p. 2]. Concurrent programs have their own unique challenges: code is ex-
ecuted simultaneously in multiple parts of the running program, and data is accessed
simultaneously for reading and writing, increasing the complexity and error-proneness of
a program. This work addresses these challenges using very standard approaches and
describes how to apply them to design a real-time SED system. [9, Ch. 20]

The real-time SED system in the thesis project has been implemented in Python pro-
gramming language and tested with regular consumer grade computer hardware that
runs general purpose OS. Python is widely acknowledged as one of the standard proto-
typing and development tools in signal processing and machine learning alongside with
MATLAB and R. In this work, choosing Python instead of e.g. MATLAB or R for more
conventional software engineering scenarios, is more reasonable, because Python is
general-purpose and high-level programming language, while other research program-
ming tools may have more restrictive drawbacks or compromises that reduce the main-
tainability and implementability of the target system.

Alternatively, high performance low-level language, e.g. C language, could have been
chosen over Python, but this choice can be counterproductive on fast-paced research
projects spanning a moderately short period of time. Furthermore, studies show that
developing with a high-level language contributes to productivity: they are simply more
expressive and make some of the basic programming tasks straightforward in compari-
son to low-level languages [10, pp. 62–63]. Importantly, Python sufficiently satisfies the
requirements for executing program code concurrently, although there are performance
restrictions. Similar to its alternatives, many data science and machine learning research
tools are available to Python, which have become very popular among researchers [11,
12, 13]. Finally, this thesis also aims to show that extending a Python-based research
codebase into a system that illustrates those research results through a soft real-time
data flow, can be a straightforward and productive development process.

1.1 Problem Statement

Python offers a large amount of well-supported packages and tools for scientists and
engineers that enable them to conduct daily research experiments. Some experiments
can turn out to be very complex and laborious to both plan and set up. Furthermore, a
suitable way of conducting the experiments with Python may not be immediately clear,
especially when many approaches to address individual parts of the problem can be
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pursued.

This work pursues a solution to one problem specifically, namely discovering a straight-
forward way to design and implement a reliable real-time SED system with Python. Such
a system can be launched on a computer that is attached to a microphone, and then the
signal from that microphone can be processed and analysed in real-time with Python,
in order to responsively detect any sound events of interest in the near vicinity of the
microphone.

Implementing a real-time SED system in Python is very attractive due to the fact that
the research code the real-time system is based on is also frequently implemented in
Python. Any Python SED systems that allow detecting sound events based on a pre-
determined audio clip or a signal, which this work refers to as off-line SED systems, are
used as a baseline for deriving the counterpart real-time SED system. Succeeding in
transforming the off-line system to its real-time counterpart with Python is expected to be
advantageous at least in the following practical ways:

• only Python tools and packages are used, so no need to learn additional program-
ming languages;

• consequently, an increase in productivity is expected due to less time being spent
in learning new tools or converting algorithms.

The primary objective of this work is to ascertain whether Python scales up to the task of
performing real-time SED, and in the case if it does, is the behaviour of the implemented
system compatible with the offline counterpart. Also, an additional target is to provide
one or more suitable general designs that allow replicating or extending this work based
on, e.g. other offline SED systems besides the ones involved in this work.

The Python system of this work comprises two separate stages: training and classifica-
tion. In the context of this work, classification implies inferring the categories of provided
audio segments with a machine learning algorithm. A machine learning system that per-
forms classification is called a classifier. It is trained with datasets of annotated training
data, which will result in a trained model. Then, target class can be predicted for all input
audio segments using this trained model. Training stage is repeated primarily when the
model needs to be updated, e.g. with new data or when either the model parameters or
the actual classifier, is altered. Classification is performed either off-line (sequentially ex-
ecuting program instructions) or in real-time (concurrent execution model) and this work
focuses on the latter.

Initially, classification technique called Gaussian mixture models (GMMs) was utilised in
combination with mel-frequency cepstral coefficients (MFCC) for feature extraction. As
the development progressed, dynamic delta features were also extracted from MFCCs,
improving audio class separability. Later, after GMMs were established as a standard
baseline for the system, decision to use more advanced classification technique was
made: off-line and real-time stages of the system were modified by replacing GMMs with
deep neural network (DNN) to further improved classification accuracy. At the end of the
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project, a publicly available DNN model was also utilised in evaluation of the real-time
system designs based on the aforementioned GMM and DNN experiments.

An Important Simplification

There is an important simplification related to the way both the off-line and real-time sys-
tems perform sound event detection in this work. SED systems are assumed to produce
subsequent fixed-length segments based on the input of a single-channel audio signal.
However, the fixed-length segments do not yet constitute as detected sound events, be-
cause those segments are not guaranteed to individually match the onset and offset
times of intended sound events [6, pp. 13–16]. Rather, the fixed-length segments can be
used to reconstruct full output sound events as shown in Figure 1.1.

Figure 1.1. The difference of sound events compared to the fixed-length segments out-
putted by the implemented system. Approximated sound events can be reconstructed
using temporal information associated with the fixed-length segments.

Onset and offset times of each output sound event are approximated based on appropri-
ate fixed-length segment boundaries. As a result, the outputted sound events have a time
resolution determined by the fixed segment length that can be adjusted to suit the desired
level of accuracy. It should be noted that an algorithm for reconstructing sound events
based on fixed-length segments, which the implemented SED system has outputted, is
not part of this work. Implementing such an algorithm is left as future work instead.
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1.2 Content Overview

The work first covers the theory for designing a sound event detection system with se-
quential flow (off-line) in Chapter 2. Then, Chapter 3 builds on top of the previous one,
describing the requirements for real-time system (on-line). The real-time counterpart in-
cludes concepts not required in the off-line scenario, such as audio input processing,
buffering and executing tasks in parallel. The approach changes from theoretical to prac-
tical in Chapter 4, where Python-specific design and implementation details and solutions
are described. In Chapter 5, methods for evaluating the real-time system performance
are explained and benchmarked results are also reviewed. Chapter 6 concludes the the-
sis and introduces possible future work.
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2 SOUND CLASSIFICATION

In sound classification various machine learning techniques are applied on an audio sig-
nal processing problem. For given audio segments, learning algorithm is used to predict
their categories from a finite set of related textual labels. In machine learning, these
distinct categories are commonly referred as classes. This chapter introduces the tech-
niques relevant to performing sound classification, and then Chapter 3 further extends
those concepts to real-time audio processing, providing the necessary background that
allows implementing a practical SED system with Python.

A learning algorithm infers the best fit for an acoustic model by optimization. For that
purpose, the majority of practical machine learning systems rely on labelled data, which
in the case of this work is the audio segments. This makes the sound classification
approach to be considered supervised learning.

Ultimately, it is hoped that learning algorithms can accurately fit a model from a large set
of unlabelled data with an unsupervised learning method, using complex reasoning capa-
bilities. Although this self-organised learning approach is expected to become important
in the long term, it is still far away from producing the best results. Moreover, combining
supervised learning with other techniques has also produced good results, and it might
become important in the future. [14]

When reading this chapter, a very important distinction to keep in mind is the difference
between sound classification and detection of sound events. A sound classifier does
categorise textual labels within a given input signal or audio recording, but it does not
reveal the temporal position of those occurred labels. That is where detection comes
in, as already illustrated by the reference annotations and approximated sound events
in Figure 1.1. Sound classification is rather one of the required components that allow
defining an occurred sound event. [6, p. 5]

2.1 Supervised Learning

In supervised learning, also known as learning with a teacher, a learning algorithm utilises
a large collection of observed input-output examples in order to readjust the parameters
of a model to match desired responses, based on the given examples [15, p. 63]. The
collection of all input examples is defined as a countable set of Ntrain observations known
as training data

S = {xn | n = 1, . . . , Ntrain}, (2.1)
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where the individual real-valued observations xn, also known as features, are denoted by
vector

xn =

⎡⎢⎢⎢⎢⎣
xn,1

...

xn,d

⎤⎥⎥⎥⎥⎦ ∈ IRd. (2.2)

When training a sound classifier, a set of feature vectors xn are extracted from each
audio segment, where the segments correspond to a particular sound event. The given
audio segments are divided into statistically stationary frames and feature vectors are
extracted from each frame. These frames are then transformed into feature space IRd

by hand-crafting or with feature learning [15, 16]. This work encompasses hand-crafted
features and any abstractions learned with DNNs from them. Since the examples are
input-output pairs, the training data S is combined together with a corresponding set of
output examples known as target values

Y = {yn | n = 1, . . . , Ntrain}. (2.3)

The elements yn of equation 2.3 are discrete values representing the true category of
corresponding features xn. That is, equations 2.1 -2.3 are related such that the training
data can be rewritten as a set of ordered pairs

Strain = {(xn, yn) | n = 1, . . . , Ntrain}, (2.4)

which is called training dataset.

The parameters of a model are tuned with training examples (xn, yn) in order to reduce
sum of costs [16] or maximise a likelihood function [17], depending on the method. Then,
with the trained model, classifier categorises unforeseen examples (ˆ︁xn, ˆ︁yn) belonging to
a separate test dataset

Stest = {(ˆ︁xn, ˆ︁yn) | n = 1, . . . , Ntest}. (2.5)

It is also common practice to separate or hold out a small portion of the training dataset
Strain for a development dataset Sdev containing Ndev examples – the dataset Sdev is
used for selecting the best-performing model. Note that the distributions these datasets
need to match, so Strain is randomised before splitting in a process of stratification. One
more common practice involves cross-validating the training data by resampling it q times.
The idea is that in each q iterations, different portions of training and development dataset
are drawn from individual folds.

The above-described supervised learning process is illustrated in Figure 2.1. The two
stages, training and usage, are separate. Training stage is performed first in order to
acquire models that can be used for classification of sounds. In usage stage, an acoustic
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signal acquired from an audio file is processed into segment of features, and classifier
uses those features to produce sound category labels as prediction results for each seg-
ment.

Figure 2.1. Off-line classification scheme based on supervised learning

Performance can be evaluated with the prediction results. The training stage is repeated
if the models did not generalise well, e.g. due to over-fitting by poor model selection — or
if some potential model training approach was experimented with, consequently having
to modify and retrain the model.

2.2 Feature Extraction

One of the most important goals of feature extraction is improving the separability be-
tween different categories of input data in a machine learning problem. The original
input variables are transformed into a new variable space called feature space, where
the classes of interest are expected to become more separable than in the original input
space [17, p. 2]. The motivation for this expectation is found in Cover’s theorem [18],
which in qualitative terms states that non-linearly transformed features cast into a high-
dimensional space are more prone of becoming linearly separable than in the original
low-dimensional space [15, Sec. 5.2]. Techniques of feature transformation can further
improve the class separability of high-dimensional features; the data is mapped into a
space that discards redundancies, making the new representation more effective and
dimensionally reduced [19, p. 424]. As a fortunate consequence, computational com-
plexity is also decreased along with reduced dimensionality, which is desirable due to the
time-sensitive nature of real-time classification systems.
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Section 2.1 described that a set of feature vectors is extracted for each audio segment. In
order to simplify classification, the length of these segments is fixed to one second. The
reasoning is the following: classifier will be able to identify prominent characteristics that
sufficiently describe the given sound event even though some inaccuracies exist when
segment boundaries mismatch with the real ones. The fixed segment length also has
the consequence that an equal amount of feature vectors is always extracted from each
audio segment.

This work utilises MFCCs in feature extraction, which were also extended with temporal
cepstral derivatives. First, the procedure known as frame-blocking divides given audio
segment into short windowed frames known as analysis frames. Then, a fixed quan-
tity of MFCCs are extracted from each analysis frame, discarding the zeroth mean (or
DC) coefficient as redundant. Furthermore, the time derivatives extracted from MFCCs
provide information about temporal changes in the features. Detailed explanations and
motivations for these subsequent steps are given in the two following subsections.

2.2.1 Frame-blocking and Windowing

The goal of frame-blocking and windowing is to ensure that sufficiently accurate spectral
estimate is obtained from statistically stationary segments of an audio signal. Suppose
that there exists an arbitrary audio signal s(n) as in Figure 2.2a. Frame-blocking proce-
dure divides signal s(n) into frames of S samples, where S is also known as the quantity
called frame length. Adjacent frames are separated from each other by H samples and
this divergence or shift between frames is known as hop size. When H ≤ S, the frames
overlap and correlate with each other, depending on the size of hop H. Respectively,
frames do not overlap when H > S and results in increasing amount of data loss, as the
size of H is increased while S remains constant. [20, pp. 113–114]

After obtaining frame-blocks, estimating the short-time spectra would be already possible
with Discrete Fourier Transform (DFT) from each frame-block of signal s(n). However,
DFT interprets the finite frame-blocks to be periodic, although in reality they are not [21,
p. 688]: discontinuities in frame-block borders cause undesired spectral overshoot and
undershoot called Gibbs-phenomenon [22, p. 288]. Fortunately, tapering the samples
of frame-blocks towards zero near the bordering discontinuities is efficient in minimising
the magnitude of Gibbs-phenomenon [20, p. 114]. Tapering with a window function may
cause data loss, so overlapping the adjacent frame-blocks ensures that most information
originating from signal s(n) is conveyed to the resulting analysis frames after windowing,
which is generally true with overlap between 50 and 75%. [21, p. 691].

Besides minimising the Gibbs-phenomenon, there is another reason for applying a win-
dow function. Without separately applied window function, frame-block is still considered
to be rectangularly windowed, where samples of the rectangle are tapered zero outside
the frame boundaries. Rectangular window shape is problematic, because for each fre-
quency component of a signal frame-block, spurious peaks are introduced. These peaks



10

may mask the spectrum with side lobes or could end up concealing the true ones. The
phenomenon is known as spectral leakage and is countered by choosing a window, which
reduces the size of side lobes. However, all window choices are compromises, because
reducing side lobe effect increases the main lobe width. In audio processing, the Ham-
ming or Hanning windows are typical choices for minimising the effects of both Gibbs-
phenomenon and spectral leakage, while maintaining a good compromise between side
lobe heights and main lobe widths. The frame-blocking scheme manually implemented in
this work utilises Hamming window with 50% overlap between frames, hop size of 20 ms
and frame length of 40 ms. This choice for overlap is a very suitable, because the sum
of overlapping regions of Hamming and Hanning windows adds up to one. Also, overlap
of 40% is also experimented with in Chapter 5 due to the requirements of a pre-trained
model. [21, p. 689-690] [19, p. 232]

The concept of analysis frames is illustrated in Figure 2.2b, which represents four frame-
blocks being tapered with the Hamming window function into the analysis frames. Analy-
sis frame and the window can be defined as follows. Suppose that there exists J frame-
blocks of s(n), then an individual jth block is denoted by

xj(n) = s(Hj + n), (2.6)

where
0 ≤ n ≤ S − 1 (2.7)

and
0 ≤ j ≤ J − 1. (2.8)

Multiplying the samples of xj(n) with the ones of window function w(n) results in the jth
analysis frame

aj(n) = xj(n)w(n), (2.9)

where
w(n) = 0.54− 0.46× cos(

2πn

S − 1
) (2.10)

and
0 ≤ n ≤ S − 1. (2.11)

Equation 2.10 is known as the Hamming window function, which is commonly utilised in
audio processing.

2.2.2 Mel-frequency Cepstral Coefficients

MFCCs were originally developed for ASR [23] and have become very widely utilised
features since their introduction; the previously popular approaches based on Linear Pre-
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Figure 2.2. An audio signal s(n) represented in a and analysis frames corresponding to
signal s(n) are illustrated in b.

diction Cepstral Coefficients (LPCC) and Reflection Coefficients (RC) proved to be more
vulnerable to noisy speech [24] and spectrally less accurate [23] compared to filter bank
based MFCCs. In general, SED systems should strive to utilise features that discriminate
well between different types of sounds and MFCC-based features are typically a well-
performing choice [24, 25, 26]. Many processing steps in MFCCs are influenced by the
observed and assumed behavior of the human auditory system and these assumptions
will be introduced along with the formal representation next.

The thesis project employed MFCC extraction pipeline illustrated in Figure 2.3, which con-
verts a single analysis frame into MFCCs. The process gets repeated until MFCCs have
been extracted from all analysis frames corresponding to input signal s(n). In speech
processing, a pre-processing step known as the pre-emphasis is frequently applied on
the input signal. The step spectrally emphasises high frequencies, which is favorable
in speech recognition [20, p. 113], but it might decrease the discrimination of features
for sounds other than speech. Therefore, this work omits pre-emphasis and obtaining
the DFT power spectrum of an analysis frame is the first step in extracting MFCCs, as
shown in Figure 2.3. The major reason MFCCs utilise DFT in particular is that the human
auditory system performs a similar spectral analysis for sounds. [27, p. 250][28, p. 194].

The DFT power spectrum is next modified to further model the known behaviour of the
auditory system: multiple narrowband sounds with closely related frequencies of similar
levels are interpreted being a single auditory event. That is, for an arbitrarily selected
frequency bin in the power spectrum, the closely neighbouring bins become less impor-
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...

Figure 2.3. The procedure where an arbitrary analysis frame a(n) is transformed into
corresponding MFCCs. The process is repeated for all analysis frames aj(n), j = 1, 2, . . .
derived from the input audio signal s(n).

tant compared to the referencing center bin [27, pp. 163–164]. In practice, a triangular
window function, which in this context is often referred as filter, is a good choice for de-
emphasising the importance of bins surrounding a selected reference frequency. The
triangularly weighted frequency bins are not needed individually, so they will be summed
to correspond the energy of a frequency band in the power spectrum. Now, the whole
frequency range needs to be converted into band energies with a group of triangular fil-
ters; this requires defining the band width and center frequency (the peak of a triangle)
for each filter. Humans have been observed to perceive sound pitch roughly in the non-
linear mel-scale instead of the measured linear one [27, pp. 174–175]. Therefore, the
center frequencies of the triangular filters are first defined uniformly in mel-scale, which
results in mel-spaced center frequencies after inverting back to linear frequency scale.
This work utilised alternative equations in mel-scale frequency warping, compared to the
ones common in literature [27, 28, 29]. However, the warping is almost identical in both
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approaches. Accordingly, conversion from linear to mel-frequency scale is defined as

M(f) = 1125 ln(1 +
f

700
) (2.12)

and conversely equation 2.12 can be inverted back to the linear frequency-scale with

M−1(m) = 700 exp(
m

1125
)− 1. (2.13)

Defining the band width of each mel-scale triangular filter is straighforward: a band starts
from the center frequency of the previous one and stops at the next center frequency, re-
sulting in overlapped filters as illustrated the mel-scale filter bank of Figure 2.3 — excep-
tions to this are the stop and start points of filters adjacent to frequency scale boundaries.
The band energies obtained with the mel-scale filter bank from the power spectrum are
referred as mel-band energies and the auditory model can still be enhanced even from
this state: besides the pitch of a sound, loudness also behaves non-linearly [28, p. 195]
and this is modelled in MFCCs simply by computing the natural logarithm for each mel-
band energy coefficient.

The final processing in MFCC pipeline addresses the high correlation between adjacent
logarithmic mel-band energy coefficients. These correlations exists, because the mel-
scale triangular filters overlap with each other. In signal processing, the Discrete Cosine
Transform (DCT), can be used for decorrelation and also to discard insignificant transform
components, which is very comparable with the well-known Principal Component Anal-
ysis (PCA) transform [21, p. 136]. The logarithmic mel-band energies are transformed
with the DCT and only the lowest order transform components corresponding to signifi-
cant changes are kept; the higher order DCT components correspond to quicker changes
in the input, making them irrelevant in representing the most descriptive characteristics
of the log-energies. Typically, the DCT is computed from log-energies correspondinging
to an amount of 24 to 40 triangular filters and the first 13 or 14 DCT coefficients are used
to form the mel cepstrum of an analysis frame [19, p. 315]. This work uses the well-
known 13th-order MFCC feature that is common to many ASR and SED applications.
It is formed using the first 13 cepstrum coefficients acquired with 40 triangular mel filter
from log-energy outputs.

2.2.3 Dynamic MFCC Features

Measuring the change in cepstral coefficient over time is a common method for improving
their feature separability and it is achieved by computing their time derivatives [19, p. 424].
These type of temporal audio features are known as dynamic features, while MFCCs are
being called static features. In this work, the MFCC derivatives are approximated with
an orthogonal polynomial fit over a window of length 2K + 1, where K represents an
adjacency radius for frames surrounding the middlemost one in that window [20, p. 117].
Figure 2.4 illustrates the mechanism of this radial window. The approximated 1st-order
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derivatives are sufficient for achieving most of the benefits in improving the baseline of
static MFCC features — in general, derivatives of 3rd-order or greater cease to provide
any meaningful improvements in terms of class separability [19, p. 423-424].

Figure 2.4. Conversion of MFCCs into ∆ coefficients. The elements hilighted in red
illustrate how a single MFCC at the center is interpolated with K = 2 surrounding co-
efficients into its corresponding ∆ coefficient. Note that in this illustration, the displayed
coefficients are enough for converting only the centermost or previous MFCC vectors
ct+k, k ≤ 0. That is, the grayed out elements represent coefficients that do not exist yet.

The dynamic features are defined as follows. Suppose that there exists J 13th-order
MFCC vectors

ct =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ct,1

ct,2
...

ct,13

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, 1 ≤ t ≤ J, (2.14)

which have been extracted from J adjacent analysis frames, t is a discrete time index,
and ct,1, . . . , ct,13 are the individual cepstral coefficients. Then, each MFCC vector ct

is concatenated with the corresponding 1st order time derivatives ∆ct known as delta
coefficients in order to form dynamic MFCC-Delta feature vector

xt =

⎡⎣ ct

∆ct

⎤⎦ ,K + 1 ≤ t ≤ J, (2.15)

where MFCCs associated with frames from K + 1 to the J th one are converted into
dynamic features. Indexing of xt begins from K + 1, because of the required 2K + 1

window length, when estimating the first-order derivatives.

This work utilises a formulas defined in [20] for approximation of temporal cepstral deriva-
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tives. The formulas will be applied to the elements of each vector

∆ct =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∆ct,1

∆ct,2
...

∆ct,13

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (2.16)

needed by equation 2.15. The aforementioned approximation formulas are defined as
follows:

∆ct,j = µ
K∑︂

k=−K

kct+k,j (2.17)

and
µ =

1
K∑︁

k=−K

k2
, (2.18)

where µ is a normalisation factor and j = 1, . . . , 13. This work utilised K = 4 as the delta
window radius.

2.3 Classification Methods

Two classification methods will be discussed in this section: Gaussian mixture models
and deep neural networks. The state-of-the-art in SED is set by classification methods
based on deep neural networks [26, 30], but the use of GMMs in combination with stan-
dard features such as MFCCs and their first-order deltas is commonplace in the preceding
works [5, 31, 32]. Despite being surpassed by the novel methods, however in this work,
GMMs are still very useful and well-tested method for setting a classification performance
baseline – utilising them is also straighforward.

2.3.1 Gaussian Mixture Models

When modelling a real-world data set, machine learning algorithms based on mixture
modelling do not solely rely on the modelling capacity of a single distribution, but instead
take the linear combination of multiple distributions, in order to achieve better fit for the
data. Gaussian mixture models are based on this mixture approach and can potentially
overcome the limitations of a single distribution by being able to approximate almost any
continuous density. [17, pp. 110–111]

Consider the multivariate d-dimensional Gaussian distribution

N (x|µ,Σ) =
1

(2π)d/2
1

|Σ|1/2
e−

1
2
(x−µ)TΣ−1(x−µ) (2.19)
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with an observation (or feature) vector x ∈ IRd, mean µ ∈ IRd and covariance matrix Σ ∈
IRd×d. Equation 2.19 is the basic distribution used when defining a mixture of Gaussians,
which takes the form [17, p. 111]

p(x) =

G∑︂
g=1

πgN (x|µg,Σg) . (2.20)

Notice that equation 2.20 consists of G Gaussian densities defined by equation 2.19 as
individual mixture components, each with an individual mean µg and covariance Σg. The
G Gaussian densities N (x|µg,Σg) are multiplied with mixing coefficients πg that have
the following constraints [17, p. 111]

G∑︂
g=1

πg = 1 (2.21)

and
0 ⩽ πg ⩽ 1. (2.22)

In this work, the set of parameters {πg,µg,Σg} , g = 1, . . . , G in equation 2.20 are es-
timated such that they represent a single sound event category – multiple categories
require estimating their own set of parameters accordingly. The estimation is based on
the fit to a given training data, which will be defined next for a single sound event category.
Given a subset Sc of i.i.d. training data S that corresponds to equation 2.1, Sc is defined
as

Sc = {xc,m | m = 1, . . . ,Mc} ∈ S, (2.23)

where the Mc observations xc,m ∈ IRd belong to a sound category c. The parameters πk,
µk and Σk are still unknown and need to be fit into the training data subset Sc. The most
popular way to fit those parameters to match the distribution of the observations xc,m is
to estimate the maximum of log likelihood function

ln p(Xc|π,µ,Σ) =

Mc∑︂
m=1

ln

⎧⎨⎩
G∑︂

g=1

πgN (xm|µg,Σg)

⎫⎬⎭ (2.24)

using the expectation-maximization (EM) algorithm [33]. In equation 2.24, Xc is a Mc × d

matrix representation of the observations belonging to subset Sc, which is given by

Xc =

⎡⎢⎢⎢⎢⎣
xT
c,1

...

xT
c,m

⎤⎥⎥⎥⎥⎦ . (2.25)

It can be proved that the value of log likelihood function in equation 2.24 is guaranteed to
increase as EM algorithm progresses through each iteration, and subsequently better fit
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for the parameters is found. Eventually the changes in the likelihood function value after
each iteration become very small, and at that point the training process for that model
is finished, although it is possible that EM algorithm has converged to a local maximum
instead of a global one. [17, pp. 437–438]

The steps for training a single model for an arbitrary sound event category have now been
summarised. This scheme of estimating the parameters with EM algorithm simply needs
to be repeated multiple times in order to obtain a model for each sound event category,
based on the training data Sc, c = 1, . . . , C .

Finally, the likelihood of belonging to categories c = 1, . . . , C for a new segment ˆ︁X ∈
IRMnew×d and has Mnew observations, can be obtained based on

p
(︂ˆ︁X | c

)︂
=

Mnew∏︂
m=1

p (xm | c) (2.26)

and assuming that the observations within the segment ˆ︁X are independent of each other.
The most likely category for the segment ˆ︁X can be selected based on the highest likeli-
hood among p

(︂ˆ︁X | 1
)︂
, . . . , p

(︂ˆ︁X | C
)︂

.

2.3.2 Deep Neural Networks

In the past, GMM-based methods set the state-of-the art in SED-related classification
tasks, but they have been surpassed by methods based on deep learning [34][35, p.
83]. There are many suitable deep learning model architectures that could be used for
SED-related machine learning tasks, but the scope of this work only covers DNNs. In-
vestigating other deep learning models in real-time SED context is left as future work.

DNN is a supervised deep learning algorithm that has been developed based on pre-
existing research on feed-forward neural network, and it can be used to solve both re-
gression and classification problems. In order to make use of this algorithm, there first
exists a training stage, in which optimal model parameters are learned from a labelled
set of data. These parametes are being iteratively optimised during the training process
with a gradient descent based algorithm. The training stage is followed up by the usage
stage, in which prediction results are produced based on new set of unlabelled examples
that were not shown during model training – e.g., the results could be classification labels
outputted by the SED system.

The above scheme as such, cannot yet be called supervised deep learning. For this
purpose, the concept of representation learning is also involved. In practice, feature
extraction step is simply extended in a way that more abstract features are generated
successively from simpler ones. As a result, a layered hierarchy of representations is
learned – the idea is illustrated in Figure 2.5. [36, p. 5]
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Figure 2.5. Diagram illustrating how deep learning is a type of representation learning:
more abstract features are learned in layers one after another, and each layer is based
on the previous simpler one. The diagram is derived from a similar one in [36, p. 10].

In the case of DNNs, this layered hierarchy is achieved by modelling a feed-forward neural
network that possesses one or more hidden layers, where features belonging to deeper
layers are hoped to have learned more abstract features than the ones in the preceding
layers. Now that DNN has been discussed on a general level from the perspective of
deep learning, the actual details can be defined next.

Model of a Neuron

The basic unit of computation in feed-forward neural network, is the model of an artificial
neuron shown in Figure 2.6. This single neuron by itself constitutes a minimal neural
network. It takes features x1, x2, . . . , xd as input and transforms them into an outputted
activation value a ∈ IR via a series of computations. Those computations can be divided
into the following two steps: first, calculating the linear combiner output z ∈ IR, and
then the activation output value a ∈ IR. The inputs are first multiplied with their synaptic
weights w1, w2, . . . , wd ∈ IR correspondingly, then those synapses are summed together
along with the bias term b ∈ IR, and finally the amplitude of the resulting sum is limited
with an activation function φ. [15, p. 10]

.

.

.

φ

d

Figure 2.6. The structure of an artificial neuron. This single unit of execution itself com-
prises a minimal neural network that estimates the output of logistic regression. The
diagram representation style has been derived from a similar one in [37].

The computations performed by an arbitrary neuron r can be expressed with the following
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equations:

zr =
m∑︂
j=1

wrjxj = wT
r x,

ar = φ (zr + br) ,

(2.27)

(2.28)

where

wr =

⎡⎢⎢⎢⎢⎣
wr,1

...

wr,m

⎤⎥⎥⎥⎥⎦ ∈ IRm (2.29)

is vector of weights corresponding to d inputs and

x =

⎡⎢⎢⎢⎢⎣
x1
...

xd

⎤⎥⎥⎥⎥⎦ ∈ IRd. (2.30)

is a vector of d features corresponding to the neuron inputs x1, x2, . . . , xd. The signal
zk of equation (2.27) constitutes a linear combiner output, which simply computes the
weighted sum of the inputs x1, x2, . . . , xd by applying the synaptic weights w1, w2, . . . , wd

to each input signal individually. The linear combiner output zr is further processed into
the activation output ar of an arbitrary neuron r, by applying an activation function φ as
defined in equation (2.28); this function serves the purpose of squashing the amplitude of
the linear combiner output zr to permissible limits, which is typically bound to the interval
[0, 1] or [−1, 1]. Notice also the bias term br of equation (2.28), which simply has the effect
of either increasing or decreasing the net input of the activation function φ. [15, p. 11]

Multilayer Feed-forward Neural Network

A single neuron itself is not capable of modelling input-output mappings involving complex
hyperplane decision boundaries. Instead, many neurons should be used to form a neural
network architecture that enables the network to behave as a universal approximator.
Feed-forward neural network is one of the applicable architectures, but it should also fulfill
requirements of the universal approximation theorem: in short, the network is required to
possess one or more hidden layers [38]. Hidden layer simply represents a stack of one
or more neurons that have been placed in between the input and output layers of the
network, which is illustrated in Figure 2.7. [17, p. 230]

Let us discuss the roles and flow of data from layer to layer. The input layer of a neural
network is a bit special compared to other layers, because the nodes represent the input
values x1, x2, . . . , xd instead of neuron activations. Despite this, the input layer units can
still be viewed as activation values passed on to the first hidden layer l = 1. Furthermore,
it is also common to denote them as units a1, a2, . . . , ad instead of x1, x2, . . . , xd in order
to achieve uniform notation for the activations of all layers. Similar to Figure 2.7, if more
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Figure 2.7. Multilayer feed-forward neural network with two hidden layers.

hidden layers exist after the first one, the activations of the first hidden layer l = 1 would
be passed on to the second hidden layer l = 2, and finally those in turn would be passed
on to the output layer. The outputted value ŷ of the whole network is acquired simply by
computing the activation value of the output layer unit. At this point, note that nothing
limits utilising many neurons in the output layer – a single unit is used for simplicity at the
moment.

The above describes the flow of information from layer to layer until the output has been
reached, but there exists one more consideration: neurons are fully connected, which
means that the activation output value of any unit from the previous layer l − 1 is associ-
ated with all the units in the current layer l. Visually, this simply shows up as full amount
of connections (arrows) between neurons, e.g. in Figure 2.7. Note that in feed-forward
neural networks, the neuron connections are directed only forward, from previous layer
to the next, but not vice versa.

The concepts introduced so far now allow representing the output activations for a layer
of neurons. In practice, the equations 2.27 –2.28 simply need to be extended such that
the computations can be flexibly repeated for many neurons and layers. First, assume a
feedforward neural network with L hidden layers corresponding to indices 1, . . . , L. The
input layer is denoted by layer l = 0 and output layer by l = L + 1. An arbitrarily chosen
layer l ∈ {0, 1, . . . , L+ 1} from the network contains Nl neurons. Now, equation 2.29 that
represents the weights of a single neuron, can be extended to become weight matrix

W[l] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(w
[l]
1 )T

(w
[l]
2 )T

...

(w
[l]
Nl
)T

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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The rows of matrix W[l] correspond to the synaptic weights of the individual neurons
located within layer l ∈ {1, 2, . . . , L + 1}. Correspondingly, based on equation 2.27 and
equation 2.31, a vector containing the amount of Nl linear combiner outputs

z[l] =
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= W[l]a[l−1] (2.32)

can also be acquired. Finally, this allows computing the lth layer activation output vector
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where

b[l] =
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is the vector of bias values for layer l ∈ {1, 2, . . . , L+ 1}.

The details up until this point of calculating the estimated network output value comprise
a forward propagation step, and are the most relevant neural network details in this work.
This is due to equations 2.27 –2.34 directly influencing the inference speed of the DNN-
based SED system, and thus forming a good target for possible speed optimisations in
order to produce sound event labels as rapidly as possible. In the end, there was no need
to optimise the computational speed of these equations, because the inference speed of
popular deep learning frameworks such as TensorFlow and PyTorch turned out to be
good enough. The details of training a model will be omitted as they are not directly
required for implementing a real-time SED system.
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3 REAL-TIME PROCESSING

This Chapter introduces the key components and concepts that allow designing a real-
time SED system later in Chapter 4. Some of the concepts discussed so far fit into
the real-time paradigm without modifications. However, successful transformation of an
offline SED system into its real-time counterpart does also require introducing some new
concepts yet to be discussed, and also altering pre-existing ones.

Compared the offline audio audio input processing, audio is being collected non-stop and
simultaneously instead of separately reading pre-recorded clips. Temporally, both short
and long input data is handled by the real-time input processing scheme [39], namely the
following:

1. a block (or chunk) of audio data that is currently being processed;

2. the audio block expected to be received after handling the current one;

3. and possibly the all the input samples collected since the real-time audio processing
session was initiated.

Regarding the third point in the listing above, It is beneficial to cache the recorded input
signal for later use, since the whole system behaviour can be verified with it – this is
crucially important in the evaluation experiments of Chapter 5. The first two listed points
rather suggest that a real-time audio stream processing is required due to the nature of
the processing. The usage stage in Figure 3.1, which is based on the off-line counterpart
of Figure 2.1, implements such an audio stream processing scheme.

Compared to its off-line counterpart, the real-time scheme has been transformed to al-
ways extract successive individual feature vectors based on the latest available analysis
frame. In practice, audio input stream is polled in multiples of hop size and features are
extracted after every frame-block update. The feature extraction pipeline for extracting
static and dynamic feature vectors does not require modifications, meaning that the pro-
cedure derived in Section 2.2 is still utilised also in the real-time SED system. However,
this chapter shows that the way of reading audio input and storing the extracted fea-
ture vectors has to be changed because of the real-time flow of data. Furthermore, the
execution model needs to be changed from sequential to concurrent: while new feature
vectors are accumulated into the incomplete audio segment, the classifier simultaneously
computes new prediction results based on the previous segments.
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Figure 3.1. Real-time classification scheme. The training stage is still identical to the
off-line system, but the approach to SED has been altered in usage stage.

3.1 Audio Input

Processing a real-time audio stream is at the essence of this work and there exists a
variety of common tools for handling these streams. Unfortunately, not all of these tools
are multi-platform or even provide Python bindings. Among all free software choices,
a real-time audio API called PortAudio, has distinguished itself as a reliable choice that
supports a number of host languages, including Python. PortAudio provides support for
many system-dependent APIs, which are conveniently used through a single mutual API.

At the time of writing, the following packages are popular choices for using PortAudio
with Python: pyaudio and python-sounddevice. Initially, this work made use of pyaudio,
but later a choice was made to explicitly use python-sounddevice instead, as it offers a
very user-friendly way of reading and writing blocks of audio directly with numpy arrays.
The relationship between system-dependent APIs, PortAudio, python-sounddevice and
the user-developed Python application is illustrated in Figure 3.2. It shows that PortAudio
encapsulates away the platform-dependent APIs, which directly communicate with the
audio hardware, making it also unnecessary for a programmer to get familiar with any of
the individual platform-dependent audio APIs. Simply using the same PortAudio API is
enough across all supported platforms and the low-level audio hardware interaction is left



24

to the system-dependent APIs instead. [40]

Figure 3.2. Diagram illustrating a Python application using python-sounddevice and how
it communicates with audio hardware through low-level APIs. The diagram is derived
from a similar one in [40].

Processing audio input with python-sounddevice is very simple. PortAudio is first ini-
tialised and input stream is then opened separately. This open stream can be polled
for a desired amount of latest audio samples as they become available.There exists two
operating modes for audio processing in PortAudio: blocking and callback modes. Both
of these modes were experimented with, where blocking-mode turned out to be very
straightforward and simple to use, while callback mode is better for achieving low audio
latency. This work focuses on the use of callback-mode, as it allows exploring the full
potential of real-time audio processing with Python. The blocking mode has merely been
designed to used for simple applications and pedagogical purposes. [40]

The callback mode allows executing a user-defined function that consumes an audio
block as a response to a request from an active python-sounddevice stream. The user-
supplied callback is required to have a specific function signature:

def callback(indata: ndarray ,
frames: int
time: CData ,
status: CallbackFlags) -> None

The first callback function argument indata is the audio buffer containing the latest block
of input signal. It is a multidimensional ndarray from the numpy package with the shape
(num_rows, num_channels), where num_rows matches the number of audio samples for
the buffer data and num_columns matches the number of audio channels in the active in-
put stream; assume single-channel data in this work, because spatial data manipulation
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is not performed as a pre-processing step. The second callback argument frames tells
the length of the python-sounddevice input buffer. The third argument time is a CData

structure from Python CFFI package that indicates the analog-to-digital conversion tim-
ing for the first sample captured in the indata input buffer array and the time the callback
function had been invoked. Finally, the fifth argument status tells important information
about the input buffer with a set of flags: whether the buffer has been inserted success-
fully to indata or the possibility of it being dropped to resolve underflow and overflow
situations.

3.2 Audio and Feature Buffering

This section describes the ways data is managed and updated in the real-time processing
pipeline of Figure 3.1. First, it is necessary to understand in detail how the usage stage
has diverged in the real-time system from its off-line counterpart. In frame-blocking, the
length of adjacent audio segments is still fixed to one second like in Chapter 2, mean-
ing that each collected segment possesses an equal amount of J analysis frames and
feature vectors. The system keeps in memory only the latest frame-block consisting of
S audio samples and updates it periodically with the hop size of H new ones, where the
new samples are polled from the audio input stream. A single feature vector is extracted
after every frame-block update from an analysis frame and the segment can be classified
every time J new feature vectors have been accumulated. Based on these observations,
the real-time SED system should keep in memory S audio samples and J features vec-
tors. Furthermore, continuous updates are required as new audio samples and features
vectors are acquired. Storing the amount of 2K+1 static MFCCs is also required in order
to obtain the dynamic ones as illustrated in Figure 3.3.

Frame-block buffer

Frame length
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Figure 3.3. Buffering hierarchy of the real-time SED system. Updating the frame-block
triggers an extraction of MFCC feature vector and it will be pushed into the static buffer.
That also triggers the ∆MFCC extraction and consequently a concatenated feature vector
will be pushed into the feature buffer.
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The technique known as circular buffering is a good way to manage the stored audio
samples and feature vectors in the situation described above [39, p. 507]. Circular buffer
is represented as a fixed-length array, where updating with one or more new data samples
causes an equal amount of the oldest ones getting discarded [21, p. 766]. Visually, it is
common to represent circular buffer as a circle (see Figure 3.4), where both ends of
the array are adjacent with each other. In the illustrated buffers, the slots labelled with
capital letters represent fixed-size blocks of data, which also possess an index number for
marking the data positions in the array. Reading and writing operations in a circular buffer
are governed by write and read pointers, where their current index positions indicate a
starting location for accessing a chosen amount of adjacent data slots for either reading or
writing. When the blocks of data are written to the assigned slots, write pointer is moved
to the index of a slot positioned immediately after the written ones, and correspondingly
the same applies for read pointer with the exception that slots are simply read instead of
written.
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Figure 3.4. The concept of circular buffering is illustrated in panels a) and b). In the first
iteration of panel a), data is written to slots A, B and C and the write pointer is incremented
by three. In the next iteration of panel b), slots A and B are read and slots D, E and F
are written; read pointer is incremented by two and write pointer by three. The slots
highlighted between the pointers marks an area of active data and the white slots are
free for writing.

Circular buffers can be utilised for real-time SED purposes by considering the data slots
between read and write pointers as meaningful, while the slots located outside can be
freely overwritten with new data (see the areas highlighted in blue and white in Figure 3.4).
The first scenario, where buffering is required involves managing the audio samples of
the latest frame-block like in Figure 3.3. The data slots in a circular buffer are made to
represent the latest audio samples received through the audio input stream. This kind
of frame-block buffer possesses the capacity for frame length S amount of slots, where
the individual slots represent audio samples; new data is written to the buffer strictly in
multiples of frame hop H. Initially the buffer needs to be filled with S latest audio samples,
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which can be done e.g. by first setting the write pointer to the zeroth index, and then
writing to its slot and the following H − 1 slots, after which write pointer is again located
at the zeroth index due to travelling a full circle. For each upcoming frame-block update,
H new audio samples needs to be written into the buffer, but there is not yet enough
successive free slots available for writing. For this purpose, read pointer is moved forward
H slots, which stages the H oldest samples in the buffer to be overwritten with new data.
This update mechanism follows what was stated earlier in this section regarding circular
buffers: when certain amount of new samples are added, an equal amount of the oldest
ones will be discarded.

Two additional circular buffers, which are known as the temporal feature buffer and feature
buffer (see Figure 3.3), are required for containing the latest static MFCC and ∆MFCC
feature vectors. Buffering of feature vectors differs from frame-block buffering in two ways:
each data slot represents a feature vector in both feature buffers; and new feature vectors
are updated to their corresponding feature buffers one at a time, where the oldest vector
in both cases will be overwritten by the new one. The temporal feature buffer contains
2K + 1 amount of MFCC vectors, which are utilised for extracting a new delta feature
vector every time the buffer is updated. The extracted delta feature vector is concatenated
into a final feature vector with the copy of its corresponding MFCC vector, where the
obtained final feature vector is then updated into the feature buffer. The feature buffer
contains the amount of final feature vectors that can be extracted from a fixed-length one
second audio segment in order to classify based on the features. However, classification
is performed only when the feature buffer contains completely new final feature vectors.

In Python, circular buffering can be utilised in two ways: the deque datatype in Python
built-in collections package and the numpy.roll algorithm in the numpy package. The
deque datatype can be utilised as a circular buffer, when the maximum array length is
given during initialisation of a deque instance. In this work, numpy.roll was utilised for
convenience with linear algebra and the real-time SED system still functioned properly
with the performance of numpy.roll circular buffering.

3.3 Concurrency and Parallelism

Typically, Python scripts written for academic research purposes consist of language con-
structs approachable to both entry and veteran level programmers alike. E.g. the offline
SED system of Figure 2.1 is straightforward to implement with functions, classes, mod-
ules, easy to use built-in and 3rd party packages; furthermore, on such a basic program,
the written Python instructions can be executed sequentially, making the execution be-
haviour predictable enough. However, in order to design and implement the online SED
system while sufficiently also fulfilling soft real-time requirements, solid understanding of
more advanced execution paradigms, concurrency and parallel, becomes necessary.

Parallel programming involves decomposing the computations of an algorithm into sev-
eral subtasks, which will be distributed to some parallel capable hardware like Central
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Processing Units (CPUs), Graphics Processing Units (GPUs) or Neural Processing Units
(NPUs), assuming that the algorithm is inherently parallelisable. The expectation is that
the algorithm executed in parallel finishes a task faster overall compared to its sequen-
tial counterpart, making better use of the available hardware. For various applications
and purposes, there exists parallel optimised Python packages, which allow developers
to even avoid implementing parallel algorithms and focus instead on other software en-
gineering or research tasks, saving valuable project time. It is exactly the case in this
work, e.g. notably in classification and feature extraction tasks of Figs. 2.1 and 3.1,
in which Python packages such as numpy, scikit-learn or TensorFlow transparently
perform parallel optimised operations besides various other non-parallel optimisations
present in them. [41, pp. 3–4]

Since optimizing machine learning tasks for processing speed is beyond the scope of
this work and the focus is instead on concurrency problems, and also the correct ways
of applying them to designing a real-time SED system, parallel programming will not be
further explored in this work. This particular paradigm becomes more important after
the system has been implemented and specific parts of it must be tuned for intended
computational speed. The necessities for understanding concurrency in the context of
Python will be introduced in the following subsections.

3.3.1 Program and Process

When OS user launches a program, a process is created, which is an instance of that
program in execution. Each instance is unique, so launching the same program multi-
ple times would result in equally many processes running that program code individually.
Compared to a process, program is not being executed at all and merely comprises the
machine instructions stored on a application binary file – in the case of interpreted lan-
guages such as Python, program comprises merely the source code.

A process can also be thought as an entity that groups together wide variety of related
resources as a unique entry in the OS process table. Process resources are required for
various important purposes, e.g. to inspect or change process state or manage allocated
memory. Significantly, each process needs to contain resources to enable multiprogram-
ming, which simply means that OS rapidly switches between the processes, only a single
process being active for each available CPU core at any given time. Finally, processes
cannot directly access the memory space of each other, but requires using protocols de-
signed for such situations, e.g. with an Interprocess Communication (IPC) mechanism or
using shared memory between the involved processes. [7, pp. 85–95]

3.3.2 Threading and Global Interpreter Lock

Sometimes a single Python applications needs to oversee and perform multiple activities
simultaneously. Similar to many other programming languages, Python also supports
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multithreading – more frequently referred to as threading – that allows simultaneous ex-
ecution of code in multiple locations of the running program. In essence, thread is just
like a process, but it is created, managed and overseen by its parent process. Each pro-
cess is considered to be at least single-threaded, but more threads can be launched and
disengaged during execution, depending on the needs and circumstances. Compared
to creating a process, threads do not need to allocate nearly as many resources as pro-
cesses do, so in a sense they are also called lightweight processes. Using substantial
amount of processes to closely work on a task would consume a lot of OS resources.
For this reason, threads are meant to be the better choice by design for cooperating on a
task inside a process. [7, pp. 97–106]
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Figure 3.5. Panel A illustrates the GIL-limitation of a threaded Python program. The C
program in panel B possesses the same threading architecture except that it is not limited
by GIL; fortunately, comparable concurrency performance in Python can be achieved with
the architecture of panel C.

Unfortunately, owing to certain design choices made in the standard Python interpreter,
Python threads is not as flexible compared to their counterpart implementations in many
other programming languages. More accurately, due to a notorious thread synchroniza-
tion mechanism known as the Global Interpreter Lock (GIL), standard Python is primarily
suitable for I/O-bound tasks and concurrent execution speed (based on threads) will suffer
in the presence of CPU-bound tasks. Figure 3.5 illustrates in which manner the threads
of a running Python program are restricted, when compared against those of an equiv-
alent program implemented in C-language. Comparing panels A and B, it can be seen
that the only difference is the lack of GIL component in the latter. In the running C pro-
gram, threads are simultaneously scheduled by the OS, which is true multiprocessing.
However, threads running in the Python program are restricted by GIL to merely coop-
erate with each other, which means that in the worst-case scenario only one of them is
active simultaneously. Fortunately, GIL is released for I/O operations, so Python threads
can be very useful as long as CPU-bound processing inside threads is avoided. There
exists workarounds to solve the performance dilemma of panel A in Figure 3.5 and a very
straightforward one will be presented in the next section.
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3.3.3 Process-based Parallelism

As briefly mentioned in Section 3.3.2, processes are quite resource-heavy compared to
threads. However, in Python programming, they do have the advantage of being truly
parallel and thus being suitable for CPU-bound tasks, unlike threads. Therefore, pro-
cesses can be useful and this section aims to show exactly how. In Figure 3.5, panel C
illustrates an alternative to Python threads in order to achieve similar degree of concur-
rency as in panel B. The Python main process of panel C achieves it by spawning a pair
of single-threaded child processes under its control, instead of threads, like in panel A.
In Python, multiprocessing is the package that enables Python programmers to imple-
ment process-based parallelism to their programs – the parallelism in the definition refers
to concurrency, basically. If the problem solution requires spawning only a limited amount
of Python processes for each CPU-bound task, this approach is reasonable. E.g. on
a networking or Web-based program, it is not uncommon to spawn massive number of
threads to handle all the I/O workload – replacing all those threads with processes would
be disastrous. [9, Ch. 20]

Unlike in the case of threads, memory space is separate between processes, so the
spawned child processes in panel C cannot closely work on a task the same way threads
do. Threads can easily share and access mutual resources and data inside the same
running program, but attempting the same feat with processes requires indirectly pass-
ing data between them by using any supported IPC mechanisms or allocating a shared
memory area between the involved processes. The downside is that more complexity and
overhead is introduced compared to thread-based communication. The shared memory
approach is typically not the first option programmers start to experiment with, as it re-
quires involving synchronization primitives such as mutex or semaphore for serialising
access to the shared memory. Attempting it can also be very error-prone, so first testing
the performance of a message passing mechanism is safer [9, p. 415] in the beginning,
even though more overhead has to be accepted. [9, Ch. 20]

An easy and safe methodology that sidesteps the need to directly rely on synchronization
primitives is straightforwardly illustrated with the producer-consumer pattern, which has
been well-known to be utilised in a wide variety of programming problems. The pattern
consists of an entity that continuously produces data in some designated manner and
inserts it into a queue. Simultaneously, another entity is monitoring the same queue and
constantly consumes data from it for some pre-determined purpose. Thus, the queue has
been shared among the producer and consumer with synchronized access to its data.

This pattern can be applied to the process-based parallelism scheme in panel C of Fig-
ure 3.5, when one process is assigned as the producer and another one as the consumer.
Figure 3.6 illustrates these two concepts fused together. The queue shared between
the two processes is safely able to pass data from producer to consumer. In Python,
multiprocessing.Queue would be the typical choice for the queue object as it synchro-
nizes the access between processes that put items in the queue and get items from the
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Figure 3.6. A Python example of Producer-consumer pattern with child processes in
place of threads.

queue. The queue introduces some copy overhead as it has been implemented using
another Python object called multiprocessing.Pipe that serialises the data put into the
queue into a safely allocated area of the main memory. [9, Ch. 20]

In this work, multiprocessing.Queue scaled without any issues when experimenting with
the producer-consumer pattern and implementing the system. In summary, the process-
based producer-consumer pattern scales well, is easy and safe to use and allows circum-
venting the performance issues of Python threads as long as one keeps the spawned
processes single-threaded. [9, Ch. 20]

3.3.4 Coroutines with asyncio

Asyncio package , which enables the use of coroutines in Python, has been a standard
part of the language since Python 3.4.1 release. At the time of writing, coroutines are
still considered relatively new advanced concept in Python and even the syntax has still
evolved throughout the releases. Python coroutines enable something known as asyn-
chronous programming, which allows implementing concurrency without launching new
threads – this is possible due to executing the coroutines inside a single thread of ex-
ecution. Threads are frequently characterised as being lightweight processes. Corre-
spondingly, it is then appropriate to characterise asyncio coroutines as being lightweight
threads – that is, even lighter than lightweight processes. This comparison is intuitive
also, because a single process oversees multiple threads of executions, and correspond-
ingly a single thread oversees multiple coroutines.

Essentially, coroutines are simply tasks that are being scheduled one-by-one based on
some policy within an active event loop. They are and should be also very short-lived,
since only a single thread within a single process is scheduling them – one could cause
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the program to freeze by scheduling a long-lived coroutine, because the other routines
would not be able to progress meanwhile. In short, coroutines achieve illusion of concur-
rency for very lightweight (I/O-bound) tasks and they are implemented as Python defini-
tions with a special grammar that meet the syntactic requirements of the asyncio pack-
age. Coroutines provide an alternative way to effect concurrency besides threading, and
they possess a different set of advantages and limitations compared to threads.
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4 SYSTEM DESCRIPTION

This chapter describes real-time system designs that have been derived based on this
work. The intention is to summarise interesting findings, observations and the solution of
a rapidly developed system prototype belonging to a research project. Descriptions for
two different system prototypes will be given and both of them are successful approaches,
each of them possessing certain advantages and disadvantages over the other.

The basics introduced in the previous chapters enable describing the system prototypes
straightforwardly, simply bringing together everything discussed so far, consequently al-
lowing to describe the final systems. The system prototypes perform the following activi-
ties: processing blocks of audio from an input stream, and produce low-delay live predic-
tion results displayed on a Graphical User Interface (GUI), based on that input. The GUI
could be extended for user interactivity, so conceptually it is not limited to merely viewing
results. Essentially, the prototypes implement the usage stage of Figure 3.1, extending it
with a GUI that displays live prediction results and discards the step for model training.

4.1 System Design

A variety of important design choices have to be made, when implementing a reliable real-
time SED system that simultaneously attends to many different tasks. E.g., the system
could rapidly produce new prediction results, handle user input events, query databases
or store analysed blocks input audio signal. This work approaches the major design chal-
lenges by applying relevant Python design patterns to applicable scenarios and taking
into consideration the various advantages and limitations of Python. First, the essential
design considerations are discussed in Section 4.1.1, which is followed by Section 4.1.2
that defines the basic system components used by the two designs. Finally, two plausible
system designs will be described individually in Sections 4.1.3 and 4.1.4.

4.1.1 Design Considerations

The most important design considerations influencing real-time SED system design will
be provided next. The considerations were discovered both during initial experiments
and while designing and implementing the system prototypes. Their purpose is to guide
the process of designing a real-time SED system such that intended performance and
reliability is achieved more likely and implementation process becomes more straightfor-
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ward (namely, to avoid unnecessary over-engineering). Research projects benefit from
successfully applying the aforementioned targets, because they can be very quick-paced
and short-lived, and a system may need to be implemented in a very short amount of
time.

I/O bound vs. CPU bound

The greatest difference between the two system prototypes of this work is the way each of
them implements concurrency. The standard Python implementation limits thread-based
concurrency in the ways described in Section 3.3 and well-known ways to counter those
limitations are utilised in both system prototype. The thread-based system prototype
mainly needs to ensure that any spawned threads will not slow down due to the Python
GIL issue, which is triggered by executing too many CPU-bound threads in the same pro-
gram or process. Therefore, the first design consideration is that we will avoid spawning
multiple CPU-bound threads under the same process.

Correspondingly, the process-based multiprocessing prototype also addresses the GIL
issue, although with a different methodology detailed in Section 3.3. It replaces threads
with processes in CPU-bound tasks, completely circumventing GIL and allowing these
tasks to proceed independent of other threads and without slowing down those threads
unintentionally. Therefore, the consideration for the process-based multiprocessing proto-
type is simply to replace CPU-bound tasks with processes that only have a single thread,
and these processes are assumed to be directly managed by the main process of the
program.

Asynchronous I/O

Besides CPU-bound processing, a specific design consideration for I/O-bound process-
ing also exists. It needs to be decided whether to execute a task asynchronously or simply
process it synchronously – the latter being the typical approach. In this work, some asyn-
chronous programming experiments were made using asyncio, which is the standard
Python built-in package for asynchronous programming. However, the I/O tasks of the
real-time SED system prototypes were chosen to be implemented with synchronous pro-
gramming instead. This is due to unforeseen difficulties, when attempting to implement
very basic behaviour with asyncio on Windows platform. E.g., a normally simple matter
of preventing program hang-up during quitting active asyncio event loop turned out to
be challenging, even though this was never a problem while experimenting on Linux or
MacOS platforms. API and OS differences were traced to be at the core of this issue.
Fortunately, synchronously handling the I/O scales sufficiently well in this work and was
quick and straightforward to implement, allowing to save valuable project time. In sum-
mary, the design consideration here is to favour synchronous instead of asynchronous
processing.
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Hidden Threads

There is a certain thread-related situation that occurs unbeknownst to the programmer,
and may cause problems if ignored. Unless known for sure, e.g. by inspecting the
documentation or reading the source code, a Python object instance may subtly launch
Python worker threads. In this work, it was not clear until verifying from the documen-
tation that the Queue object instances supported by multiprocessing and threading

packages spawn these unobvious worker threads. Furthermore, inspecting the imple-
mentation of python-sounddevice revealed that it also spawns a worker thread in the
callback mode, which is a key component in the system prototypes. The potential danger
in these described circumstances is that the previously introduced design considerations
of this section will be violated too much, consequently causing the speed of concurrently
executed code in the system to degrade. In summary, the consideration here is sim-
ply defined as an attempt to verify whether any of the required Python packages subtly
spawn Python worker threads, and then make a conclusion of their performance impact
in a given circumstance.

Other Considerations

An interesting multiprocessing issue was produced with python-sounddevice while de-
veloping the prototypes. Any attempts to launch an audio stream that has been initialised
in the execution area of a child (or worker) process, caused the SED system to crash
every time. Fortunately, the solution (and the design consideration here) is very simple:
python-sounddevice stream objects should be initialised and executed in the main pro-
cess of the Python application. The reason for this issue was not investigated in this work
due to lack of time, so an explanation for the phenomenon is omitted.

The most of the considerations so far attempt to mitigate the ill effects of very particular
performance bottlenecks. In addition to the previous considerations, this work simply ap-
plied the basic software engineering practice of requirements gathering in order to reveal
both functional and non-functional requirements. Omitting to do this step sufficiently well
could have varying degree of negative consequences. E.g., ignoring a non-functional
consideration such as remote controlling the real-time SED system might be lead to de-
signing the system incorrectly and unable to fit into the client-server design pattern (or
any other suitable ones).

4.1.2 Basic System Components

Multiple assumptions are required regarding the way the system designs abstract data.
Regardless of the chosen design approach, this work utilises the Python classes shown
in Figure 4.1 as the basic building blocks for a minimally functional real-time SED system.
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RealtimeAudio
-cfg: Dict
-stream: sounddevice.InputStream
+output_queue
-buffer_block: np.ndarray
-buffer_long: np.ndarray

+start()
+stop()
-update_block()
-callback()

RealtimeInference
-cfg: Dict
-class_labels: Array[string]
+input_queue
+output_queue
+segment_onset: float
+segment_offset: float

+predict(fixed_length_block)
+predict_signal(input_signal)

UserInterface
-qtapp: QApplication
-widget: WidgetVisualization
+input_queue
+run()

WidgetVisualization
+input_queue
-timer: QTimer
+process_queue_items()

has a

Figure 4.1. Class diagram showing the prequisite classes required for both of the real-
time SED system design approaches.

Class Description: RealtimeAudio

The class RealtimeAudio allows starting and stopping a real-time audio stream, and
while the stream is active, passing on incoming (and further processed) input audio blocks
via repeated invocations of the callback() method to another object instance. In this
work, that other instance in question (the recipient) is RealtimeInference. Passing on
the data from an object to another is facilitated with an IPC mechanism, by making the
attributes RealtimeAudio.output_queue and RealtimeInference.input_queue refer to
the same IPC queue instance. Also, either multiprocessing.Queue or threading.Queue
objects will be used for IPC purposes depending on the design approach.

Class Description: RealtimeInference

The instance of RealtimeInference class allows predicting an output label and score
based on a fixed-length segment that has been provided as an input for its predict

method. RealtimeInference has intermediately received fixed-length segment by invok-
ing input_queue.get() call. The class specification does not assume in particular that
which model or features should be utilised, except that audio frame-blocking scheme
with some arbitrary overlap is being utilised. E.g., machine learning models may indeed
require implementing a separate feature extraction scheme, but sometimes the feature
extraction has been embedded directly into the model, then only requiring the raw audio
signal or a fixed-length segment block as an input.

RealtimeInference class also has an output queue, which is meant to be utilised in
the following way: invoke input_queue.put() to send prediction results along with use-
ful metadata like segment onset and offset times that will be utilised by the instance of
UserInterface class. Another thing to note is that RealtimeInference also must allow
predicting in offline from a long input array corresponding to all processed fixed-length
segments. The class achieves this with the predict_signal() method that produces
scores and labels for all corresponding segments at once. These should be then com-
pared to the real-time labels and scores after the real-time session has concluded, e.g.
with some applicable classification metric.
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Class Description: UserInterface and WidgetVisualization

The classes UserInterface and WidgetVisualization are even more minimal compared
to the others described so far. In this work, the user interface simply displays the latest
prediction label and score as soon as possible. However, additional activities and in-
teraction with the running real-time SED system are more common on real use cases.
The minimal user interface simply demonstrates that running a GUI that displays results,
alongside the real-time SED system, is indeed feasible.

The instance of UserInterface communicates with the instance of RealtimeInference
via a Queue instance from the multiprocessing or threading packages. The attributes
RealtimeInference.output_queue and UserInterface.input_queue refer to the same
IPC queue instance, allowing UserInterface instance to input_queue.get() the objects
that have been input_queue.put() by RealtimeInference instance.

The UserInterface class is structured in the following manner. It possesses the at-
tributes related to launching and running a Qt application, a widget that shows the latest
prediction result and score in some manner, e.g. updating a textual label or a graphical
plot. A timer object repeatedly calls process_queue_items() to check if input_queue has
new items, and update the textual label or plot in case there are new results.

RealtimeAudio and RealtimeInference Usage Example

It is useful to illustrate the intended way to use RealtimeAudio and RealtimeInference

classes, so a practical example is provided here. The following code block shows how to
configure the two aforementioned classes with multiprocessing queues, and predicting
once based on a random input array processed through the queue:

import multiprocessing as mp
import numpy as np
import time
from audio import RealtimeAudio
from model import RealtimeInference , init_audio_parameters

if __name__ == "__main__ ":
cfg = model.init_audio_parameters ()
onset_time = time.time()
queue_blocks = mp.Queue ()
rta = RealtimeAudio(cfg)
rti = RealtimeInference(cfg)
rta.output_queue = queue_blocks
rti.input_queue = queue_blocks
rnd_input = np.random.rand(1, cfg.fixed_length_block_samples)
rta.output_queue.put((rnd_input , onset_time ))
copy_of_rnd_input , copy_of_onset_time = rta.input_queue.get()
label , score , top_i = rti.predict(copy_of_rnd_input)
pred_duration = time.time() - copy_of_onset_time

The above code block does the following:
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1. compute an synthetic segment onset time by invoking time.time()

2. instantiate real-time audio and inference to rta and rti variables;

3. pass on queue reference to the appropriate attributes of rta and rti instances;

4. put random numpy array into the queue;

5. fetch a copy of the same array from the queue;

6. predict using the copied random input array;

7. compute the time duration required for producing an output prediction. It is useful to
collect all segment-wise durations and later utilise them for comparing the inference
speeds of different real-time SED system implementations.

If the above code would be converted into its real-time counterpart, some steps will be
different. First, rta.start() would be invoked in order to activate the audio stream.
Consequently, the active audio stream would begin repeatedly triggering rta.callback

method, and the callback implementation in turn would process and put each new in-
put audio block into the queue via rta.output_queue.put(block). Furthermore, rti

instance would be executed in a different thread or child process compared to rta.

Audio Stream Callback Details

The callback method associated with the launched sounddevice.InputStream instance
is a very central entity belonging to the RealtimeAudio class. The block size of the
audio input stream is configured to supply input data numpy arrays of length Nblock for the
stream-invoked callback function as an function input argument – note that the input data
variable is named indata by convention. In this work, assume that the audio block length
Nblock is equal to the fixed-length segment length Nseg and the currently invoked callback
performs the following processing steps:

1. Compute the segment onset time at the beginning of callback execution by invoking
time.time() function call;

2. resolve a frame-blocking discontinuity between adjacent fixed-length segments (in
practice, between adjacent indata arrays). This issue emerges, when overlapping
frame-blocks are being eventually extracted from the indata array, and the samples
of a certain frame-block exist between two adjacent fixed-length segments. That is,
H − S audio samples exist in the previously invoked indata, and the remaining S

samples exist in the current one. This problem is illustrated in Figure 4.2. Ignoring
this issue may lead to mismatches between real-time and offline SED prediction
results depending on how the frame-blocking scheme supplied with the inferencing
model has been implemented;

3. concatenate H − S last samples from the indata array of the previous callback
invocation into the current one, and discard H − S samples from the end of the
currently invoked callback indata array. This new temporally delayed array is des-
ignated as the current fixed-length segment that will be intermediately sent to the
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RealtimeInference instance for prediction purposes;

4. the audio input block indata should be rolled into the long audio buffer buffer_long
array of the RealtimeAudio class instance. The buffer array will be populated with
all the fixed-length blocks intended to be collected during the real-time SED session
(the buffer essentially holds the full input signal). The contents of the buffer can be
given as an input to the predict_signal method of the RealtimeInference class
instance, in order to evaluate the real-time results against these acquired offline
counterparts;

5. pack the segment onset time, and the newly acquired current fixed-length segment
into a Python tuple, and then intermediately send that tuple with output_queue.put

to the RealtimeInference instance that will predict with the data and also update
its onset_time attribute.

Figure 4.2. The discontinuity of a single frame-block between adjacent fixed-length seg-
ments. In this example the overlap is 50%.

In this work, the third step in the above list has been implemented as the update_block

class method of RealtimeAudio class, which manipulates the contents of buffer_block
array that is a member attribute of the RealtimeAudio class. The length of this buffer is
two times the fixed-length segment length, corresponding to the shape IR2·Nseg×Nchannels ,
where Nchannels = 1. It is implemented as follows:

def update_block(self , indata ):
fixed_segment_len = self.cfg.fixed_length_block_samples
self.buffer_block = np.roll(self.buffer_block , -fixed_segment_len ,

axis =0)
self.buffer_block[-fixed_segment_len:, :] = indata
start_pos = -fixed_segment_len - self.cfg.block_pad_samples
end_pos = -self.cfg.block_pad_samples
block = self.buffer_block[start_pos:end_pos]
return block

The above algorithm first rolls the contents of buffer_block such that the latest fixed-
length segment data is shifted backwards by Nseg samples. Then the contents of indata
is written to its previous position at the end of the array. Then, the start and end position of
the new fixed-length segment is indexed such that the beginning and end position indices
are shifted left by H − S samples. This new data is held by the block variable, which the
method returns.



40

Communication Between the Basic Component Instances

Now that each basic component has been described individually, their usage can be
analysed also collectively. Figure 4.3 shows a sequence diagram, where the instances
of the basic components communicate with each other. All of the steps (numbered 1–11)
correspond to everything discussed so far in this section.

1. rta.start()

11. rta.stop()

[!all_bloc
ks_collect
ed()]

5. rta.output_queue.put((fixed_
length_segment, onset_time))

9. rti.output_queue.put((label, score))

6. (fixed_length_segment,
rti.onset_time)=rti.input_queue.get()

2. rta.callback()

4. fixed_length_seg
ment=rta.update_block(
indata)

Loop

rta:RealtimeAudio rti:RealtimeInference :WidgetVisualiz
ation

rta.stream:InputSt
ream

7. (label,score)=rti.predict(fixed_
length_segment)
8. pred_duration=time.time() - rti.onset_time

10. process_
queue_items()

3. onset_time = time.time()

[!all_blocks_pre
dicted()]

Loop

Figure 4.3. Sequence diagram that describes the way in which basic system components
communicate with each other.

The first step activates the audio input stream with start() in order to allow the au-
dio stream to invoke rta.callback() infinitely (step 2) until audio stream is stopped
in step 11. The infinitely repeated callback invocations lead to steps 2–5 becoming a
loop. The loop stop condition all_blocks_collected() returns True, when intended
amount of fixed-length segments have been inputted by the active system, and False

otherwise. In this work, all_blocks_collected() is assumed to be an attribute method
of RealtimeAudio class, which checks the currently processed count of fixed-length seg-
ments.

A similar loop stopping mechanism is required also for RealtimeInference class, which
it implements as the method known as all_blocks_predicted(). The greatest benefit is
that the instance of RealtimeInference can be halted independently of RealtimeAudio,
when it is being repeatedly invoked by a loop. The other loop on the right half of Figure 4.3
corresponds to all_blocks_predicted(), and causes the steps 6–10 to be repeated until
the all_blocks_predicted() returns True. Step 6 actually blocks the execution until step
5 has concluded, not allowing transition from step 6 to steps 7–10 any earlier. The reason
is that input_queue.get() calls block until a Python object is put() into the same queue.

The process_queue_items() method of the WidgetVisualization class instance in step
10 is being periodically triggered by a QTimer instance that is also a member of the same



41

class. The implementation of process_queue_items() method invokes input_queue.

empty() in order to determine whether the input_queue is empty. If it is not empty, and
put() in step 9 has been completed, label and score can be read with get() from the
input_queue and WidgetVisualization will be invoked to update new results (e.g. into
a plot or some other type of graphics canvas).

Summary of System Parameters

Since there exists several important system parameters that affect the intended behaviour
of the real-time system designs, the most relevant ones of them are listed here separately
for quick reference:

• Sampling rate: matches with the supplied model

• Number of audio channels (Nchannels): 1

• Audio stream block size (Nblock): set to the length of the fixed-length segment Nseg

• The dimensions of the audio block buffer buffer_block (Nbuf ): IR2·Nseg×Nchannels

• Number of samples in a fixed-length segment: matches with the supplied model

• Frame-length (S): matches with the supplied model

• Hop size (H): matches with the supplied model

• Feature extraction scheme: chosen based on the supplied model, and omitted if
embedded directly into the model

• Model input dimensions: IR1×Nseg

• Model output dimensions: IR1×Nclasses

• Number of classes (Nclasses): matches with the supplied model

The model input dimensions involve a simplification: it is assumed that feature extrac-
tion has been embedded into the model. That is, the model takes raw audio instead of
features as an input.

4.1.3 Process-based Multiprocessing System

The first system design to be introduced in this work is the approach based on process-
based multiprocessing, and its core idea is primarily motivated by the theory of Sec-
tion 3.3.3. The approach is also mostly in accordance with the considerations of Sec-
tion 4.1.1, although some minor compromises do exist. Figure 4.4 illustrates the individ-
ual components discussed in Section 4.1.2 as a part of the whole system. This free-form
diagram does not describe object states or their transitions like the sequence diagram in
Figure 4.3, but rather shows that to which Python processes the object instances should
be distributed to.

Similar to the producer-consumer pattern of Section 3.3.3, the system runs two Python
processes labelled tasks A and B in Figure 4.4. Task A is the entry process of the system,
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and task B has been launched by task A. Furthermore, when task A quits, task B will also
quit. The following instances of the basic real-time SED system objects of Section 4.1.2
are declared by task A:

• the classes RealtimeAudio and UserInterface;

• multiprocessing.Queue instances corresponding to the variables queue_blocks

and queue_predictions.

Task A oversees
child process B

pass on
reference to

the instance

pass on reference
to the instance

pass on reference
to the instance

Task B: Child ProcessTask A: Python Main Process
rta:RealtimeAudio

+cfg: Dict
stream: sounddevice.InputStream
+output_queue
-buffer_block: np.ndarray

rti:RealtimeInference
+cfg: Dict
-class_labels: Array[string]
+input_queue
+output_queue
+segment_onset: float
+segment_offset: float

-callback()
-update_block()

queue_blocks

queue_predictions

+start()
+stop()

+predict(fixed_length_block)
+predict_signal(input_signal)

ui:UserInterface
-qtapp: QApplication
-widget: WidgetVisualization(input_queue)

:WidgetVisualization
+input_queue
-timer

+process_queue_items()

+init(input_queue)

+run()

pass on instance
reference

Figure 4.4. A free-form diagram depicting the hierarchy of data in the process-based
real-time SED system approach among the main and child processes.

Task B is initialising only a single object: RealtimeInference. After all, it targets to only
run the CPU-bound while task A consists primarily of I/O-bound tasks instead.

Several arrows are pointing out in Figure 4.4 from the two multiprocessing.Queue in-
stances into the input_queue and output_queue member attributes of the four class in-
stances. It visualises the intended sharing of queue references among involved objects
that was discussed in detail in Section 4.1.2. The representation of Figure 4.4 brings in
new insight by illustrating that the queues have been now configured to pass on Python
objects across different processes. That is, in the manner they are meant to be utilised.

At this point, it is very simple to implement the system based on the basic system compo-
nents. No changes are required to the communication between the basic system compo-
nents shown in Figure 4.3, or to the most of the definitions of the components. Only the
RealtimeInference class has to be extended with a supplied model. The system can be
assembled using the following key steps based on Figure 4.4:
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1. For implementing task B, define a Python function called task_predictor that de-
clares and initialises variable rti as an instance of RealTimeInference class. Fur-
thermore, task_predictor has a while loop with the end condition all_blocks_pre

dicted(), waits for and receives new predictions by invoking rti.input_queue.

get() and then predicts with rti.predict();

2. Declare and initialise variables queue_blocks and queue_predictions as multipro

cessing.Queue() instances within task A;

3. Declare and initialise a process with multiprocessing.Process(target=task_pre

dictor) as an instance within task A. Process also has the args input parameter
that can be utilised for passing on references to required queue instances. Now,
start the child process;

4. Declare and initialise the rest of the basic system components designated for task
A. Start the audio stream first, and then the user interface.

The above four steps can be implemented as follows:

import multiprocessing as mp
import time
from model import RealtimeInference
from audio import RealtimeAudio

def task_predictor(queue_blocks , queue_predictions ):
rti = RealtimeInference ()
rti.input_queue = queue_blocks
rti.output_queue = queue_predictions
while not rti.all_blocks_predicted ():

fixed_length_segment , rti.onset_time = rti.input_queue.get()
label , score = rti.predict(fixed_length_segment)
pred_duration = time.time() - rti.onset_time
rti.output_queue.put((label , score))

if __name__ == "__main__ ":
cfg = model.init_audio_parameters ()
q_blocks = mp.Queue ()
q_preds = mp.Queue()
p = mp.Process(task=task_predictor , args=(q_blocks , q_preds ))
p.daemon = True
p.start() # launch the child/worker process
rta = RealtimeAudio(cfg)
rta.output_queue = q_blocks
rta.start ()
ui = UserInterface(q_preds)
ui.run() # blocks until run() finishes
p.join() # blocks until the instance p quits
rta.stop()

As a result, a minimal process-based real-time SED system with Python has been written
in less than 30 lines of code.
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4.1.4 Thread-based System

Another real-time SED system design presented in this work is called the thread-based
system. Unlike the process-based approach, it will not launch any additional processes
besides the mandatory main process. Threads are launched instead of processes for
the CPU-bound tasks, and this section briefly investigates the immediate design conse-
quences of that choice.

Threads spawned within the same process share a mutual memory space, which allows
them to closely cooperate on a task without the need to transfer data between processes.
Although, synchronised access to data shared between threads still needs to be main-
tained, which the thread-based approach will achieve with the help of threading.Queue()
instances. Figure 4.5 illustrates how the components of the thread-based system should
be initialised.

Task B - Thread:
prediction_loop()

Task A: Python Main
ProcessRealtimeAudio

+cfg: Dict
stream: sounddevice.InputStream
+output_queue
-buffer_block: np.ndarray

RealtimeInference

rti:RealtimeInference

+cfg: Dict
-class_labels: Array[string]
+input_queue
+output_queue
+segment_onset: float
+segment_offset: float

-callback()
-update_block()

+start()
+stop()

+predict(fixed_length_block)
+predict_signal(input_signal)

tbs:ThreadBasedSystem
+cfg: Dict
+rta: RealtimeAudio
+q_blocks: threading.Queue
+q_preds: threading.Queue
+ui: UserInterface
-t_prediction: threading.Thread

+launch()-prediction_loop()UserInterface
-qtapp: QApplication
-widget: WidgetVisualization(input_queue)

WidgetVisualization
+input_queue
-timer

+process_queue_items()has a

has a

has a

+run()
+init(input_queue)

Figure 4.5. A free-form diagram depicting the hierarchy of data in the thread-based real-
time SED system approach among the main process and its worker thread.

Besides the basic system components of Section 4.1.2, the diagram of Figure 4.5 intro-
duces a new class called ThreadBasedSystem that is declared as the instance named
tbs. The idea is that ThreadBasedSystem aggregates all of the basic system components
under a single class along with objects that enable launching threads and communication
between them.

Two major tasks can be identified based on Figure 4.5, which are tasks A and B. The in-
stance tbs of ThreadBasedSystem is launched within task A and it initialises all basic sys-
tem components except for the RealtimeInference. The instance of RealtimeInference
is instead declared and initialised within task B, which represents a Python thread run-
ning the method tbs.prediction_loop(). The thread-based task B is in fact very similar
to the process-based implementation of the same task, as they share exactly the same
purpose of outputting predictions. The primary difference is the distinction between a
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process and a thread, along with their benefits and disadvantages.

Similar to the process-based approach, the thread-based system design approach also
leads to a very simple Python implementation:

from threading import Queue , Thread
import time
from model import RealtimeInference
from audio import RealtimeAudio

class ThreadBasedSystem:
def __init__(self):

self.q_blocks = Queue ()
self.q_preds = Queue ()
self.cfg = model.init_audio_parameters ()
self.rta = RealtimeAudio(cfg)
self.rta.output_queue = self.q_blocks
self.ui = UserInterface(self.q_preds)
self.t_prediction = threading.Thread(target=self.prediction_loop)
self.t_prediction.daemon = True

def launch(self):
self.t_prediction.start ()
self.ui.run()

def prediction_loop(self):
rti = RealtimeInference ()
rti.input_queue = self.q_blocks
rti.output_queue = self.q_preds
self.rta.start()
while not rti.all_blocks_predicted () and self.rta.stream.active:

fixed_length_segment , rti.onset_time = rti.input_queue.get()
label , score = rti.predict(fixed_length_segment)
pred_duration = time.time() - rti.onset_time
rti.output_queue.put((label , score ))

if __name__ == "__main__ ":
tbs = ThreadBasedSystem ()
tbs.launch ()
tbs.rta.stop()

At least the following conclusions ca be made based on the code above:

• Virtually all of the implementation components are a part of the ThreadBasedSystem

class definition, which is in accordance with the details of Figure 4.5;

• the prediction_loop method running via the launched thread is very similar to
task_predictor function of the process-based system approach. A big difference
is that prediction_loop has accessed class member attributes declared and ini-
tialised within another thread, since it is allowed. This would not be possible in the
case of task_predictor, which is executed as a child process, requiring copies for
the most of the conveyed data.
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4.2 Graphical User Interface

Visualising the sound events outputted by the real-time SED system provides its users an
engaging way to experience it in practice and assess its behaviour. In this work, Qt is the
chosen GUI framework for plotting sound events, because it offers a powerful graphics
canvas for fluid animations, is easy to learn and is well-established also in the Python
community. Qt provides an extensive collection of various widgets, which are essentially
individual components initialised into the user interface, where some of them are being
static and some can be interacted with. There are two primary projects that enable Qt
support in Python, which are the pyqt5 and pyside2 packages. The latter one is also
known as Qt for Python, which is the officially supported Python bindings for Qt [42], and
it is the only bindings considered in this work. Its licencing options include either the Qt
commercial license or LGPLv3/GPLv3.

4.2.1 Qt Application Essentials

The first step in implementing a graphical pyside2 Qt application is to create an instance
of the QApplication object. Once that is done, the programmer can next move on to
declaring the instances of various widget objects that morph the look and feel of the
user interface. Widgets are typically also associated with some events that are trig-
gered through user interaction with the widget in question. Qt maps these events to
some pre-defined actions with the help of its signal-slot mechanism, e.g. the instance
of QPushButton widget emits the clicked() signal when being activated. This activation
in turn triggers the execution of the intended Python function definition (called a slot in
Qt) that performs the desired actions. After configuring the widgets, assigning signals
to slots or performing any other initialisations, the instance of QApplication will call its
run() method to launch the Qt event loop, which schedules the execution of all events
within a single loop at the main thread of execution. The run() method blocks the thread
until user triggers or signals the user interface to quit, and that concludes the lifecycle of
a Qt application. [43]

4.2.2 Visualizations

An explicit widget for visualising sound events was not found during the development
of the system implementations, so various Python plotting libraries that allow declaring
the plots as Qt widgets were experimented with. Initially, PyQtGraph is the first plotting
library being tested, and it turned out to be very fast, but unstable: during long-running
SED system sessions, there were random crashes related directly to some issues with
PyQtGraph.

Due to this setback, Chaco package from Enthought was tested next and it did provide the
desired stability for the long-running real-time SED sessions. The most suitable plotting
representation found in the case of Chaco was a bar plot showing the history of recent
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predictions. The horizontal axis in the plot was configured to represent the adjacent time
frames for the predicted fixed-length blocks, and height of each bar in the vertical axis
representing the confidence of a prediction. The oldest bar in the plot is discarded as
soon as a new fixed-length segment prediction becomes available. For interpretability,
the class label string representations were shown just below each bar in order to give an
indication about which sound categories are the most recent ones.

The third and final visualization experiment involved creating an explicit Qt widget us-
ing the well-performing Qt graphics canvas for plotting. Essentially, one can utilise the
QPainter object for drawing e.g. lines and rectangles within the allocated screen space
of the visualization widget. The implemented widget displays a chosen amount of latest
sound events such that they slide from the right side of the plot to the left: it is a constantly
updating event roll for displaying constantly predicted sound events. It is straightforward
to implement it as a matrix, where columns represent a fixed-length segment time frame,
rows denote the category of the sound event class, and elements have values False (not
detected) or True (detected). Every time the real-time SED system outputs a new predic-
tion, the contents of the matrix are refreshed in a manner similar to a multidimensional
buffer roll: the elements of the first column are set to False (oldest time frame), then
rolling that column to become the new final column, and setting the row element of that
column matching the correct category for a new prediction to True.
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5 EVALUATION

This chapter evaluates the validity of the process and thread-based system designs of
Chapter 4. Specifically, a set of experiments are performed to verify whether utilising
those designs leads to implementing a fully functional real-time SED system with Python.

5.1 Method

In order to conduct the desired experiments, systems based on the thread and process-
based design approaches were implemented explicitly for the evaluation purposes of this
chapter. These two implementations behave exactly like the thread and process-based
designs of Chapter 4, and only minimally extend their capabilities so that results can be
stored and offline inference can be performed after the conclusion of a real-time SED
session. Since model training is not part of this work, the evaluation systems utilise a
publicly available model for sound classification. The basic idea behind the evaluation
procedure of an implemented system is simple: the output results of the real-time system
implementation is compared to its offline counterpart and then it is determined whether
the real-time and offline output results match. Figure 5.1 illustrates the whole evaluation
scheme, which has been primarily derived from the real-time and offline usage stages of
Figures 2.1 and 3.1. The steps are the following:

1. perform the real-time usage stage;

2. perform the counterpart offline usage stage after the real-time usage stage has
concluded;

3. evaluate whether the real-time and offline stages produced matching prediction re-
sults.

In other words, the scheme of Figure 5.1 executes two signal processing pipelines sep-
arately: the real-time and offline usage stages. These two stages share the same input
signal and are also expected to produce the same output if the pipelines have been cor-
rectly implemented.

In the original offline usage stage of Figure 2.1, an audio input signal was read from
a file into an array that shall hold the whole signal. The scheme of Figure 5.1 instead
skips the file reading part and starts processing input signal from a provided array di-
rectly. For this purpose, the real-time usage stage of Figure 5.1 accumulates the audio
samples involved in classifying a selected amount of segments into a long audio buffer
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Figure 5.1. The evaluation scheme of a real-time SED system against its counterpart
offline system. Real-time usage stage is executed first and it is then followed by the offline
usage stage. After obtaining prediction results from both stages, they can be validated
using a pre-determined evaluation procedure.

while simultaneously also performing real-time sound classification. After concluding the
real-time usage stage, all audio samples used in classifying the selected segments are
hold in the long audio buffer and the contents can be passed on to the offline usage stage
as an input array. If the array that was passed on to the offline usage stage is free of any
distortions, delays or samples drops and the offline classification behaves the same way
as in the real-time usage stage and uses the same model, prediction results identical to
the real-time usage stage are to be expected.

Performance Measure

The third step in the scheme of Figure 5.1 evaluates whether prediction results produced
by the real-time usage stage perfectly match their offline counterparts. A performance
measure applicable for classification problems will be utilised to verify this, since this
work is an application of sound classification. In order to utilise any of the applicable
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performance measures, the prediction results of the real-time and offline usage stage
will be represented as ground truth target values and estimated target values. This work
treats the prediction results ytrue associated with the offline usage stage as the ground
truth, and correspondingly the prediction results yest of the real-time usage stage as their
estimated targets.

The chosen performance measure for evaluation is the confusion matrix

Mc ∈ Z≥0
Nclasses×Nclasses (5.1)

for a multi-class classification problem with Nclasses sound categories, and it can be com-
puted with the help of the ground truth ytrue and their estimated target values yest. Only
the main diagonal elements containing the class-wise true positive values in the confusion
matrix need to be involved in the evaluation, because the trace of the confusion matrix,
tr(Mc), represents the total number of true positive values [44, p. 871]. Therefore, when
the acquired total number of true positives tr(Mc) matches the number of outputted pre-
dictions, the evaluation results produced by the real-time and offline usage stages match
each other.

5.2 Pre-trained Model

The training stage has been completely excluded in the evaluation scheme of Figure 5.1
due to the public availability of pre-trained SED models, which consequently allows fully
focusing on developing the thread and process-based evaluation systems. Furthermore,
only some of the architectural details of the model are relevant in succeeding in this part of
the work, since the main objective is simply to evaluate the validity of the system designs.
That is, the focus is on presenting the mainly model details that contribute to successfully
utilising the model in the evaluation system implementations.

The publicly available model chosen for the evaluation system implementations is a multi-
class sound classification model called YAMNet [45], which is based on the MobileNet
V1 [46] depth-wise separable convolution architecture. [45] has trained YAMNet against
theAudio Set corpus [47] with TensorFlow, the model possesses approximately 3.7M
total parameters and it predicts Nclasses = 521 sound event classes. Table 5.1 shows a
summary of the YAMNet training parameters.

Feature extraction has been embedded into YAMNet such that the model first takes a raw
audio input

A ∈ IR1×Ninp (5.2)

as a TensorFlow input tensor (represented in vector space), and in a sequence of various
tensor operations transforms it into log mel spectrogram tensor output

B ∈ IRNstft×Nmel , (5.3)
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where Ninp is chosen as the number of audio input samples, Nstft is the number of
short-time Fourier transform (STFT) frames, and Nmel is the number of mel bands. Then,
the log mel spectrogram B is used as an input tensor for extracting Npatches quantity of
spectrogram patches

C ∈ IRNpatches×Nstft×Nmel . (5.4)

Now, C is used as a TensorFlow input tensor for the core YAMNet model that will output
prediction scores

D ∈ IRNpatches×Nclasses (5.5)

for Npatches amount of patches.

Table 5.1. YAMNet Training Parameters.

Parameter Value Symbol

Sample rate 16 kHz –

Spectrogram patch window length 0.96 s (15360 samples) Npatch_wlen

Spectrogram patch hop size 0.48 s (7680 samples) –

Analysis frame length 0.025 s (400 samples) –

Analysis frame hop size 0.010 s (160 samples) –

Number of Mel bands 64 Nmel

Mel filter bank lower frequency bound 125 Hz –

Mel filter bank upper frequency bound 7500 Hz –

Number of classes 521 Nclasses

A noteworthy consequence of embedding the features into the model is that separately
implementing feature extraction and feature buffering for the evaluation systems is not re-
quired. Instead, implementing frame-block buffering for the real-time evaluation systems
is already sufficient in order to use YAMNet.

It is not self-evident that outputting scores with YAMNet both in offline and real-time man-
ner produces exactly the same output scores based on an identical input, because both
workflows need to be carefully crafted to operate the input exactly the same way. First, in
order to make the experiments of this chapter easier to implement, frame-blocking of the
YAMNet spectrogram patches will be simplified such that they become non-overlapping.
Solving this for the offline usage stage is as simple as setting the spectrogram patch hop
size of Table 5.1 to 0.96 seconds, which the model will configured to utilise in this context.

It is somewhat trickier to perform the frame-blocking of spectrogram patches in real-time.
One needs to implement a suitable buffering scheme that updates a fixed-length segment
based on a block from the audio input stream. The minimum input length Nseg YAMNet
accepts is 0.975 seconds worth of samples instead of 0.96 seconds, because the start
index of the final STFT analysis frame begins at 0.95 and stops at 0.975 seconds – the
model basically expects zero-padding at the end of the signal. The real-time evaluation
system implementations utilise a zero-initialised audio input buffer that is two times the
duration of a 0.975 seconds fixed-length segment, because samples from both segments
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are needed for updating to the latest one. The portion of the data to be set as the latest
fixed-length segment overlaps by 0.015 seconds with end samples of the previous one in
order to preserve the (likely non-zero) "padded" samples after each update (except the
first time, the padded samples are in fact zeros). This treatment of adjacent fixed-length
segments relates to the discontinuity problem of Figure 4.2, and has been solved based
on it.

5.3 Evaluation Scheme with YAMNet

Since YAMNet model internally implements several operations belonging to the evaluation
scheme of Figure 5.1, it makes sense to simplify the scheme in order to more accurately
represent the YAMNet-specific evaluation procedure. Figure 5.2 illustrates the simplified
scheme.

Real-time Usage Stage
Audio input
stream

Prediction
results

YAMNet

Evaluation

Update new block/chunk
of data to the buffer

Fixed-length segment

Update new block/chunk
of data to the buffer

Ground truth
targets ytrue

Estimated targets y

Evaluation result

est

Fixed-length
segment buffer

Offline Usage Stage

Prediction
results

Weights

Long
audio
buffer

Long audio
buffer contents

s long_buf

YAMNet

tr(M )c

Figure 5.2. The simplified evaluation scheme of a real-time SED system against its
counterpart offline system demonstrating YAMNet as the sound classifier.

The main differences between Figure 5.2 and Figure 5.1 are that some processing steps
from the previous scheme have been integrated to YAMNet, and the audio buffer com-
ponent has been relabelled as the fixed-length segment buffer instead. The difference
between these buffers is merely their length, the fixed-length segment buffer correspond-
ing to Nseg amount of samples as indicated by Table 5.2.

There are three final details regarding Figure 5.2 that have not been discussed yet. The
first one being the total length Nlong_buf of the long audio buffer, which is defined as a
positive integer number multiple of block size Nblock that corresponds to the audio input
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Table 5.2. Evaluation System Audio Streaming Parameters.

Parameter Value Symbol

Audio input stream sample rate 16 kHz –

Audio input stream block size 0.975 s (15600 samples) Nblock

Fixed-length segment buffer length 1.95 s (31200 samples) Nbuf

Fixed-length segment length 0.975 s (15600 samples) Nseg

stream. That is,
Nlong_buf = z ·Nblock, (5.6)

where z ∈ Z>0 is the multiple number. It makes sense to define Nlong_buf in this manner,
because the long audio buffer is being repeatedly updated with blocks incoming from the
active audio input stream. Therefore, before executing an evaluation experiment using
one of the evaluation systems, the number of blocks to collect has to be pre-determined
(initialize z), so that the long audio buffer can be set to the correct length.

The second detail is simply about terminology. The models loaded by the sound classifier
have been relabelled as weights in Figure 5.2. In this work weights are simply thought to
better reflect the intended TensorFlow terminology.

Finally, the third detail defines the way the scores outputted by YAMNet are represented
as the estimated target vector yest based on the real-time output, or as the ground truth
target vector ytrue based on the offline output. The real-time instance of YAMNet outputs
a single probability score vector D ∈ IR1×Nclasses that is based on a given fixed-length
segment input A ∈ IR1×Nseg . Assume that z amount of fixed-length segments are col-
lected during the evaluation session, then there exists a tuple of scores (D1, . . . ,Dz) at
the end of the session. For each tuple item, class label index matching the highest score
is extracted, which corresponds to another tuple (arg max(D1), . . . , arg max(Dz)). This
will be represented as the YAMNet output score vector

yest =

⎡⎢⎢⎢⎢⎣
yest,1

...

yest,z

⎤⎥⎥⎥⎥⎦ , (5.7)

where each element correspond to the estimated target value with the highest score.

The offline evaluation procedure for acquiring ytrue is similar to the above except that
YAMNet is given the long audio buffer contents as input, which corresponds to A ∈
IR1×Nlong_buf . Consequently, YAMNet will output z scores D ∈ IRz×Nclasses and the function
arg max is applied to each row of D in order to obtain z quantity of highest score ground
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truth targets

ytrue =

⎡⎢⎢⎢⎢⎣
ytrue,1

...

ytrue,z

⎤⎥⎥⎥⎥⎦ . (5.8)

5.4 Setup

The evaluation setup consists a single laptop computer with 16 GB RAM and Intel Core
i7 8650U CPU. The computer is using Windows 10 operating system and the Python
development environment has been configured with Anaconda. The computer does not
possess a discrete GPU, so TensorFlow has been configured only to leverage the CPU.
Internal microphone of the computer is utilised as an input device for the real-time system
implementations.

5.5 Results

This section reports the evaluation results acquired using the thread and process-based
evaluation system implementations. The systems are executed using the computer setup
described in Section 5.4. The first experiment verifies the validity of the outputted obser-
vations for both system implementations in Section 5.5.1. The second experiment con-
ducts a statistical significance test that determines whether the process-based approach
performs computations faster compared to its thread-based counterpart.

5.5.1 Real-time System Output Validity Evaluation

The summary of results for the first experiment is shown in Table 5.3, where both sys-
tems have been configured to output exactly 2000 prediction labels. The third column of
Table 5.3 reports 2000 as the total number of true positives for both systems, so the im-
plementations are indeed capable of producing intended results based on the proposed
system designs of Chapter 4. Furthermore, neither of the systems demanded high CPU
loads from the evaluation setup computer, based on the fourth column of Table 5.3.

Table 5.3. Results of the real-time evaluation system output validity tests.

Sample ID System True Positives
tr(Mc)

System CPU
Load-% (mean ±

std.)

Segment
Inference Time
Duration (mean

± std.)

1 Thread-based 2000 6.9 ± 4.6% 49.9 ± 17.6 ms

2 Process-based 2000 16.8 ± 5.1% 39.6 ± 9.2 ms

It would be challenging to visualize the samples of Table 5.3 by utilising full confusion
matrix Mc due to the high number of sound categories Nc. Instead, the non-zero main
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diagonal elements of a matrix Mc will be displayed on a barplot – that is, counts of obser-
vations for each sound category in a sample. The barplots a) and b) in Figure 5.3 illustrate
the observed categories of sounds for the samples of Table 5.3. Significant amount of
silence was observed in both samples, and also a moderate amounts of speech, key-
board typing and music. The presence of other observed sound categories is neligible as
indicated by the indistinguishable bar heights.
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Thread-based System: 2000 Observed Sound Events with YAMNet

(a) Barplot corresponding to the thread-based system (sample id. 1)
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Figure 5.3. Barplot representations of the samples of Table 5.3
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The fifth column in Table 5.3 reports the mean and standard deviation based on inference
time durations of 2000 fixed-length segments. Each duration associated with a fixed-
length segment is the computed time difference between the segment onset time, and
the time of outputting the prediction. The times are estimated by invoking time.time()

Python routine exactly as described in Sections 4.1.2, 4.1.3 and 4.1.4.

5.5.2 Estimating Inference Speed

Comparing the CPU loads between the samples of Table 5.3 suggests a possibility that
the process-based system could have an increased access to the CPU compared to its
thread-based counterpart, since the average CPU load is over two times higher com-
pared to the sample of the thread-based system. This could also happen due to changes
in external circumstances, e.g. the baseline CPU load of the OS being increased by other
running processes. Therefore, CPU load is not a reliable way to compare the computa-
tional performance of the system implementations. Instead, a more reliable conclusion
regarding the inference speeds can be drawn based on the estimated segment inference
time durations reported in Table 5.3.

In order to determine that which one of the two evaluation system approaches performs
model inferencing quicker using the described setup of Section 5.4, a simple hypothesis
test will be performed. The two inference time duration samples of Table 5.3 are as-
sumed independent of each other, one-tailed Welch’s t-test is used as the test statistic
with (1999 − 1) + (1999 − 1) = 3998 degrees of freedom, signifigance level is α = 0.05,
and the following hypothesis is formulated:

H0: µ1 = µ2

Ha: µ1 > µ2

The null hypothesis H0 states that there is no significant difference between the means
of the two segment inference time duration samples of size 2000, and the alternative
hypothesis Ha instead states that the mean of the thread-based system inference time
duration sample µ1 is greater compared to the process-based system sample with mean
µ2. The test statistic stat and corresponding p-value pval is computed using ttest_ind

function from the scipy.stats package as below:
>>> print(f"Thread -based sample mean={np.mean(sample1)}, std={np.std(sample1)}, size={len(sample1 )}")
Thread -based sample mean =0.04989682197570801 , std =0.017595910833827832 , size =2000
>>> print(f"Thread -based sample mean={np.mean(sample2)}, std={np.std(sample2)}, size={len(sample2 )}")
Thread -based sample mean =0.03955512678623199 , std =0.00921307831015021 , size =2000
>>> ttest_ind(sample1 , sample2 , axis=0, equal_var=False)
Ttest_indResult(statistic =23.279644200457305 , pvalue =2.176572983366366e -110)

Based on the above analysis, the null hypothesis H0 is rejected due to pval/2 < α. Con-
sequently, the average segment inference time µ1 is greater compared to the average µ2,
with 95% certainty. In conclusion, circumstances exist, where the process-based evalua-
tion system implementation achieves overall lower inference times over its counterpart.
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6 CONCLUSION

In this work, two Python real-time SED system prototypes based on slightly different ap-
proaches were designed and implemented. In both cases, the implementations of the
prototypes succeeded in transforming the offline system into its online counterpart that
also allows displaying live prediction results through a Qt GUI visualizer. Both of these
prototypes can be considered as being potential implementation approaches, but exper-
iments conducted in Section 5.5.2 suggest that the process-based approach performs
inference faster compared to the thread-based approach. However, this conclusion about
the inference speed can be generalised only for the evaluation setup of Section 5.4 and
with the system implementations of this work.

A non-technical way to measure the success of the implemented prototypes is the ca-
pability to design, implement and deliver them on schedule, since research projects are
fast-paced. There was no previous experience in transforming off-line SED system into
its real-time counterpart, so initially studying the relevant literature was required. Further-
more, it was learned that sometimes refactoring the provided feature extraction and clas-
sifier implementations can take unexpected amount of project time. In particular, when
models are being updated very frequently or new machine learning libraries are being
used. The worst case scenario is that potentially all of the provided off-line SED system
Python code is undocumented and has to be fully refactored in order to be used for the
real-time counterpart. Fortunately, the worst-case scenario did not occur and the project
time spent for refactoring remained acceptable. At one point, the whole direction of the
research actually changed, which somewhat altered the real-time system requirements.
Despite this unexpected development, the system was still delivered on due time.

It was not initially clear how well Python scales up to the task of prototyping real-time
SED systems. This work ascertains that it is possible, and even viable, to implement
such systems with Python. As a consequence, estimating the overall difficulty level and
choosing the right implementation approaches become clear.

For future work, at least more comprehensive evaluation should be performed, e.g. inves-
tigating the validity of the inputted raw audio of the fixed-length segments before offline
evaluation. It should be also illustrated how to utilise the Event object from multiprocess

ing and threading packages for waiting a condition to be triggered within another thread
or process, which then permits the thread in question to continue execution. In this work,
this is useful when waiting for e.g. the GUI or model to become fully initialised before
starting the audio stream.
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