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Abstract 

Machine Learning and Signal Processing have myriad applications in healthcare from 

automating the administrative tasks to speeding up medical diagnosis and drug discov-

ery. This domain brings computer and medical sciences in a single thread, which can 

pull together a massive amount of techniques to improve the efficiency and cost of 

healthcare in the sector. In this interdisciplinary field, Machine Learning solutions are 

needed to be designed explicitly for each task. Thus, the developed solutions in this area 

must be more prudent about compliance compared to other domains. It is crucial to know 

how the clinical data are collected or for what purposes the data are gathered to deliver 

reliable solutions. 

This study focuses on two primary objectives. The first objective is to propose a novel 

set of nonlinear descriptors for biosignals using nonlinear dynamics. The second objec-

tive is to develop feature extraction and classification schemes to help medical experts 

improve the diagnosis of prevalent medical conditions. 

The first contribution of the thesis is to introduce a novel set of nonlinear descriptors for 

capturing the dynamic signature of time series. The proposed features are inspired by 

the Poincaré section and nullclines concepts in nonlinear dynamics. The discriminative 

power of the proposed features is evaluated in the epileptic seizure detection task. For 

this purpose, a two-layer classification approach is developed to detect seizure events 

using multichannel electroencephalogram signals. The extensive comparative analysis 

shows the superiority of the proposed framework over other state-of-the-art methods, 

although further research is needed for reducing the high false alarm rate.  

The second contribution is to develop three novel feature extraction and classification 

schemes to tackle clinically relevant conditions. These medical applications encompass 

the identification of heart anomalies using heart sounds, automatic classification of atrial 

fibrillation using hand-held electrocardiogram devices, and sepsis prediction from 6 to 12 

hours before clinical recognition. The experimental results show the feasibility of these 

assistive diagnostic tools. The developed solutions are assessed against a variety of 

solutions proposed by several teams from academia and industry and ranked among the 

top three methods. 

The proposed feature extraction and classification techniques are stand-alone contribu-

tions to the field. The proposed nonlinear dynamics techniques can be used in a variety 

of domains due to their generic nature. Moreover, the developed automatic classification 

and predictive models in this thesis showed significant improvement in the identification 

of challenging clinical events. According to the conducted evaluation analysis, the pro-



posed methods exhibit relatively robust performance over the collected data across dif-

ferent institutions. We conclude that Machine Learning assistive diagnostic models de-

signed with sufficient care can provide viable help for expert clinicians. 
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The unprecedented advancement rate of the Machine Learning (ML) era has trans-

formed the world of healthcare. The clinical outcomes are getting more effective and 

accurate when they are empowered by a combination of experts and machine-powered 

solutions. A wide variety of ML solutions have been successfully applied in the healthcare 

industry, from the prediction and assistive diagnosis of different medical conditions to 

lifestyle and behavioral modifications. One of the top applications of these models in 

healthcare is medical assistive diagnosis. This can include anything from identifying neu-

rological diseases and cardiovascular anomalies to the early detection of cancers.  

In medical diagnosis, physicians review the symptoms and medical history of an individ-

ual and prescribe several tests. These tests collect measurable properties from biological 

systems and organs to reflect their electrophysiological activities, mechanical functions, 

or biochemical processes. These measurements facilitate the quantitative assessment 

and monitoring of the physiological function. However, interpreting biosignals and clinical 

data is a challenging task for human experts. For instance, sometimes the clinical symp-

toms do not have a clear cause, or the clinical manifestations suggest multiple distinct 

conditions. Additionally, the medical conditions can evolve within or between individuals, 

which causes a profound variability in the characteristics of physiological measurements. 

The other challenge that is often overlooked is information overload. With the rise in the 

amount of clinical information and long-term measurements, often relevant and credible 

data are not considered. These challenges can lead to misdiagnosis or delayed diagno-

sis. Moreover, these complexities can cause interobserver variation, which refers to dis-

agreements between experts in identifying a medical event. 

All these challenges motivate the research on the deployment of practical ML models, 

which can adequately help experts interpret clinical data and detect certain health events. 

1 Introduction 
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These ML solutions are equipped with Signal Processing and ML techniques, which are 

explicitly designed for the medical problems they aim to solve. The primary purpose of 

these algorithms is to optimize the performance of the assistive diagnosis tools (referred 

therein as diagnosis tools for short) and to be used as a reliable recommendation system 

rather than replacing physicians in the diagnosis process. Such solutions accelerate the 

diagnosis procedure and reduce human error. Although several models have been de-

veloped in the medical diagnostic domain, there is much room for improvement. 

This thesis aims to tackle two major objectives. The first objective is to propose a new 

set of dynamical signatures for electroencephalogram (EEG) signals. The fundamental 

assumption of nonlinear time series analysis is that the physical measurement is gener-

ated by a nonlinear deterministic process. This is not a realistic assumption for complex 

multicellular systems, such as the brain. It is too ideal to model the function of biological 

systems with a set of differential equations. However, in many biological systems, the 

footprint of deterministic nonlinear behaviors is evident [1] [2] [3] [4] [5]. 

Nonlinear time series techniques model the behavior of a system using conceptually 

deterministic states. It uses the time series to reconstruct a multi-dimensional represen-

tation of the actual system states. Such reconstruction is performed by assuming that 

the physical measurement conveys the essential dynamical information of the original 

system. Nonlinear time series analysis offers revealing properties that are hidden from 

the perspective of methods such as Fourier or wavelet transform. 

One example of such shortcomings in frequency analysis is the interpretation of noise 

using the ubiquitous power spectral density approach. A (purely) stochastic process has 

a decaying autocorrelation since the samples with higher time-lag are getting less corre-

lated. This decaying rate depends on the amount of the signal stochasticity. For instance, 

the white noise characteristics in power spectral density (Fourier transform of autocorre-

lation function) emerge as an almost uniformly distributed pattern over the entire fre-

quency band, i.e., flat spectrum. However, time series generated from a purely determin-

istic chaotic system can have a similar property. Let’s consider white noise and a signal 

generated by a deterministic map (logistic map - see Section 2) with almost the same 

power. In Figure 1.1, the time series with their power spectrums are illustrated (Figure 

1.1.a, b). 

As can be seen, both signals have the same characteristics in power spectral density 

(except in the zero frequency, i.e., DC component). Despite these similarities, the two 

signals are generated from entirely different mechanisms. The reconstructed phase 

spaces (see section 2.3) of the time series are provided in Figure 1.1.c to visualize the 

underlying dynamics of the signals. This representation unveils information that cannot 
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be offered by frequency analysis. Thus, time series analysis should be carried out by 

choosing a proper method; otherwise, it can lead to invalid conclusions. 

Therefore, nonlinear methods can provide discriminative features of biosignals and ap-

pear equally appropriate (compared to stochastic processes) for biosignal analysis [6]. 

Besides, due to the nonlinearity involved in all the known biological systems, nonlinear 

dynamics is a relevant field to be considered when studying biosignals. In this thesis, we 

aim to answer two main research questions: a) can we develop a set of discriminative 

nonlinear descriptors for Electroencephalogram (EEG) signals? and b) can we build a 

framework for epileptic seizure detection based on these nonlinear features? The pro-

posed features are then compared with other established methods in this domain. It has 

been shown that features inspired by nonlinear dynamics achieved state-of-the-art per-

formance compared to various features in frequency and time-frequency domains. 

 

Figure 1.1 Sample illustration of nonlinear time series analysis application. a) White noise 
and logistic map signal (𝑥𝑛+1 = 4𝑥𝑛(1 − 𝑥𝑛), with 𝑥0 = 0.1). b) Welch’s power spectral 

density, c) reconstructed phase space with 𝜏 = 5. 
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The second objective is to develop Signal Processing and ML techniques for three chal-

lenging diagnosis-focused applications. In this thesis, we aim to answer the following 

research questions: which classification approaches are suitable for (a) detecting heart 

anomalies using short-term phonocardiogram (PCG) signals, (b) detecting atrial fibrilla-

tion using one-lead electrocardiogram (ECG) signals, and (c) predicting sepsis for inten-

sive care unit patients early enough? We propose to utilize a combination of nonlinear, 

spectral, and other well-established methods to tackle these applications. The primary 

motivations for tackling the medical conditions are the following. These clinical applica-

tions have not been well-resolved due to several challenges, such as limited availability 

of datasets, noise, artifacts, and lack of standard regulations. Additionally, these medical 

conditions have become attractive in the interdisciplinary field of biosignal analysis due 

to their prevalence in the global population. Furthermore, ML models in healthcare suffer 

from the lack of evaluations with the datasets collected by different institutions. 

To facilitate finding solutions to these problems, the worldwide forum, Physionet, organ-

izes annual scientific competitions in which the world’s largest open-access medical da-

tasets are provided. Physionet serves as a global platform where interested researchers 

are able to test their solutions across the collected data from various medical environ-

ments and conduct a fair comparative evaluation against the other developed models. 

The ML models proposed in this thesis are ranked in the top three solutions among a 

large set of international teams in the Physionet competitions. 

1.1 Objectives and Thesis Overview 

In this thesis, our focus is particularly drawn on investigating and proposing advanced 

biosignal and clinical data analysis to improve the classification performance of certain 

health events. The specific objectives of this thesis are: 

▪ Introducing a new set of nonlinear descriptors for Electroencephalogram (EEG) 

signals and proposing a patient-specific seizure detection framework for multi-

channel EEG recordings. 

▪ Developing a feature extraction and classification scheme for the detection of 

heart anomalies using phonocardiogram (PCG) signals and their quality assess-

ment. 

▪ Investigating a comprehensive set of features and developing a classification 

scheme for atrial fibrillation detection using hand-held one-lead Electrocardio-

gram (ECG) signals. 
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▪ Proposing a novel set of features to model the missingness of clinical data and 

developing a predictive model for early prediction of sepsis in intensive care units. 

The thesis is organized as follows: In Chapter 2, the fundamental and critical concepts 

of nonlinear time series analysis are presented. The chapter starts with the introduction 

of nonlinear dynamics in time series analysis (Section 2.1), with a special focus on the 

necessary steps to the nonlinear dynamics, i.e., phase space (Section 2.2), phase space 

reconstruction (Section 2.3), Poincaré section (Section 2.4), and directivity curve (Sec-

tion 2.5). In Chapter 3, a brief overview of the applied supervised classification models 

is presented. These classifiers consist of naïve Bayes, linear, and quadratic discriminant 

analysis (Section 3.1), random forest (Section 3.2), Gradient Boosting (Section 3.3), and 

Artificial Neural Networks (Section 3.4). Chapter 4 summarizes the five publications in-

cluded in this thesis. This section presents the novel solutions and their state-of-the-art 

results for the aforementioned research objectives. Due to the variety of the covered 

applications, the proposed feature engineering methods and classification developments 

via their experimental results and benchmark datasets are explained separately for each 

application. First, the proposed nonlinear features for EEG signals and their applications 

on epileptic seizure detection are described in Section 4.2. Then, the developed feature 

extraction and classification schemes for the detection of heart anomalies, atrial fibrilla-

tion, and early prediction of sepsis are summarized in Sections 4.3.1, 4.3.2, and 4.3.3, 

respectively. Finally, the general and specific conclusive remarks are provided in the 

conclusion Chapter. 

1.2 Author’s Contributions  

The five publications covered in this thesis aim to answer to the above research ques-

tions and meet the set objectives. The author’s contribution to the field of biosignal anal-

ysis are summarized below. 

• Proposing a novel set of Electroencephalogram (EEG) descriptors based on 

nonlinear dynamics (publications [P1] and [P2]). 

• Proposing a classification framework for epileptic seizure detection (publication 

[P1]). 

• Classification of cardiac anomalies using heart sounds (publication [P3]). 

• Developing a classification method and investigating a comprehensive set of 

discriminative features for atrial fibrillation detection (publication [P4]). 

• Proposing a new set of features for missing samples in clinical data (publication 

[P5]). 
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• Developing a predictive model for early sepsis prediction for intensive care unit 

patients (publication [P5]). 

• Implementing the methods proposed in publications [P3], [P4], [P5], and making 

them available as open-source software. 
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Time series analysis, in its broadest form, infers patterns and characteristics that can 

improve the prediction of an event. Stochastic and deterministic models are the two 

standard approaches for time series analysis. Stochastic models assign probabilities to 

the state of the system based on the random variable at the current time and its earlier 

values (i.e., conditional probability distribution). On the contrary, in the deterministic ap-

proach, the outputs of the system can be described precisely using the input and a set 

of equations. Thus, randomness has no effects on the future behavior of the system.  

However, uncertainty can be generated by a purely deterministic system. In such cases, 

the irregularities in the behavior of the system are explained by Chaos theory [7]. Chaotic 

solutions can only be generated from nonlinear difference (or differential) equations, 

even though they can be relatively simple. The Logistic difference equation or logistic 

map is a classical demonstration of such cases [8]. The logistic map is a simple popula-

tion model and is given by 

𝑥𝑛+1 = 𝑟𝑥𝑛(1 − 𝑥𝑛),                (2.1) 

where 𝑥 ∈ [0,1] is the population size in percentage, and 𝑟 is a driving parameter. The 

term (1 − 𝑥𝑛) acts as a mathematical damper. If 𝑟 > 1, it drives the population 𝑥 higher 

and makes (1 − 𝑥𝑛) smaller. The system growth suppresses further population growth, 

and finally stabilizes the system to reach a state of equilibrium. To visualize the strange 

behavior of the logistic map, we simulate the equation for 𝑟 from 0 to 4 and plot its cor-

responding 𝑥 values (see Figure 2.1). 

 

2 Nonlinear Dynamics and Time Series Analysis 
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Figure 2.1 Bifurcation diagram of the logistic map 

As can be seen in Figure 2.1, for 0 < 𝑟 < 1, 𝑥 finally reaches 0 (i.e., the population dies) 

independent of the initial value. At 𝑟 = 1, there is a significant change in the behavior of 

the solution (bifurcation). When 1 < 𝑟 < 3, the population eventually approaches 1 −
1

𝑟
 

and settles into a stable population. Another dominant behavior happens when 3 < 𝑟 <

3.44, where 𝑥 bounces between two solutions (periodic orbit). As 𝑟 increases, 𝑟 > 3.44, 

the solution oscillates between four values. The periodic doubling continues until 𝑟 

reaches around 3.569, which is the onset of a chaotic behavior. As can be seen, a small 

change in the initial values leads to erratically different 𝑥 values through time. This shows 

that increasing 𝑟 makes the stabilization more difficult and eventually causes the emer-

gence of irregular behaviors while the system is still purely deterministic. It is interesting 

how this rich dynamical response is generated only from the governing equation and not 

from variations caused by the environment, such as noise. 

The main difference between such irregularities and randomness can be explained by 

their predictability. Random behaviors are unpredictable and cannot be reproduced. On 

the contrary, the mentioned irregularities are deterministic and can be regenerated if the 

identical initial conditions are known. It needs to be mentioned that the sensitivity on 

initial conditions exists in linear systems. However, in linear systems, this sensitivity can 

only drive the solution to infinity. This is contrary to deterministic chaos, where the solu-

tion trajectories need to be bounded (stretching and folding of the trajectories, i.e., non-

linearity) [7]. In addition to the conditions such as bounded solution, determinism, and 

sensitive dependence on initial conditions, chaotic solutions should have aperiodic time-

asymptotic behavior [7]. This implies that the trajectories of the solution do not sink to 
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equilibriums, e.g., fixed-point or periodic orbits, such as the logistic map behavior for 𝑟 >

3.569.  

Nonlinear dynamics covers not only chaotic behaviors but also studies numerous types 

of behaviors, such as periodicity and aperiodicity. Therefore, it is a relevant field to con-

sider when studying biomedical signals. This is motivated by the fact that all known bio-

logical systems are nonlinear. Nonlinear dynamics introduces an alternative perspective 

and set of tools to analyze physical measurements and time series. As an example, the 

transition between normal heartbeats and ventricular tachycardia in ECG signals can be 

described by bifurcation theory [9]. Another example is the changeover from a non-sei-

zure to a seizure state in Electroencephalogram (EEG) of an epileptic brain which can 

be characterized using nonlinear dynamics [10].   

It is worth mentioning that irregularities in time series cannot be considered deterministic 

only by a casual inspection. Such behavior may be due to the superposition of different 

types of noise into the signal. Thus, surrogating data [11] [12] is needed to test the de-

terministic and stochastic characteristics of a time series. In this thesis, we do not attempt 

to prove the existence of chaos in biomedical signals. Moreover, we do not claim that 

deterministic approaches are preferred over stochastic ones. Here we use nonlinear dy-

namics as a tool to capture salient features of medical events and use them to boost the 

accuracy of our regression and predictive models. This chapter covers a brief overview 

of nonlinear dynamics and its fundamental techniques, which are the basis of our main 

contributions. 

2.1 Nonlinear Dynamics and Differential Equations 

The nonlinear dynamics studies the evolution of nonlinear systems through time by an 

autonomous differential equation of the form 

𝑑𝑋

𝑑𝑡
= 𝑋̇ = 𝑓(𝑋),                        (2.2) 

where 𝑓 is a nonlinear function. Studying the properties of a nonlinear system is equiva-

lent to solving the differential equations described in Eq. 2.2. Here, we are looking for a 

trajectory 𝑋(𝑡) whose derivative, 𝑋̇, is 𝑓(𝑋). An interesting subset of the solution trajec-

tory 𝑋(𝑡) is named equilibrium or steady-state of the system. Equilibria are invariant un-

der the dynamical evolution of the system through time and can have different forms 

based on the system’s degree of freedom. The degree of freedom represents the number 
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of variables needed to explain the system dynamics. The equilibria of a system are de-

fined when the time derivatives of all variables are zero, 

𝑑𝑋

𝑑𝑡
= 𝑋̇ = 0.              (2.3) 

As expected, the complexity of the solution and equilibria can vary with respect to the 

degree of freedom. For example, one dimensional (first-order) systems can exhibit only 

two possible behaviors. The trajectory either goes to infinity, or it approaches a fixed 

point. Therefore, in one-dimensional systems, oscillation or periodic solutions do not ex-

ist. Equilibria are fundamental characteristics of a dynamical system not only because 

they provide salient features of the system but because they can be used to estimate the 

entire behavior of the system. In the following sections, we discuss these concepts in 

more detail. 

2.2 Phase Space 

Often, instead of a single function in Eq. 2.2, there is a system of equations where 𝑋 ∈

ℝ𝑛 is a vector. Such systems are represented as coupled ordinary differential equations, 

{
 
 

 
 
𝑋1̇ = 𝑓1(𝑋1, … , 𝑋𝑛)

 

𝑋2̇ = 𝑓2(𝑋1, … , 𝑋𝑛)
…

𝑋𝑛̇ = 𝑓2(𝑋1, … , 𝑋𝑛)
 

,                                         (2.4) 

where ℝ𝑛 is the phase space or state space of the system. The phase space can be 

described as a graphical representation of the system behavior that is formed by a set 

of trajectories with different initial points. Therefore, each point in the phase space is 

associated with variables of the system and describes the corresponding state. 

Phase space is a concept that connects symplectic geometry, the Hamiltonian formula-

tion in classical mechanics, and partial differential equations together. Hence, it plays a 

crucial role as a graphical tool to describe the system dynamics. Phase space is useful 

in many applications, e.g., when computing the integral of the right-hand side of Eq. 2.4 

is too complicated, and consequently finding the analytical solution is almost impossible 

[13]. 

Due to the determinism assumption, system behavior can be precisely determined by 

the phase space. This can be perceived as a result of the no-intersection theorem [14]. 
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The no-intersection theorem states that in a finite period, two distinct trajectories in the 

phase space cannot intersect, and a single trajectory cannot cross itself. In other words, 

this theorem emphasizes the fact that the future state of each trajectory can be deter-

mined only based on its current location in the phase space. To illustrate this, imagine a 

phase space in which two different trajectories have the same state (i.e., intersection). If 

the intersection point is considered as an initial point, then the same initial point follows 

two different evolutions in the future, which is a contradiction of determinism. This theo-

rem is useful for constructing the phase space as it constrains the evolution of trajectories 

(see section 2.3). 

The first step in creating the 𝑛-dimensional phase space is to find the equilibria of the 

given function 𝑓 by setting the time derivatives equal to 0. If the solution starts at the 

equilibrium, it stays at the same point. However, the critical question is that if the solution 

starts at another point in the phase space, whether the trajectory reaches the equilibrium 

(stable) or the equilibrium is repulsive (unstable). The way to find out the stability type is 

to examine the dynamics of the system in the vicinity of the equilibria, 𝑋∗, with a small 

deviation 𝜂 from 𝑋∗, 

𝑋̇  =  𝑓(𝑋∗ + 𝜂 ),               (2.5)  

where |𝜂| ≪ 1. Using Taylor’s formula in the neighborhood of 𝑋∗, 

𝑋̇  = 𝑓(𝑋) =  𝑓(𝑋∗ + 𝜂 ) =  𝑓(𝑋∗) + 𝜂𝑓̇(𝑋∗) +
𝜂2

2
𝑓̈(𝑋∗) + ⋯      (2.6) 

Based on the definition, the function at equilibria equals to 0, i.e.,  𝑓(𝑋∗) = 0. The term 

𝑓̇(𝑋∗) in Eq. 2.6 yields the slope of 𝑓 at 𝑋∗, which means that it is a constant number. As 

𝜂 is a small value the quadratic term of 
𝜂2

2
𝑓̈(𝑋∗) and the rest of the higher-order terms 

are neglected. Thus, this yields the linearization of 𝑋̇  = 𝑓(𝑋) at 𝑋∗. After linearization, 

the system is a linear differential equation, 

𝑑𝑋

𝑑𝑡
= 𝐴𝑋,      (2.7) 

where 𝐴 is the Jacobian matrix consisting of the partial derivative of 𝑓 in all directions of 

ℝ𝑛 at equilibria. The components of the Jacobian matrix are arranged as 

𝐴𝑖𝑗 = [
𝜕𝑓

𝜕𝑋1
  …   

𝜕𝑓

𝜕𝑋𝑛
].                (2.8) 
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For a linear autonomous first-order differential equation, the solution is in the form of 

𝑥(𝑡) =  𝑒𝜆𝑡𝜔. If the solution 𝑒𝜆𝑡𝜔 is placed into Eq. 2.7, then 𝜆𝑒𝜆𝑡𝜔 = 𝐴𝑒𝜆𝑡𝜔, which 

yields 𝜆𝜔 = 𝐴𝜔, where 𝜆 is the eigenvalue, and 𝜔 is the eigenvector. Thus, 

(𝐴 − 𝜆𝐼)𝜔 = 0 → det(𝐴 − 𝜆𝐼) = 0,  (2.9) 

where 𝐼 is the identity matrix. Then, the eigenvalues are calculated using the Jacobian 

determinant. Once the eigenvalues are known, then the type of their stability can be 

determined. For example, for a two-dimensional system, if the real part of the eigenval-

ues are negative (i.e., 𝜆1,2 < 0, or if 𝜆1,2 = 𝑎 ± 𝑖Ψ, 𝑎 < 0) then the solution 𝑥(𝑡) =  𝑒𝜆𝑡𝜔 

goes to zero, and the system is stable at the equilibria. If both eigenvalues are positive, 

then the equilibria are unstable. If the eigenvalues have opposite signs, then the equilib-

rium is a saddle point. Moreover, if the eigenvalues have imaginary parts, then the sys-

tem would have a spiral-shape trajectory in the phase space. Once the system equilibria 

and the corresponding eigenvalues and eigenvectors are found, the geometric shape of 

the trajectories in the phase space is estimated qualitatively. 

It is worth mentioning that there is an exception in Eq. 2.6. This linearization is valid only 

if the term 𝑓̇(𝑋∗) is not zero. If 𝑓̇(𝑋∗) = 0, then |𝜂𝑓̇(𝑋∗)| ≤ |
𝜂2

2
𝑓̈(𝑋∗)|. This states that the 

quadratic term cannot be neglected, and consequently, the linearization cannot be ap-

plied. If 𝑓̇(𝑋∗) = 0, then the equilibria can be stable, nonstable, or a saddle point. It 

should be noted that function 𝑓 is assumed to have a convergent Taylor series. It is con-

sidered that the solution to 𝑋̇ = 𝑓(𝑋) exists and is unique by assuming that 𝑓(𝑋) is con-

tinuously differentiable, i.e., 𝑓(𝑋) and its first derivate, 𝑓̇(𝑋), are both continuous. 

2.3 Phase Space Reconstruction 

Phase space is constructed based on the governing differential equation. However, in 

real systems, only physical measurements are available in the form of time series. By 

reconstructing the phase space from the measured time series, we are looking for some 

general characterizations of the system, which are independent of a specific trajectory 

[14]. In other words, the main question here is whether or not it is possible to have a 

mapping from the unknown (actual) phase space to an ℝ𝑚 using a time series such that 

ℝ𝑚 preserves the dynamic structure. 

To answer this question, we shall first describe an adequate topological mapping for the 

idea of structure-preserving. Such a mapping function should be injective (i.e., one-to-

one) and homomorphism (i.e., a continuous function with a continuous inverse function). 
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By using this type of mapping, the two spaces are topologically equivalent, and this is 

the essence of the embedding concept. The injective property of embedding is a neces-

sary constraint for determinism. Recall the non-intersection theorem discussed in Sec-

tion 2.2. The one-to-one property ensures that each distinct state of the original phase 

space is mapped to a unique point in the reconstructed phase space. 

Takens’ delay embedding theorem [15] provides a mathematical treatment for such a 

mapping. Takens proved that with a time-delayed version of a single measured time 

series, a 𝑑-dimensional space can be reconstructed that preserves the main dynamic 

properties of the original phase space. This theorem is based on the Whitney-Embedding 

theorem [16], which provides a connection between phase space and the measurements. 

The Whitney-Embedding theorem states that every Hausdorff, smooth 𝑑-manifold can 

be smoothly embedded into a 2𝑑 + 1 Euclidean space, ℝ2𝑑+1. 

Suppose that the physical measurement (or time series) is generated by a smooth time 

map 𝛷, which is diffeomorphism on the smooth manifold ℳ [17]. Additionally, suppose 

there is a smooth observation function h: ℳ → ℝ, which maps the actual flow of the dy-

namic system 𝛷 to our one-dimensional measurement (i.e., time series). The delay em-

bedding theorem states that there is a 2𝑑 + 1-fold map 𝐻[ 𝛷, h, 𝜏 ]:ℳ → ℝ2𝑑+1, that is 

immersion. Immersion means that both 𝐻 and 𝐻−1 (its inverse) are differentiable, and 

both 𝐻 and its derivative are injective everywhere. The proof is provided in [18]. This 

means that 𝐻 is an embedding of ℳ in ℝ2𝑑+1. The map 𝐻 is defined as 

𝓍 → (ℎ(𝓍(𝑡𝑛)), ℎ (Φ(𝓍(𝑡𝑛))) , ℎ (Φ
2(𝓍(𝑡𝑛))) , … , ℎ (Φ

𝑚−1(𝓍(𝑡𝑛)))),        (2.10) 

where 𝓍(𝑡𝑛) denotes the actual state in manifold ℳ at time 𝑡𝑛. Since it is assumed that 

a deterministic system rules the underlying dynamic, then 

𝛷(𝑥(𝑡𝑛)) = 𝓍(𝑡𝑛−𝜏) → 𝛷(𝓍(𝑡𝑛−𝜏)) = 𝓍(𝑡𝑛−2𝜏) 

→ 𝛷(𝓍(𝑡𝑛−2𝜏)) = 𝛷 (𝛷(𝓍(𝑡𝑛))) =  𝛷
2(𝓍(𝑡𝑛)).          (2.11) 

Therefore, 

𝓍(𝑡𝑛−(𝑚−1)𝜏) =  𝛷
𝑚−1(𝓍(𝑡𝑛)),   (2.12) 

where 𝜏 is the time-lag, and 𝑚 is the embedding dimension. Thus, Eq. 2.10 can be writ-

ten as 

𝓍 → (ℎ(𝓍(𝑡𝑛)), ℎ(𝓍(𝑡𝑛−𝜏)),… , ℎ (𝓍(𝑡𝑛−(𝑚−2)𝜏)) , ℎ (𝓍(𝑡𝑛−(𝑚−1)𝜏))).    (2.13) 



28 

 

Often, the observation function ℎ is related to the time series 𝑥 as 

𝑥(𝑡𝑛) = ℎ(𝓍(𝑡𝑛)) +  𝜖(𝑡𝑛),   (2.14) 

where noise 𝜖 is assumed to be zero. 

Estimating the embedding dimension 𝑚 and the time lag 𝜏 are the main challenges of 

reconstruction. Although several methods are proposed to estimate these two parame-

ters, they depend strongly on the application and the time series. The main approaches 

for finding the minimum embedding dimension 𝑚 are using false nearest neighbors (FNN) 

[19] and correlation dimension. The basic idea of FNN is an iterative search for the dis-

tance of states (points in the reconstructed phase space) in 𝑚 and 𝑚 + 1 dimensions. 

This process continues until the distance ratio of the two successive dimensions is not 

larger than a constant threshold. In other words, in this process, we are looking for actual 

neighbors that are not separating by adding a coordinate to the reconstructed phase 

space [20] [21]. As it is evident, there are some issues with this method, such as which 

neighbor or threshold should be chosen.  

In the correlation dimension method, we shall first introduce the definition of correlation 

sum 𝐶 as  

𝐶(𝓇) =  
1

𝑁(𝑁−1)
∑ 𝜃[𝓇 − |𝓍𝑖 − 𝓍𝑗|]
𝑁
𝑖,𝑗=1,𝑖≠𝑗 ,          (2.15) 

where 𝓇 is the radius of a neighborhood of points, 𝑁 is the number of points in the (re-

constructed) phase space, 𝜃 is Heaviside function, and |𝓍𝑖 − 𝓍𝑗| is the distance between 

two points in the 𝑑-dimensional phase space, 

|𝓍𝑖 − 𝓍𝑗| =  √∑ (𝓍𝑖+𝑘𝜏 − 𝓍𝑗+𝑘𝜏)
2𝑑−1

𝑘=0 .    (2.16) 

The correlation sum shows the number of points located in the region with radius 𝓇. If 𝓇 

is too small, it means that no pair of points can be found inside the neighbor of 𝓇 and 

𝐶(𝓇) = 0. On the contrary, if 𝓇 is too large, then all possible points can be found in the 

region, and therefore 𝐶 = 1. Hence, 𝐶 varies between 0 and 1. The correlation dimen-

sion, 𝐷𝑐, is then defined as the rate of change of 𝐶 from 0 to 1, 

𝐷𝑐 = lim
𝑟→0

log𝐶(𝓇)

log𝓇
.                   (2.17) 
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For calculating the minimum embedding dimension 𝑚, first 𝐷𝑐 is calculated for different 

𝑑 = 1, 2, 3, …. until 𝐷𝑐  becomes independent of 𝑑. Then, the corresponding 𝑑 (or satu-

rated 𝑑) is chosen as the embedding dimension 𝑚. The idea behind the correlation di-

mension is that the calculated saturated 𝑑 is higher than twice the real dimension of the 

original phase space [16]. 

The other needed parameter for phase space reconstruction is 𝜏. For time lag 𝜏 different 

methods are proposed to find the statistical dependence between successive lagged 

time series. For this purpose, the most straightforward approach is using the autocorre-

lation function. The delay, where the autocorrelation function has zero for the first time, 

is chosen as 𝜏. The main idea is to find the delay such that the linear correlation between 

a point and a point 𝜏 ahead is zero. Another approach is using mutual information. In this 

approach, the delay corresponds to the first minimum of the mutual information is used 

as 𝜏. The main distinction between the two approaches is that the latter one considers 

the nonlinear dependencies as well. 

Although the idea of reconstructing the phase space is powerful and useful in many dis-

ciplines, there are some practical limitations. The variables of a nonlinear system inter-

twine with each other and cannot be separated. In phase space reconstruction, using 

this characteristic of nonlinear systems, we assume that the physical measurement con-

tains all the information of the underlying dynamic. However, in practice, it cannot be 

guaranteed whether the observed time series is an accurate representation of the dy-

namics. Moreover, it is assumed that the measured signal is noiseless, while in practical 

measurements, the presence of noise is unavoidable. Besides, the numerical algorithms 

used to find the proper embedding dimension and time lag involve with several approxi-

mations. 

2.4 Poincaré Section 

Poincaré section provides the possibility to encode the dynamics of the system by focus-

ing on a particular section of the phase space rather than observing the whole trajectory 

[14]. Poincaré section is a hyperplane that traverses the trajectory of the solution and 

cuts through it in the phase space. Depending on the evolution of the system, the trajec-

tory intersects with the hyperplane in different locations. Figure 2.2 shows an example 

of a Poincaré section and Rössler attractor. The function that rules the relation between 

these successive intersections is called Poincaré map, 𝑃, and is defined as, 

𝓍𝑘+1 = 𝑃(𝓍𝑘),                                                 (2.18) 
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where 𝑘 denotes the 𝑘th intersection on the hyperplane. The 𝑑-dimensional phase space 

is replaced with a 𝑑 − 1-order map using this method. Besides reducing the problem by 

a dimension, this technique offers other advantages as well.  

 

Figure 2.2 An example of a Poincaré section in Rössler attractor [22] 

The patterns of the intersection points can reveal information about the periodicity of the 

trajectory. Let us imagine a periodic orbit in the phase space. Based on the Poincaré-

Bendixon theorem [23], if a trajectory enters and does not exit a closed and bounded 

region of the phase space where no equilibrium exists in the region, then the trajectory 

must approach a periodic orbit. Such trajectories in the phase space intersect with the 

Poincaré section at the same point at different times. Thus, one can investigate the pe-

riodicity of a periodic orbit in the original system by only looking at the intersection points. 

For a closed orbit, 𝓍∗ = 𝑃(𝓍∗), which is the definition of equilibrium of the Poincaré map. 

Additionally, the Poincaré section can be used for stability analysis. The basic idea of 

stability analysis of an orbit is to answer the question of how a trajectory evolves if a 

perturbation is added to the initial condition. In other words, we are investigating the 

sensitivity of the original trajectory to the introduced perturbation. Consider the first-order 

differential equation 

𝑋̇  = 𝒜(𝑡)𝑋.   (2.19) 

Suppose that 𝒜(𝑡), a time-varying matrix ∈ ℝ𝑛×𝑛, is periodic with a period 𝑇0. Then mon-

odromy matrix is defined as 𝑥(𝑇0), where 𝑥(𝑡) (with 𝑥(0) = 𝐼) is the solution of Eq. 2.19. 

The eigenvalues of the monodromy matrix are known as Floquet exponents. If each of 
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the Floquet exponents has a modulus less than one, then the origin is exponentially 

stable. Similarly, if at least one exponent is greater than one, then the system is unstable. 

Similarly, in the Poincaré section, the evolution of a periodic orbit is investigated in the 

vicinity of the equilibrium 𝑠∗, 

𝑠2 − 𝑠
∗ = 𝑃(𝑠1) − 𝑃(𝑠

∗),              (2.20) 

where 𝑠 is an intersection point on the Poincaré section. Using Taylor series in the neigh-

borhood of 𝑠∗ (i.e., 𝑠2), 

𝑠2 = 𝑃(𝑠1) = 𝑃(𝑠∗) + 𝑃̇(𝑠∗)(𝑠1 − 𝑠
∗) + ⋯        (2.21) 

Thus, Eq. 2.20 can be rewritten as 

𝑠2 − 𝑠
∗ = 𝑃(𝑠∗) + 𝑃̇(𝑠∗)(𝑠1 − 𝑠

∗) +⋯− 𝑃(𝑠∗)  (2.22) 

where 𝑃̇(𝑠∗) is called the Floquet multiplier. If 𝑑𝑖 = 𝑠𝑖 − 𝑠
∗, and 𝔐 = 𝑃̇(𝑠∗), then 

𝑑𝑖+1 = 𝔐
𝑖𝑑𝑖.         (2.23) 

This shows that if 𝔐 < 1, then 𝑑𝑖+1 < 𝑑𝑖, which means that the intersection points are 

getting close to the equilibrium 𝑠∗, and therefore, it is a stable periodic orbit. Likewise, if 

𝔐 > 1, then the periodic orbit is repelling and unstable [14].  

It is worth mentioning that there are some limitations to this method. First, finding the 

Poincaré map may be difficult or impossible in real time series. Second, the Poincaré 

map depends strongly on the hyperplane as different cross-sections with the phase 

space can result in different intersection points [24]. Therefore, for example, a periodic 

orbit is going to be missed entirely. Despite the mentioned limitations, several studies 

[25] [26] [27] [28] [29] have successfully applied techniques that are inspired by the Poin-

caré section and achieved reliable results.  

2.5 Directivity Curves 

For a two-dimensional differential equation, directivity curve [30] or nullcline is defined 

as a set of points in the phase space where they satisfy at least one of the following 

conditions 
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  {

𝑑𝑋1

𝑑𝑡
= 0

𝑑𝑋2

𝑑𝑡
= 0

.                  (2.24) 

Geometrically, it means that 𝑋1- or 𝑋2-nullclines are curves in the phase space where 

they do not evolve along the 𝑋1- or 𝑋2-coordinate, respectively. The intersection of the 

nullclines represents the equilibrium of the system, i.e., 
𝑑𝑋1

𝑑𝑡
= 

𝑑𝑋2

𝑑𝑡
= 0. These curves pro-

vide boundaries in the phase space that divide up the phase space into different regions. 

For instance, 𝑋1-nullclines (
𝑑𝑋1

𝑑𝑡
= 0) divide the phase space into regions where 

𝑑𝑋1

𝑑𝑡
 is ei-

ther positive or negative. Therefore, if we cross over the 𝑋1-nullclines from one region to 

another, the direction of 
𝑑𝑋1

𝑑𝑡
 will change while the direction of 

𝑑𝑋2

𝑑𝑡
 remains unaffected. By 

estimating the directions of the vector fields in these regions, one can visualize and 

sketch the motion of the trajectory without solving the differential equations. The defini-

tion can also be applied to higher dimensions. 

Nullclines are useful for sketching the phase space and analyze the behavior of trajec-

tories qualitatively. However, to the best of our knowledge, nullclines have not been used 

when the original differential equation is unknown. In [P2], we introduce an empirical 

approach to obtain the nullclines on the reconstructed phase space (see Section 4.2.2). 
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Supervised learning methods in machine learning aim to classify a new observation by 

inducing a decision algorithm from a set of labeled training data. In general, the best 

choice of the classifier is unclear and depends predominantly on the nature of the input 

(i.e., the underlying data production process) and the data size. Thus, choosing the right 

classifier often requires trial and error [31]. Therefore, we use different supervised learn-

ing techniques to tackle our classification tasks. This chapter provides an overview of 

the machine learning models used in the thesis. 

In this thesis, we use four types of classifiers, namely, Bayesian models, random forest, 

Gradient boosting, and Artificial Neural Network (ANN) models. Bayes-based models 

such as naïve Bayes, linear, and quadratic discriminant analysis (LDA and QDA) are 

based on the Bayes decision rule. These classifiers are considered to be simplistic, with 

only a few parameters to be learned. However, despite their naïve assumptions and 

simplicity, they have shown surprisingly promising performances in various medical prob-

lems [32] [33]. 

The second and third types of classifiers covered in this thesis are decision tree models. 

Once they are trained, they can be seen as a set of if-then rules. Hence, their results are 

simple to comprehend. There are different variants of decision tree models. In the more 

advanced alternatives, ensemble learning techniques are applied to decision tree mod-

els, including bagging and boosting techniques, to make more robust decisions. As in 

many versatile applications, decision tree models have been successfully utilized in the 

medical field [34] [35] [36] [37]. 

The fourth type of classifier is the feed-forward fully-connected ANNs. An ANN is com-

posed of interconnected layers of neurons mapping the input observations to their asso-

3 Supervised Machine Learning Models 
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ciated labels. Currently, ANNs, especially deep ANNs such as Convolutional Neural Net-

works (CNN) and Long Short-Term Memory (LSTM) recurrent networks, are the popular 

approach of ML [38] [39] [40]. However, in this thesis, we have only used conventional 

ANNs. 

3.1 Bayes Decision Models 

Naïve Bayes 

Naïve Bayes [41] models the probability of a class using Bayes’ rule, 

𝒫(𝑦|𝒔) =  
𝓅(𝒔|𝑦)𝒫(𝑦)

𝓅(𝒔)
,                (3.1) 

while assuming the features are conditionally independent. Under this assumption, naïve 

Bayes treats the posterior probability as the product of a univariate normal distribution. 

Thus, 

𝒫(𝑦|𝒔) =
𝒫(𝑦)∏ 𝓅(𝒔𝑖|𝑦)

𝑛
𝑖=1

∑ 𝒫(𝑦=𝑘)𝐾
𝑘=1 ∏ 𝓅(𝒔𝑖|𝑦=𝑘)

𝑛
𝑖=1

,  (3.2) 

where 𝑦, 𝐾, 𝒔, and 𝑛 are the class index, the number of classes, the feature vector, and 

the number of features, respectively. Once the posterior probabilities of the observation 

for all classes are calculated, the observation is assigned to the class having the maxi-

mum posterior probability. In this thesis, we used a multinomial distribution [42] for 

𝓅(𝒔𝑖|𝑦) instead of the univariate normal distribution as we are dealing with categorical 

features (for more details, see Section 4.2.1). 

Linear and Quadratic Discriminant Analysis  

In Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA) clas-

sifiers, the prediction is carried out by Bayes’ rule as,  

𝒫(𝑦|𝒔) =  
𝓅(𝒔|𝑦) 𝒫(𝑦)

∑ 𝒫(𝒔|𝑦 = 𝑘)𝒫(𝑦=𝑘)𝐾
𝑘=1

.  (3.3) 

Here, for the likelihood 𝓅(𝒔| 𝑦), a multivariate normal distribution 𝒩(𝜇𝑦, Σ) with mean 𝜇𝑦 

and covariance Σ is used as follows:  
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𝓅(𝒔| 𝑦) =  
𝑒
−
1
2
(𝒔−𝜇𝑦)

𝑇
Σ−1(𝒔−𝜇𝑦)

√(2𝜋)𝑦|Σ|
,    ( 3.4) 

where |Σ| and Σ−1 are the determinant and its inverse, respectively. Often 𝜇𝑦 (the class 

means) and Σ (Σ =  
1

𝑁
(𝒔 − 𝒔) (𝒔 − 𝒔)𝑇) are estimated empirically using the training data, 

where 𝒔 denotes an 𝓈 ∗ 𝑁 matrix with 𝑁 observations and 𝓈 features. We used the uni-

form prior probability, 𝒫(𝑦) =
1

∑ 𝑦𝑘
𝑙=1

 . 

The objective is then to find the highest posterior probability [43] 

𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝒫(𝑦|𝒔) =  𝑎𝑟𝑔𝑚𝑖𝑛𝑦(𝒔 − 𝜇𝑦)
𝑇
Σ−1(𝒔 − 𝜇𝑦).  (3.5) 

The difference between LDA and QDA is that LDA assume a common covariance matrix 

Σ for all classes, while in QDA the covariance matrix is estimated for each class sepa-

rately, Σ𝑦. 

3.2 Random Forest 

Random forest, as its name implies, is an ensemble of decision trees. Thus, decision 

tree learning is first described in this section, and then the random forest is briefly intro-

duced. A decision tree forms a tree structure by splitting a root node into child nodes. 

This process is carried out repeatedly and tries to minimize the training error in each leaf 

node (final nodes). The learned model can then be interpreted as a set of if-then rules, 

which makes the decision easy to understand. There are different tree-based algorithms, 

such as ID3 [44], C4.5 [45], and CART [46]. However, all of them have been developed 

based on the same principle, hence we briefly describe only the classification and re-

gression trees (CART) algorithm. 

CART is a decision-tree-building algorithm that can handle both classification and re-

gression tasks. The model constructs a tree through successively binary partitioning of 

observations. For each node, it calculates the impurity for all the given features. Then, 

the feature with minimum impurity will be chosen for that node. In fact, at each node, it 

looks for a feature, which can predict the target with the highest accuracy. For this pur-

pose, CART uses the Gini index [47]. The Gini index is obtained for each feature by 

subtracting the sum of the squared probability of each class 𝑘 from one, 

𝐺 = 1 − ∑ (𝒫𝑘)
2𝐾

𝑘=1 .                (3.6) 
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Then, the feature with the lowest Gini index is selected for the node. The main idea is 

that each child only includes a set of observations that belongs to the same class. Thus, 

CART suggests partitioning the observations into subsets in a way that they are purer in 

the children nodes than the ones in their parent nodes. In particular, the tree is built using 

the following three main steps: 

1) Find the best split for each feature, i.e., cutting points, 

2) Find the best split for the current node using the previous step, 

3) Split the node using the best split in the previous step. 

The pseudocode for the CART algorithm is provided below. 

CART pseudocode (node splitting) algorithm with continuous values

 

The fitted tree with the CART algorithm is too specific for the training data, which rarely 

generalizes well to unseen data thus increasing the risk of overfitting. The reason is that 

the Gini index, compared to entropy, produces more pure nodes with smaller partitions. 

This leads to a tree with more depth. Moreover, the CART algorithm is designed so that 

the tree growth continues until it reaches its full depth. Therefore, pruning is performed 

to avoid overfitting. The tree can be pruned based on stopping rules (pre-pruning). In 

pre-pruning, the tree is forced to stop splitting if the leaf node contains no observations, 

if further splitting might not improve the performance significantly, or if after partitioning, 

the distributions of the classes in the observations remain the same. 

An alternative solution for overfitting is post-pruning. This means that pruning starts after 

the tree is built into its full depth. In this approach, despite the pre-pruning, a validation 

set is needed to prune the tree in a cross-validation scheme. For this purpose, first, the 

• Start at the root node 

• While (Stopping Rule = False) do 

• For 𝒔𝑖 (𝑖 = 1,2, … , 𝓈) do 
• Sort the values 𝑣 ∈ 𝒔𝑖, in ascending order 

• For 𝑣 ∈ 𝒔𝑖 do 
• Calculate the impurity gain: 

         ∆𝐺 = 𝒫(𝒯)𝐺𝑖,𝑇 −𝒫(𝒯𝐿)𝐺𝑖,𝒯𝐿 −𝒫(𝒯𝑅)𝐺𝑖,𝒯𝑅 

(𝒯 is the set of observations in the node, 𝒯𝐿 and 𝒯𝑅 are the 

sets of observations in left and right nodes, respectively. 𝒫 de-

notes the sum of probability of observations in the current node) 

• Find the 𝑣 with 𝑚𝑎𝑥(∆𝐺) (i.e., cut point) 
• Find 𝒔𝑖 with 𝑚𝑎𝑥(∆𝐺) for the current node. 
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training data is randomly split into 𝒦 disjoint folds. Then, 𝒦 − 1 folds are used to con-

struct different pruned trees and then estimate their performance on the last fold. This 

process repeats until the performances of the designed trees are evaluated on all the 

folds. Finally, the tree that yields the minimum average error is chosen as the pruned 

tree. 

As mentioned earlier, decision trees are easy to interpret. They can handle missing data, 

categorical and numerical features, and require minimum preprocessing. Decision trees 

can also be used implicitly for feature selection. However, a single tree may not have 

robust performance. This happens because introducing a perturbation into the dataset 

may decrease the generalization power of the tree. Additionally, due to the greedy strat-

egy used for learning, they may not find the best splitting rules. Often, the tree-ensemble 

methods such as random forest and gradient boosting approaches are employed to 

somewhat alleviate these issues. 

In a random forest, each tree votes for each class, and the final decision is made based 

on the aggregation of these votes (see Figure 3.1). To decrease the correlation between 

different trees and diversify them, a bootstrap algorithm is used in both observation and 

feature levels. To be more specific, the training data with 𝑁 observations is randomly 

partitioned into 𝑛 subsets, usually with size 𝑁 (𝑛 ≪ 𝑁) with replacement. Thus, the same 

observation can fall into different partitions with repetition. On the other hand, it is likely 

that an observation may not appear in some partitions. 

 

Figure 3.1 Random forest classifier illustration during the testing phase. 
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Moreover, while constructing each tree, instead of considering all 𝓈 features, only a sub-

set of them with size 𝓂 (𝓂 ≪ 𝓈, 𝓂 is usually the square root of 𝓈) are randomly chosen 

and used for each node. Therefore, the same feature can be selected multiple times in 

different nodes of a tree. In this algorithm, all the trees are trained independently. Finally, 

during the test, the aggregation of the trees’ predictions will be used as the final decision. 

Imposing randomness at the feature level and observation level creates almost uncorre-

lated trees. This often makes a tree-committee that produces more accurate and robust 

results in comparison to a single tree. Moreover, using multiple trees leads to a higher-

order interaction between features, which improves the classification performance. 

3.3 Extreme Gradient Boost 

Gradient Boosting 

Gradient Boosting [48], similar to random forests, is an ensemble method based on the 

boosting algorithm. The boosting algorithm is a sequential ensemble technique where 

the performance of the model is improved by assigning a higher weight to the previous 

incorrectly classified samples (AdaBoost [49]). Unlike random forest, the weak learners 

(usually decision trees) are trained sequentially in this model. The process continues 

until all observations fall into the right class, or a specified constraint is met. During the 

testing phase, the prediction of unseen data is made based on the weighted sum of the 

predictions made by all the learners. The major disadvantage of AdaBoost is that it is 

unstable in the presence of outliers in the training data. 

In gradient boosting, instead of weighting the observations, the loss function of the pre-

vious learner is optimized. Therefore, the current tree is more accurate than the previous 

one. In other words, in gradient boosting, the errors made by the previous learner are 

learned. One of the main advantages of gradient boosting is that the loss function can 

be specified according to the problem of interest. Let us assume a simple binary classi-

fication problem. The gradient boosting process starts with a single leaf where an initial 

prediction is made for all the observations in the training data using the logistic function 

as follows: 

𝒫 =  
𝑒𝑙𝑜𝑔(𝑜𝑑𝑑𝑠)

1+𝑒𝑙𝑜𝑔(𝑜𝑑𝑑𝑠)
,             (3.7) 

where 𝑜𝑑𝑑𝑠 reflects the likelihood that an event takes place. 
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Then, the residual is achieved for each observation and is defined as the difference be-

tween the actual and the current prediction, 

𝑅𝑒𝑠 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝒫.              (3.8) 

Afterward, the given features are used to create a decision tree to predict the obtained 

residual from the previous step. The output of each leaf in the trained tree is calculated 

as 

𝑂𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑙𝑒𝑎𝑓 =  
∑ 𝑅𝑒𝑠𝑖𝑖

∑ (𝒫𝑖(1−𝒫𝑖))𝑖
,                      (3.9) 

where 𝑖 is the number of observations that fall in the current leaf. 𝑅𝑒𝑠𝑖 is the 𝑖th residual 

that falls in the leaf, and 𝒫𝑖 is the last prediction made for the corresponding observation. 

Next, the predictions for each observation are updated by combining the initial predica-

tion with the output of the built tree, 

Pr𝑡+1 = 
𝑒𝒫

𝑡+ 𝛼(𝑂𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑙𝑒𝑎𝑓)

1+𝑒𝒫
𝑡+ 𝛼(𝑂𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑙𝑒𝑎𝑓)

,                       (3.10) 

where 𝛼 is the learning rate. This process iteratively continues until a specified (maxi-

mum) number of trees is reached, or 𝑅𝑒𝑠 becomes smaller than a given threshold. 

In a general form, the algorithm can be formulated as follows. Suppose the given data is 

{(𝒔𝑖, 𝑦𝑖)} , where 𝑖 = 1,2,… , 𝑛 is the 𝑖′𝑡ℎ  observation , and  𝒔𝑖  and 𝑦𝑖  denote the feature 

vector and its corresponding label, respectively. The objective is to learn an ensemble of 

learners as 

𝐹(𝒔) =  ∑ 𝐵𝑡𝓀𝑡(𝒔)
𝑇
𝑡=0 ,                (3.11) 

where 𝓀𝑡(𝒔) is a weak learner and 𝛽𝑡 is the expansion coefficient at iteration 𝑡. In the first 

iteration, 𝑡 =  0, using a constant initial prediction 𝛾 (recall that 𝛾 refers to the logarithm 

of the 𝑜𝑑𝑑𝑠 in Eq. 3.10), the prediction function is calculated as, 

𝐹0 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛾 ∑ 𝐿(𝑦𝑖, 𝛾)
𝑁
𝑖=1 ,                   (3.12) 

where 𝐹0 denotes the prediction function of the first iteration. To find 𝐹0, the derivative of 

the loss function 𝐿 with respect to 𝛾 is calculated. Then for the remaining iterations 𝑡 =

 1: 𝑇, the subsequent 𝐹𝑡 is recursively calculated as, 

𝐹𝑡(𝒔)  =  𝐹𝑡−1(𝒔) + 𝛽𝑡𝓀𝑡(𝒔).                 (3.13) 
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As mentioned, at each iteration leaner ℎ𝑡 is trained to predict the residual of the previous 

learner’s loss function 𝐿. Thus, the gradient of the loss function in Eq. 3.12 is computed 

as, 

 𝑅𝑒𝑠𝑖,𝑡 = −[
𝜕𝐿(𝑦𝑖,𝐹𝑡−1(𝒔𝑖))

𝜕𝐹𝑡−1(𝒔𝑖)
].                  (3.14) 

This demonstrates that the residual corresponds to the running gradient descent on the 

loss function. 𝛽𝑡 in Eq. 3.13 is estimated at each iteration in the same manner, 

𝛽𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽 ∑ 𝐿(𝑦𝑖, 𝐹𝑡−1(𝒔) + 𝛽𝓀𝑡(𝒔))
𝑁
𝑖=1 .                         (3.15) 

The critical point is that in gradient boosting, only a subset of the training data is randomly 

chosen and used to obtain 𝐹𝑡 at each iteration 𝑡. This introduces randomization to the 

process, which improves both the accuracy and computational speed. 

Extreme Gradient Boosting  

Extreme Gradient Boosting (XGBoost) [50] is a variant of the Gradient Boosting algorithm 

that improves the model by adding a regularization term to the objective function. Here 

we briefly summarize the regularization framework. In XGBoost, the objective function is 

defined as 

𝑂𝑏𝑗 =  ∑ 𝐿(𝑦𝑖, 𝑦̂𝑖) + ∑ Ω(𝓀𝑡)
𝑇
𝑡=1

𝑛
𝑖=1 ,  (3.16) 

where the first term is the training loss and shows how well the model is fitted. The sec-

ond term denotes the regularization, which penalizes the complexity of the trees. 

XGBoost uses the following function as regularization 

Ω(𝓀) =   ℓℒ + 
1

2
ℷ‖𝜔‖2,                 (3.17) 

where ℒ is the number of leaves in tree 𝓀. 𝜔 denotes the score of the leaves. ℓ and ℷ are 

the regularization parameters. This encourages the model to have a smaller number of 

leaves and more smooth weights to create a robust tree. 

𝑦̂𝑖
𝑡 = 𝑦̂𝑖

𝑡−1 + 𝐹𝑡(𝒔𝑖) → 𝑂𝑏𝑗 = ∑ 𝐿(𝑦𝑖 , 𝑦̂𝑖
𝑡−1 + 𝐹𝑡(𝒔𝑖) ) + ∑ Ω(𝓀𝑡)

𝑇
𝑡=1

𝑛
𝑖=1 .     (3.18) 

In fact, by adding the regularization term, the pruning process is embedded into the ob-

jective function. By expanding the loss function 𝐿 using the second-order Taylor expan-

sion, the optimization problem changes to  
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𝑂𝑏𝑗 = ∑ [𝐿(𝑦𝑖 , 𝑦̂𝑖
𝑡−1) + 𝐹𝑡(𝒔𝑖)

𝜕𝐿(𝑦𝑖,𝑦̂𝑖
𝑡−1)

𝜕𝑦̂𝑖
𝑡−1 +

𝐹𝑡(𝒔𝑖)
2

2

𝜕2𝐿(𝑦𝑖,𝑦̂𝑖
𝑡−1)

𝜕2𝑦̂𝑖
𝑡−1 ] + ∑ Ω(𝓀𝑡)

𝑇
𝑡=1

𝑛
𝑖=1 . (3.19) 

The motivation for using Taylor expansion is to achieve the above quadratic form. This 

makes the objective function not only more efficient but also increases the flexibility to 

use different weak learners and loss functions. 

Besides the regularization, instead of searching greedily for the cut point for each con-

tinuous feature, it proposes some candidates based on the percentiles of the feature’s 

distributions making the process more efficient. Similar to random forest, XGBoost sub-

samples the features to decrease the chance of overfitting and also increase the speed 

of computations. Moreover, XGBoost has other features such as memory efficiency, op-

timization of the hard disk space for big data, and parallel learning. 

3.4 Artificial Neural Networks 

An Artificial Neural Network (ANN) can be considered as a universal function approxi-

mator [51]. ANNs are inspired by the human brain and the nervous system and designed 

using interconnected layers of neurons. Each neuron in layer l is connected to (some of) 

the neurons in the previous layer l-1. Therefore, as the input flows within the hidden 

layers, more salient and abstract level features are expected to be extracted. An ANN 

with one input feature, one hidden and one output node with a nonlinear sigmoid activa-

tion function corresponds to logistic regression (see Figure 3.2) [52]. However, more 

complex ANNs are often needed to be able to learn the pattern of interest in a given 

dataset. 

The main idea of learning here means to adjust the parameter space (weights and biases) 

in such a way to minimize the cost function. For this purpose, the back-propagation learn-

ing technique is applied. It recursively uses the chain rule to compute the gradient in the 

parameter space and consists of two passes through the network layers. In the forward 

propagation, the prediction is made using the given set of parameters, while in the back-

ward propagation, the parameters are updated to minimize the cost function. 

To be more specific, in the forward propagation, the intermediate variables are calculated 

sequentially from the input layer to the output layer. In this process, each neuron com-

putes the weighted sum of the neuron’s inputs plus the bias. Then, the activation function 

is applied to the obtained values, in layer 𝑙, to produce the neuron’s output, 𝒙𝑙, as 

𝒛𝑙 = 𝑊𝒙𝑙−1 + 𝑏,          (3.20) 
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𝒙𝑙 = 𝑔(𝑧),                             (3.21) 

where 𝑊  is the weight parameter, 𝑏 denotes the bias, and 𝑔 indicates the activation 

function. Once the final layer’s output is calculated, the loss function 𝐿 is obtained to 

measure how well the output value is predicted for the given input. This operation is 

performed for every observation sample to obtain the cost function 𝐽 as, 

𝐽 =
1

𝑛
∑ 𝐿(𝑦𝑖, 𝑦̂𝑖)
𝑛
𝑖=1 ,             (3.22) 

where 𝑦𝑖 and 𝑦̂𝑖 are the class label and prediction, respectively. In the backward propa-

gation, the gradients of the initial weights and biases are computed for optimizing (i.e., 

minimizing) the cost function. For this purpose, the gradient descent is used to compute 

the gradients form the output layer and propagate them backward. Once the gradients 

are computed, each weight and bias is updated as follows: 

𝑊𝑙 = 𝑊𝑙 − 𝛼
𝜕𝐽(𝑊,𝑏)

𝜕𝑊𝑙
                   (3.23) 

𝑏𝑙 = 𝑏𝑙 − 𝛼
𝜕𝐽(𝑊,𝑏)

𝜕𝑏𝑙
                   (3.24) 

where 𝛼 is the learning rate. Partial derivatives make it possible to measure the change 

in the cost function with respect to a specific weight or bias, which is essential to minimize 

the cost function. To do this, the chain rule is utilized as follows: 

𝜕𝐽(𝑊,𝑏)

𝜕𝑊𝑙
=

𝜕𝐽(𝑊,𝑏)

𝜕𝒙𝑙
 
𝜕𝒙𝑙

𝜕𝒛𝑙
𝜕𝒛𝑙

𝜕𝑊𝑙
                 (3.25) 

𝜕𝐽(𝑊,𝑏)

𝜕𝑏𝑙
=

𝜕𝐽(𝑊,𝑏)

𝜕𝒙𝑙
 
𝜕𝒙𝑙

𝜕𝒛𝑙
𝜕𝒛𝑙

𝜕𝑏𝑙
                     (3.26) 

In this thesis, we used the simplest form of ANNs, i.e., the fully-connected and feedfor-

ward ANN with one or more hidden layers and neurons. Additionally, the hyperbolic tan-

gent function is used as the activation function. For training, we used Bayesian regulari-

zation backpropagation [53], which is based on the Levenberg–Marquardt algorithm [54]. 
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Figure 3.2 The gradient descent for logistic regression 
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This chapter summarizes the main contributions in the publications included in the thesis. 

These contributions can be grouped into three categories: 

▪ Proposing a novel set of descriptors based on nonlinear dynamics and its appli-

cation in epileptic seizure detection ([P1] and [P2]). 

▪ Developing several classification methods and investigating a comprehensive set 

of discriminative features for Atrial Fibrillation (AF) detection ([P4]), identification 

of cardiac anomalies ([P3]), and early sepsis prediction ([P5]). 

▪ Implementing the methods proposed in publications [P3], [P4], [P5], and making 

them available as open-source software. 

This chapter is organized as follows: First the performance metrics are described in Sec-

tion 4.1. Then, the proposed nonlinear dynamics Electroencephalogram (EEG) analysis 

and a classification framework for epileptic seizures are discussed in Section 4.2. Next, 

in Section 4.3, the developed solutions for three biomedical applications are presented. 

These tasks include AF detection using single-lead Electrocardiogram (ECG) signals 

(Section 4.3.1), cardiac anomaly detection using phonocardiogram (PCG) signals (Sec-

tion 4.3.1), and early sepsis prediction using clinical data (Section 4.3.3). 

  

4 Contributions 
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4.1 Performance Metrics  

Evaluation of learning algorithms plays a vital role in ML. A fair assessment can provide 

insight into the performance of the model and how it can be improved. In this section, 

the used evaluation metrics in this thesis are summarized. 

The standard performance measures used in [P1] and [P2] are 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦, 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦, 

and 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦, which are defined as follows: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                     (4.1) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
             (4.2) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+ 𝑇𝑁

𝑇𝑃+ 𝑇𝑁+𝐹𝑃+𝐹𝑁
                (4.3) 

where 𝑇𝑃 (True Positive) and 𝐹𝑃 (False Positive) are the number of positive samples, 

which are classified correctly and incorrectly, respectively. Similarly, 𝑇𝑁 (True Negative) 

and 𝐹𝑁 (False Negative) are the number of negative samples classified correctly and 

incorrectly, respectively. 

In [P3], the 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑆𝑐𝑜𝑟𝑒 is defined based on a modified version of 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 and 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 to consider the weight of noisy samples as well. 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑆𝑐𝑜𝑟𝑒 =  
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑+𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 

2
              (4.4) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 = 𝑤𝑎1
𝐴𝑎1

𝐴𝑎1+𝐴𝑞1+𝐴𝑛1
+ 𝑤𝑎2

𝐴𝑎2+𝐴𝑞2

𝐴𝑎2+𝐴𝑞2+𝐴𝑛2 
 (4.5) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 = 𝑤𝑛1
𝑁𝑛1

𝑁𝑎1+𝑁𝑞1+𝑁𝑛1
+ 𝑤𝑛2

𝑁𝑛2+𝑁𝑞2

𝑁𝑎2+𝑁𝑞2+𝑁𝑛2 
 (4.6) 

where 𝑤𝑎1, 𝑤𝑎2, 𝑤𝑛1, 𝑤𝑛2, 𝑁𝑛1, 𝑁𝑛2, 𝐴𝑎1, 𝐴𝑎2, 𝐴𝑞1, 𝐴𝑞2, 𝑁𝑞1, and 𝑁𝑞2 are defined as,  

𝑤𝑎1 = 
𝑐𝑙𝑒𝑎𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 
   (4.7) 

𝑤𝑎2 = 
𝑛𝑜𝑖𝑠𝑦 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 
   (4.8) 

𝑤𝑛1 = 
𝑐𝑙𝑒𝑎𝑛 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑒𝑔𝑒𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 
   (4.9) 
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𝑤𝑛2 = 
𝑛𝑜𝑖𝑠𝑦 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑒𝑔𝑒𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 
   (4.10) 

Table 4.1 The confusion matrix defined in [P3] 

  Predictions 

  Negative 

(normal samples) 

Uncertain 
Positive 

(abnormal sampels) 

Ground Truth 

Negative, clean 𝑁𝑛1 𝑁𝑞1 𝑁𝑎1 

Negative, noisy 𝑁𝑛2 𝑁𝑞2 𝑁𝑎2 

Positive, clean 𝐴𝑛1 𝐴𝑞1 𝐴𝑎1 

Positive, noisy 𝐴𝑛2 𝐴𝑞2 𝐴𝑎2 

In [P4], the 𝐹_𝑚𝑒𝑎𝑠𝑢𝑟𝑒 is defined as the average of 𝐹1 score for each class. 

𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 
𝐹1𝑛+𝐹1𝑎+𝐹1𝑜+𝐹1𝑝

4
   (4.11) 

where,  

𝐹1𝑛 = 
2(𝑛𝑜𝑟𝑚𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦  )

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜𝑟𝑚𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
           (4.12) 

𝐹1𝑎 = 
2(𝐴𝑡𝑟𝑖𝑎𝑙 𝑓𝑖𝑏𝑟𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦  )

𝑇𝑜𝑡𝑎𝑙 𝐴𝑡𝑟𝑖𝑎𝑙 𝑓𝑖𝑏𝑟𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
                  (4.13) 

𝐹1𝑜 = 
2(𝑂𝑡ℎ𝑒𝑟 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦  )

𝑇𝑜𝑡𝑎𝑙 𝑜𝑡ℎ𝑒𝑟 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
                                  (4.14) 

𝐹1𝑝 = 
2(𝑁𝑜𝑖𝑠𝑦 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦  )

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜𝑖𝑠𝑦 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
                                  (4.15) 

In [P5] the Utility Score 𝑈(𝑠, 𝑡) is defined as a function of patient 𝑠 and time interval 𝑡. 
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𝑈(𝑠, 𝑡) =  

{
 

 
𝑈𝑇𝑃(𝑠, 𝑡), 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 𝑓𝑜𝑟 𝑠𝑒𝑝𝑠𝑖𝑠 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑠 

𝑈𝐹𝑁(𝑠, 𝑡), 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 𝑓𝑜𝑟 𝑠𝑒𝑝𝑠𝑖𝑠 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑠

𝑈𝐹𝑃(𝑠, 𝑡), 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 𝑓𝑜𝑟 𝑛𝑜𝑛 − 𝑠𝑒𝑝𝑠𝑖𝑠 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑠

𝑈𝑇𝑁(𝑠, 𝑡), 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 𝑓𝑜𝑟 𝑛𝑜𝑛 − 𝑠𝑒𝑝𝑠𝑖𝑠 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑠

   (4.16) 

The utility function rewards or penalized the predictions. To be more specific, the utility 

function rewards if the model predicts sepsis between 12 hours before and 3 hours after 

the sepsis occurs. Moreover, the utility score penalizes the model if it does not predict 

sepsis or predict sepsis more than 12 hours before or late (more than 3 hours after sepsis 

occurs) prediction. The weights of such penalties and rewards vary between patients 

with and without sepsis. For more detailed information, refer to [55]. 

In addition, the area under the receiver operation characteristic (AUROC) is used in [P5]. 

AUROC is calculated as a trade-off between 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 and false positive rate. False 

positive rate is defined as follows, 

𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =  1 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦      (4.17) 

Contrary to 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦, the AUROC provides a more informative measure for imbalanced 

problems as it includes both 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 and 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦. However, if the numbers of 

negative samples are excessively higher than the positive samples, AUROC doesn’t re-

flect the 𝐹𝑃 in 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (see Eq. 4.2). 

The area under the 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 -recall curve (AUPRC) is another evaluation metric used 

in [P5]. Recall is equal to 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 and 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 defined as follows, 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                       (4.18) 

This measure elucidates the performance of a model that has a relatively high sensitivity 

but low precision. This means that the majority of samples are classified as positive sam-

ples. Moreover, In AUPRC 𝑇𝑁 is not considered. Often in biomedical problems, number 

of negative observations compared to positive samples are high. Therefore, AUPRC is 

not sensitive to such unbalanced classes and can provide a more clear interpretation. 
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4.2 Nonlinear Dynamics in Electroencephalogram Analysis  

Motivation 

Epilepsy is one of the most common disorders affecting almost 50 million people world-

wide. Epilepsy is defined as a neurological condition where a person has an intrinsic risk 

of having more than one seizure. It is noteworthy to highlight that seizures and epilepsy 

are different. Seizures are temporary conditions within the brain in which the brain func-

tion is disturbed or altered. Seizures can be epileptic or non-epileptic. Non-epileptic sei-

zures are triggered because of a head injury, central nervous system infection, brain 

tumor, lack of oxygen, or chemical imbalance. On the other hand, epileptic seizures are 

not usually provoked. Epileptic seizures can be associated with one or multiple physical 

causes, such as structural brain problems, metabolic disorders, or inherited genes. 

From the neurobiology perspective, the occurrence of seizures is associated with a com-

munication distraction between brain neurons. Seizures can originate at different cellular 

levels, such as alterations in ions, cell membranes, synapses, and microstructural 

changes [56]. The underlying reason for such variations in the nervous system is caused 

by multiple (potentially unknown) intertwined mechanisms. Due to the complexity of 

these mechanisms, it is difficult to determine the underlying cause. To narrow down the 

causes and facilitate the diagnosis, epileptic seizures are categorized into different types 

based on the involved location in the brain and the symptoms. For example, focal sei-

zures are defined where only a part of the brain is affected and can cause a strange taste 

in the mouth, fear, or stiffness in the patient. Another example is generalized seizures, 

where a focal seizure spreads out to both sides of the brain and causes loss of con-

sciousness and convulsion. 

The other challenge of epilepsy is that seizure mechanisms can evolve through time [57]. 

Thus, the severity and frequency of seizures between and within epileptic patients vary 

drastically, making epilepsy a tremendously diverse condition. The most common medi-

cal test for epilepsy is Electroencephalogram (EEG). EEG acquisition during seizures 

provides valuable information for neurologists to determine the type of seizure. However, 

due to the nonlinearity involved in the mechanism of epilepsy, seizure detection is not a 

straightforward task, and as a result, a high disagreement can occur among epileptolo-

gists [58] [59]. 

Several well-established Signal Processing and ML methods have been developed for 

automatic seizure detection [60] [61] [62] [63]. Notably, it has been shown that time-

frequency features can capture discriminative characteristics between seizure events 
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and background EEG activities [64] [65]. The basis of these spectral methods is the de-

composition of the signal into different frequencies and time scales. However, these 

methods cannot reveal nonlinear EEG dynamics. EEG signals are generated by nonlin-

ear interactions between numerous neurons and reflect the dynamic of a large number 

of interrelated variables in the brain. Therefore, the EEG signal is generated from a high 

dimensional model. If the high-dimensional model of the original dynamic, or its shadow 

version, is accessible, then more accurate properties of the system can be achieved [66]. 

These characteristics cannot be achieved by focusing on the frequency and time prop-

erties of one-dimensional time series. An extensive description of prior work can be found 

in [P1] and [P2]. 

In publications [P1] and [P2], we proposed empirical approaches to extract a set of dis-

criminative descriptors based on well-known techniques of nonlinear dynamics. These 

features were used to measure some hidden properties of the EEG time series. After-

ward, a patient-specific classification framework was proposed for epileptic seizure de-

tection based on the extracted properties. Extensive comparative analysis shows that 

the extracted features achieved state-of-the-art performance in differentiating seizures 

from non-seizure events. 

Datasets and Experimental Protocols 

Datasets 

In these studies, we used the CHB-MIT benchmark dataset [67] [68]. The scalp EEG 

dataset was collected from 23 pediatric patients (males, ages 3–22; and females, ages 

1.5–19) at the Boston children's hospital. Between 9 to 24 EEG recordings were collected 

from each patient with a sampling frequency of 256 Hz. We used 23 common EEG chan-

nels for our analysis: FP1-F7, F7-T7, T7-P7, P7-O1, FP1-F3, F3-C3, C3-P3, P3-O1, 

FP2-F4, F4-C4, C4-P4, P4-O2, FP2-F8, F8-T8, T8-P8, P8-O2, FZ-CZ, CZ-PZ, P7-T7, 

T7-FT9, FT9-FT10, FT10-T8, and T8-P8 (see Figure 4.1). 

Experimental Protocol 

Most research works in this domain use non-invasive scalp EEG to monitor seizures 

activities [69]. Often, EEG electrodes are located on the scalp based on the international 

10-20 system (see Figure 4.1). Due to the high variability of seizures’ types and emer-

gence of epileptogenesis process in different brain regions, signal processing and ML 

models depend on the utilization of all EEG electrodes (e.g., [70]).  
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Commonly, there are two main approaches to design seizure detection models. The first 

approach is patient-independent, which means that the model is trained and tested in-

dependent of the patients. Such models are usually developed for detecting a specific 

type of seizure [71]. The second approach is patient-specific [72]. This means that the 

model is trained and validated on the recordings of the same patient. 

Each of these approaches has its own advantages and shortcomings. In a patient-inde-

pendent approach, the models are more convenient to be utilized in medical environ-

ments. To be more specific, it is more convenient if the same model can be used for all 

patients. However, this is not realistic since the brain activities profoundly vary between 

patients. On the other hand, the patient-specific models are tuned to detect seizures 

specifically for the patient of interest. Although this approach can generate more accurate 

detection, utilizing such models need some manual labeling for each patient, which can 

be a cumbersome procedure for medical experts. In this thesis, a patient-specific ap-

proach is used for seizure detection. To minimize the manual labeling in real-world sce-

nario, only 25% of the EEGs are used for training. 

For evaluating the ML models, the k-fold cross-validation procedure is used. However, 

this should be done with caution for time series where the temporal transient of data 

conveys relevant information. In a standard cross-validation scheme, the EEG segments 

are randomly partitioned into train and test without considering their occurrence in time. 

As a result, it is possible that a model is trained with 𝑡 − 1 and 𝑡 + 1 segments and tested 

with segment 𝑡. In this way, not only the causality of the model is not considered (specif-

ically for predictive models), but also, a naïve classifier can interpolate the label for seg-

ment 𝑡. Thus, such a validation process does not provide a fair evaluation. To address 

this, in this thesis, the earlier (25%) data is used for training, and the rest (75%) are used 

for validation (test set). 

4.2.1 Epileptic Seizure Detection Using Poincaré Section ([P1]) 

Methodology 

First, for each 1s EEG segment, the phase space was reconstructed with embedding 

dimension 5 and time lag 6 (see Section 2.3). Then, using Principal Component Analysis 

(PCA), the first and second linearly uncorrelated principal components (PCs) of the 5-

dimensional phase space were extracted. Afterward, a line (polynomial with the degree 

of one) using the least square method was fitted to the space formed by the first two PCs. 

The intersection points between the projected attractor and the fitted line were used to 

extract features. The features are listed in Table 4.2. 
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Once the features were extracted, they were fed into a two-layer classifier. In the first 

layer, the features of each channel were classified with the corresponding LDA. Then, in 

the second layer, the outputs (i.e., labels) of LDAs were then integrated using a naïve 

Bayes with the multivariate multinomial distribution. The obtained classification labels 

are then filtered using morphological filters based on continuity and neighborhood simi-

larity properties. 

 

Figure 4.1 Location of electrodes in the international 10-20 system [P1]. 

 

Table 4.2 Features extracted from the intersection points of the first two principal compo-
nents and the fitted line ([P1]) 

 Features extracted from the intersection points 

1 Range 

2 & 3 The 0.13 quantile and interquartile range 

4 Shannon entropy 

5 Root Mean Squared Amplitude 

6 Coefficient of Variation 

7 Energy 
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Results and Discussion 

The proposed approach was trained with two training rates: 25% and 50%. Using the 25% 

training rate, we achieved an average 88.27% sensitivity and 93.21% specificity on the 

test set. As expected, providing more data for training (i.e., 50% training rate) improved 

both the sensitivity and specificity of the test set by almost 1%. 

Comparative evaluations were carried out at three levels. The comparative analysis is 

performed against different feature sets, different classifiers, and state-of-the-art meth-

ods in this domain. The average results over the dataset for different sets of features and 

classifiers are shown in Table 4.3. 

As can be seen, the proposed approach achieved the best results compared to different 

sets of features. Additionally, the proposed classification approach achieved the most 

robust performance among all classifiers in the experiment. Moreover, the proposed ap-

proach provides more balance between sensitivity and specificity compared to the other 

methods. For example, although the Support Vector Machine (SVM) classifier achieved 

slightly higher average sensitivity, its sensitivity was less than 60% over the EEG records 

of two patients. Such a low sensitivity indicates that more than 40% of the seizure frames 

were missed and thus makes this method unreliable for clinical usage. 

The proposed feature extraction is inspired by the Poincaré section concept (discussed 

in Section 2.4). Although the proposed features are shown to be effective in detecting 

seizure events from the background EEG, they do not indicate which property of the 

Table 4.3 The classification performance using different feature sets and classifiers. These 
results are achieved with a 50% training rate. DWT, ApEn, and MDA denote discrete wave-

let transform, approximate entropy, and Mahalanobis discriminant analysis, respectively. 

  Sensitivity (%) Specificity (%) 

Features 

The energy of DWT Coeff. 82.80 85.18 

DWT-based APEn. 83.46 87.78 

Nonlinear features 84.74 82.57 

Proposed 89.10 94.80 

Classifiers 

QDA 84.66 83.77 

MDA 87.26 92.02 

Naïve Bayes 81.80 93.48 

SVM 90.11 94.41 

LDA (proposed) 89.10 94.80 
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system they are characterizing. Moreover, the proposed method loses (potential) infor-

mation while applying PCA and fitting a line to reduce the dimension of the phase space. 

In this study, we followed a real-world scenario for training and testing. The system is 

trained with the earlier EEG records and then tested using the later part of the data. In 

this case, after the system is trained using the labeled data, the system can be used to 

help the neurologist for the same patient over and over [38]. Another reason for such an 

evaluation scheme compared to the conventional cross-validation is that in cross-valida-

tion, the temporal dependencies in time series are not considered. For example, the 

classifier may be tested with an observation at time 𝑡, while it has been trained with ob-

servations at time 𝑡 − 1 and 𝑡 + 1. This is an unfair evaluation because the causality of 

the model is not considered. Therefore, for an accurate and fair simulation of a real sce-

nario, we should consider standing in the present (training phase) and try to detect the 

unseen data (testing phase). For this, the testing data should come “chronologically” 

after the training data. One solution for this case would be using forward-chaining, i.e., 

successively assigning the previous (earlier) data into the training and testing on the rest 

(later). However, because of the highly unbalanced dataset and a very limited number of 

seizure events in each patient’s record, this solution is not applicable to this study. 

The intention of using only 25% of early data in the training phase is to prevent a high 

variance. Moreover, applying the proposed approach to 23 patients (which introduces 

randomness - that is also the primary purpose of techniques such as bootstrapping), can 

provide a fair evaluation for its generalization performance. On the contrary, using only 

25% for training can lead to high bias error (underfitting). However, the state-of-the-art 

performance level still achieved in the publication reveals the discriminant power of the 

proposed feature over such a limited training set. 

Although there are numerous EEG classification methods proposed in the literature, only 

a few of them consider the real-world scenario, where the limited patient history is used 

to train the classifier. For example, in many recent studies, the majority (i.e., >75%) of 

the EEG record is used for training, which is not a feasible option in a real clinical case. 

Therefore, we follow the same strategy for training and testing as set in [P2]. 

To explain the intuition behind the two-layer classification approach, we need to address 

two main points: 

▪ By classifying the EEG channels separately, we do not require a priori information 

about the relevant channels. This is crucial in the seizure detection problem 

where the anatomic location of seizures’ onset varies within and between patients. 
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▪ Labels (i.e., outputs) of the LDA classifiers (i.e., base models) can be considered 

as meta-features. These meta-features can provide more expressive space for 

learning in contrast to the base-level features. It has been shown in many appli-

cations that learning the meta-features using a second-layer classifier outper-

forms each of the individual base models (e.g., [73] [74] [75]). In our case, the 

classification of each channel individually makes it possible to use such a two-

layer classification approach and achieves a higher accuracy. 

4.2.2 Epileptic Seizure Detection Using Nullclines ([P2]) 

Methodology 

In this publication, the EEG signal was filtered between 1 to 60 Hz using a band-pass 

second-order Butterworth filter. This frequency range covers almost all seizure events. 

Although there are some high-frequency oscillations associated with epilepsy, they are 

not visible using scalp EEG due to the conductance characteristics of the skull. Afterward, 

the phase space of each 1s windowed signal was reconstructed with embedding dimen-

sion 3 and time lag 31 (almost 121 ms). Then, the nullclines (discussed in Section 2.5) 

of the three-dimensional space were obtained. For this purpose, the analysis was per-

formed according to the following steps: 

1. Obtaining the numerical gradient of each dimension, i.e., 
𝑑𝑋1

𝑑𝑡
, 
𝑑𝑋2

𝑑𝑡
, and 

𝑑𝑋3

𝑑𝑡
, in the 

phase space. 

2. Finding the zero-crossing points of 
𝑑𝑋1

𝑑𝑡
, 
𝑑𝑋2

𝑑𝑡
, and 

𝑑𝑋3

𝑑𝑡
. 

The zero-crossing points from the second step give an estimate of the point on the null-

clines. Zero-crossing was used because it satisfies the two conditions of nullclines: 1) 

𝑑𝑋

𝑑𝑡
= 0, and 2) 

𝑑𝑋

𝑑𝑡
 has an opposite sign on different sides of the nullcline (see Section 

2.5).  

In the next step, the Euclidean distances of the nullcline points from the origin were cal-

culated. Then, the medians of these distances in each dimension were obtained as fea-

tures. This results in three features (one feature for each coordinate) in total. For classi-

fication, we used the same approach as in [P1]. However, an ANN in the second layer 

was used to learn the relevant EEG channels and maximize the final classification per-

formance. 
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Moreover, to show the feasibility of the designed method, we evaluated the nullcline 

analysis over five chaotic nonlinear systems; Lorenz, Rabinovich–Fabrikant, Rössler, 

Chua's circuit, and a modified version of Genesio system. 

Results and Discussion 

The proposed method using only three features achieved an average sensitivity, speci-

ficity, and AUC of 91.15%, 95.16%, 95.11%, respectively. This shows an improvement 

compared to the obtained results from [P1], and achieved the state-of-the-art compared 

to other methods applied on the same dataset. 

The primary and novel contributions of this study are the fact that it was the first time (to 

the best of our knowledge) that the nullcline points were estimated from the recon-

structed phase space without the presence of the differential equation. Moreover, this 

was the first time that nullcline points were used as discriminative features to detect sei-

zure events in EEG recordings. 

The confusion matrix is provided in [P2] where it can be seen that sensitivity and speci-

ficity alone are not providing a deep insight into the performance of the method. For 

example, consider the EEG record of patient 10 in the dataset (Table II, in [P2]), out of 

37506 non-seizure segments 96.66% of them are correctly detected as non-seizure, and 

only 3.44% are misclassified. However, 3.44% here means 1250 segments (seconds). 

This is a high false-positive rate and requires further research. Yet, to the best of our 

knowledge, this is the lowest false positive rate achieved compared with the reported 

results over the same dataset in the literature (even with the same or even a much higher 

training rate). 

As opposed to several other earlier studies that used a large set of features (temporal, 

spectral, morphological), publications [P1] and [P2] have demonstrated that the pro-

posed feature extraction schemes based on nonlinear dynamics can single-handedly 

achieve a superior discrimination capability compared to all the other conventional fea-

tures combined [38] (see Figure 4.2). 
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Figure 4.2 Illustration of the nullcline-based features and their discriminative power in four 
different patients (CHB-MIT dataset). The vertical coordinate indicates the median values of 

the Euclidean distances of the 𝑥-nullcline points from the origin in the phase space. 

 

4.3 Assistive Medical Diagnostic Methods  

In this section, three scientific challenges involving classification and prediction methods 

for different medical assistive diagnostic tasks are presented. Physionet hosts a series 

of challenges by providing a global platform for researchers to address clinically relevant 

problems, where current solutions either do not exist or fail to solve the problems ad-

quately. The major issue with such problems is that the developed ML and Signal Pro-

cessing models in the literature have been hindered by the lack of standardized and 

validated open databases. The main advantage of such scientific competitions is that 

researchers are able to evaluate their solutions under the same fair conditions. In the 

sequel, the developed solutions for the detection of heart anomalies using PCG, the de-

tection of atrial fibrillation using ECG, and the early prediction of sepsis using clinical 

data are summarized. In this section, for each problem, we shall provide a brief overview 

of the state-of-the-art methods in the domain including their advantages and limitations. 

Then, we provide a description of the dataset, and the developed solution.  
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4.3.1 Heart Anomalies Detection Using PCG Analysis ([P3]) 

The work summarized below comes from publications [P3]1. 

Motivation 

Heart sound or phonocardiogram (PCG) signal is produced by contracting the heart mus-

cles and vibrations of heart valves. PCG consists of two fundamental components: S1 

and S2. S1 or the first heart sound is produced by the closure of the atrioventricular 

valves after blood is pumped from the atria to the ventricles. The S2 or the second heart 

sound is caused by the closing of aortic and pulmonary valves, just after the blood is 

pumped from the ventricles. The time interval between S1 and S2 shows the systole. 

This is the time when the ventricles contract. Conversely, the time interval between S2 

and the next S1 demonstrates the diastole, which is the time that the ventricles are filling 

with blood. 

Therefore, any anomalies in the heart sound can be seen as a sign of a pathological 

condition. Auscultation of heart sound can be used to detect abnormalities such as mitral 

or tricuspid regurgitation, aortic and pulmonic stenosis, ventricular septal defect, and 

prolapse of the mitral valve [76]. PCG is considered to be the primary, accessible, and 

cost-effective diagnostic test for cardiovascular monitoring. However, several factors 

make the interpretation of heart sounds a challenging task. 

The PCG signals are recorded from different cardiac listening posts, which results in 

diverse characteristics, such as different intensity levels in S1 and S2. Besides, the ac-

curacy of PCG analysis highly depends on the cognitive skills, the audible frequency 

range, and the expertise of the examiner. Moreover, body posture, respiration, and en-

vironmental noise affect heart sounds features. 

In the past few decades, several studies have proposed different automated PCG anal-

ysis [77] [78] [79]. Although such models have achieved relatively high accuracy, the 

majority of such solutions suffer from two main limitations. Commonly, the localization 

(segmentation) of S1 and S2 is considered as a prerequisite of PCG analysis. Different 

methods, including the enveloped-based method [80], the feature-based [81], and ML 

 

1 The method proposed in publication [P3] ranked 2nd out of 47 teams in the Physionet 
Challenge 2016 
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methods [82], have been developed for this purpose. These methods can provide rele-

vant medical information about the systole and diastole. However, any miss-segmenta-

tion in the PCG signal negatively affects the classification of pathological events. 

The second limitation is the evaluation of the developed methods using a limited amount 

of data and the lack of PCG dataset collected from different institutes. In [83], the PCG 

recordings of 120 patients have been studied. In [84] and [85], 64 and 107 patients have 

been used, respectively. Using such limited datasets can lead to miss interpretation of 

the results and does not show the generalization power of the developed methods. 

The main objective of this study is to overcome the mentioned shortcomings by devel-

oping a robust classification model that can detect normal and abnormal heart sounds 

(see Figure 4.3). The main contributions of this thesis are the detailed investigation of 

discriminative features and the design of an ANN-based ensemble classifier for this task 

without segmentation. 

 

Figure 4.3 Normal and abnormal heart sound recordings. The left and the right column 
show normal and abnormal samples, respectively. The horizontal axis indicates the time in 

seconds. 

Datasets and Methods 

The dataset used in this study was provided by the Physionet challenge 2016, which is 

the largest open-access heart sound database [68] [86]. The dataset includes 4430 PCG 
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signals recorded with a sampling frequency of 2000 Hz from clinical and nonclinical en-

vironments. The length of the recordings varies from 5s to 121s. Each patient may have 

more than one PCG signal in the dataset. However, the training and test sets are mutu-

ally exclusive populations. Moreover, the locations of the recordings on the body vary 

between PCG signals. The training set includes 3153 records from 764 subjects, and the 

hidden test set consists of 1277 PCG from 308 subjects. Each recording is characterized 

by two types of labels: normal or abnormal, and good or poor quality. 

In this study, we extracted 40 features from each PCG signal. Features were extracted 

from linear predictive coefficients, Natural and Tsallis entropy, Mel Frequency Cepstral 

Coefficients (MFCC), Wavelet-based features, and power spectral density. Then a sub-

set of 18 features was selected using a wrapper-based feature selection scheme [87] 

The list of the selected features is shown in Table 4.4. 

Once the feature selection was carried out, a given signal is initially classified as either 

good or poor or quality. Then, good quality signals were fed into the second classifier to 

decide whether they belong to the normal or abnormal class. For this purpose, we used 

an ensemble of ANNs. The classifier consists of 20 feedforward ANNs where each ANN 

has two hidden layers and 25 neurons in each layer. 

For the imbalance problem, we used bootstrap resampling for each ANN. Finally, the 

results of 20 classifiers are integrated using a combination rule, which is learned in 10-

fold cross-validation. A signal is classified as a poor quality signal if at least 17 out of 20 

ANN classify it as poor quality. Otherwise, the signals are detected as good quality. Ad-

ditionally, if at least seven out of 20 classifiers recognize the signal as abnormal, the 

combination rule detects the signal as abnormal. Otherwise, the signal is classified as 

normal. 

Results and Discussion 

For evaluation, the overall score was designed as the average of the modified sensitivity 

and specificity. The sensitivity and specificity were modified based on the percentages 

of good and poor quality in both normal and abnormal recordings. In Table 4.5, the per-

formance of the proposed method using 10-fold cross-validation of the train set and the 

corresponding test set is shown. 

As opposed to state-of-the-art methods in this domain, the proposed method is inde-

pendent of S1 and S2 segmentations. To be more specific, the method is independent 

of S1 and S2 heart sounds detection. Although segmentation in PCG signals has shown 
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to be beneficial, any errors in the segmentation will propagate through the whole classi-

fication pipeline. 

Table 4.4 Selected features ([P3]) 

Type Features 

Linear Predictive Coefficients 
The 1st, 3rd, 6th, 8th, 9th, and 10th coefficients 

of 10th-order linear predictor 

Entropy  Natural and Tsallis entropy 

Mel Frequency Cepstral Coefficients 

(MFCCs) 

1

𝑁
∑min

𝑖∈𝐼
𝒞𝑖,𝑗

𝑁

𝑗=1

 

𝐸(𝑚𝑎𝑥
𝑖∈𝐼

𝒞𝑖,𝑗 −  𝜇)
2 

 𝐸 (𝑆𝑘𝑒𝑤
𝑖∈𝐼

𝒞𝑖,𝑗 −  𝜇)
2

, 

where 𝒞i,j , is the MFCC coefficient at ith features 

and jth frames. E is the second-order central mo-

ment. 

Wavelet transform 

(Daubechies 4) 

 −∑𝒫(𝒹4𝑖)

𝑖

𝑙𝑛 𝒫(𝒹4𝑖) 

−∑𝒫(𝑎5𝑖)

𝑖

𝑙𝑛 𝒫(𝑎5𝑖) 

 𝑙𝑛 (∑𝑑5𝑖
2

𝑖

) 

𝑙𝑜𝑔2(𝜎
2(𝒹3)) 

 

where 𝒹3, 𝒹4, and 𝒹5 are the details coefficients of 

the 3rd, 4th, and 5th levels, respectively. a5 is the 

approximation coefficient of the 5th level. 

Power spectral density 

𝑃𝑆𝐷𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 = 
∫ 𝔣𝑃𝑆𝐷(𝔣)2𝑑𝔣

∫𝑃𝑆𝐷(𝔣)2 𝑑𝔣
 

𝐴𝑈𝐶𝑃𝑆𝐷(0.7 − 0.8) =  ∫ 𝑃𝑆𝐷(𝔣)𝑑𝔣
0.8

0.7

 

𝐴𝑈𝐶𝑃𝑆𝐷(0.9 − 1) =  ∫ 𝑃𝑆𝐷(𝔣)𝑑𝔣
1

0.9

 

where PSD(𝔣) and 𝔣 denotes the power spectral 

density and frequency, respectively. 
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Table 4.5 Performance of the proposed method ([P3]). 

 Modified Sensitivity Modified Specificity Overall Score 
Training set 

Average (standard deviation) 
94.23 (2.22) 88.76 (1.96) 91.50 (1.35) 

Testing set 86.91 84.90 85.90 

In Table 4.6, the performance of the top 5 teams are listed. As can be seen, although 

the first team achieved a higher overall score (< 1%) compared to [P3], they obtained a 

relatively low specificity of 77.81%. In [88], 59 selected time and frequency features were 

extracted after S1 and S2 segmentation and fed into an Adaboost classifier. In addition, 

each PCG cycle is decomposed into four different frequency bands (i.e. 25-45, 45-80, 

80-200, and 200-400 Hz) and then fed into a 1-dimentional CNN. Finally, the outputs of 

two classifiers were aggregated and the final prediction was produced. Moreover in [89], 

a total of 131 features were extracted after heart sounds segmentation and fed into a 

nested set of ensemble classifiers including Random Forest and LogitBoost. Compared 

to the top 5 teams, the proposed method in [P3] achieved the highest specificity while 

obtaining a relatively high sensitivity. Such a balance between sensitivity and specificity 

is desired in this classification task. In addition to the relatively low computational com-

plexity of the classifier, in [P3], only 18 features were extracted. This not only further 

decreases the run-time but also demonstrates the crucial role of the well-chosen features. 
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Table 4.6 Performance of the top 5 teams on the test (unseen) set. 

Refs Rank 
Modified  

Sensitivity 
Modified 

Specificity 
Overall 
Score Method 

[88] 1 94.24 77.81 86.02 Adaboost/CNN 

[P3] 2 86.91 84.90 85.90 Ensemble of ANNs 

* 3 87.43 82.97 85.20 
Regularized Neural Net-

work 

* 4 86.39 82.69 84.54 
MFCCs, Wavelets, Tensors 

& KNN 

[89] 5 88.48 80.48 84.48 
Random Forest + Lo-

gitBoost 

*no publications from competing teams have been found to date. 

 

4.3.2 Atrial Fibrillation Detection Using Electrocardiogram Analysis ([P4]) 

The work summarized below comes from publications [P4]2. 

Motivation 

Atrial fibrillation (AF) is the most common heart arrhythmia. In a healthy heart, the sino-

atrial (SA) node initiates all the electric impulses in the atria while during AF, these im-

pulses originate randomly from many different regions called ectopic sites. These regions 

are commonly located near the roots of the pulmonary veins. Random impulses lead the 

atria to beat greater than 300 beats per minute. Often, the majority of these pulses are 

filtered through the atrioventricular node (due to the refectory period). Therefore, only a 

 

2 The method proposed in this publication was tied for first place out of 67 teams in the 
Physionet Challenge 2017. 
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few irregular pulses can pass to the ventricle. Consequently, this makes the heart beat 

irregularly and cannot pump blood effectively [90]. 

One serious complication of AF is the formation of blood clots. Since the amount of 

pumped blood into body organs is reduced, there is a chance that the blood will pool in 

the heart and form a blood clot, and therefore, increases the risk of a stroke [91]. AF can 

have symptoms such as weakness, shortness of breath, or skipped heartbeats. However, 

in some cases, such as silent or asymptomatic AF, the patient does not experience any 

symptoms at all [92]. This can be life-threatening because severe complications of atrial 

fibrillation can develop without any warnings. 

The main and primary tool for AF diagnosis is ECG. In ECG, AF is identified as the 

absence of P wave because the latter corresponds to the depolarization of the atrium 

and atrial contraction. Additionally, the other indicator of AF is the presence of narrow 

and irregular QRS complexes. QRS complexes indicate the ventricular depolarization. 

AF can be missed and remain undiagnosed even during a regular 12-lead ECG monitor-

ing period. Therefore, portable and hand-held devices that can monitor the ECG daily 

enhance the diagnosis of missed AF. However, only a few studies have exploited signals 

obtained from hand-held ECG devices [93] [94]. 

In [95], the analysis of 196 patients showed that with one-lead ECG recording, the same 

sensitivity for AF detection was achieved compared to using two leads ECG recordings. 

However, using only one-lead ECG resulted in a significantly lower (almost 10%) speci-

ficity. This demonstrates that even though one-lead ECG recordings produce more false 

alarms, they can still be considered effective for AF detection in non-medical environ-

ments. In [94], a total of 313 patients (including 109 and 2014 patients in the training and 

validation sets, respectively) were studied. The results of [94] showed that automated 

algorithms using a single one-lead hand-held ECG devices have acceptable accuracy 

for AF monitoring. A critical point in this study was the Kappa coefficient, which is a 

statistical measure to assess the interobservers’ agreement. The 1% difference in the 

Kappa coefficient in the training set between two cardiologists in such a limited dataset 

proves the necessity of having more than one expert’s labeling. 

In this thesis, we developed a multi-class classification method to classify ECG signals 

into four classes: AF arrhythmia, healthy rhythm, other arrhythmias, and too noisy to 

analyze (see Figure 4.4). Our objective is to address the mentioned shortcomings by 

designing an accurate AF detection algorithm based on a comprehensive study of 500 

features and evaluate their performance based on the largest publicly available dataset 

in this domain. 
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Figure 4.4 Illustration of four signal classes. Each row shows two samples from the same 
class. The second column shows the challenging samples in each class. The horizontal 

axis indicates the time in seconds. 

 

Datasets and Methods 

The ECG dataset is provided by the Physionet challenge 2017 [96] [68]. The dataset 

includes ECG signals from 8528 patients for training, while ECG signals from 3658 pa-

tients were kept hidden for testing. Each recording is a single-lead ECG signal collected 

using the AliveCor device with the sampling frequency of 300 Hz. The duration of each 

ECG signal varies between 9 to 61 seconds. 

In this study, first, the baseline wander of each signal was removed. Then, 150 features 

were selected from a set of 491 features using a random forest classifier. The selected 

feature set consists of two types of features: base-level and meta-level features. The 

base-level features were extracted from time, frequency, time-frequency, and nonlinear 
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domains (see Table 4.7). The meta-level features were obtained based on the predic-

tions of LDA, QDA, and random forest classifiers (base learners). The meta-level fea-

tures were extracted using the following steps: 

1. Splitting randomly 20% of the whole training data, 

2. Windowing the signals with 5s and 4s overlap, 

3. Extracting the nine features listed in Table 4.8 from each 5s segment, 

4. Training the three base learners using the features obtained from the previous 

step, 

5. The mean and standard deviation of the posterior probabilities of each 5s seg-

ment was used as meta-level features. 

Once the base-level and meta-level features were extracted, they were fed into an ex-

ternal random forest with 500 decision trees. The external random forest was trained 

using the remaining 80% of the training data to avoid overfitting.  
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Table 4.7 Base-level features (more details in [P4]) 

Domain Feature 

Time 

Average and the coefficient of variation of RR 

Mean of Kurtosis values of T waves 

Eigenvalues of the covariance matrix of the beats 

Variance, correlation coefficients, and Rényi entropy of the P waves 

Mean, standard deviation, range, interquartile range, percentiles of 

energy, slope and angles of P, QRS, and T waves, PR intervals, and 

R amplitudes 

Frequency 
Average of the ratios of power spectral density of each beat in differ-

ent frequency ranges (5-15/5-40, 1-40/0-40 Hz) 

Time-frequency 

Shannon, Tsallis, and Rényi entropies of the five levels of detail and 

one level of approximation coefficients obtained by Symlet 4 wavelet 

(in the whole signal, P, and T waves) 

Homogeneity of the ECG signal using the continuous wavelet trans-

form 

Statistical and morphological features of details and approximation co-

efficients of seven-level decomposition, obtained by Daubechies 4 

wavelet 

Phase space 

The possibility or impossibility of fitting an ellipse in the phase space 

Co-occurrence matrix 

Stepping feature in space formed by RRs (horizontal coordinate) and 

their first difference (vertical coordinate) 

The coefficients of a fitted second-order polynomial in parabolic map-

ping formed by RRi and (RR̅̅ ̅̅ − RRi)  

Perimeter and area of the phase space, constructed by RRi and |RR̅̅ ̅̅ −

RRi| 

AFEvidence, ATEvidence, and OrgIndex metrics 

Table 4.8 Descriptors used to obtain meta-level features (more details in [P4]) 

#features Features extracted from 5s segments 
1 Coefficient of variation of RR 

2 Mean(std(Twave)) 

3 Max (mean(Twave)) 

4-5 

∑mean(energy(Pwave)) 

& 

∑mean(energy(Twave)) 

6-9 The parameters of a 4’th order autoregressive process 
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Results and Discussion 

The performance of the proposed method was evaluated using F-measure. The F-meas-

ure was calculated for the training set in 10-fold cross-validation. Additionally, the F-

measure is obtained for the hidden test set, as well. As can be seen in Table 4.9, the 

achieved results in both train and test sets are similar, which shows the robustness of 

the proposed method. 

In this study, the primary source of misclassification is noise in the signals and their re-

semblance to the other arrhythmia class. This problem appears explicitly while the sig-

nals are recorded using hand-held devices, which are more prone to noise and artifact 

compared to standard 12-lead ECG devices. The other reason for such a low accuracy 

is that the total number of noisy samples provided in the training data is 46. 

Table 4.9 Performance of the proposed method ([P4]) 

 

F-measure (%) 
Normal AF Other Noisy Overall 

Training set  
(Average ± stand-

ard deviation) 

90.49 

± 0.96 

79.43 

± 4.52 

75.64 

± 3.11 

61.11 

± 7.53 

81.85 
±2.57 

Test set 80.87 83.51 73.41 50.42 83 

 

Table 4.10 Performance of the top 4 teams on test (unseen) set. 

Refs Rank F-measure (%) Method 

[97] 1 83.1 
Rhythm/morphological features 

XGBoost +LSTM 

[98] 2 82.9 
Rhythm/morphological features 

AdaBoost 

[P4] 3 82.6 LDA, QDA, and random forest 

[99] 4 82.5 

Deep features + Rhythm/morphological fea-

tures 

LSTM + XGboost 
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Table 4.10 lists the work of the teams who were tied for the first place. In [97], for each 

ECG signal, a description in multiple abstraction levels was provided using the Consture 

algorithm. Then, two types of features are extracted from the abductive interpretation of 

the signal. The first set of features is composed of 79 global features including rhythm, 

morphological, and signal quality features, while the second set is local features focusing 

on each heartbeat of ECG. Once the features were extracted, the first set of features 

was fed into an XGBoost classifier and the second set into a LSTM classifier. Finally, the 

predictions of XGBoost and LSTM were combined by a LDA to generate the final predic-

tion using the stacking technique. 

In [98], a two-layer cascade classification approach was employed, where the first clas-

sification layer classified each ECG recording into two intermediate classes (i.e., normal 

vs. AF). In the second layer, the actual classification was carried out. For this purpose, 

morphological, rhythm, frequency, and statistical features were extracted. For all classi-

ficaition levels AdaBoost was used. In [99], first, statistical, frequency, time-frequency, 

and rhythm-based features were extracted. Then using a 1-dimensional CNN, deep fea-

tures were extracted. The combination of features was then fed into an XGBoost classi-

fier for final classification. As can be seen, all the wining methods used more sophisti-

cated ensemble learning methods and Deep Learning models such as XGBoost and 

LSTM as opposed to [P4], where a standard Random Forest was utilized. This shows 

the descriptive power of the extracted features in the proposed method. 

 

4.3.3 Early Sepsis Prediction Using Clinical Data ([P5]) 

The work summarized below comes from publications [P5]3 

Motivation 

Sepsis occurs due to a dysregulated host response to lung, urinary tract, skin, or gut 

infection. It is highly related to clinical changes such as a decrease in blood pressure, an 

increase in heart rate, body temperature, respiratory rate, elevated lactate level, and 

 

3 The method presented in this publication was ranked 3rd place out of 78 teams in the 
Physionet Challenge 2019. 
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alteration in mental status. However, sepsis is a dynamic syndrome, and all of its asso-

ciated symptoms may not show up all the time. The diagnosis can get even more chal-

lenging for patients with critical conditions, such as Intensive Care Units (ICU) patients, 

due to the overlap between sepsis symptoms and other diseases [100]. 

Sepsis demands urgent attention and is considered as a life-threatening medical emer-

gency. Although very young or old patients or those with a weakened immune system 

are more likely to get an infection, sepsis can impact people of all ages and levels of 

health. The mortality rate associated with sepsis is the cause of one out of three hospital 

deaths, and every year sepsis causes around six million deaths worldwide [101] [102]. 

Additionally, the definition of sepsis is not clear and has been evolving over the last years 

to reflect the latest knowledge in this domain. Therefore, due to the rapid and dynamic 

sepsis development and lack of certain clinical criteria, there is no standard monitoring 

protocol for sepsis detection. Although new clinical criteria have been developed in re-

cent years [103], there is insufficient evidence for the efficiency of their diagnostic per-

formance [104]. 

Several studies have focused on the detection and prediction of sepsis using ML to pro-

mote the performance of current clinical tools [105] [106] [107]. In [105], Artificial Intelli-

gence Sepsis Expert (AISE) algorithm was developed for early prediction of sepsis. For 

this purpose, a total of 65 features, including clinical, laboratory, and demographics fea-

tures were extracted from roughly 69000 ICU patients. For prediction, a modified Weibull-

Cox proportional hazards model was designed to predict the onset of sepsis. The AU-

ROC, specificity, and accuracy of 85%, 67%, and 67% were achieved for predicting sep-

sis 6 hours in advance, respectively. 

In [106], multiple covariates, including vital signs, peripheral capillary oxygen saturation, 

Glasgow Coma Scale, and age, were used. Moreover in [106], the performance of the 

proposed model was compared against four clinical scoring systems, systemic inflam-

matory response syndrome (SIRS), quick sequential organ failure assessment (qSOFA), 

modified early warning score (MEWS), simplified acute physiology score (SAPS) II, and 

sequential organ failure assessment (SOFA) for comparative analysis. They achieved 

almost an AUROC of 75% and AUPRC of 30% for prediction of sepsis four hours in 

advance. These results demonstrate the superiority of ML models compared to standard 

medical scoring systems. 

In [107], the covariates of age, diastolic and systolic blood pressures, heart rate, temper-

ature, respiration rate, peripheral oxygen saturation, Glasgow Coma Scale, white blood 

cell count, and platelet count were used for sepsis prediction 4 hours in advance. The 
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proposed model using XGBoost obtained an average AUROC of 71.8%, a sensitivity of 

75%, and a specificity of 70%. 

All the mentioned studies promise improvement in sepsis prediction using ML models in 

this domain. However, a direct comparison between these studies is not possible due to 

the use of different clinical variables, datasets, and evaluation metrics. Moreover, the 

employed evaluation metrics in the above studies do not differentiate between too early, 

too late predictions, and false alarms. The Physionet Challenge 2019 dataset [55] [68], 

provide the possibility to address these limitations. 

Our study [P5] provides a systematic approach to perform early sepsis prediction using 

clinical data. The main contributions of this study are: 

▪ Proposing a comprehensive set of features to predict sepsis at an early stage, 

▪ Introducing a feature extraction scheme for missing data values, 

▪ Developing an ensemble of five extreme gradient boost (XGBoost) classifiers for 

the early detection of sepsis. 

Datasets and Methods 

In this study, the clinical dataset was provided by Physionet Challenge 2019 [68] [55]. 

The dataset was collected from 63097 ICU patients. The training and test sets include 

40336 and 22761 patients, respectively. The clinical data for each patient contains eight 

vital signs, six demographic variables, and 26 laboratory values for every hour. 

To have a predictive model, the labels were shifted ahead by six hours. Also, the data 

for each patient were fed to the model in a causal manner. To be more specific, at each 

time-stamp, only past and present observations were presented to the model. This was 

done to ensure that the predictive model does not have access to future data. 

In this publication, two sets of features were designed. The first type of features was 

extracted from 13 covariates, which have less than 70% of missing values. The second 

type of features was modeling the pattern of absence in the clinical data. We first defined 

the sequence abstraction as a set of consecutive measurements where the values are 

only either absent (missing) or present. Once the clinical data were represented as a 

sequence for each patient, we extracted the second type of features. The features are 

listed in Table 4.11. 

After feature extraction, we randomly split the training data into two disjoint sets. We 

used 10% of the training data to perform feature selection and hyper-parameter tuning. 
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For this purpose, we selected five sets of best-performing features and hyper-parame-

ters in a 5-fold cross-validation scheme. Afterward, we trained five distinct extreme gra-

dient boosting (XGBoost) classifiers using the five sets of selected features and hyper-

parameters over 90% of the training data. Finally, during the test phase, a new observa-

tion was classified using each classifier, and the geometric mean of their outputs is used 

as the final decision. 

The feature selection was performed using a wrapper feature selection algorithm based 

on XGboost. Also, for class imbalance, we used the random undersampling technique 

to balance the data for each classifier 

Table 4.11 Features used for Early Sepsis predication ([P5]) 

Type Feature 

13 covariates 

Mean, minimum, maximum, median, variance, 95%, 99%, 5%, and 1% 
quantiles from the last 5 and 11 hours 

Energy, Shannon entropy, mean of the first differences, and the lengths of  
observations 

last observation values of the 13 covariates 

Missingness 
pattern 

Mean and variance of the lengths of sequences along with each covariate 

Summation and variance of the lengths of sequences with only valid values 
(without the missing ones) along with each covariate 

Mean and variance of the lengths of sequences along with each observation 
in the last 5 hours. 

Results and Discussion 

The proposed method was evaluated using utility scores, the Area Under Receiver op-

erating characteristic Curve (AUROC), and the Area Under Precision-Recall Curve 

(AUPRC). The results are shown in Table 4.12. The challenge organizers designed the 

utility score in a way that it rewards the prediction if the model can predict Sepsis from 

12 hours before until 3 hours after the Sepsis occurrence. Also, the utility score penalizes 

the model if it cannot predict or predict Sepsis more than 12 hours before the actual 

sepsis occurrence. 

As can be seen, the proposed model achieved the best results when it is tested over the 

data gathered from Hospitals A and B. On the other hand, most errors occurred when it 

is tested over the data of Hospital C. The main reason is that the training set includes 

data from Hospital A and B only. This shows the dynamic nature of Sepsis and the ne-

cessity of having datasets from different institutes for training a robust predictive model. 
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The other reason that potentially explains the performance drop is the missing patterns. 

The missing features represent human behavior in data recording. Although these fea-

tures are able to show the correlations between the continuity of the recorded data and 

the sepsis occurrence, they are not medically interpretable. Therefore, the variation in 

missing patterns can negatively affect the robustness of the model. However, it is worth 

mentioning that the other contestants’ performances dropped drastically on Hospital C 

even if they had not utilized the missing data patterns in their methods. 

We observed that the hours between hospital admit and ICU admit, the missing patterns 

of temperature, age, the administrative identifier for ICU unit, the variance of heart rate, 

and temperature in the last 11 hours are ranked among the top 10 features. The feature 

ranking was performed by XGBoost. The importance of each feature indicates how the 

feature split point improves the performance. Again, it should be noted that the hours 
between hospital-admit and ICU-admit, and the administrative identifier for the ICU unit 
are among the non-medical features. 

One feature of the proposed approach is its ability to transform the varying length data 

into a proper feature space so that various discriminative methods can classify it. This 

also enables us to perform different sampling methods. For example, we cannot merely 

use the resampling method if the time series data is directly used because we should 

consider their time order as well. 

Table 4.12 The performance of the proposed method ([P5]) 

  Utility Score AUROC AUPRC Accuracy 

Hospital 
A 0.422 0.814 0.102 0.803 

B 0.395 0.844 0.110 0.882 

C -0.146 0.793 0.058 0.765 
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Table 4.13 Performance of the top 4 teams on test (unseen) set. 

Refs Rank 
Final 
Score Hospital A Hospital B Hospital C 

[108] 1 0.36 0.433 0.434 -0.123 

[109] 2 0.345 0.409 0.396 -0.042 

[P5] 3 0.339 0.422 0.395 -0.146 

[110] 4 0.337 0.42 0.401 -0.156 

[111] 5 0.337 0.401 0.407 -0.094 

The performance of the top 5 teams are listed in Table 4.13. As can be seen, the 

achieved final scores are almost similar between the teams. In addition, the obtained 

scores between Hospital A and B are robust. However, the performance of the developed 

models were dropped significantly when evaluated using the dataset from Hospital C. 

For training, no patients’ data from Hospital C was provided. Such a generalization issue 

is more evident in the proposed solutions by [110] and [P5]. 

[108] achieved the best performance. They have two major contributions. The first con-

tribution is representing the covariates as the signature of paths. The signature is a trans-

formation that maps the given covariates into a d-dimensional space where each coor-

dinate is a k-fold iterated integral of the covariates. The main feature of the signature is 

that it provides the hidden cross correlated information of the sequential data [112]. The 

second contribution is redefining the Sepsis labels. By modification of the labels, they 

changed the classification problem into a regression task, which leads to higher perfor-

mance. 

Interestingly, all the top teams employed XGBoost for classification. This shows the dis-

crimination power of ensemble approaches. In addition, it proves that Deep Learning 

models are not always the best candidates to tackle the problem of interest. However, a 

recurrent neural network was used in [110] to capture the long-term time dependencies. 

In [110], three models were utilized based on the stay time in ICU. In the early, middle, 
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and long-term stages of ICU stay, XGBoost, a tree-based model, and an RNN model 

were used, respectively.  

In this study, the missing values were treated differently by each team. In [108], a for-

ward-fill method was used. In [109], the missing values were imputed with the most re-

cent valid value. In [110], for the first two models, a forward-fill method was utilized. In 

[111], no imputation method was employed, and the NaN values were directly fed into 

the model. They demonstrated that imputation can lead to loss of information. As men-

tioned earlier, one possible explanation of the relatively low performance on Hospital C 

was the different pattern of missing values compared to the provided training set. As can 

be seen in Table 4.13, [109] and [111] achieved the highest scores in this dataset, while 

using either simple or no imputation method. The source of missingness in this study 

reveals the behavior of medical staff in recording the data. This can be a subjective re-

cording pattern and mainly depends on the medical environment. Thus, treating missing 

values should be done by taking the nature of the problem into account. 
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5. Conclusions 

Conventional clinical decision-making models are facing an abundant amount of chal-

lenges. Some of these challenges include the dynamic nature of medical conditions, the 

correlations between numerous clinical covariates, the high biosignal pattern variation 

within- and between-patients, real-time monitoring, and the exponential growth of clinical 

data, to name just a few. Accordingly, traditional clinical decision-making methods need 

to be revised. Biomedical signal analysis attempts to address these challenges by provid-

ing assistive tools upon which clinicians may gain additional insights on health status 

and diagnosis. However, there is no global approach for the diagnosis of all medical 

conditions. In this thesis, we focused on developing Signal Processing and ML ap-

proaches for four prevalent medical conditions. 

The first objective of the thesis is to answer two questions: a) can we develop a set of 

discriminative nonlin-ear descriptors for Electroencephalogram (EEG) signals? and b) 

can we build a framework for epileptic seizure detection based on these nonlinear fea-

tures? In publications [P1] and [P2], novel sets of discriminative features were introduced 

for seizure detection, which are inspired by nonlinear dynamics. The proposed patient-

specific system achieved a relatively high performance compared to competing methods 

in this area. Also, the low computational complexity of the proposed method makes it 

independent of cloud computing implementations. Furthermore, due to the generic na-

ture of the proposed features, they can be utilized in other applications, with minor ad-

justments. The findings in these publications adequately answer the two aforementioned 

research questions. Although the proposed methods yield high specificity, the false alarm 

rate is still high and may not be a practical solution for epilepsy monitoring units. This 

demonstrates that the usual evaluation metrics, i.e., sensitivity and specificity, in this 

domain, may not be sufficient to assess the performance and more adequate measures 

are needed, e.g. reporting the full confusion matrix for the proposed methods. 

The second objective is to develop Signal Processing and ML techniques for three chal-

lenging diagnosis-focused applications. In [P3], [P4], and [P5], we aim to answer the 

following research questions, respectively: which classification approaches are suitable 

for (a) detecting heart anomalies using short-term phonocardiogram (PCG) signals, (b) 

detecting atrial fibrillation using one-lead electrocardiogram (ECG) signals, and (c) pre-

dicting sepsis for intensive care unit patients early enough? 

In publications [P3], a novel heart sound classification method was proposed to identify 

heart anomalies. The method was developed to classify both heart anomalies and the 

quality of the heart sound. The detection of signal quality is crucial for heart sounds as 
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they are often contaminated with noise and artifacts. The main advantage of the devel-

oped method over state-of-the-art methods was that it is segmentation-agnostic. That is, 

most methods for PCG analysis and anomaly detection rely on segmentation to find the 

fundamental components of the heart sound. However, segmentation increases the 

computational burden, and errors in segmentation propagate to the classification pipeline 

and, hence, increase the misclassification rate. 

Publication [P4] presents a multiclass classification system for AF detection using hand-

held ECG devices. The model distinguishes AF from other arrhythmias, healthy, and 

noisy signals using short-term ECG signals. A rich set of features from time, frequency, 

time-frequency, and nonlinear domains were extracted and classified with a random for-

est. Although ECG signals recorded by portable devices are prone to noise and artifacts, 

the proposed method still achieved top performance  (tied for first place out of 67 teams 

in the Physionet Challenge 2017) for automatic AF monitoring using such devices. 

In publication [P5], a novel predictive model was designed for the early detection of sep-

sis from 6 to 12 hours before clinical recognition. The proposed feature extraction 

scheme addresses two main challenges in the field, missing data, and varying length 

data. Clinical data are not collected consistently, and therefore, many data samples are 

missing. Additionally, the number of observations at each timestamp is different and this 

requires special treatment, particularly in discriminative classifiers. The experimental re-

sults show that the proposed method can predict sepsis with significant accuracy.  

In summary, the contributions in publications [P3-P5] answer the aforementioned re-

search questions. Apart from the success achieved in the thesis, the proposed Signal 

Processing and ML methods still fall short from meeting all the challenges in the biomed-

ical field. We next highlight the main challenges and propose possible future research to 

improve the current state-of-the-art. 

First, in all the studies in this thesis, the largest known open-access datasets were em-

ployed for each medical application. This is crucial for empirical evaluations of the devel-

oped methods. Additionally, this provides a benchmark for fair comparative analysis 

against the state-of-the-art methods in the domain of interest. However, as was stated in 

the thesis, some of the datasets remain still small and available ground truth remains 

scarce, even if one discards issues related to conflicting annotations done by different 

experts or those which are not solely based on the signals. For example, the standard-

ized annotations for epileptic seizures rely on the symptoms and patient history besides 

the EEG signals. This issue has also been mentioned by the Physionet organizers about 

the heart sound labeling [86]. Therefore, larger scale datasets with labels agreed upon 
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by multiple experts will certainly open new horizons for more advanced ML and Signal 

Processing algorithms to reach higher performance.   

Second, proper experimental protocols and adequate performance metrics should be 

designed specifically for each task through a close collaboration between experts in both 

disciplines. International challenges, such as Physionet, is a good example of such an 

endeavor.  

Third, our experiments over the physiological datasets show that well-chosen features 

can outperform or perform as well as more sophisticated approaches, such as Deep 

Learning (DL) based methods. This has been shown especially in publication [P5], where 

the top three winning teams’ classification pipelines did not include any DL based meth-

ods. One explanation for the limited performance of DL methods is the insufficient la-

beled data in the medical field, see earlier comment. One potential extension is config-

uring time series augmentation methods similar to image augmentation for DL methods. 

Forth, ML methods using ensemble classifiers have been among the top winners of data 

science competitions. Our experiments support the hypothesis that using multiple clas-

sifiers and ensemble models outperform a single classifier. However, ensembling tech-

niques should be chosen based on the given task and data. 

Finally, some recent developments in nonlinear dynamics ( [108] and [109]) may improve 

the performance of the feature extraction scheme used in the first two publications. Dif-

ferent time lags in the phase space reconstruction rather than using a constant value for 

successive elements of a delay vector may improve the discrimination power of the ex-

tracted features. Moreover, using EEG segments with a duration of more than a few 

seconds may improve the quality of the phase space reconstruction. Furthermore, using 

the combination of handcrafted features and DL approaches such as recurrent ANNs 

may boost the prediction and classification of physiological time series. These will be 

topics of future research. 
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 

Abstract— In this paper, the performance of the phase space 

representation in interpreting the underlying dynamics of 

epileptic seizures is investigated and a novel patient-specific 

seizure detection approach is proposed based on the dynamics of 

EEG signals. To accomplish this, the trajectories of seizure and 

non-seizure segments are reconstructed in a high dimensional 

space using time-delay embedding method. Afterwards, Principal 

Component Analysis (PCA) was used in order to reduce the 

dimension of the reconstructed phase spaces. The geometry of the 

trajectories in the lower dimensions is then characterized using 

Poincaré section and seven features were extracted from the 

obtained intersection sequence. Once the features are formed, 

they are fed into a two-layer classification scheme, comprising the 

Linear Discriminant Analysis (LDA) and naïve Bayesian 

classifiers. The performance of the proposed method is then 

evaluated over the CHB-MIT benchmark database and the 

proposed approach achieved an 88.27% sensitivity and 93.21% 

specificity on average with 25% training data. Finally, we 

perform comparative performance evaluations against the state-

of-the-art methods in this domain which demonstrate the 

superiority of the proposed method.  

 
Index Terms— Dynamics, EEG, phase Space, Poincaré section, 

seizure detection, two-layer classifier topology. 

 

I. INTRODUCTION 

PILEPTIC seizures are transient excessive neuronal 

discharges originated from cortical gray matter and 

considered as the main definition of epilepsy. Indeed the 

concept of epilepsy covers a wide range of disorders, which 

can be classified according to the variety in types of seizures. 
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Therefore, the epileptologist in the first place, should diagnose 

if an epileptic seizure occurred and then determine the seizure 

type. For this purpose, electroencephalography (EEG) is 

commonly used due to its unique properties, such as cost-

effectiveness and high temporal resolution, which make it an 

influential and compulsory tool for exploring the brain 

functioning of patients with epilepsy. 

The estimated number of people suffering from epilepsy in 

the world is around 50 million [1]. In addition, an increasing 

need for recording EEG signals in the long term, and the 

contamination of these signals with physiological and non-

physiological artefacts renders their interpretation through 

visual inspection only a daunting and challenging task. These 

factors add impetus to the need of an automatic seizure 

detection system to ease the neurologist’s burden of inspecting 

such long-term EEG data [2]. Thus, in the recent years, several 

techniques have been developed in order to detect patterns of 

interest from background patterns, including time [3], 

frequency [4], time-frequency [5], and nonlinear methods [6] - 

[8]. 

Despite conventional time series analysis, nonlinear 

dynamics addresses nonlinear relationships among the 

variables of a system by investigating only the variables (i.e., 

states) in phase space whilst discarding time or spectral 

components. The main power of this approach is that it 

provides information regarding the underlying dynamics of the 

system without knowing all the factors in the system 

evolution. Hence, nonlinear time series analysis, unlike 

differential equations, is a top-down approach where 

information about the states of the system or the relationship 

among the states is not available. Therefore, the approach is to 

reconstruct the system dynamics in phase space and then 

quantify the reconstructed attractors (e.g., [9] and [10]). 

Numerous measures originated from nonlinear dynamics 

have been introduced and used for the analysis of EEG 

signals. Correlation dimension [11], Lyapunov exponents [12], 

phase synchronization [13], and mutual dimension [14] can be 

named among the traditional and novel measures. 

Nevertheless, most of these measures do not have 

straightforward interpretations and can only be used as 

tentative indices. This may instigate a false impression of 

chaos, hence surrogate data tests are needed in order to check 

the validity of the analysis. In other words, surrogate data 
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analysis is required in this case to reject the least null 

hypotheses of linear stochastic and white noise [15] [16]. On 

the contrary, phase space reconstruction can be considered as 

a tool to demonstrate the evolution of a dynamic system 

through time, while the dynamic system can fall into several 

categories such as conservative or dissipative, linear or 

nonlinear, deterministic or stochastic. Therefore, using 

geometrical features, based only on the phase space and 

without asserting any assumption about the type of the 

underlying dynamic, made the studies independent from 

chaotic hypothesis and consequently independent from the 

surrogate data analysis [6].  

However, despite the emphasized properties of the phase 

space, characterizing the reconstructed trajectories of EEG 

signals, purely based on its geometry, is quite rare and only 

few works exist up to date. In [17], the phase space of an EEG 

signal was reconstructed after decomposing the signal using 

empirical mode decomposition with application to seizure 

detection. Two measures, namely the 95% confidence ellipse 

area and the interquartile range of the Euclidian distance, were 

extracted from two- and three-dimensional phase spaces, 

respectively. M. Chang et al. compared the efficiency of 

features obtained by amplitude-frequency analysis [18] and 

autoregressive (AR) model [10] using phase space and raw 

data in a Brain Computer Interface (BCI) task. In their study, 

the phase space of two EEG channels was reconstructed and 

then the AR parameters, peak and mean values of the absolute 

value of amplitude samples in two frequency bands 8-13 Hz 

and 14-25 Hz were calculated as features. It was shown that 

these features improve the classification results in contrast to 

the same features extracted from the raw data. 

In [19], the wavelet (Daubechies 4) coefficients of an EEG 

signal at 5 levels were used to plot a two dimensional phase 

space. Then, the Euclidean distances between the origin and 

every point in the phase space were calculated. The mean, 

median, average power and standard deviation of these 

distances in each sub-band were used as features in order to 

detect seizure events. The classification results on real EEG 

data showed the significance of the extracted features. 

Furthermore, the phase space of EEG signals has been studied 

in a behavioral neuroscience research. In [20], the slope of a 

regression line in a two-dimensional phase space was obtained 

as a function of different time lags and considered as a feature 

in classification of sleep-wake states. The results showed the 

features based on phase space achieved higher performance 

than the power spectral approach. 

Accurate reconstruction of the phase space has a great 

impact on the characterization of its trajectory properties. In 

the time-delay embedding method this accuracy depends on 

the proper selection of the time lag and the embedding 

dimension. According to the embedding theorem, any time lag 

will be acceptable; however, it should be noted that choosing a 

too small or a too large time lag value prompts completely 

dependent and independent coordinates [6]. Thus, the 

necessary and major task in keeping the physical properties of 

attractors is to determine a large enough embedding 

dimension. In the aforementioned studies, the maximum 

embedding dimension of three (in [17]), or two (in [18], [10], 

[19], and [20]) were used, this is generally insufficient and 

hence inadequate for mathematical modeling of such complex 

signals. Many published works in EEG signal processing (e.g., 

[21] - [24]) propose high dimensional phase spaces, i.e., d>3. 

However, using a higher dimensional phase space makes the 

interpretation and visualization of the trajectories a 

challenging task. 

In this study, in order to address the aforementioned 

deficiencies such as the false impression of chaos and the 

necessity of applying surrogate data analysis, a novel phase 

space method is proposed. The proposed method aims to 

capture the underlying dynamics of the epileptic seizures and 

hence to discriminate them from the non-seizure segments in 

an efficient way. Therefore, our primary goal is to create a 

new set of nonlinear features for seizure detection which 

decreases the computational complexity while at the same 

time increases the seizure detection accuracy. This method 

describes the characterization of the geometry of a high 

dimensional phase space in such a way that it keeps the 

reconstructed trajectories unfolded. More specifically, this 

paper describes a novel feature extraction method based on a 

high dimensional phase space along with a classification 

scheme, where the main objective is to maximize the seizure 

detection accuracy with a minimal feedback from a human 

expert. Besides the discrimination ability of the extracted 

features, there are two main factors potentially affecting the 

performance of the automatic seizure detection methods: 

variation in seizure types and the brain regions where seizures 

have originated. Epileptic seizures develop as the results of 

different disorders, and as such, they cause significant 

variations of seizure types among patients (inter-patient 

variability). Therefore, in this work patient-specific setting is 

employed as a convenient candidate for such classification 

problems since this approach has more potential to learn the 

patterns of seizures in each individual specifically. In order to 

address the second factor, the signals of all channels are 

utilized. Besides providing the information of seizures in 

different brain areas, this approach gives the flexibility on the 

proposed framework to be compatible with various EEG 

recording montages. 

To accomplish these objectives, first we reconstruct the 

trajectories of each 1-second EEG segment with fixed values 

of time lag and embedding dimension (Section  II.B). Then, a 

Poincaré map of the reconstructed trajectories is obtained 

using Poincaré section, which is mainly chosen according to 

the first and second Principal Components (PCs) of the phase 

space coordinates (Section  II.C). Afterwards, 7 discriminative 

features (Section  II.D) are extracted from the obtained 

Poincaré map and fed into a classifier topology with two-layer 

architecture. The first layer consists of 23 Linear Discriminant 

Analysis (LDA) classifiers and a Naïve Bayes classifier 

formed in the second layer (Section  II.E) in order to fuse the 

decisions of the first layer classifiers and hence perform the 

final classification. Finally, the proposed approach is tested on 

a benchmark dataset with EEG recordings of pediatric patients 

with intractable seizure and compared with the state-of-the-art 



TNSRE-2015-00131 3 

methods in this domain. The paper is concluded in Section  IV. 

II. EEG DATA PROCESSING 

A. EEG Dataset 

The EEG recordings were collected from 23 pediatric 

patients (males, ages 3-22; and females, ages 1.5-19) at the 

Children’s Hospital, Boston, to assess their candidacy for 

surgical operation [25] [26]. Nine to twenty four EEG 

recordings were recorded for each individual. All the 

recordings were labeled as seizure or non-seizure with one 

second resolution. The sampling frequency was 256 Hz with 

16-bit resolution. There are 23 common channels (FP1-F7, F7-

T7, T7-P7, P7-O1, FP1-F3, F3-C3, C3-P3, P3-O1, FP2-F4, 

F4-C4, C4-P4, P4-O2, FP2-F8, F8-T8, T8-P8, P8-O2, FZ-CZ, 

CZ-PZ, P7-T7, T7-FT9, FT9-FT10, FT10-T8, and T8-P8) for 

each recording, which are based on the international 10-20 

system of EEG electrode positions (see Fig. 1). In this study, 

only those records which contain at least one seizure event 

were used. In TABLE I, the lengths of each EEG recording 

(used in this study) are shown. Recordings 21 and 1 were 

obtained from the same female patient with 1.5 year apart, 

which were considered as two extra patients in this study. In 

addition, patient 15 was excluded from our analysis because 

we failed to read the EEG data of this patient. 

 
Fig. 1. Location of electrodes in international 10-20 system; the used channels 

are shown with gray color. 

B. Phase Space Reconstruction 

The phase space of a system represents how the states’ 

dynamics evolve over time. The aim of phase space 

reconstruction is to obtain state vectors using the sequence of 

observed measurements. In this study, time-delay embedding 

method [27] is used for reconstruction of the EEG phase 

space. Takens' theorem expresses that the topological features 

of any higher dimensional system with coupled variables are 

reconstructable from a single time series of observations [28]. 

This theorem proves the independence of our study from the 

surrogate data analysis, which is mentioned in Section  I. 

The main idea is to create a series of time-shifted samples in 

d dimensions so that d coordinates would be provided using 

the map: 

    X[𝑛] → 𝑌[𝑛] = (𝑋[𝑛], 𝑋[𝑛 + 𝑇], … , 𝑋[𝑛 + (𝑑 − 1)𝑇])    (1) 

where T is the time lag. In order to determine the convenient 

dimension and time lag the two commonly known methods of 

correlation dimension and the mutual information are 

employed [6]. The embedding dimension 5 and time lag 6 

(about 23 milliseconds at a sampling frequency of 256 Hz) 

were achieved and used for constructing an EEG attractor. The 

achieved values were validated empirically, where different 

time lags and embedding dimensions were used and their 

classification accuracy compared. In Fig. 2, the reconstructed 

phase spaces of sample seizure and non-seizure segments from 

the 1
st
, 17

th
 and 21

st
 patients are shown. 

 
Fig. 2. The phase space plots of 1-s non-seizure segments in the left column 

(a, c, and e), and seizure segments in the right column (b, d, and f) 

reconstructed from the 1st, 17th and 21st patients (each row) in the CHB-MIT 
benchmark database. 3-D phase spaces are plotted for visualization. 

C. Poincaré Section Delineation  

Poincaré section, which was named in Henry Poincaré 

honor, is a well-known method for analyzing the type of 

attractors. In this method, a line (or plane) cut the attractor and 

then the intersection points are investigated. In fact, Poincaré 

section provides a geometric view of a trajectory’s behavior 

through those intersection points. One application of Poincaré 

section, for instance, is to study the stability of limit cycles. 

This method also can be considered as a sampling method, 

which converts the continuous trajectories of a phase space to 

a discrete sequence of intersection points. The investigation of  
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how the trajectories pass through the Poincaré section reveals 

information about the dynamics of a system that is not 

obtainable otherwise [29]. 

The most common approach in this context is applying the 

Poincaré section on two- or three-dimensional attractors. The 

reason is that Poincaré section aims to generate a plot 

stroboscopically so that it samples the motion of the observed 

trajectories. In order to construct such a view, the Poincaré 

section must have a dimension less than the corresponding 

trajectories. Therefore, for instance, if the embedding 

dimension of a phase space is three, then a plane is used as a 

Poincaré section. In our case, where the number of embedding 

dimension is five, the Poincaré section will be a surface with 

four dimensions. In order to avoid using such complex 

geometric shapes and at the same time keep the trajectories 

unfolded without ambiguities, the following solution is 

proposed: first, Principal Component Analysis (PCA) is 

employed in order to convert the 5-dimensional embedding 

coordinates into a set of values of linearly uncorrelated 

principle components (PCs). Then, a polynomial with the 

degree of one (i.e., Poincaré section) is fitted to the space 

formed by the 1
st
 and 2

nd
 PCs. The intersection points of the 

fitted line and trajectories in the 2-dimensional space are then 

obtained. In Fig. 3, the whole process of Poincaré mapping is 

shown. The reason for deploying PCA is to project the entire 

phase space onto a different space (the space originated from 

1
st
 and 2

nd
 PCs) where the reconstructed trajectories are more 

spread. In this way, the chosen space contains more 

information about the dynamics of the states. It is worth 

mentioning that the first 2 PCs are just linear transformations 

of the original variables and do not necessarily contain more 

information than the other PCs. Therefore, we empirically 

checked all the possible combinations of PCs i.e., 1
st
 and 3

rd
 

PCs, 2
nd

 and 3
rd

 PCs, etc., and the best results was achieved by 

the first and seconds PCs for feature extraction. In order to 

find the intersection points, the trajectories and the Poincaré 

section lines were considered as polylines and then the Bézier 

clipping method [30] was applied. 

D. Feature Extraction 

In the next step, seven features in total were extracted from 

the first PC of the intersection sequence obtained in 

Section  II.C. These features are as follows: 

Range:  

                         Range = max(X) − min(X),                        (2) 

Quantile and interquantile range: 

The 0.13 quantile and the interquartile range (the difference 

between the first -0.25- and the third -0.75- quartile). 

Shannon entropy: 

                        Hs(X) = − ∑ P(X)log2(P(X)),                      (3) 

Root Mean Squared Amplitude (RMS Amp): 

                    RMSAmp(X) = √
1

N
∑ X2(k)N

k=1 ,                      (4) 

Coefficient of Variation: 

                            COV(X) =
√

∑(X−X̅)

N

X̅
,                                  (5) 

and energy: 

                          En(X) = ∑ |X(k)|2N
k=1                              (6) 

 

where X is the sequence of the intersection points, and X̅ is its 

mean value. N is the number of intersection points and P(X) is 

the probability distribution function. 

E. Classification and Post Processing 

Once the feature vectors of each patient were formed, they 

are fed into a two-layer classifier network. In the first layer, a  

TABLE I.  CHB-MIT benchmark. The patients with longest and shortest duration of recordings are shown in bold. 

Patient Gender Age 
Number of seizure events (Tmax-

Tmin in seconds) 
 

Total duration of 

seizures (sec) 

Total duration of non-

seizures (sec) 

Total duration 

(sec) 

1 F 11 7 (28-102) 449 23476 23925 

2 M 11 3 (10-83) 175 7984 8159 

3 F 14 7 (48-70) 409 24791 25200 

4 M 22 4 (50-117) 382 37977 38359 

5 F 7 5 (97-121) 563 17437 18000 

6 F 1.5 10 (13-21) 163 93053 93216 

7 F 14.5 3 (87-144) 328 32209 32537 

8 M 3.5 5 (135-265) 924 17076 18000 

9 F 10 4 (63-80) 280 34219 34499 

10 M 3 7 (36-90) 454 50010 50464 

11 F 12 3 (23-753) 809 9250 10059 

12 F 2 27 (14-98) 1016 33844 34860 

13 F 3 10 (18-71) 450 24750 25200 

14 F 9 8 (15-42) 177 25023 25200 

16 F 7 8 (7-15) 77 17923 18000 

17 F 12 3 (89-116) 296 10528 10824 

18 F 18 6 (31-69) 323 19951 20274 

19 F 19 3 (78-82) 239 10307 10546 

20 F 6 8 (30-50) 302 19734 20036 

21 F 13 4 (13-82) 203 13587 13790 

22 F 9 3 (59-75) 207 10593 10800 

23 F 6 7 (21-114) 431 31823 32254 

24 Unknown Unknown 16 (17-71) 539 42661 43200 
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single LDA classifier trained over the features of each 1-

second EEG segment of each EEG channel. Once the first 

layer classifiers are trained, then their outputs (class vectors) 

are fed into a naïve Bayes (NB) classifier as a feature matrix, 

which makes the final classification for the input 1-second 

EEG segment. In the naïve Bayes classifier the “multivariate 

multinomial distribution” is used to model the outputs of the 

LDA classifiers because the input features of the second layer 

are discrete (i.e., binary). The schematic diagram of the 

proposed classification framework is shown in Fig. 4. 

The main scenario is that once the system is trained for a 

specific patient it can then be used over and over for the same 

patient. In this case, after the system is trained using the 

labeled data, the system can be used and help the neurologist 

for the same patient over and over. Therefore, we divided the 

benchmark database is divided into a training and test datasets, 

both of which contain seizure and non-seizure frames, where 

the training set contains seizure and non-seizure segments 

which occurred earlier in time and the remaining segments 

constitute the test set. The classifier network was trained over 

the EEG recording of each patient’s training set that is formed 

using two different training sizes: 25% and 50% of the 

available data.  

In the post processing step, the fuzzy rule-based 

morphological filter proposed in our previous work [31] was 

applied to the outputs of each classifier in both layers (i.e., 23 

LDA and 1 NB). The principal aim of the morphological filter 

is to filter out the classification outliers based on some global 

properties such as continuity and neighborhood similarity. 

III. EXPERIMENTAL RESULTS 

In this section, first the overall results of the proposed 

patient-specific approach are presented. For comparative 

 
Fig. 3. Poincaré mapping procedure. The phase space (column 2) is obtained from the raw signal (column 1) in a non-seizure (top row) and a seizure 
segment (bottom row). In order to draw the Poincaré section, a polynomial curve with degree of one is fitted to the 1st and 2nd PCs of the phase space 

coordinates (column 3). Once the intersection points were determined, their values on the first PC were used for feature extraction. For visualization 

purpose, only the first three coordinates of phase space are shown. 

 
Fig. 4. The proposed classification framework (PSR is the phase-space reconstruction, LDA and NB are the linear discriminant analysis and naïve Bayes 

classifier, respectively). 
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evaluations, in section  III.B, the seizure detection systems 

using the CHB-MIT benchmark are briefly presented. In 

section  III.C, the proposed feature extraction approach is 

compared against the three state-of-the-art methods. In 

section  III.D, four different classifiers within the proposed 

classification topology are evaluated against the proposed 

classifier. Finally, the computational complexity analysis is 

presented in section  0.  

A. Classification Performance Evaluations 

In this work, the standard performance measures of 

sensitivity (Sen), specificity (Spe) and accuracy (Acc) are 

used. They are defined as follows, 

                                     𝑆𝑒𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
, (7) 

                                   𝑆𝑝𝑒 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
,                                      (8) 

                                𝐴𝑐𝑐 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
,                             (9) 

where 𝑇𝑃 (True Positive) is the number of segments correctly 

detected as seizure, 𝐹𝑁 (False Negative) is the number of 

segments incorrectly detected as non-seizure, 𝑇𝑁 (True 

Negative) is the number of segments correctly detected as 

non-seizure, and 𝐹𝑃 (False Positive) is the number of 

segments incorrectly detected as seizure. The confusion matrix 

and the overall classification performance measures are shown 

in TABLE II and TABLE III. In addition, the Region of 

Convergence (ROC) plots are presented in Fig. 5 and Fig. 6 

for better visualization of the performance of the proposed 

method. 

As TABLE III shows, the best classification performance is 

achieved using a training rate of 50% with an average 

sensitivity and specificity of 89.10% and 94.80%, 

respectively. However, even with 25% training rate only an 

insignificant performance loss is encountered, i.e., 88.27% and 

93.21% are the average sensitivity and specificity rate, 

respectively. This demonstrates a delicate generalization 

capability of the proposed approach and effectiveness of the 

proposed feature extraction on the discrimination of the 

seizures segments. 

However, the results given in TABLE III indicate that a 

relatively low classification accuracy is obtained on a few 

patients i.e., 6, 12 and 24. The reason is that in the recordings 

of these patients, there are many similarities between seizure 

and non-seizure segments as well as the high variations within 

each type. This is visible in Fig. 7 where few segments of non-

seizure and seizure recordings from patient 6 are displayed. As 

can be seen in the figure, there is a high variability between 

patterns of non-seizure segments c, e and g. In addition, this 

difference is evident between seizure segments d and h. 

Furthermore, both segments in a and b have high frequency 

and low amplitude signals while the former is a non-seizure 

and the latter is a seizure segment. 

Furthermore we calculated the Average Detection 

Sensitivity Rate (ADSR), Average False Alarm (AFA) per 

hour and Average Alarm Delay (AAD) as expressed below in 

order to evaluate the “seizure event detection” performance of 

the proposed method. In order to calculate these metrics, we 

defined a seizure event if at least 7 consecutive seizure 

segments (with resolution of 1 second) are detected. 

 

ADSR =
∑ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑠𝑒𝑖𝑧𝑢𝑟𝑒 𝑒𝑣𝑒𝑛𝑡𝑠 𝑖𝑛 𝑁𝑆

𝑆 =1 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 "𝑆" 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑖𝑧𝑢𝑟𝑒 𝑒𝑣𝑒𝑛𝑡𝑠 𝑖𝑛 𝑎𝑙𝑙 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠
,  (10) 

 

 

 

TABLE II. True Positive (TP), False Negative (FN), True Negative (TN), and False Positive (FP) achieved for test set using 50% and 25% training rate. 

50% Training rate  25% Training rate 

patients 

Seizure 

detected as 

seizure (TP) 

Seizure 

detected as 

non-seizure 

(FN) 

Non-seizure 

detected as 

non-seizure 

(TN) 

Non-seizure 

detected as 

seizure (FP) 

Seizure 

detected as 

seizure (TP) 

Seizure 

detected as 

non-seizure 

(FN) 

Non-seizure 

detected as 

non-seizure 

(TN) 

Non-seizure 

detected as 

seizure (FP) 

1 206 18 11693 45 327 9 17371 236 

2 80 7 3955 37 131 0 5645 343 

3 203 1 12087 308 306 0 17084 1509 

4 169 22 18409 579 276 10 23663 4819 

5 219 62 8677 41 350 72 13011 66 

6 58 23 41672 4854 99 23 47232 22557 

7 124 40 16069 35 211 35 23988 168 

8 373 89 8522 16 574 119 12404 403 

9 133 7 17084 25 206 4 24844 820 

10 212 15 24750 255 293 47 37129 378 

11 383 21 4521 104 597 9 6556 381 

12 407 101 11344 5578 560 202 20491 4892 

13 219 6 11751 624 325 12 17455 1107 

14 83 5 11814 697 129 3 17258 1509 

16 33 5 6681 2280 42 15 11859 1583 

17 148 0 4862 402 191 31 7618 278 

18 161 0 8460 1515 242 0 11953 3010 

19 101 18 5048 105 135 44 7647 83 

20 142 9 9790 77 213 13 14525 275 

21 101 0 6727 66 151 1 10040 150 

22 102 1 5278 18 151 4 7836 108 

23 183 32 15757 154 193 130 23716 151 

24 179 90 21142 188 272 132 31195 800 
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TABLE III. The classification results using the proposed method. Patients with measures less than 70% are highlighted. Sen, Spe, and Acc are the 

sensitivity, specificity and accuracy obtained over the test data. 

 50% Training (%) 25% Training (%) 

Patient Sen. Spe. Acc. Sen. Spe. Acc. 

1 91.96 99.62 99.47 97.32 98.66 98.63 

2 91.95 99.07 98.92 100 94.27 94.39 

3 99.51 97.52 97.55 100 91.88 92.02 

4 88.48 96.95 96.87 96.50 83.08 83.21 

5 77.94 99.53 98.86 82.94 99.50 98.98 

6 71.60 89.57 89.54 81.15 67.68 67.70 

7 75.61 99.78 99.54 85.77 99.30 99.17 

8 80.74 99.81 98.83 82.83 96.85 96.13 

9 95.00 99.85 99.81 98.10 96.80 96.82 

10 93.39 98.98 98.93 86.18 98.99 98.88 

11 94.80 97.75 97.51 98.51 94.51 94.83 

12 80.12 67.04 67.42 73.49 80.73 80.52 

13 97.33 94.96 95.00 96.44 94.04 94.08 

14 94.32 94.43 94.43 97.73 91.96 92.00 

16 86.84 74.56 74.61 73.68 88.22 88.16 

17 100 92.36 92.57 86.04 96.48 96.19 

18 100 84.81 85.05 100 79.88 80.20 

19 84.87 97.96 97.67 75.42 98.93 98.39 

20 94.04 99.22 99.14 94.25 98.14 98.08 

21 100 99.03 99.04 99.34 98.53 98.54 

22 99.03 99.66 99.65 97.42 98.64 98.62 

23 85.12 99.03 98.85 59.75 99.37 98.84 

24 66.54 99.12 98.71 67.33 97.50 97.12 

Average 89.10 94.80 94.69 88.27 93.21 93.11 

 

 

 

 
Fig. 5. ROC plots for 50% training rate per patient. The x- and y axis represent the false positive rate and true positive rate, respectively. 
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AFA per hour =

 
∑ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠 𝑖𝑛 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 "𝑆"𝑁𝑆

𝑆=1

𝑇𝑜𝑡𝑎𝑙 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐸𝐸𝐺 𝑟𝑒𝑐𝑜𝑟𝑑𝑖𝑛𝑔𝑠 (𝑖𝑛 ℎ𝑜𝑢𝑟𝑠) 𝑖𝑛 𝑎𝑙𝑙 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠
,          (11) 

 

AAD =  
∑ 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑑𝑒𝑙𝑎𝑦𝑠 𝑖𝑛 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 "𝑆"𝑁𝑆

𝑆=1

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑠𝑒𝑖𝑧𝑢𝑟𝑒 𝑒𝑣𝑒𝑛𝑡𝑠 𝑖𝑛 𝑎𝑙𝑙 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠
,  (12) 

 
where NS = 23 is the total number of patients. The ADSR, 

AFA, and AAD metrics are reported for the test set in TABLE 

IV. 

 

As can be seen in TABLE IV, the best results have been 

achieved using 50% training rate as expected. Because of the 

existence of noise and artifacts in the EEG records of the 

patients 6 and 12, the average of false alarms increased 

significantly. To be more specific, using 50% training rate and 

not taking into account patients 6 and 12, we achieved 

97.14%, 1.85, and 5.63 for ADSR, AFA and AAD, 

respectively. However, the delay is increased by about 1 

second on average while the number of false alarms per hour 

is approximately reduced by half. Similarly, with 25% training 

rate, 94.93%, 2.75 and 5.65 were obtained for ADSR, AFA 

and AAD, respectively.  

B. Comparative Evaluations of the Classification 

Performance 

Few recent studies have used this benchmark for evaluation. 

There are three main reasons for this: 1) high seizure 

variations both within- and among patients, 2) only bipolar 

longitudinal montage information provided (lack of full 

montage information), and 3) long-term EEG recordings in 

this dataset contain other patterns such as sleep and 

physiological artefacts which reduce the performance of 

seizure detection (in particular in patients 6 and 12). 

In TABLE V, we summarized the seizure detection methods 

(i.e., methods which detect the entire duration of seizure 

events and not only the onset of seizure) applied on CHB-MIT 

dataset. In order to perform a fair comparative evaluation we 

compared our approach only with those studies which used a 

training rate higher than or equal to ours and also used 

complete data from the benchmark database for evaluation. 

Note that no comparisons can be drawn between our results 

and the ones from [32], [33] and [34], since the patients used 

in these studies were not specified. In [35], only accuracy is 

reported which is not a proper metric for such highly 

unbalanced dataset. Still in the proposed approach with only 

25% training rate we achieved around 13% higher accuracy 

level than the method in [35] although they used 80% training 

rate.  

 
Fig. 6. ROC plots for 25% training rate per patient. The x- and y axis represent the false positive rate and true positive rate, respectively. 
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TABLE IV. Average Detection Sensitivity Rate (ADSR), Average False 

Alarm (AFA) and Average Alarm Delay (AAD) achieved on test set for 

seizure event detection 

Using 50% training 

rate  

 Using 25% training 

rate  

ADSR (%) 96.29 91.34 

AFA per 

hour 
3.04 4.86 

AAD  

(second) 
4.65 5.03 
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Direct comparison with [36] is not feasible either because 

there is an ambiguity in how the training and test sets are 

constructed. Regardless of this ambiguity, the best achieved 

detection sensitivity rate of 83% was reported in the fifth 

experiment which corresponds to the 80% training rate. 

Regardless, we still achieve a significantly higher sensitivity 

rate with only 25% training rate. 

Additionally, in this work an average sensitivity and 

specificity rate of 89.31% and 95.03% were achieved using 

only the early 25% of each EEG record as training (excluding 

the patients 6 and 12), which further shows approximately 1% 

improvement in contrast to our previous work [31] with the 

same training rate but using a large set of features in a 

significantly sophisticated classifier network topology. 

Therefore, our previous method needs a cloud computing 

implementation with massive parallelization for any on-line  

processing because we used a large network of classifiers in 

each Network of Binary Classifier (NBC) [37]. While in the 

proposed method, only 24 and significantly faster classifiers 

(23 LDAs and 1 Naïve Bayes) are used. In addition, the 

proposed method needs only about 3 ms for feature extraction 

from a 1-s EEG segment while in our previous method it took 

280 ms. As a result, the proposed method can easily be ported 

on a tablet or pocket size computer which makes the proposed 

EEG classification approach feasible on a mobile application. 

C. Comparative Evaluations of the Feature Extraction 

Approach 

In order to perform a fair comparison between the 

discriminative powers of the proposed feature extraction 

technique against the other state-of-the-art methods, three 

different feature sets are extracted from the CHB-MIT 

benchmark and classified using the same classification scheme 

explained in section  II.E. The first feature set consists of six 

features used in [38], which are the energy of details and 

approximation coefficients (d1, d2, d3, d4, d5, and a5). The 

second feature set was proposed by Kumar et al. [39], where 

approximate entropy (ApEn) of details and approximation 

coefficients (d1-d5, and a1-a5) were proposed for epileptic 

seizure detection. In these two feature sets, wavelet 

Daubechies 4 were used in order to decompose the EEG 

segments into five levels. The third feature set is a 

combination of eight nonlinear features, including ApEn [40], 

correlation dimension [41], and recurrence quantification 

analysis (RQA). The RQA based features are recurrence rate, 

determinism, averaged diagonal line length, entropy, 

laminarity, and trapping time [28]. TABLE VI presents the 

obtained results against the three competitor feature sets over 

the test data. 

The results clearly indicate that the proposed feature 

extraction approach yields the highest average sensitivity and 

specificity rates. Based on TABLE VI, the proposed features 

obtained relatively low results for only two patients, i.e., less 

than 70% in either sensitivity or specificity while the 

competing feature sets totally fail in some patients; for 

instance, the first, second and third feature sets obtained less 

than 50% specificity for patients 4, 13, and 18. This makes 

them entirely unreliable in practice for a medical diagnosis 

application using the proposed classification scheme. 

D. Comparative Evaluations of the Classifiers 

To evaluate the selection of the classifiers used in the first 

layer of the proposed approach (i.e., LDA), the performances 

of different classifiers are also presented while the NB 

classifier in the second layer is used. In TABLE VII, we 

compared the sensitivity and specificity of 4 state-of-the-art 

classifiers including Quadratic Discriminant Analysis (QDA), 

Mahalanobis Discriminant Analysis (MDA), Naïve Bayes 

(NB), and SVM (with a linear kernel). The NB classifier used 

in the first layer employed kernel smoothing density 

estimation in order to model the input features. It is clear that 

the proposed LDA classifiers can reach much higher 

sensitivity compared to QDA and NB classifiers. In addition, 

they can achieve approximately 2% higher average sensitivity 

and specificity compared to MDA classifier. Even though 

SVM classifier with linear kernel achieved 1% higher 

sensitivity than LDA, it fails to classify the EEG data of 

patients 4 and 6. Moreover, LDA achieved 0.4% higher 

specificity on average, which is a noteworthy improvement in 

such unbalanced data, i.e., recall that the average duration of 

non-seizure segments over 23 patients is around 26444 

seconds, 0.4% of which are about 106 seconds. So on average, 

using SVM would lead to an extra of 106 false alarms. 

Furthermore, the computational complexity of the SVM 

classifier is much higher than that of LDA, which may cause 

problems in practice for real-time processing. This is further 

investigated in detail in the next sub-section. 

 
Fig. 7. The non-seizure (first column) and seizure (second column) 

segments of patient 6 illustrate a high variability within the same class 

and similarity between distinct classes (length of each segment=10 
seconds, channels: FP1-F7, F7-T7, T7-P7, P7-O1, FP1-F3, and F3-C3). 
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TABLE V. The proposed seizure detection methods using CHB-MIT dataset 

Authors Features Patients Channels 
Training 
Rate (%) 

Av. 

Sen. 

(%) 

Av. 

Spe. 

(%) 

Av. 

Acc. 

(%) 

Rafiuddin et. 
al. [35] 

Interquartile range, median absolute deviation of raw 

data, energy and coefficient of variation extracted from 

the  Daubiches (db4) wavelet coefficients 

23 23 80 - - 80.16 

Uzzaman 
Khan et. al. 

[32] 

Relative values of 
normalized coefficient of variation (NCOV) 

based measure 

5 (not 

specified) 

Not 

specified 
80 83.6 100 91.8 

Hunyadi 
et. al. [36] 

16 features extracted from time and 
frequency domain 

23 
Not 

specified 
≈ 80 83 - - 

Supratak 

et. al. [33] 

Uses stacked autoencoders as unsupervised 

feature learner 

6 (randomly 

selected) 

Not 

specified- 
channels 

were 

selected 
manually 

Totally 30 
epochs 

used 

 

100 - - 

Fürbass 

et al. [34] 
EpiScan (automatic seizure detection method) 23 - - 67 - - 

Kiranyaz 

et. al. [31] 

342 features including time, frequency, and time- 

frequency features 

21(excluding 
 patients 6, 

12, and 15) 

18 25 89.01 94.71 - 

Proposed 

Method 

7 features extracted from intersection points of 

Poincaré section and phase space 

23 
(excluding 

patient 15) 

23 

25 88.27 93.21 93.11 

50 89.10 94.80 94.69 

 
 

TABLE VI. The classification results of three different feature sets using the proposed classification scheme. Performance metrics less than 70% are 

highlighted. 

Length of One EEG Segment = 1 second, Training Rate = 50% 

 
Proposed feature set 

1st Feature Set 

Energy of DWT Coeff. [38] 

2nd Feature Set 

DWT-based ApEn. [39] 

3rd Feature Set 

Nonlinear [40] [41] [28] 

Patient Sen. Spe. Sen. Spe. Sen. Spe. Sen. Spe. 

1 91.96 99.62 94.64 98.11 94.64 99.48 93.75 90.45 

2 91.95 99.07 98.85 16.51 96.55 36.62 78.16 95.57 

3 99.51 97.52 96.08 97.01 95.59 97.52 94.61 97.04 

4 88.48 96.95 24.61 26.01 21.99 34.78 67.02 83.96 

5 77.94 99.53 79.36 98.65 78.29 99.60 98.93 85.66 

6 71.60 89.57 65.43 67.99 64.20 73.44 64.20 70.28 

7 75.61 99.78 73.17 99.79 69.51 99.96 50.00 93.45 

8 80.74 99.81 74.89 99.23 74.46 99.40 77.71 96.78 

9 95.00 99.85 82.14 100 87.14 100 68.57 66.46 

10 93.39 98.98 84.58 99.86 83.26 99.64 94.27 91.89 

11 94.80 97.75 95.30 97.69 94.31 94.14 99.01 74.68 

12 80.12 67.04 76.97 79.66 87.80 87.24 77.76 65.88 

13 97.33 94.96 100 28.75 98.22 32.21 99.11 42.97 

14 94.32 94.43 64.77 98.63 76.14 98.63 85.23 99.22 

16 86.84 74.56 81.58 91.75 84.21 97.51 97.37 76.97 

17 100 92.36 92.57 93.43 97.30 93.79 91.22 74.58 

18 100 84.81 97.52 78.42 96.27 82.52 100 43.19 

19 84.87 97.96 84.87 95.85 85.71 99.28 77.31 91.97 

20 94.04 99.22 92.05 97.67 94.04 97.14 94.04 95.46 

21 100 99.03 90.10 98.45 90.10 98.45 90.10 84.31 

22 99.03 99.66 96.12 99.30 97.09 98.51 83.50 91.77 

23 85.12 99.03 93.02 99.39 88.84 99.08 90.23 92.76 

24 66.54 99.12 65.80 97.05 63.94 99.99 76.95 93.84 

Average 89.10 94.80 82.80 85.18 83.46 87.78 84.74 82.57 
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E. Computational Complexity Analysis 

In this work, we implemented the proposed method using 

MATLAB version R2014b and the computations were 

performed on a standard desktop computer with a 3.4 GHz 

processor and 16 GB ram. Two metrics are used for evaluating 

the computational complexity: The first metric is the time 

taken to extract each feature set from every 1-s long segment 

of one EEG channel. This value was repeatedly calculated 

across one hour (3600 segments) to ensure the repeatability of 

the measured time and is reported in TABLE VIII for the 

proposed and competing feature extraction methods. 

 

The second metric is the elapsed times for classification 

(including training and test) over the proposed features for one 

hour recording with different classifiers, which are shown in 

TABLE IX. The results clearly demonstrate the superiority of 

the proposed approach with LDA classifiers over the proposed 

features in terms of computational complexity. 

Clearly, the proposed method has the advantages of having 

relatively high sensitivity and specificity, and low 

computational complexity. The proposed method on the other 

hand lacks preprocessing steps for removing noise and 

artifacts. Although, this decreases the computational 

complexity, it can increase the false alarms due to the 

contaminated EEG signals especially in patients 6 and 12. 

Additionally, the proposed method is not able to detect the 

pre-ictal states. 

IV. CONCLUSIONS 

In this study, a new multi-channel EEG seizure detection 

method is presented based on the dynamics of the trajectories 

in phase space. The proposed Poincaré mapping procedure 

enables us to study the difference between the dynamics of the 

seizure and non-seizure segments in a high dimensional phase 

space. The proposed approach keeps the reconstructed 

TABLE VII. The classification results of the proposed features using four different classifiers. Patients with performance metrics of less than 70% are 

highlighted. 

Length of One EEG Segment = 1 second, Training Rate = 50% 

 
LDA QDA MDA NB SVM 

Patient Sen. Spe. Sen. Spe. Sen. Spe. Sen. Spe. Sen. Spe. 

1 91.96 99.62 95.98 99.45 100 91.00 95.87 98.93 95.98 99.80 

2 91.95 99.07 98.85 13.45 90.80 99.97 93.98 98.76 97.70 98.95 

3 99.51 97.52 99.51 95.35 100 97.05 100 96.51 99.51 97.10 

4 88.48 96.95 23.04 40.85 18.32 97.70 11.11 97.52 32.46 96.00 

5 77.94 99.53 86.83 93.90 100 67.80 96.59 93.62 99.64 94.23 

6 71.60 89.57 58.02 29.72 18.75 98.10 16.05 77.51 55.56 91.24 

7 75.61 99.78 82.32 96.35 91.46 94.98 87.90 96.41 89.02 97.44 

8 80.74 99.81 88.74 99.33 93.51 97.21 83.63 99.30 89.83 99.06 

9 95.00 99.85 97.14 96.05 97.14 95.69 97.84 76.14 96.43 97.21 

10 93.39 98.98 96.92 96.70 96.04 94.55 95.96 98.20 95.59 99.08 

11 94.80 97.75 96.53 95.35 97.03 87.87 96.47 98.67 96.04 99.11 

12 80.12 67.04 59.76 84.85 86.22 68.38 53.66 77.17 87.40 74.74 

13 97.33 94.96 56.89 94.56 96.41 95.31 72.85 97.50 96.44 95.01 

14 94.32 94.43 88.64 91.99 88.64 96.92 91.67 95.38 94.32 95.72 

16 86.84 74.56 84.21 41.95 76.32 97.07 63.64 79.22 92.11 72.05 

17 100 92.36 100 92.00 100 87.08 100 92.97 100 90.81 

18 100 84.81 100 77.30 100 75.26 100 85.81 100 82.09 

19 84.87 97.96 88.14 93.13 97.48 87.70 82.18 94.83 95.80 96.35 

20 94.04 99.22 90.73 99.04 93.38 96.73 87.50 99.13 94.04 98.62 

21 100 99.03 85.15 99.85 86.14 99.87 87.75 99.63 100 99.44 

22 99.03 99.66 100 97.90 100 96.85 100 98.33 100 98.92 

23 85.12 99.03 97.67 99.13 98.60 97.94 98.07 99.06 98.14 99.06 

24 66.54 99.12 72.12 98.48 80.67 95.49 68.83 99.53 66.54 99.50 

Average 89.10 94.80 84.66 83.77 87.26 92.02 81.81 93.48 90.11 94.41 

 

TABLE VIII. Run time (in millisecond) using three different feature 

extraction methods in the proposed classification scheme 

 

Proposed 

Feature Set  

1st 

Feature 

Set 

2nd 

Feature 

Set 

3rd 

Feature 

Set 

Average elapsed time for 

feature extraction of 1s-

long EEG segment 

2.6 2.8 5.3 146.2 

 

TABLE IX. Classification run times (in seconds) using four different 
classifiers over the proposed features 

 

LDA 

(Proposed) 

QDA MDA NB SVM 

Average elapsed time 

for classification of 

1h EEG recording  

0.25 0.27 0.26 58.29 24.28 
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trajectories unfolded and the computational complexity low. 

The proposed seizure detection approach was performed 

over CHB-MIT database in order to achieve the 

aforementioned objectives. The results indicate an improved 

classification performance over competing techniques without 

any pre-processing. The proposed approach achieves the 

highest accuracy and minimum false alarm rate among the 

three state-of-the-art feature extraction methods and four 

different classifiers, and offers the best trade-off between the 

anomaly detection accuracy and computational burden. 

Furthermore, the achieved run time shows the potential 

application of the proposed approach in Epilepsy Monitoring 

Units (EMUs). 

Extracting better features directly from the phase space 

rather than from its principal components is the subject of our 

future study. To accomplish this, noise and artifacts in EEG 

signals will need to be significantly suppressed prior to 

subsequent analysis. 
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 

Abstract— Nonlinear dynamics has recently been extensively 

used to study epilepsy due to the complex nature of the neuronal 

systems. This study presents a novel method that characterizes the 

dynamic behavior of pediatric seizure events and introduces a 

systematic approach to locate the nullclines on the phase space when 

the governing differential equations are unknown. Nullclines 

represent the locus of points in the solution space where the 

components of the velocity vectors are zero. A simulation study over 

5 benchmark nonlinear systems with well-known differential 

equations in 3D exhibits the characterization efficiency and 

accuracy of the proposed approach that is solely based on the 

reconstructed solution trajectory. Due to their unique characteristics 

in the nonlinear dynamics of epilepsy, discriminative features can be 

extracted based on the nullclines concept. Using a limited training 

data (only 25% of each EEG record) in order to mimic the real-world 

clinical practice, the proposed approach achieves 91.15% average 

sensitivity and 95.16% average specificity over the benchmark CHB-

MIT dataset. Together with an elegant computational efficiency, the 

proposed approach can, therefore, be an automatic and reliable 

solution for patient-specific seizure detection in long EEG 

recordings. 

 
Index Terms— EEG, seizure detection, nonlinear dynamics, 

phase space, nullcline, LDA, ANN. 

 

I. INTRODUCTION 

PILEPTIC seizures occur when the normal neuronal 

system in the brain turns into a hyperexcitable network. 

This hyperexcitability is the result of a disruption in the balance 

of the neuronal network [1]. The disruption factors, for instance, 

can change the neural excitation and inhibition balance, or the 

ion concentration of the cells [1]. In a healthy nervous system, 

this balance is maintained using different mechanisms, while in 

an epileptic brain this balance is altered [2].  

The series of mechanisms that affect the epileptogenesis, such 

as the neurons firing rates or the permeability of their membrane, 

prove that the nature of the neuronal system has a predominantly 

wide dynamic and nonlinear behavior. Therefore, theories of 

nonlinear dynamic systems are suitable mathematical 

characterizations for such biological systems. To be more 

precise, it has been shown that nonlinear dynamics can truly 

provide an explanatory framework for complex neuronal systems 
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and bioelectric data. This applies to both small-scale neuronal 

circuits [3] and large-scale systems such as brains [4] [5] [6]. 

Often, dynamic systems are formulated by a set of coupled 

differential equations. Differential equations express the 

evolution of the system’s variables with respect to each other and 

for a specific initial condition. The evolutions are shown as 

trajectories in an N-dimensional space, known as the “Phase 

Space”. The phase space represents the correlation between the 

variables and their dynamic evolution from one state to the next. 

Therefore, to have a rigorous characterization of a dynamic 

system, all variables should be known in advance. However, in 

large-scale systems, high-dimensional nonlinear differential 

equations may make it infeasibly hard to derive an analytic 

solution. In such cases, numerical solutions and graphical 

representations of the equations are usually pursued to assess the 

dynamics of the differential equations. Using numerical methods, 

for instance, one can approximate the system behavior in a 

neighborhood of equilibrium points (steady states) based on the 

linearized stability principle [7]. In graph-based methods, phase 

space [8] plays a major role. More specifically, the dynamic 

properties of the trajectories in the phase space can be revealed 

without solving the underlying differential equations themselves. 

For instance, while studying a neural circuit, where the system 

dynamics are modeled by a set of differential equations, one can 

explore bifurcation events by changing the parameters of the 

differential equation [9] or observe the strange attractors using 

the phase space. However, this approach is usually followed at a 

cellular level or in small-scale systems. 

So far, such applications of phase space are possible only when 

the governing differential equations of the system are available. 

However, these applications are extremely restricted in the study 

of large-scale cortical systems. The main reason is that finding 

these differential equations, which describe such complex 

systems (e.g., brain) is a challenging problem. Examples of such 

difficulties may include the uniqueness of the coefficients of the 

differential equation, the complexity of the system, and the 

chaotic behavior in the measurement [10] while the underlying 

differential equations can have a simple form (e.g., Rössler 

system [11]). Due to these limitations, the phase space is directly 

reconstructed from the time series measured from the system [12] 

[13] based on the Takens’ delay embedding theorem [8]. This 
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theorem states that given the lack of knowledge about the 

evolution of a system states, the system information can be 

retained. In several studies focusing on seizure occurrence using 

Electroencephalograph (EEG) recordings, phase space 

reconstruction has been used. The common hypothesis is that 

multiple states (e.g., seizure and non-seizure) exist in an epileptic 

brain and their differences can be described by the parameters 

and the initial conditions of the unknown differential equations. 

Consequently, these differences can be qualitatively visualized in 

the reconstructed phase space [14]. 

The studies mentioned above can be categorized into two major 

groups. The first group is mainly application-based where the 

phase space features are extracted and tuned to discriminate 

between seizure and non-seizure states [15] [16] [17]. Although 

the extracted geometrical features are effective for a particular 

application, they do not specifically describe a relevant property 

of the system. In other words, it is not clear what characteristics 

of the system are reflected by these features. For instance, in [16] 

a seizure detection method based on the Poincaré Section was 

proposed, where the reconstructed trajectory of EEGs was 

projected on a plane formed by the first two principal components 

(PCs). A least square line was then fitted to the projected 

trajectory, and several statistical descriptors of the intersection 

points (between the line and the trajectory) were used as features. 

As mentioned earlier, despite the high accuracy achieved for 

seizure detection, the proposed features do not reflect an accurate 

insight for characterizing the underlying system’s behavior. The 

main drawback of this feature extraction method is that when the 

reconstructed trajectory is projected on a 2-dimensional space 

using PCs, the crucial information about the time order of the 

states is lost. 

In the second group, the extracted features describe properties 

such as the sensitive dependence of the system evolution with 

respect to the initial values (e.g., Lyapunov exponents [18] [19]), 

and some properties of the attractors’ geometry (correlation 

dimension [19]). However, any practical use of such measures is 

challenging, and many considerations should be taken into 

account. Lyapunov exponent, for example, measures how fast 

nearby trajectories separate over time. This definition can 

precisely be determined on the “real phase space”. However, in 

the absence of the main differential equation, it should be 

estimated with caution. The main reason is that distances in the 

real phase space may shrink (instead of growing) in the 

reconstructed phase space due to the angle of the observation 

(i.e., the physical measurement) [10]. Moreover, Lyapunov 

exponent expresses the long-term dynamics of the system, while 

in seizure detection the features are supposed to be extracted from 

a relatively short time window (e.g., one second) for a reasonable 

time resolution. 

This study proposes a novel characterization of complex 

systems based on nonlinear dynamics. The proposed method is 

designed to study the nullclines of 3D systems. Nullclines 

denote the locus of points in the phase space where the 

components of the velocity vectors (i.e., 
𝑑𝑥

𝑑𝑡
, 
𝑑𝑦

𝑑𝑡
, and 

𝑑𝑧

𝑑𝑡
) are 

zero. Such a unique set of points provides us qualitative 

information about the dynamics of the states without having 

access to the solutions of the governing differential equation. 

Nullclines are used to discover the direction of the trajectories 

in the phase space (solution space), equilibrium points, and their 

stability status without solving the differential equation 

analytically. The proposed method is then used for the 

characterization and detection of epileptic seizures in long-term 

EEG recordings. 

The main objective of the paper is to propose novel descriptors 

that can discriminate seizures from normal brain activity. In 

particular, we aim to accomplish: 1) a novel discriminative 

feature extraction method based on the nullcline analysis; 2) a 

“Proof of Concept” by direct evaluation over the five well-known 

chaotic systems, and 3) a practical and systematic approach with 

a significantly low computational complexity. The overall 

systematic approach has been tested over the benchmark CHB-

MIT EEG dataset to validate these objectives. Although there are 

numerous EEG classification methods proposed in the literature, 

only a few of them (e.g., [16] and [20]) consider the real-world 

scenario where only the past patient history can be used to train 

the classifier. For example, the study in [21] used the majority 

(i.e., >75%) of the EEG record for training which is not a feasible 

option in a real clinical case. This is why we evaluated the 

proposed approach against the recent state-of-the-art methods 

[16] and [20] that used only a small portion (i.e., the early 25%) 

of each EEG record for training while the larger portion (i.e., the 

remaining 75%) is used for testing.  

The rest of the paper is organized as follows. Section II presents 

the theory of the proposed feature characterization using the 

nullcline analysis. To further show the effectiveness of the 

proposed approach, the Appendix includes an application to 5 

differential equations, each describing a well-known system in 

Chaos theory. In Section III, the proposed approach is evaluated 

over CHB-MIT benchmark EEG dataset. The results of 

classification and the effectiveness of the extracted features are 

presented in Section IV. Section V concludes the paper and 

suggests topics for future research. 

II. THEORETICAL FRAMEWORK 

Nullclines [22] present a more comprehensive understanding of 

the solution of a differential equation by providing information 

about the direction of the trajectories and the equilibrium points 

in the phase space. The concept of nullclines plays a central role, 

especially when the given differential equation is not analytically 

solvable or a qualitative interpretation only based on the phase 

space is not sufficient. In this section, nullclines and the proposed 

approach for visualizing their geometric shapes in the 

reconstructed phase space are described. The evaluation of the 

proposed approach over 5 well-known nonlinear systems is 

provided in the Appendix. 

As a motivation for the concept, let us consider the following 

differential equation in 2D: 

 

{

𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑦)

𝑑𝑦

𝑑𝑡
= 𝑔(𝑥, 𝑦)

             (1) 

Then 𝑥-nullcline is defined as a set of points in the phase space 

where 
𝑑𝑥

𝑑𝑡
= 0. Likewise, the 𝑦-nullcline is a set of points in the 
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phase space where  
𝑑𝑦

𝑑𝑡
= 0. The 𝑥-nullcline geometrically 

represents the set of points that remain unchanged along the 𝑥 

coordinate through time. Such points evolve only vertically (up 

or down) with time. Similarly, the 𝑦-nullcline evolve only 

horizontally (left or right). 

The intersection of “all” nullclines yields the location of the 

equilibrium points derived by solving  
𝑑𝑥

𝑑𝑡
=

𝑑𝑦

𝑑𝑡
= 0. 

Additionally, nullclines divide the phase space into different 

regions in terms of the relative signs of  
𝑑𝑥

𝑑𝑡
 and  

𝑑𝑦

𝑑𝑡
.  In other 

words, it shows the flow direction (direction of the velocity 

vectors) of the variables in the solution space. Thus, depicting 

the flow direction in a neighborhood of the equilibrium point 

reveals the stability status (i.e., stable, non-stable, or saddle) of 

the steady states. This concept can be generalized to higher 

dimensions.  

This stability test is used for qualitative analysis of differential 

equations. In this approach, first, the nullclines are sketched in 

the phase space formed based on the given differential 

equations. Then, the evolution of the system states is 

determined inside the regions formed by the nullclines. Once 

the aforementioned information is depicted in the phase space, 

the dynamics of the system including the equilibrium points and 

their stability status can be explored. However, if the 

differential equations are unknown and only physical 

measurements from the system exist, then another approach is 

needed to sketch the nullclines. In this study, an approach is 

proposed to extract information about these “directivity curves” 

using the nullcline concept in the absence of the governing 

differential equation. The proposed systematic approach can be 

described in the following three steps: 

 Step 1: the phase space is reconstructed using the embedding 

dimension 𝑚 and time lag 𝜏 based on the delay-embedding 

theorem [8]. The i’th state vector (i.e., a point) in the 

reconstructed phase space of the time series  𝑠(𝑛), 𝑛 =
1, 2, … , 𝑁𝑠, is defined as: 

𝑆𝑖 = [𝑠(𝑖), 𝑠(𝑖 + 𝜏), 𝑠(𝑖 + 2𝜏), … , 𝑠(𝑖 + (𝑚 − 1)𝜏)]𝑇  (2) 

Step 2: The flow of each state in the reconstructed phase space 

(i.e., the time evolution of a projectile in an 𝑚-dimensional 

space) is obtained using numerical gradients. This provides the 

estimated gradient values, i.e. 
𝑑𝑥

𝑑𝑡
  and  

𝑑𝑦

𝑑𝑡
. 

Step 3: As mentioned earlier, the 𝑥- and 𝑦-nullclines are 

defined as the points where 
𝑑𝑥

𝑑𝑡
= 0  and  

𝑑𝑦

𝑑𝑡
= 0, respectively. 

Moreover, nullclines divide the phase space into different 

regions in terms of the relative signs. Therefore, the zero-

crossing points of the  
𝑑𝑥

𝑑𝑡
  and  

𝑑𝑦

𝑑𝑡
, which are achieved in Step 2, 

are calculated in the phase space. The zero-crossing points, in 

fact, reflect the position of the nullclines on the reconstructed 

trajectories. 

In Fig. 1, for instance, the evolution of the Lorenz system is 

shown with small arrows in the reconstructed phase space. In 

addition, the nullcline points of the system are shown with red, 

green, and black filled circles which correspond to 𝑋-, 𝑌-, and 

𝑍-nullclines, respectively. It can be clearly seen that the three 

types of nullcline points are getting close to each other when 

they approach the centers of the two wings and intersect in the 

center of the reconstructed phase space. This is the location 

where the states switch their spirals from one wing to the other 

(left part of the figure). This means that the nullclines show the 

signs of convergence in the center of the wings, where the 

steady states of the system are located. The same arguments 

also apply for all evaluated systems in the Appendix. 

The proposed approach uses the phase space reconstruction 

and benefits from the main properties of the delay-embedding 

theorem [8], which preserves the structure of the original 

attractor. It uses the nullcline to reflect information about those 

states of the system that have a zero rate of change (i.e., zero 

velocity). However, some practical limitations should be 

addressed. In the shown Lorenz system (and all the systems 

covered in the Appendix), the 𝑥 variable is directly used as a 

measurement of the system to show the concept of the proposed 

nullcline analysis. However, a realistic physical measurement 

is a projection of the system’s variables, and it is also 

contaminated with noise. In addition, although the 

reconstructed phase space preserves the structure of the 

underlying dynamic, it is a sparse representation of the original 

attractor. This limits our access to the entire solution space. For 

instance, if enough information about the evolution of the 

trajectory is provided, then the convergence of the nullcline 

points near the equilibrium points is more visible. Thus, as the 

proposed approach is based on the phase space reconstruction, 

its limitations will reside too. 

III. PROPOSED METHODS 

A. Benchmark Dataset 

CHB-MIT dataset [23] [24] was collected at the Boston 

Children’s Hospital from pediatric patients with intractable 

seizures. In this study, we used the following 23 channels 

(based on the international 10-20 system) FP1-F7, F7-T7, T7-

P7, P7-O1, FP1-F3, F3-C3, C3-P3, P3-O1, FP2-F4, F4-C4, C4-

P4, P4-O2, FP2-F8, F8-T8, T8-P8, P8-O2, FZ-CZ, CZ-PZ, P7-

T7, T7-FT9, FT9-FT10, FT10-T8 and T8-P8. The sampling 

frequency is 256 Hz with 16-bit resolution. All seizure events 

were annotated with one-second (1-sec) resolution. We have 

used only those records, which contain at least one seizure 

event. As records 1 and 21 were obtained from the same female 

patient with 1.5 years apart, we consider them as two distinct 

patients. In addition, patient 15 was excluded from our analysis 

because we failed to read the EEG data of this patient (the same 

issue was reported in earlier studies using this dataset). 

Therefore, 23 subjects with more than 171 hours EEG 

recordings are analyzed in this study. Further details about the 

used EEG segments and the duration of the seizure events for 

each patient can be found in [16]. 

B. Nullcline Feature Design 

In this study, first, the EEG recordings are partitioned into 

non-overlapping 1-sec segments. The reasons for choosing 1-

sec windowing are motivated by the following: (1) the time 

resolution of the ground truth provided by the experts is one 

second; (2) the same segment length was used by previous 

works, e.g. [16] [20]. Thus, using the same time frame length
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Fig. 1. The velocity plot and nullcline points of the Lorenz system on the reconstructed phase space 

makes the comparison possible. Because EEG recordings are 

prone to noise and artifact contamination, each segment is 

passed through a band-pass second-order Butterworth filter (1 - 

60 Hz). The filtered segments are further smoothed using a 3-

point moving average filter. After filtering, three features are 

extracted based on the location of the nullclines as follows: 

First, the phase space of each segment is reconstructed using 

an embedding dimension 𝑚 =  3 and a time lag 𝜏 =  31 [8] 

(these values are chosen empirically). Although there are some 

approaches for selecting the proper values of 𝑚 and τ, visual 

inspection is still needed to insure a reasonable choice. For 

instance, too small values of 𝜏 make the states strongly 

correlated. On the other hand, too large values of τ may hide 

informative structures in the phase space. 

Second, the trajectory points located on the nullclines of the 

three dimensions are determined using the approach presented 

in Section II. Afterward, the Euclidean distances of the 𝑥-, 𝑦-, 

and 𝑧-nullcline points from the origin (𝑥0, 𝑦0 , 𝑧0) = (0,0,0) are 

calculated. The medians of these distances in each dimension 

are used as features. In other words, 

                             𝐹𝑗 = 𝑀𝑒𝑑𝑖𝑎𝑛 (𝑑𝑗
1, … . , 𝑑

𝑗

𝑁𝑗
) (3) 

where 𝐹𝑗 is the j-nullcline feature and 𝑑𝑗
𝑖 is the distance of the 

𝑖′th state vector (point) on the 𝑗-nullcline from the origin 

(0,0,0). 𝑁𝑗 is the total number of 𝑗-nullcline points. In Fig 2, 

two sample feature plots of patients 1 and 11 are shown. The 

red and blue samples represent the features of the seizure and 

non-seizure segments, respectively. Visual inspection of both 

plots reveals the discrimination power of the proposed features. 

A further statistical analysis of nullclines on the relevant 

channels (for patients 1 and 11) indicates that during a seizure 

attack, the nullclines get far away from the origin of the 

reconstructed phase space. Moreover, in the absence of seizure, 

the nullclines tend to be near the origin. In addition, it can be 

seen that seizure features have more variation compared to non-

seizure features. In other words, for these 2 patients, during a 

seizure the irregularities of nullclines locations increase as 

opposed to the background EEG of the normal brain function. 

C. Classification, Training Strategy and Postprocessing 

Classification: Epileptiform activities arise from different 

regions of the cerebral cortex. In some seizures, such as bilateral 

seizures, the focus can also vary with respect to time. Moreover, 

an epileptic patient can experience different seizure types. 

Therefore, in the diagnosis phase, when no prior information is 

available, analyzing all the channels of each EEG record is 

necessary. As this presents a large amount of data from several 

independent channels, we follow a “Divide & Conquer” 

strategy that is experimentally verified to yield the highest 

classification performance. To accomplish this, an ensemble of 

classifiers network is constituted where all available channels 

are used in a two-layer classification scheme. In the first layer, 

23 Linear Discriminant Analysis (LDA) classifiers are used, 

each of which corresponds to one of the 23 EEG channels. Each 

LDA is a binary classifier that uses the proposed features 

extracted from the one-second long segments as inputs to learn 

the significance of that channel. The 23 classification results 

form 23 class vectors for each segment of the EEG record. The 

main advantages of the LDA classifier are their closed-form 

solution and their low computational complexity. These 

properties make LDA an excellent choice to tackle long-term 

EEG data. 

At this stage, for each 1-sec segment of EEG data, 23 labels 

(𝐶𝑠𝑒𝑖𝑧𝑢𝑟𝑒  or 𝐶𝑛𝑜𝑛𝑠𝑒𝑖𝑧𝑢𝑟𝑒) are generated, while a single 

classification decision is required for each segment. Therefore, 

a fusion rule is needed to combine the generated labels. For the 

fuser classifier, the feedforward Artificial Neural Network 

(ANN) with one hidden layer and 23 hidden neurons yielded 

the highest overall classification accuracy. With proper training 

by the Bayesian regularization backpropagation algorithm  

[25], the proposed ANN is able to learn and discriminate the 

relevant channels for seizure detection from the corresponding 

LDA outputs and discard the others in order to maximize the 

final classification accuracy. Therefore, the ANN is trained to 

fuse the 23 class vectors to generate the final classification 

output for each 1-sec segment.  

Moreover, in order to train the ANN classifier appropriately 

for such highly imbalanced problem (in total, the ratio of 

seizure to non-seizure is ~1:66 in the training set), we balance 

the training data. For this purpose, we compare the performance 

of random undersampling, random oversampling, and synthetic 

minority oversampling technique [26]. The best performance is 

achieved by random undersampling. Therefore, the dominant 

class (non-seizure) is randomly sampled so that the number of 

seizure and non-seizure samples are kept equal. 

Training Strategy: In order to mimic a real-life personalized 

EEG monitoring scenario, each EEG recording is split into two 

time segments, where the first time segment (considered as
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Fig 2. The sample scatter plots of the feature space (the axes represent the proposed features). The features of the seizure and non-seizure samples 

are shown with red and blue, respectively. a) Feature space for patient 1-channel F7-T7. b) Feature space for patient 11-channel F3-C3.

“early” or prior segment) is used for training and the second 

time segment (considered as the future record over which the 

seizure detection takes place) is used for testing. The first time 

segment containing 25% of the early seizure and non-seizure 

events in each EEG record is used for training (this segment 

include 2307 seconds of seizure and 152052 seconds of 

nonseizure events). The remaining 75% of the record (the 

second time segment) is used for testing to evaluate the 

classification performance. Such a partitioning also mimic the 

simulated real-world patient-specific scenario, where a medical 

expert would only annotate a small portion of the seizure/non-

seizure events, and then the trained system is expected to detect 

accurately all the seizure events that occur in the future (see Fig. 

3). 

Postprocessing: Segment labels are filtered to refine the 

classification output. This procedure can increase the 

classification performance at a low cost by removing the 

occasional classification noise (misclassifications) within a 

seizure or non-seizure event. The purpose of such a 

postprocessing step is to ensure the desired classification 

properties such as continuity and temporal similarity (via 

morphological filtering), and smoothness (via moving average 

filtering). The morphological filter is designed based on the 

proposed fuzzy rule-based filtering technique in [20]. 

 

IV. EXPERIMENTAL RESULTS 

A. Classification Performance Evaluation 

To evaluate the classification performance, we report 

standard performance metrics in Table I: Sensitivity (Sens), 

Specificity (Spec), Accuracy (Acc), and the Area Under the 

ROC Curve (AUC). The respective definitions of the first three 

metrics using true positive (TP), true negative (TN), false 

positive (FP), and false negative (FN) are as follows: Accuracy 

is the ratio of the number of correctly classified frames to the 

total number of frames classified, i.e., Acc = 

(TP+TN)/(TP+TN+FP+FN); Sensitivity is the rate of correctly 

classified seizure frames among all seizure frames, Sen = 

TP/(TP+FN); and Specificity is the rate of correctly classified 

non-seizures among all non-seizures, Spe = TN/(TN+FP). In 

addition, the ROC graph is obtained by plotting the Sensitivity 

versus (1 – Specificity), and it is shown in Fig. 4. 

Even though accuracy reflects the overall classification 

performance, due to the highly unbalanced numbers of seizure 

and non-seizure frames, the accuracy is not a reliable 

performance metric. Since the accurate classification of seizure 

frames is of utmost importance, the sensitivity rate becomes the 

primary performance metric. On the other hand, a reasonable 

level of specificity should suffice since the human expert can 

easily discard or correct false positives. To further clarify the 

archived performance, the confusion matrix for each patient is 

also reported in Table II. Therefore, other evaluation metrics, 

such as Precision and F-measure, can be computed. 

For a fair comparative evaluation, the classification 

performance of the proposed approach along with the Nullcline 

features is tested against the state-of-the-art EEG classification 

methods, [20] and [16], which also used the same train/test 

partitioning. Therefore, we excluded some other works (e.g. 

[21]), which used 80% and even higher portions of each patient 

data for training. In practical clinical usage, assuming such a 

large volume of training data is obviously quite hard, if feasible 

at 
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Fig. 3. Block diagram of the proposed seizure detection system for multi-channel EEG recordings  

TABLE I. The classification results over the test set using 25% of the data for training. The achieved results are based only on a single feature 

(the median of the Euclidean distances of x-, y-, and z-nullcline from the origin). The results of our two previous works are reported between 

parentheses ([20] & [16]). NR means “Not Reported”. 

Patient Sens (%) Spec (%) Acc (%) AUC (%) 

1 99.40 (94.66 & 97.32) 99.59(99.72  & 98.66) 99.59 (NR & 98.63) 99.50  

2 99.24 (98.48 & 100) 93.90(80.17  & 94.27) 94.02 (NR & 94.39) 96.57  

3 100 (97.07 & 100) 93.27 (92.74 & 91.88) 93.37 (NR & 92.02) 96.63  

4 100 (71.78 & 96.50) 97.65 (52.46 & 83.08) 97.67 (NR & 83.21) 98.83 

5 91.47 (96.93 & 82.94) 98.75(99.00 & 99.50) 98.52(NR & 98.98) 95.11 

6 0.00 (NR & 81.15) 100(NR & 67.68 ) 99.83 (NR & 67.70) 50.00  

7 93.90 (90.24 & 85.77) 99.36 (99.60 & 99.30) 99.31 (NR & 99.17) 96.63  

8 77.20 (95.67 & 82.83) 97.20 (94.51 & 96.85) 96.17 (NR & 96.13) 87.20  

9 97.14 (100 & 98.10) 98.16 (75.58 & 96.80) 98.15 (NR & 96.82) 97.65  

10 95.59 (92.38 & 86.18) 96.67 (96.55 & 98.99) 96.66 (NR & 98.88) 96.13  

11 96.53 (95.88 & 98.51) 99.96 (95.73 & 94.51) 99.68 (NR & 94.83) 98.25  

12 92.65 (NR & 73.49) 95.60 (NR & 80.73) 95.51 (NR & 80.52) 94.13  

13 97.92(86.13 & 96.44) 91.62 (96.25 & 94.04) 91.73 (NR & 94.08) 94.77  

14 98.48 (81.95 & 97.73) 90.06 (99.75 & 91.96) 90.12 (NR & 92.00) 94.27  

16 91.23(86.81 & 73.68) 79.69(98.80 & 88.22) 79.74 (NR & 88.16) 85.46 

17 99.55 (63.51 & 86.04) 95.57 (98.23 & 96.48) 95.68 (NR & 96.19) 97.56  

18 100 (81.07 & 100) 75.36 (93.99 & 79.88) 75.76 (NR & 80.20) 87.68  

19 96.09(98.89 & 75.42) 97.79 (97.13 & 98.93) 97.75 (NR & 98.39) 96.94  

20 99.56 (93.01 & 94.25) 94.20 (97.79 & 98.14) 94.28 (NR & 98.08) 96.88  

21 98.68 (95.42 & 99.34) 98.26 (98.34& 98.53) 98.27 (NR & 98.54) 98.47  

22 89.68 (100 & 97.42) 97.67 (93.29 & 98.64) 97.52 (NR & 98.62) 93.67  

23 96.28 (67.9 & 59.75) 98.58 (99.05 & 99.37) 99.47 (NR & 98.84) 97.45 

24 85.89 (83.08 & 67.33) 99.74 (99.59 & 97.50) 99.57 (NR & 97.12) 92.82 

Average 
91.15 

(89.01 & 88.27) 

95.16 

(94.71 & 93.21) 
95.11 

(NR & 93.11) 
93.16 

 

all, for long-term EEG recordings. In addition, we excluded the 

studies that did not report the overall classification performance 

from all the records (e.g. [27], [28]) in the benchmark dataset. 

Finally, the majority of studies in this domain (e.g., [29]) are 

mere onset detectors, i.e., they only detect the earliest stage of 

a seizure event. Therefore, those studies have also been omitted 

from the comparative evaluations since the proposed approach 

can detect both the onset and the duration of each seizure event 

Table I presents the performance metrics obtained per patient 

in the database using the proposed approach and the two 

competing methods. The proposed approach achieved an 

average sensitivity and specificity of 91.15% and 95.16%, 

respectively, which exhibit a superior performance level 

compared to the competing methods. For a fair comparison 

against the state-of-the-art method [20] if patients 6 and 12 are 

excluded the average sensitivity and specificity of the proposed 

approach are 95.22% and 94.91%, respectively. Now a 

significant performance gap in sensitivity becomes visible. 

Furthermore, the results of patients 4, 7, 9, 10, 12, 17, 23 and 

24 are significantly improved compared to the competing 

methods. Specifically, the superiority of the proposed approach 

over the challenging EEG data for patients 4, 12 and 23 is 

visible. 

Among the 23 patients’ data, the proposed approach 

performed poorly only for two patient records: 6 and 8. To shed 

more light on these cases, the corresponding confusion matrices 

can be seen in Table II. For these patients, the seizure segments 

were misclassified as non-seizure and this makes False 

Negative-FN counts relatively high. Obviously, for these two 

patients the unprecedented low training rate, 25% used in this
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Fig. 4. The ROC curve of the 23 patients. The left-hand side plot shows the magnified area for all patients (excluding patient 6). The corresponding 

ROC curve of each patient is determined by the patient’s number. 

TABLE II. True Positive (TP), False Negative (FN), True Negative (TN), and False Positive (FP) achieved for the test set using 25% of the 

data for training. 

Patient 
Seizure detected as 

seizure (TP) 

Seizure detected as non-

seizure (FN) 

Non-seizure detected as 

non-seizure (TN) 

Non-seizure detected as 

seizure (FP) 

1 334 2 17534 72 

2 130 1 5622 365 

3 306 0 17340 1252 

4 286 0 27813 669 

5 386 36 12913 164 

6 0 122 69789 0 

7 231 15 24002 154 

8 535 158 12447 359 

9 204 6 25191 472 

10 325 15 36256 1250 

11 585 21 6933 3 

12 706 56 24265 1117 

13 330 7 17006 1555 

14 130 2 16900 1866 

16 52 5 10711 2730 

17 221 1 7545 350 

18 242 0 11276 3686 

19 172 7 7558 171 

20 225 1 13940 859 

21 150 2 10012 177 

22 139 16 7759 185 

23 311 12 23534 332 

24 347 57 31912 83 

 

study is clearly insufficient for a reasonable generalization, and 

therefore a larger training dataset is needed. However, the total 

FP for all patients in [16] was 45626. This large number of FP 

was reduced by the proposed approach to 17871. 

Table III presents the performance of the recent studies that 

used CHB-MIT dataset. As discussed earlier, although it is 

unfair to perform a direct comparison with the proposed method 

that used significantly less amount of data for training in order 

to mimic an actual clinical case, it still achieves higher 

performance than the methods proposed in [30] - [35] and [44]. 

The methods proposed in [29], [36] - [40], [43], [46] and [47] 

have achieved higher sensitivity and accuracy while using the 

majority of data for training. Besides, for supplementary 

reading in epileptic detection algorithms and the hardware 

implementations of seizure detection methods, the readers are 

referred to [48] - [52]. 

B. Computational Complexity 

The proposed seizure classification algorithm was 

implemented using MATLAB version 9.1.0.441655 (R2016b). 

The experiments were performed on a workstation with Intel® 

Xeon® Processor E5-2650 v4 at 2.20 GHz (48-core processor) 

and 32 GB memory. MATLAB parallel computing toolbox was 

used to execute the tasks. The average time for preprocessing 

and feature extraction of a 1-sec EEG segment in 23 channels 

(23×1-sec segments) is about 10 msec. Training the classifier 

network for one-hour EEG recording (with 23 channels) takes 

on average 1.78 sec. In the testing phase, the average time for
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TABLE III. The experimental setting and performance results of the existing methods using the CHB-MIT dataset 

Ref Patients Training and Testing set Results 

[29] All 
- Leave-one-out cross validation (not patient specific 

and onset detection)  
Avg. Sen = 96.00% 

[30] All - Leave-one-out cross validation (not patient specific)  
Avg. Sen = 82% 

Avg. Spe = 95.5% 

[31] 
3 patients  

(3, 8, and 13) 

- Randomly use 2/3 of the data for the training step 

and the 1/2 left for the test set 
Avg. Acc  = 94.85% 

[32] All 
- Each test dataset contains one seizure for each 

patient, and the signals are augmented 

Avg. Sen = 80.6% 

Avg. Spe = 91.7% 

Avg. Acc  = 85.6% 

[33] 
17 patients  

(patients are not specified) 
- 

Avg. Sen = 89.24% 

Avg. Spe = 82.98% 

[34] All 

- Recordings containing the seizure activity were split 

such that duration of seizures in both data portions, 
i.e., those employed for testing and training, was 

nearly equal (patient-specific) ~50% 

Avg. Sen =  87% 
Avg. Spe =  99% 

[35] 
7 patients  

(1, 3, 5, 8, 19, 20 and 24) 
- Avg. Acc  =  92.68% 

[36] All - 10-fold cross-validation (90% training) 
Avg. Sen = 97.9% 

Avg. Spe = 99.6% 

Avg. Acc  = 99.4% 

[37] All 

- Two experiments with different window size (30 

sec and 70 sec) 

- 10-fold cross-validation (90% training) 

Avg. Sen = 89.73% 

Avg. Spe = 94.77% 

Avg. Acc  = 92.46% 
 

Avg. Sen = 97.12% 

Avg. Spe = 99.29% 
Avg. Acc  = 98.30% 

[38] All 

- Two sets of experiments with convolutional neural 

network using time and frequency domains signals 

- 6-fold cross-validation 

Avg. Sen = 61.2% 

Avg. Spe = 63.3% 
Avg. Acc  = 62.3% 

 

Avg. Sen = 96.9% 
Avg. Spe = 98.1% 

Avg. Acc  = 97.5% 

[39] All - 5-fold cross-validation (not patient specific) 
Avg. AUC = 95.72%   

Avg. Acc  = 94.37% 

[40] All - Leave-one-out cross validation (not patient specific)  Avg. AUC = 96.1%   

[41] 
9 patients  

(1, 2, 5, 8, 11, 18, 19, 21 and 22) 
- Leave-one-out cross validation (not patient specific)  

Avg. Sen = 98.28% 

Avg. Spe = 87.04% 

Avg. Acc  = 93.16% 

[42] All - Unsupervised Avg. Spe = 86.00% 

[43] All - 5-fold cross-validation (not patient specific) 
Avg. Sen = 99.8% 

Avg. Spe = 99.6% 

[44] All 
- Dataset randomly partitioned into 70% as training 

and 30% for testing set (not patient specific) 

Sen = 88% 

Spe = 88% 

[45] 

18 patients 

(1, 3, 5, 7, 8, 9, 11, 12, 13, 14, 16, 

17, 18, 19, 20, 21, 22 and 23) 

- Dataset is randomly partitioned into 70% as training 

and 30% for testing set (not patient specific) 

Avg. Sen = 87.5% 
Avg. Spe = 99.9% 

[46] All - Stratified 10-fold cross-validation  (patient specific) 
Avg. Sen = 99.84% 
Avg. Spe = 99.86% 

[47] All - 5-fold cross-validation (not patient specific) 
Avg. Sen = 99.05% 

Avg. Spe = 99.98% 
Avg. Acc  = 99.52% 

each 1-sec segment, including classification and 

postprocessing, is 0.08 msec. Therefore, the average time spent 

in the testing phase including preprocessing, feature extraction, 

classification, and postprocessing is 10+0.08=10.08 msec. 

However, the postprocessing stage requires 9 seconds before 

and after each segment. Hence, this will induce a buffering 

delay and require additional memory space. Moreover, the 

training which is an offline process will be performed only once 

for each patient. For one-hour training data, it only takes about 

1.78+ (0.01*3600) = 37.78 seconds, which is not a significant 

time. 

V. CONCLUSIONS 

Due to the nonlinear nature of the neuronal systems, theories 

of Nonlinear Dynamics have become an indispensable tool in 

the analysis of epileptic seizures. Accordingly, in this study, we 

proposed a novel method that characterizes the dynamic 

behavior of seizure events by Nullcline analysis in the phase 

space. To reveal the underlying foundations, we first performed 

a simulation study to evaluate the proposed method for 

detecting nullclines in the reconstructed phase space in the 

absence of the actual differential equation that characterizes the 
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chaotic system. The results demonstrated that the proposed 

method can accurately follow the nullcline definition such as 

the convergence of the detected nullclines near the equilibrium 

points. 

The proposed seizure detection system is then evaluated over 

the benchmark CHB-MIT Scalp long-term EEG dataset. We 

experimentally verified that the irregularities of nullclines’ 

locations increase during seizure events. The results over the 

CHB-MIT database show that the proposed approach achieved 

all the objectives of the study as stated in Section 1 using a 

single Nullclines feature. With only 25% training rate, the 

proposed approach achieved an average classification 

performance of 91.15% sensitivity and 95.16% specificity over 

the test data of each EEG record. Comparative evaluations 

against the competing method exhibit the superiority of the 

proposed method, which achieved more than 6% higher average 

sensitivity rate (95.22%) over the same test data. Despite the 

limited training, such seizure detection performance 

demonstrates the efficiency and the discrimination capability of 

the proposed approach. Another observation worth mentioning 

is that the overall sensitivity rate is above 90% for all patient 

records except for four patients (patients 6, 8, 22 and 24). While 

for the last two patients, 22 and 24, the average sensitivity is 

still reasonably high (i.e., > 85%); for patients 6 and 8, however, 

the sensitivity rates were too low for practical clinical usage. 

The detailed investigation revealed that for these patients the 

seizure EEG signal characteristics exhibit high variations. 

Therefore, the training set formed only from the early 25% of 

the EEG record cannot capture the seizure and non-seizure 

characteristics sufficiently well. It is evident that for those 

patients, a larger training dataset is needed. Finally, another 

crucial impact of the proposed approach is the ultimate 

reliability and robustness levels achieved since it significantly 

reduced (by more than 2.5 times) the false alarms in seizure 

detection compared to earlier work. With an elegant 

computational efficiency, the proposed approach can thus be a 

practical solution for automatic seizure detection in long EEG 

recordings.  

APPENDIX 

To demonstrate the feasibility of the proposed method for 

estimating the nullcline points in the reconstructed phase space, 

we evaluated the proposed method on five well-known 3-

dimensional differential equations in Chaos theory; Lorenz, 

Rabinovich–Fabrikant, Rössler, Chua's circuit, and an 

alternation of Genesio system. These systems have been chosen 

due to their strong nonlinear nature and relevant chaotic 

characteristics. The definition and equilibrium points of each 

system are presented as follows: 

1) Lorenz system [53] is a simplified mathematical model of 

atmospheric convection: 

{
 
 

 
 

𝑑𝑥

𝑑𝑡
=  𝜎(𝑦 − 𝑥)

𝑑𝑦

𝑑𝑡
=  𝑥(𝜌 − 𝑧) − 𝑦

𝑑𝑧

𝑑𝑡
=  𝑥𝑦 − 𝛽𝑧

                    (5) 

where its equilibria are located at  

{
(0,0,0)

(±√𝛽(𝜌 − 1), ±√𝛽(𝜌 − 1), 𝜌 − 1)
            (6) 

2) Rabinovich–Fabrikant system [54] consists of three 

coupled ordinary differential equations, which exhibit chaotic 

behavior for certain parameters. 

{
 
 

 
 

𝑑𝑥

𝑑𝑡
= 𝑦(𝑧 − 1 + 𝑥2) + 𝛾𝑥

𝑑𝑦

𝑑𝑡
= 𝑥(3𝑧 + 1 − 𝑥2) + 𝛾𝑦

𝑑𝑧

𝑑𝑡
= −2𝑧(𝛼 + 𝑥𝑦)

                 (7) 

and its equilibria are located at 

{
 
 

 
 

(0,0,0)

(±√
𝛼𝑅1+2𝛼

4𝛼−3𝛾
, ±√𝛼

4𝛼−3𝛼

𝑅1+2
,

𝛾𝑅1+𝑅2

(4𝛼−3𝛾)𝑅1+8𝛼−6𝛾
)

(±√
𝛼𝑅1−2𝛼

−4𝛼+3𝛾
, ±√𝛼

4𝛼−3𝛼

−𝑅1+2
,

𝛾𝑅1−𝑅2

(4𝛼−3𝛾)𝑅1−8𝛼+6𝛾
)

            (8) 

where 𝑅1 =  √3𝛾
2 − 4𝛼𝛾 + 4 and 𝑅2 = 4𝛾𝛼

2 − 7𝛼𝛾2 + 3𝛾3 +

2𝛾 

3) Rössler system [11] is described by three non-linear 

ordinary differential equations defining a continuous-time 

dynamic system that exhibits chaotic dynamics associated 

with the fractal properties of the attractor. Note that two of the 

equations are linear and one is nonlinear. 

{
 
 

 
 

𝑑𝑥

𝑑𝑡
= −𝑦 −  𝑧

𝑑𝑦

𝑑𝑡
= 𝑥 + 𝑎𝑦

𝑑𝑧

𝑑𝑡
=  𝑏 + 𝑧(𝑥 − 𝑐)

                            (9) 

where its equilibria are located at  

{
(𝑅1𝑎, −𝑅1, 𝑅1)

(𝑅2𝑎, −𝑅2, 𝑅2)
                                  (10) 

and 𝑅1 =
𝑐+√𝑐2−4𝑎𝑏

2𝑎
 and 𝑅2 =

𝑐−√𝑐2−4𝑎𝑏

2𝑎
. 

4) Chua's circuit [55] is an electronic circuit that produces an 

oscillating waveform that never “repeats” and exhibits chaotic 

behavior. 

{
 
 

 
 
𝑑𝑥

𝑑𝑡
= 𝑎(𝑦 − 𝑥 − 𝑓(𝑥))

𝑑𝑦

𝑑𝑡
= 𝑥 − 𝑦 + 𝑧

𝑑𝑧

𝑑𝑡
= −𝑏𝑦

                    (11) 

where𝑓(𝑥) =  𝑐𝑥 + 0.5(𝑑 − 𝑐)(|𝑥 + 1| − |𝑥 − 1|) and its 

equilibria are located at 

{
 

 
(0,0,0)

(
𝑐−𝑑

𝑐+1
 ,0, −

𝑐−𝑑

𝑐+1
 )

(−
𝑐−𝑑

𝑐+1
 ,0,

𝑐−𝑑

𝑐+1
 )

                        (12) 

5) Modified Genesio system: the dynamic systems considered 

next is derived from Genesio system [56] 

{
 
 

 
 

𝑑𝑥

𝑑𝑡
= 𝑦

𝑑𝑦

𝑑𝑡
= 𝑧

𝑑𝑧

𝑑𝑡
= −𝜌𝑥 − 𝑞𝑦 − 𝑧 + 𝑦2 − 𝑥𝑦

               (13) 

with only one equilibrium point at (0,0,0). 
To simulate the case where the differential equation is not 

available, the values of the 𝑥 variable are used as measurements 
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of the system. In this way, the obtained information using the 

proposed method can be validated with the information derived 

from the original (known) differential equation. In Table IV the 

parameters and initial values used in this study are listed. 

In Fig. 5-9, the original phase space of the 5 systems with their 

true equilibrium points (left) and the estimated nullcline points 

in the reconstructed phase space (right) are shown. 

 

 

 

 

 

 

 

TABLE IV. The simulation parameters and initial values 

System Parameters 
Initial value 

(𝒙𝟎, 𝒚𝟎, 𝒛𝟎) 
Dimension 

and time lag 

Lorenz 
𝜌 = 28 

𝜎 = 10 

𝛽 = 8/3 

(0.001, 0.001, 0.001) 
𝑚 =  3 

𝜏 = 5 

Rabinovich–

Fabrikant 
𝛾 =  0.1 

𝛼 = 0.288 
(0.05,−0.05, 0.3) 

𝑚 =  3 

𝜏 = 32 

Rössler 
𝑎 =  0.2 

𝑏 = 0.2 

𝑐 =  5.7 
(0.1, 0.2, 0.3) 

𝑚 =  3 

𝜏 = 150 

Chua's 

circuit 

𝑎 =  15 

𝑏 =  25.58 

𝑐 =  −
5

7
 

𝑑 =  −8/7 

(−1.6, 0, 1.6) 
𝑚 =  3 

𝜏 = 12 

Modified 

Genesio  
𝑝 = 0.8 

𝑞 =  0.2 
( 0.1, 0.1, 0.1) 

𝑚 =  3 

𝜏 = 30 

 

 
Fig. 5. The nullcline analysis of the Lorenz system. Left: the original attractor and the equilibrium points with red circles, Right: the reconstructed phase space 

and the estimated nullclines by red (𝑥-nullcline), green (𝑦-nullcline), and black (𝑧-nullcline) circles.   

 
Fig. 6. The nullcline analysis of Rabinovich–Fabrikant system. Left: the original attractor and the equilibrium points with red circles, Right: the 

reconstructed phase space and the estimated nullclines by red (𝑥-nullcline), green (𝑦-nullcline), and black (𝑧-nullcline) circles.   
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Fig. 7. The nullcline analysis of the Rössler system. Left: the original attractor and the equilibrium points with red circles, Right: the 

reconstructed phase space and the estimated nullclines by red (𝑥-nullcline), green (𝑦-nullcline), and black (𝑧-nullcline) circles 

 
Fig. 8. The nullcline analysis of Chua's circuit. Left: the original attractor and the equilibrium points with red circles, Right: the reconstructed 

phase space and the estimated nullclines by red (𝑥-nullcline), green (𝑦-nullcline), and black (𝑧-nullcline) circles 

 

Fig. 9. The nullcline analysis of the attractor, which is derived from Genesio system. Left: the original attractor and the equilibrium points with 

red circles, Right: the reconstructed phase space and the estimated nullclines by red (𝑥-nullcline), green (𝑦-nullcline), and black (𝑧-nullcline) 

circles 
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Abstract

Phonocardiogram (PCG) signal is used as a 
diagnostic test in ambulatory monitoring in order to 
evaluate the heart hemodynamic status and to detect a 
cardiovascular disease. The objective of this study is to 
develop an automatic classification method for anomaly
(normal vs. abnormal) and quality (good vs. bad) detection 
of PCG recordings without segmentation. For this 
purpose, a subset of 18 features is selected among 40 
features based on a wrapper feature selection scheme. 
These features are extracted from time, frequency, and 
time-frequency domains without any segmentation. The 
selected features are fed into an ensemble of 20 
feedforward neural networks for classification task. The 
proposed algorithm achieved the overall score of 91.50%
(94.23% sensitivity and 88.76% specificity) and 85.90%
(86.91% sensitivity and 84.90% specificity) on the train 
and unseen test datasets, respectively. The proposed 
method got the second best score in the PhysioNet/CinC 
Challenge 2016. 

1. Introduction

Heart auscultation is one of the cursory and cost-
effective diagnostic tests. It can provide primary 
evaluation of hemodynamic status and detect a
cardiovascular disease, such as ventricular septal defects, 
and stenosis in aorta [1]. Heart sound (or 
phonocardiogram) can also offer additional diagnostic 
tests for further medical assessments.

However, the practical applications of heart sound 
highly depend on cognitive skills and expertise of the 
medical examiner. The limitation of audible frequency 
range, environmental noise, and variation in recording 
regions are other major shortcomings of this test. In order 

The first two authors have contributed equally to this paper.

to address these shortcomings in a cost-effective diagnostic 
tests in ambulatory monitoring, several techniques [2-5]
have been proposed for automatic analysis of heart sounds.

Phonocardiogram (PCG) signal analysis can fall into 
two major categories. The first type of approaches is based 
on temporal segmentation, i.e. identifying the cardiac 
cycles and localizing the position of the first (S1; 
beginning of the systole) and second (S2; end of the 
systole) primary heart sounds. The variation in the duration 
of S1 and S2, and their intensities are considered as the 
conclusive signs of cardiac anomalies. 

Several studies have been conducted to PCG 
segmentation using different envelope extraction methods 
such as Shannon energy [2], Shannon entropy [3], Hilbert-
Huang transform [4], and autocorrelation [5]. The 
envelope of signal attenuates the noise and amplifies the 
low-intensity components of the signal. Some 
segmentation approaches use envelope extraction based on 
wavelet transform to gain the frequency characteristics of 
S1 and S2 sound [6]. In the second type approaches, 
abnormal PCG records are detected without segmentation 
[7,8].

In this study we follow the second type approach 
towards PCG classification. The main motivation behind
this is to remove the dependency on segmentation and 
reduce the computational burden. The main contributions 
of this study are the detailed investigation of time-
frequency features (Section 2.1) and the design of effective 
neural network ensembles (Section 2.2). The proposed 
approach is evaluated on one of the largest public heart 
sound database [10]. The results are discussed in Section 3
and the Section 4 conclude the paper and suggests topics 
for future research. 

2. Methodology

For this challenge, 3454 PCG labelled records 
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(including training and validation sets) are provided by 
Physionet/Computing in Cardiology Challenge 2016 [9]. 
More detailed Information can be found in [10]. The 
proposed feature extraction and classification approaches 
will be discussed next. 

2.1. Feature extraction

In the initial phase of this work, 40 features in the time, 
frequency, and time-frequency domains were extracted. 
Then, a subset containing 18 features were selected using
a wrapper-based feature selection scheme [11] in which
sequential forward selection search algorithm [12] was 
used. The selected features can be categorized into 5 types
as follows:

(1) Linear Predictive Coefficient (LPC): the first, 
third, sixth, eight, ninth, and tenth coefficients of 10th-
order linear predictor are used as features.

(2) Entropy based features: Natural and Tsallis 
entropy of PCG signals are calculated as,

( ) =  ( ) ln ( ) (1)

( ) =  1 (1  ( ) ) (2) 

where ( ) is the probability of th samples of PCG signal, 
. and are real parameters equal to 1 and 2,

respectively.
(3) Mel Frequency Cepstral Coefficients (MFCCs) 

based features: The MFCCs of each PCG signal are 
computed based on the parameter of 14 coefficients for 
frame duration of 25 ms with 10 ms overlap. The extraction 
of MFCCs results in 14 coefficients for each frame, , ,
where and are the number of features and frames, 
respectively. Once the , is calculated, three features are 
extracted as follows:= 1 , , = 1,2, … ,  (3) 

, = ( ,  ) (4) 

, =  ,  (5) 

where min , , max , , and Skew , are the minimum, 
maximum and the skewness of each column of matrix .
is the average and = 2. 

(4) Wavelet transform based features: Discrete wavelet 
transform (Daubechies 4) is applied to each PCG 
signal and the approximation coefficients of level 5 
( ) and the detail coefficients of level 3 to 5 ( ,

, and ) are used for feature extraction as 
follow:   ( ) =  ( ) (6)

 ( ) =  1 1  ( ( ) ) (7)

 ( ) =  ( ) (8)

( ) = ( ( )) (9)

where is the variance. is known as Rényi entropy in 
which = 2. 

(5) Features extracted over power spectral density: 
The power spectral density of each signal is calculated 
based on the normalized frequency (i.e. between 0 and 1),
and then the following features are extracted as follows:=  ( )( ) (10)

=  ( ).
. (11)

=  ( ).  (12) 
where ( ) represents the power spectral density and 

is the modified power spectral density 
centroid. and show the areas under the curve 
over the two specified frequency intervals, i.e. 0.7-0.8, and 
0.9-1. 

2.2. Classification

In this work, the proposed classification algorithm has 
two main steps. In the first step, the bad quality recordings 
(class 0) are detected. In the second step, among the good 
quality signals, the normal (class -1) and abnormal (class 
1) PCGs are classified. This process includes two different
classifiers: one for good/bad quality recordings, and the 
other for normal/abnormal recordings (Fig. 1). In the 
following the structure of these classifiers are described in 
details.

2.2.1. Ensemble of neural networks 

Ensemble based classification systems construct a set of 
classifiers and then classify new samples by integrating the 
results of those classifiers to obtain a better classification 
performance. In this work, we used an ensemble of 20 
feedforward Artificial Neural Networks (ANNs) with two 
hidden layers in each, and 25 hidden neurons at each layer. 
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The number of neurons in the output layer is 4 for the 
purpose of two classification tasks simultaneously, i.e., 
classification of the signal type (normal vs. abnormal) and 
quality (good vs. bad). We used the hyperbolic tangent 
activation function as the transfer function. In addition, we 
used Levenberg–Marquardt optimization method [13] with 
Bayesian regularization backpropagation [14] training 
algorithm. 

2.2.2.  Training 

To construct the training data for the proposed ensemble 
of ANNs, we used 20-fold cross-validation committee 
[15]. To do so, we generate 20 replicates from the original 
training data, and then by removing 5% disjoint random 
subset from each replica, 20 overlapping training sets were 
constructed. In addition, due to the data imbalance problem 
between normal and abnormal signals, in each training sets 
we used bootstrap resampling method to make the data 
balanced in the following way: First, we calculate the 
number of normal signals (which is higher than abnormal). 
Then, by random sampling with replacement from 
abnormal signals the size of the selected set becomes equal 
to the size of the normal set. 

Although the data get balanced by using the 
aforementioned technique, caution is needed. In bootstrap 
resampling usually the size of the selected samples is equal 
to or smaller than the size of the original data, but in the 
proposed method the size of the selected samples is larger
than the original data. This would mimic a situation where 
we have a larger dataset than what we actually had, i.e. we 
will get higher precision in the bootstrap resampling than 
what we have in our data, which in our case leads to an 
overfitting problem for abnormal recordings. Our 
impression was that to address this drawback we could use
the so-called jackknife resampling (i.e. random sampling 

without replacement) of normal recordings instead of 
bootstrap resampling of abnormal recordings. However, 
this technique had inferior performance than the proposed 
technique. Thus we discarded it. Fig. 1 demonstrates both 
the classification strategy and the training procedure.

2.2.3 Combination rule

The last key factor for the proposed classification 
technique is the combination rule to integrate the results of 
20 classifiers.  In this work we used two approaches: 1) 
non-trainable rule and 2) trainable rule. In the first 
approach, we used unweighted average of class-specific 
outputs [16] of the ANNs. In the second approach, the 
combination is based on the voting system of the class 
labels which is learned during a 10-fold cross-validation 
scheme as follows: if at least 17 out of 20 classifiers 
recognize a signal as bad quality, our algorithm recognizes 
it as bad quality and assigns the label 0. For the remaining 
signals, which recognized as good quality, our algorithm 
decides whether it is normal or abnormal such that if at 
least 7 out of 20 classifiers recognize it as abnormal our 
algorithm detects the signal as abnormal (1) and otherwise 
as normal (-1).

3. Results and discussion

We have conducted experiments in order to compare the 
two proposed combination rules (Section 2.2.3) for PCG 
classification. The performance of each combination rule 
is evaluated using Sensitivity (Se), Specificity (Sp), and 
Score (Sc) based on the provided scoring mechanism of the 
PhysioNet/Computing in Cardiology Challenge 2016 
[9,10] by running a 10-fold cross-validation procedure. 

In Table 1, these results are shown. Although the 

Figure 1. Schematic demonstration of classification strategy and training procedure.
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performance of the two rules are fairly close (91.17% vs.
91.50%), the second rule is proposed for applying on the 
unseen test data. The proposed solution achieved the 
overall score of 85.90% (86.91% Se and 84.90% Sp) on 
the unseen test dataset, which is the second best score in 
the competition. 

As discussed in Section 2.1, 18 proposed features were
selected using a wrapper-based feature selection scheme. 
In that scheme, an internal “feature selection classifier” 
(FS classifier) was used to detect only normal/abnormal 
signals. This means that the features were not selected by 
considering the quality detection task into account and this 
was in accordance by the initial scoring strategy. Only 
during the final stage, the organizers changed the scoring 
strategy and the remaining time was not sufficient to 
redesign the proposed system accordingly. Consequently, 
this decreases the final score. Thus, we decided to adapt 
our former method to the new strategy. In the future, for 
further performance improvement, two independent 
classification scenarios will be designed with such features 
that will be selected accordingly.

4. Conclusion

This study proposes a solution for anomaly and quality 
detection of PCG recordings without segmentation. The 
proposed method got the second best score in the 
PhysioNet/CinC Challenge 2016. Many previous methods 
based on PCG analysis are relied on segmentation which 
potentially increases the computational burden. The 
achieved sensitivity (86.91%) and specificity (84.90%) on
the unseen test dataset demonstrate the potential of 
improvement in the future. Designing specific features and 
additional classifier for quality detection may increase the 
system performance.
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Table 1. The average (Ave) and standard deviation (Std) of Sensitivity (Se), Specificity (Sp), and Score (Sc) using 10-
fold cross-validation procedure for the combination rules.

Train (Rule 1) Train (Rule 2)
Se (%) Sp (%) Sc (%) Se (%) Sp (%) Sc (%)

Ave. 89.82 92.53 91.17 94.23 88.76 91.50
Std. 2.79 1.23 1.67 2.22 1.96 1.35
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Abstract 

1Atrial Fibrillation (AF) is characterized by chaotic 

electrical impulses in the atria, which leads to irregular 

heartbeats and can develop blood clots and stroke. 

Therefore, early detection of AF is crucial for increasing 

the success rate of the treatment. This study is focused on 

detection of AF rhythm using hand-held ECG monitoring 

devices, in addition to three other classes: normal or sinus 

rhythm, other rhythms, and too noisy to analyze. The 

pipeline of the proposed method consists of three major 

components: preprocessing and feature extraction, feature 

selection, and classification. In total, 491 hand-crafted 

features are extracted. Then, 150 features are selected in a 

feature ranking procedure. The selected features are from 

time, frequency, time-frequency domains, and phase space 

reconstruction of the ECG signals. In the final stage, a 

random forest classifier is used to classify the selected 

features into one of the four aforementioned ECG classes. 

Using the scoring mechanism provided by 

PhysioNet/Computing in Cardiology (CinC) Challenge 

2017, the overall score (mean±std) of 81.9±2.6% is 

achieved over the training dataset in 10-fold cross-

validation. The proposed algorithm tied for the first place 

in the PhysioNet/CinC Challenge 2017 with an overall 

score of 82.6% (rounded to 83%) on the unseen test 

dataset. 

 

 

1. Introduction 

Atrial Fibrillation (AF) is associated with too quick or 

chaotic contraction of atria’s muscle fibers. This can cause 

uncompleted blood transfer from atria to ventricles and 

decrease the efficiency of heart functioning. The AF global 

prevalence is estimated as 33.5 million in 2010 [1], and its 

rate is increasing based on regional studies [2]. This 

                                                           
* The first two authors have contributed equally to this paper. 

arrhythmia is one of the main public health problems 

because of not only its prevalence but also its 

complications and costs. Symptomatic AF patients are 

more probable to be diagnosed and treated, whereas 

asymptomatic patients (silent AF) are more prone to 

serious complications caused by AF such as ischemia, 

stroke, or early mortality [3]. Therefore, early detection of 

AF is crucial for effective treatment, improving the clinical 

outcomes, and decreasing the costs.  

Based on the AF management guidelines [4], prompt 

ECG (at least 30s recording) is a diagnostic and effective 

method. The absence of significance P wave and irregular 

distances of QRS complexes are the main signs of AF on 

the ECG recordings. Therefore, to date, several studies 

have been conducted to automatically detect AF rhythm 

using signal processing and machine learning methods [5] 

[6]. However, only a few of them studied the ECG 

recorded by single-lead portable devices. Although it is 

shown that the hand-held devices cannot substitute a 

conventional ECG devices [7] [8], they can be used for 

daily usage and improve the accuracy of early AF detection 

[7].  

This work proposes a hybrid classification approach for 

ECGs recorded by the AliveCor hand-held devices [9]. It 

combines features from multi domains including time, 

frequency, time-frequency, phase space, and meta-level. It 

utilizes a feature selection approach based on a random 

forest classifier. Finally, the selected features are classified 

by another random forest classifier. The main 

contributions of this study are:  

1) To investigate a comprehensive set of discriminative 

features, which is independent of the ECG lead positioning 

(Section 2.1). This is crucial because there are different 

alternatives for lead placement in hand-held devices, e.g., 

the measurement between left and right hand, or directly 

on the chest.  

2) To design an effective classification algorithm in 

order to classify four ECG types including the AF rhythms 



(Section 2.2).  

The proposed algorithm is evaluated over recently 

released single-lead ECG dataset [9]. In Sections 3 and 4, 

the results and conclusion are discussed.  

 

2. Materials and methods 

For this challenge, 8528 single-lead ECG recordings 

with sampling frequency of 300 Hz are provided by 

Physionet/Computing in Cardiology Challenge 2017 [10]. 

The objective of the challenge is to classify each ECG 

recording into one of the following classes: healthy 

(normal), AF, other rhythms, and noisy. More detailed 

information can be found in [9]. The proposed feature 

extraction and classification approach will be presented 

next.  

 

2.1. Feature engineering  

First as the preprocessing stage, the quality of the ECG 

recordings are enhanced based on the sparse derivative 

decomposition and denoising algorithm [11]. Once the 

ECGs are denoised and the baseline wander is removed, a 

set of 491 hand-crafted features is extracted. The extracted 

features are a combination of base-level (i.e., signal-level) 

features and meta-level features (i.e., the prediction of the 

base-level classifiers). Then, a random forest classifier 

ranks the features in decreasing order of importance. The 

importance of each feature is evaluated based on the 

reduction of the entropy. A subset of 150 highest-ranked 

features is then selected. The selected features are listed as 

follows: 

(1) Base-level time domain and morphological 

features: The 67 selected features in the time domain are: 

the average of RR intervals (𝑅𝑅̅̅ ̅̅ ); the coefficient of 

variation of 𝑅𝑅 intervals (𝐶𝑜𝑒𝑓𝑉𝑎𝑟(𝑅𝑅)); variance of the 

P wave amplitudes; mean of kurtosis values of T waves; 

eigenvalues of the covariance matrix of beats; the 

correlation coefficients and Rényi entropy [12] of P waves. 

Furthermore, mean, standard deviation, range, interquartile 

range (IQR), percentiles of energy, slope and angles of P-

QRS-T waves [13], PR intervals, and R amplitudes are 

extracted.  

(2) Base-level frequency domain features: First, the 

power spectral density of each beat is estimated using 

Burg’s method (𝑃). Then, two features are calculated for 

each beat in different frequency (𝑓) range (Hz) as follows: 

𝑃𝑓1 =
∑ 𝑃𝑓

15
𝑓=5

∑ 𝑃𝑓
40
𝑓=5

 (1) 

 

𝑃𝑓2 =
∑ 𝑃𝑓

40
𝑓=1

∑ 𝑃𝑓
40
𝑓=0

 (2) 

The average of 𝑃𝑓1 and 𝑃𝑓2 in each signal are used as two 

features in this domain. 

(3) Base-level time-frequency domain features: In 

total, 46 features are selected from this domain. Shannon, 

Tsallis, and Rényi entropies [12] of the five levels of detail 

and one level of approximation coefficients obtained by 

Symlet 4 wavelet are used. These entropy measures are 

extracted separately from the whole signal, P, and T waves. 

In addition, the statistical and morphological features of 

details and approximation coefficients of seven level 

decomposition, obtained by Daubechies 4 wavelet, are 

extracted [14]. Moreover, the homogeneity of the ECG 

signal is defined using continuous wavelet transform 

(CWT): 

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑖𝑡𝑦 =  
∑ 𝑊𝑖,𝑗

𝐾
 (3) 

where 𝑊𝑖,𝑗 = 𝑃𝑖,𝑗 + |𝑖 − 𝑗|, 𝑃𝑖,𝑗 is the probability of bin 

(𝑖, 𝑗) in CWT space, and 𝐾 is the number of all bins. 

(4) Base-level nonlinear (phase space) features: In 

phase space representation, 1-D time series are embedded 

into higher dimensional space in order to reveal their 

dynamical evolution through time. In this study, we have 

used different embedding methods of 𝑅𝑅 series in order to 

characterise the different types of arrhythmia. The first 

feature is defined as if an ellipsoid can be fitted in the 2-D 

phase space with lag 1 (reconstructed based on Takens’ 

delay embedding theory [15]). The possibility or 

impossibility of fitting an ellipse representing the 

geometrical properties of 𝑅𝑅’s dynamic. Moreover, the 

local temporal behaviour of the phase space points is 

analyzed based on co-occurrence matrix [6]. 

The next selected feature is defined as:  

𝑠𝑡𝑒𝑝𝑝𝑖𝑛𝑔 =  

1
𝑛 − 2

∑ √(𝐼𝑗 − 𝐼𝑗+1)
2

+ (𝐼𝑗+1 − 𝐼𝑗+2)
2𝑛−2

𝑘=1

1
𝑛

∑ 𝐼𝑗
𝑛
𝑗=1

, (4) 

where 𝐼𝑗 is 𝑗th point in a 2-dimensional space formed by 

𝑅𝑅s (horizontal coordinate) and 
𝑑 𝑅𝑅𝑠

𝑑𝑡
 (vertical coordinate) 

[16]. 

Furthermore, two different phase space reconstruction 

methods, parabolic [17] and triangle [18] mappings, are 

used. Parabolic mapping is formed by 𝑅𝑅𝑖 and (𝑅𝑅̅̅ ̅̅ −
 𝑅𝑅𝑖)

2 as the horizontal and vertical coordinates, 

respectively. The coefficients of a fitted second order 

polynomial in this space are used as descriptive features. 

Likewise, the perimeter and area of the triangle phase 

space, which is constructed by 𝑅𝑅𝑖 and |(𝑅𝑅̅̅ ̅̅ − 𝑅𝑅𝑖)|, are 

selected as the key characteristics of this domain. In 

addition, AFEvidence, ATEvidence, and OrgIndex metrics 

[5] are used. 

(5) Meta-level features: these features are the 

statistical descriptors of the prediction of the base-level 

classifiers. In this work, we use three base-level classifiers: 

linear and quadratic discriminant analysis (LDA & QDA), 

and a random forest with 30 decision trees. These 

classifiers are then trained on the 20% random subset of 

the training data to generate the meta-level features for the 

next level classifier (see Fig.1). This process is discussed 



in the following. 

The number of abnormal segments in an ECG signal can 

signify the irregularities with more resolution. For this 

purpose, first, the signal is windowed into 5s segments 

with 4s overlap. Once the R, P and T waves are detected in 

each segment, the following base-level features are 

extracted:  

 𝑓𝑠𝑒𝑞1 =  𝐶𝑜𝑒𝑓𝑉𝑎𝑟 (𝑅𝑅) (5) 

 

𝑓𝑠𝑒𝑞2 = 𝑚𝑒𝑎𝑛(𝑠𝑡𝑑(𝑇𝑤𝑎𝑣𝑒)) (6) 

 

𝑓𝑠𝑒𝑞3 = max(𝑚𝑒𝑎𝑛(𝑇𝑤𝑎𝑣𝑒)) (7) 

 

𝑓𝑠𝑒𝑞4 = ∑ 𝑚𝑒𝑎𝑛(𝐸𝑝𝑤𝑎𝑣𝑒
) (8) 

 

𝑓𝑠𝑒𝑞5 = ∑ 𝑚𝑒𝑎𝑛(𝐸𝑇𝑤𝑎𝑣𝑒
) (9) 

 

where 𝐸𝑝𝑤𝑎𝑣𝑒
 and 𝐸𝑇𝑤𝑎𝑣𝑒

 are the energy of P and T 

waves, respectively. In addition, each segment is modelled 

as an order 4 autoregressive process. The parameters of this 

model are used as new features (𝑓𝑠𝑒𝑞6-𝑓𝑠𝑒𝑞9). Then, all nine 

base-level features are fed into the three aforementioned 

base-level classifiers. Each classifier is used to generate 

four posterior probabilities of classes for each 5s segment. 

The mean and standard deviation of these posterior 

probabilities are used as meta-level features. 

 

2.2. Classification  

In this work, we used a hybrid classification framework 

in the sense that we combined the base-level and meta-

level features to generate the hybrid feature vectors, and 

then fed them into a single learning algorithm to classify. 

For this purpose, an (external) random forest classifier is 

trained over the remaining 80% of the training data by 

using 500 decision trees and random selection of features 

at each node creation. We use bagging, i.e. bootstrapped 

replicas of the training data, to train each decision tree, and 

30 features are randomly selected for each node. Then the 

entropy measure is used to decide which feature to split on 

at each node.   

 

3. Results and discussion 

The accuracy of the proposed method is evaluated in 10-

fold cross validation manner. Because 20% of data has 

already been used to train the base-level classifiers, we 

have used the remaining 80% of the training data for 

evaluation in order to avoid overfitting. These results are 

reported in Table 1. 

In hand-held devices, each ECG recording typically 

includes noise and artifacts, low-quality signals, 

intermediate rhythms, and transitional states between 

rhythms. The proposed algorithm in this paper only 

partially handles these difficulties. The sequential 

classification algorithms such as hidden Markov models 

(HMM), conditional random fields (CRFs), and recurrent 

neural networks (RNN) which analyze consecutive 

windows can be a possible solution for the aforementioned 

difficulties. They will be investigated in our future work. 

Table 1: Results of the proposed method: the overall 

score (mean±std) over 80% of the training dataset in 

10-fold cross-validation and the overall score on the 

unseen test dataset. 

Evaluation 

metrics 

Training set 

(%) 
Testing set 

(%) 

F1n (Normal) 90.49 ± 0.96 90.87 

F1a (AF) 79.43 ± 4.52 83.51 

F1o (Other) 75.64 ± 3.11 73.41 

F1p (Noisy) 61.11 ± 7.53 50.42 

F1 81.85 ± 2.57 83 

 

 
Figure 1. The proposed classification strategy 



 

4. Conclusions 

In this paper, we have proposed a systematic approach 

for the detection of AF rhythms in ECG hand-held devices. 

We have investigated a comprehensive set of hand-crafted 

491 features, and ranked them based on their importance. 

A set of 150 highest-ranked features is selected and fed into 

a random forest classifier in order to detect AF rhythms in 

addition to three other ECG rhythms/types. The proposed 

method tied for the first place in the PhysioNet/CinC 

Challenge 2017 with an overall score of 82.6%. With this 

overall performance, the proposed algorithm has a 

potential for improvement, which is the subject of our 

future work. 

 

References 
 

[1]  S. S. Chugh, R. Havmoeller, K. Narayanan, D. Singh, M. 

Rienstra, E. J. Benjamin, R. F. Gillum, Y. Kim, J. H. 

McAnulty, Z. Zheng, M. H. Forouzanfar, M. Naghavi, G. 

A. Mensah, M. Ezzati, C. J.L. Murray, "Worldwide 

Epidemiology of Atrial Fibrillation A Global Burden of 

Disease 2010 Study," Circulation, vol. 129, no. 8, 2014.  

[2]  M. Zoni-Berisso, F. Lercari, T. Carazza, and S. 

Domenicucci, "Epidemiology of atrial fibrillation: 

European perspective," Clinical Epidemiology, no. 6, p. 

213–220, 2014.  

[3]  P. E. Dilaveris, and H. L. Kennedy, "Silent atrial 

fibrillation: epidemiology, diagnosis, and clinical impact," 

Clinical Cardiology, vol. 40, no. 6, pp. 413-418, 2017.  

[4]  P. Kirchhof, S. Benussi, D. Kotecha, A. Ahlsson, D. Atar, 

B. Casadei, M. Castella, H. Diener, H. Heidbuchel, J. 

Hendriks, G. Hindricks, A. S. Manolis, J. Oldgren, B. A. 

Popescu, U. Schotten, B. V. Putte, P. Vardas, "2016 ESC 

Guidelines for the management of atrial fibrillation 

developed in collaboration with EACTS," European Heart 

Journal, vol. 37, no. 38, pp. 2893-2962, 2016.  

[5]  S. Sarkar, D. Ritscher, and R. Mehra, "A Detector for a 

Chronic Implantable Atrial," IEEE Transactions on 

Biomedical Eengineering, vol. 55, no. 3, pp. 1219 - 1224, 

2008.  

[6]  S. Moharreri, S. Parvaneh, N. J. Dabanloo, A. M. 

Nasrabadi, "Utilizing occurrence sequence of Heart Rate's 

phase space points in order to discriminate heart 

Arrhythmia," in 17th Iranian Conference of Biomedical 

Engineering (ICBME), Isfahan, Iran, 2010 .  

[7]  D. C. Peritz, A. Howard, M. Ciocca, E. and H.Chung,, 

"Smartphone ECG aids real time diagnosis of palpitations 

in the competitive college athlete," Journal of 

Electrocardiology, vol. 48, no. 5, pp. 896-899, 2015.  

[8]  K. M Griffiths, E. N Clark, B. Devine, and P. W. 

Macfarlane, "Assessing the accuracy of limited lead 

recordings for the detection of Atrial Fibrillation," in 

Computing in Cardiology Conference (CinC), Cambridge, 

MA, USA, 2014.  

[9]  G. Clifford, C. Liu, B. Moody, L. H. Lehman, I. Silva, Q. 

Li, A. Johnson, and R. Mark, "AF Classification from a 

Short Single Lead ECG Recording: the PhysioNet 

Computing in Cardiology Challenge 2017," Computing in 

Cardiology (In Press), vol. 44, 2017.  

[10]  "AF Classification from a short single lead ECG 

recording: the PhysioNet/Computing in Cardiology 

Challenge 2017," 2017. [Online]. Available: 

https://physionet.org/challenge/2017/. [Accessed 7 9 

2017]. 

[11]  X. Ning, I. W. Selesnick, and L. Duval, "Chromatogram 

baseline estimation and denoising using sparsity 

(BEADS)," Chemometrics and Intelligent Laboratory 

Systems, vol. 139, pp. 156-167, 2014.  

[12]  M. Zabihi , A. Bahrami Rad, S. Kiranyaz, M. Gabbouj, 

and A. K. Katsaggelos, "Heart sound anomaly and 

quality detection using ensemble of neural networks 

without segmentation," in Computing in Cardiology 

Conference (CinC), Vancouver, BC, Canada, 2016.  

[13]  T. Hamdi, A. B. Slimane, and A. B. Khalifa, "A novel 

feature extraction method in ECG biometrics," in Image 

Processing, Applications and Systems Conference 

(IPAS), Sfax, Tunisia, 2014.  

[14]  A. Bahrami Rad, T. Eftestol, K. Engan, U. Irusta, J. T. 

Kvaloy, J. Kramer-Johansen, L. Wik, A. K. Katsaggelos, 

"ECG-based Classification of Resuscitation Cardiac 

Rhythms for Retrospective Data Analysis," IEEE 

Transactions on Biomedical Engineering, vol. 64, no. 

10, pp. 2411 - 2418, 2017.  

[15]  F. Takens, "Detecting strange attractors in turbulence," 

Lecture Notes in Mathematics, vol. 898, pp. 366-381, 

1981.  

[16]  J. Park, S. Lee, and M. Jeon, "Atrial fibrillation detection 

by heart rate variability in Poincare plot," BioMedical 

Engineering OnLine, vol. 38, no. 8, 2009.  

[17]  S. Moharreri, S. Rezaei, N J. Dabanloo, S. Parvaneh, 

"Extended Parabolic Phase Space Mapping (EPPSM): 

Novel quadratic function for representation of Heart 

Rate Variability signal," in Computing in Cardiology 

Conference (CinC), Cambridge, MA, USA, 2014.  

[18]  S. Moharreri, S. Rezaei, and S Salavatian, 

"Discrimination of heart arrhythmias using novel 

features in heart rate phase space," in Computing in 

Cardiology Conference (CinC), Zaragoza, Spain, 2013.  

 

 

Address for correspondence: 
 

Morteza Zabihi, Ali Bahrami Rad 

P.O. Box 527, FI-33101 Tampere, Finland. 

P.O. Box 100, FI-33014 Tampere, Finland 

morteza.zabihi@tut.fi, ali.bahrami.rad@uta.fi 



 

 

 

 

 

 

 

 

PUBLICATION 5 

 

 

Sepsis Prediction in Intensive Care Unit Using Ensemble of  

XGboost Models 

M. Zabihi, S. Kiranyaz, and M. Gabbouj 
 

2019 Computing in Cardiology Conference (CinC), 
 

©2019 IEEE. Reprinted, with permission, from M. Zabihi, S. Kiranyaz, and 
 M. Gabbouj, Computing in Cardiology (CinC), IEEE, Singapore, 8-11 Sept, 2019.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does 

not endorse any of Tampere University’s products or services. Internal or personal use of this 

material is permitted. If interested in reprinting/republishing IEEE copyrighted material for 

advertising or promotional purposes or for creating new collective works for resale or 

redistribution, please go to 

http://www.ieee.org/publications_standards/publications/rights/rights_link.html  

to learn how to obtain a License from RightsLink. If applicable, University Microfilms and/or 

ProQuest Library, or the Archives of Canada may supply single copies of the dissertation.” 



Sepsis Prediction in Intensive Care Unit Using Ensemble of XGboost Models 

Morteza Zabihi1, Serkan Kiranyaz2, Moncef Gabbouj1 

1Tampere University, Tampere, Finland 
2Qatar University, Doha, Qatar 

 

Abstract 

Sepsis is caused by the dysregulated host response to 

infection and potentially is the main cause of 6 million 

death annually. It is a highly dynamic syndrome and 

therefore the early prediction of sepsis plays a key role in 

reducing its high associated mortality. However, this is a 

challenging task because there is no specific and accurate 

test or scoring system to perform early prediction. In this 

paper, we present a systematic approach for sepsis 

prediction. We also propose a new set of features to model 

the missingness in clinical data. The pipeline of the 

proposed method comprises three major components: 

feature extraction, feature selection, and classification. In 

total, 407 features are extracted from the clinical data. 

Then, five different sets of features are selected using a 

wrapper feature selection algorithm based on XGboost. 

The selected features are extracted from both valid and 

missing clinical data. Afterwards, an ensemble model 

consists of five XGboost models is used for sepsis 

prediction. The proposed algorithm is ranked officially as 

third place in the PhysioNet/Computing in Cardiology 

Challenge 2019 with an overall utility score of 0.339 on 

the unseen test dataset (our team name: Separatrix). 

 

 

1. Introduction 

Sepsis is defined as life-threatening organ dysfunction 

caused by a dysregulated host response to infection [1] and 

is often associated with lung, urinary tract, skin, and gut 

infections. The recent report of Center for Disease Control 

(CDC) shows that sepsis causes one out of every three 

hospital deaths [2] [3]. Besides the high mortality rate of 

sepsis, it imposes immense challenges to healthcare 

systems. From an economic perspective, sepsis implies 

high costs of hospital care with almost 17 billion USD 

annually in the United States [4] and 2.5 billion pounds in 

the UK [5]. Thus, early prediction of sepsis is a crucial 

element for appropriate clinical management and 

improvement of clinical outcomes. 

The recent clinical criteria of sepsis [1] in the general 

hospital ward setting, recommend that quick Sequential 

(Sepsis-related) Organ Failure Assessment (qSOFA) 

should be used as a rapid evaluation of sepsis risk. This 

means that the patient should have at least two of the 

following clinical criteria to be considered as a patient with 

suspected infection: respiratory rate of 22 per minute or 

greater, altered mentation, and systolic blood pressure of 

10 mmHg or less. Moreover, in [1], the SOFA≥ 2 score is 

determined to represent organ dysfunction. SOFA score 

monitors laboratory values and vital signs such as the 

fraction of inspired oxygen (FiO2), the partial pressure of 

oxygen (PaO2), platelets, liver bilirubin, and mean arterial 

pressure [1]. However, sepsis is a dynamic condition, and 

such criteria may not meet or present in all the time. This 

leads to inaccurate results of such approaches [6]. In 

addition, using clinical criteria for sepsis diagnosis in 

patients with critical situations (e.g., ICU patients) can be 

even more challenging due to the misleading symptoms 

caused by other diseases [7]. 

Despite the slow changes in sepsis definitions, several 

studies have focused on the development of Machine 

Learning models to overcome the aforementioned 

challenges. In [8], the proposed method achieved 

significantly higher accuracy compared to the three 

standard sepsis-related scoring systems (i.e., SOFA, 

qSOFA, and MEWS). In [9], a variant recurrent neural 

network model is proposed for sepsis prediction. Their 

proposed model revealed that ICU length-of-stay, heart 

rate, white blood cell count, and temperature are the most 

relevant features for sepsis prediction. In [10], a model 

based on Weibull-Cox proportional hazards mode is 

proposed to predict the onset of sepsis in an ICU patient 4 

to 12 hours prior to clinical recognition. Their method 

achieved the area under the receiver operating 

characteristic (AUROC) between 0.83–0.85. These models 

have achieved higher accuracy compared to traditional 

clinical criteria. However, further studies are needed to 

improve the robustness, false alarm rate, and 

interpretability of such models. 

In this paper, we explore the use of an ensemble learning 

technique (Figure 1) for sepsis prediction in ICU. The main 

contributions of this study are:



 
Figure 1. The training strategy of the proposed method 

1) Investigating a comprehensive set of features and  

tracking the top clinically relevant features.   

2) Introducing discriminative features for revealing 

the patterns of missing values in clinical data. 

3) Designing a predictive model by ensembling 5 

classifiers. 

The remainder of this paper is organized as follows: In 

Section 2, the dataset is briefly described and the proposed 

method is explained. In Section 3, the evaluation results are 

presented and discussed. Finally, concluding remarks are 

outlined in Section 4. 

2. Materials and methods 

The dataset used in this competition is collected from 

63097 ICU patients in three distinct hospitals. The training 

set includes 40336 records from two hospitals (hospitals A 

and B), while the remaining 22761 patient records (from 

hospitals A, B, and C) are kept hidden to be used for final 

ranking. For each patient, eight vital signs, six 

demographics variables, and 26 laboratory values are 

provided for every hour. More detailed information can be 

found in [11]. The feature extraction, feature selection, and 

classification approach are described next. 

2.1. Feature engineering 

Often the clinical data are not collected consistently. 

Therefore, it is expected that the majority amount of data 

for some covariates is missing. It has been shown that the 

imputation of missing values for such covariates does not 

significantly improve the prediction performance [12]. On 

the other hand, the missingness may convey useful 

information [13]. Therefore, in this work, two different 

types of features are extracted. The first type of feature 

targets the covariates with less than 70% of missingness 

while the second type of feature focuses on the patterns of 

missing values in clinical data. The combination of these 

features forms a set of 407 features in total (see Table 1). 

Once the features are extracted, they are normalized to a 

mean of 0 and unit standard deviation. The extracted 

features are described as follows: 

The first type of features are extracted from 13 

covariates of heart rate (HR), pulse oximetry (O2Sat), 

temperature (Temp), systolic blood pressure (SBP), mean 

arterial pressure (MAP), diastolic blood pressure (DBP), 

respiration rate (Resp), age, gender, administrative 

identifier for MICU unit (Unit1), administrative identifier 

for SICU unit (Unit2), hours between hospital admit and 

ICU admit (HospAdmTime), and ICU length-of-stay 

(ICULOS). Before extracting the first type of features, the 

missing value imputation is carried out by linear 

interpolation. If the data is less than 3 hours (i.e., less than 

three observations), then the missing values are replaced 

with the mean value of the corresponding covariate in the 

training data. For age and gender, the missing values are 

replaced by the first valid value. If all the values in the 

given observations were missing, then they are replaced by 

mean values. Once the imputation is performed, the 

following features are extracted: 

(1) Sliding-window based features: Mean, minimum, 

maximum, median, variance, 95%, 99%, 5%, and 1% 

quantiles are calculated from the last 5 and 11 hours 

observations. We use two different time windows (i.e., 5 

and 11 hours) to capture the short- and long-term temporal 

evolution of covariates.   

(2) Non sliding-window based features: Energy, 

Shannon entropy, mean of the first differences, and the 

lengths of observations are calculated from the given 

observations. 

(3) The last observation values of the 13 covariates 

are also used as 13 separate features. 



Table 1. List of the extracted features 

Type Features #features 

1 

Imputation, 

13 covariates 

Mean, minimum, maximum, median, variance, 95%, 99%, 5%, and 1% quantiles 

from the last 5 and 11 hours. 
198 

245 Energy, Shannon entropy, mean of the first differences, and the lengths of 

observations 
34 

last observation values of the 13 covariates 13 

2 

No imputation,  

38 covariates 

Mean and variance of LC 76 

162 Summation and variance of LCV 76 

Mean and variance of LO 10 

 

To calculate the second type of features, age and gender 

are excluded from the given covariates. These two 

demographic variables are constant for each patient during 

the monitoring and therefore their absence does not convey 

any information. To represent the missingness, we define 

the sequence abstraction. Each sequence is defined as a set 

of consecutive measurements where the values are only 

either missing or present. Therefore, each sequence can 

only have missing or present values. For instance, let’s 

imagine the SBP measurements for 6 hours are 
{𝑛𝑎𝑛, 122, 98, 𝑛𝑎𝑛, 𝑛𝑎𝑛, 123}, then based on the 

definition, we have 4 sequences of {𝑛𝑎𝑛}, {122, 98}, 
{𝑛𝑎𝑛, 𝑛𝑎𝑛}, and {123}. Using the sequence abstraction the 

following features are calculated (see Figure 2): 

(1) Mean and variance of the lengths of sequences 

along each covariate, LC.  

(2) Summation and variance of the lengths of 

sequences with only valid values (without missing) along 

each covariate, LCV. 

(3) Mean and variance of the lengths of sequences 

along each observation, LO, in the last 5 hours. 

It is worth mentioning that the input clinical data have 

varying lengths, and it is possible that the number of 

observations is not enough to extract the sliding-window 

based features. For such cases, the clinical data is padded 

using the first observation. The amount of padding equals 

to the difference between the number of observations in the 

given data and the number of needed ones. This enables us 

to transform the raw data into a feature space with a fixed 

length. Thus, discriminative methods, such as XGboost 

and random forest, can be applied to such dynamic data.  

 

Figure 2. Sequence abstraction for HR, Temp and SBP covariates 

2.2. Feature selection and classification 

The proposed classification algorithm consists of two 

main steps:  

(1) In the first step, five sets of best performing 

features and hyper-parameters are selected. We perform 

the feature selection and hyper-parameter tuning in a 5-fold 

cross-validation scheme using 10% of the original training 

data. For feature selection, we employ a wrapper feature 

selection algorithm based on XGboost (BoostARoota 

[14]). The importance metric is the number of times that a 

particular feature was split on in the XGboost algorithm. 

In addition, a grid search is used to find the best performing 

combinations of hyper-parameters. 

(2) In the second step, we used an ensemble of five 

XGboost models. XGboost is a decision tree based 

ensemble using a gradient boosting framework [15] and its 

effectiveness has been established in a wide range of 

applications especially in prediction problems. To train the 

proposed ensemble, we randomly split the remaining 90% 

of the original data into five equally disjoint sets. Then, 

each set is used to train a distinct classifier. Moreover, due 

to the imbalance problem between sepsis and non-sepsis 

observations, we separately balance the data for each 

XGboost using the random undersampling technique. 

Finally, we use the geometric mean to integrate the outputs 

of the five classifiers. The training strategy of the proposed 

method is shown in Figure 1. 

3. Results and discussion 

We test our predictive model in a 5-fold cross-validation 

scheme using the training data. The results are reported in 

Table 2 (for more information about the score and metrics 

refer to [11]). The obtained utility scores (AUROC, 

AUPRC, F-measure) on the unseen test set A, B, and C are 

0.422 (0.814, 0.102, 0.128), 0.395 (0.844, 0.110, 0.130), 

and -0.146 (0.793, 0.058, 0.044), respectively. Clearly, the 

performance of the proposed model on hospitals A and B 

(which are present in the training set) are robust with 

respect to our cross-validation. However, the performance 

drops drastically on the test set C. We believe that the main 

reason is that the missingness in hospital C has a different 



Table 2. The results of the proposed method on the training data 

in a 5-fold cross-validation scheme and on the hidden test set. 

AUROC and ACC are area under the receiver operating 

characteristic and accuracy, respectively. 

Fold AUROC ACC Score 

0 0.8387 0.8394 0.4366 

1 0.8357 0.8418 0.4412 

2 0.8436 0.8477 0.4521 

3 0.8221 0.8451 0.3899 

4 0.8268 0.8464 0.4208 

Average  

   (std) 

0.8333 

(0.0078) 

0.8440 

(0.0030) 

0.4281 

(0.0215) 

The hidden test data  0.339 

 

pattern compared to other hospitals. Here, missingness 

represents human behavior in recording the covariates and 

does not convey medical information. Therefore, 

missingness should be used with caution. That said, it 

should be noted that all the contestants fail to achieve a 

high score on test set C even if they have not used 

missingness information in their proposed methods.       

Additionally, we observe that among the second type 

features (missingness) 102 out of 162 features were 

selected commonly using the BoostARoota algorithm. 

This shows the significance of the proposed features in 

sepsis prediction. Moreover, among the selected features, 

the HospAdmTime, the summation of LCV for TMP, age, 

Unit1, variance of HR and TMP in the last 11 hours were 

ranked among the top 10 features. 

 

4. Conclusions 

In this work, we proposed a systematic approach for 

sepsis prediction in ICU. We investigate a set of features 

to capture the transitional states of covariates by using two 

time windows with different lengths. In addition, we 

introduce a new set of features to represent the missingness 

in clinical data. We examined the importance of features 

using the BoostARoota algorithm and found that the 

missing data convey relevant information for sepsis 

prediction in two out of three hospitals. The proposed 

method is officially ranked as the third team with a utility 

score of 0.339 on the unseen data (our team name: 

Separatrix). 
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