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August 2020

In this work, we develop a numerical method for simulating Euler–Bernoulli beams. We use
this method for simulating a single beam, as well as simulating the solar panels of a flexible
satellite. In developing the method, we apply mathematical control theory, Legendre polynomials,
Fourier–Legendre series expansion and the spectral Galerkin method.

The main goal of this work is to develop a numerical model that we can use for doing simu-
lations in MATLAB. We obtain a linear system of first-order differential equations, which we can
solve with dedicated tools. We included the possibility to apply time-dependent boundary control
input in the simulation model developed for a single beam. This allows us to use this model in
simulating a flexible satellite. In the approximate model for the flexible satellite, we included the
possibility to apply time-dependent control input to the system.

We study the existence of solutions to the dynamic beam equation with homogeneous bound-
ary conditions (i.e. without boundary control input) by applying mathematical control theory and
the theory of strongly continuous semigroups in particular. This is not a central part of the work,
but we include it as a theoretical foundation for the existence of numerical solutions to the beam
equation. As an introduction, we study boundary conditions corresponding to differently mounted
beams with static beams first. Boundary conditions corresponding to different beam mountings
form an essential part of solving the beam equation and developing the numerical method.

The numerical approximation for beams is based on modal basis functions made of Legen-
dre polynomials and the spectral Galerkin method utilising these polynomials. The Legendre
polynomials are computationally well applicable, as they are polynomials with integer coefficients
and thus can be represented numerically as coefficient vectors to a high precision. Operations
between these polynomials are also computationally simple. The use of Legendre polynomials
is further motivated by the fact that they are great for approximating continuously differentiable
functions.

The model for a flexible satellite consists of a small, rigid central body and two identical flexible
solar panels, which we model as dynamic Euler–Bernoulli beams. The solar panels are mounted
symmetrically to the central body and they affect each other via the boundary mountings. We
model the satellite numerically by applying the approximate model developed for a single beam
to both solar panels, and using a model derived from Newton’s laws for the central body. Using
the boundary connections between the components, we combine the three systems into a single
system, which we can simulate using MATLAB.

Keywords: Euler–Bernoulli beam theory, beam equation, Legendre polynomials, spectral method,
Galerkin method, boundary control, flexible satellite, control theory
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TIIVISTELMÄ

Kristian Asti: Dynaamisten Euler–Bernoulli-palkkien ja taipuisan satelliitin numeerinen approksi-
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Diplomityö, 63 sivua, 0 liitesivua
Tampereen yliopisto
Teknis-luonnontieteellinen koulutusohjelma
Pääaine: Matematiikka
Elokuu 2020

Tässä työssä kehitetään numeerinen menetelmä Euler–Bernoulli-palkkien simulointia varten.
Tätä menetelmää käytetään paitsi yksittäisen palkin simulointiin, myös taipuisan satelliitin aurin-
kopaneelien mallintamiseen. Mallin johtamisessa hyödynnetään matemaattista systeemiteoriaa,
Legendren polynomeja, Fourier–Legendren sarjakehitelmää sekä Galerkinin spektraalimenetel-
mää.

Työn päätavoitteena on kehittää simulointikelpoinen numeerinen malli, jota voidaan käyttää si-
mulaatioiden tekemiseen MATLAB-ohjelmistolla . Tuloksena on lineaarinen ensimmäisen asteen
differentiaaliyhtälösysteemi, joka on ratkaistavissa siihen kehitetyillä työkaluilla. Yhden palkin si-
mulointimalliin on sisällytetty mahdollisuus käyttää ajasta riippuvaa reunaohjaussignaalia, mikä
mahdollistaa sen soveltamisen satelliittimallissamme. Vastaavasti taipuisan satelliitin malliin on
sisällytetty mahdollisuus käyttää ajasta riippuvaa ohjaussignaalia.

Aikariippuvan palkkiyhtälön ratkaisujen olemassaoloa homogeenisille reunaehdoille (ilman
reunaohjaussignaalia) tutkitaan matemaattisen systeemiteorian ja erityisesti vahvasti jatkuvien
puoliryhmien teorian avulla. Tämä ei ole keskeinen osa työtä, mutta sisällytetään eräänlaisena
teoreettisena perustana palkkiyhtälön numeeristen ratkaisujen olemassaololle. Eri tavoilla kiinni-
tettyihin palkkeihin liittyviä reunaehtoja tutkitaan johdatuksenomaisesti ensin staattisten palkkien
avulla. Erilaisiin palkkikiinnityksiin liittyvät reunaehdot ovat keskeisessä osassa palkkiyhtälön rat-
kaisemisessa sekä numeerisen menetelmän kehittämisessä.

Varsinainen numeerinen palkkiapproksimaatio rakentuu Legendren polynomeista muodostet-
tujen modaalisista kantafunktioista sekä Galerkinin spektraalimenetelmästä käyttäen näitä poly-
nomeja. Legendren polynomit ovat laskennallisesti hyvin käyttökelpoisia, sillä ne ovat kokonaislu-
kukertoimisina polynomeina esitettävissä numeerisesti kerroinvektorimuodossa suurella tarkkuu-
della. Operaatiot näiden polynomien kesken ovat niin ikään laskennallisesti yksinkertaisia toteut-
taa. Legendren polynomien käyttöä motivoi myös niiden hyvä soveltuvuus jatkuvasti derivoituvien
funktioiden approksimointiin.

Taipuisan satelliitin malli koostuu jäykästä, kooltaan pienestä keskuskappaleesta sekä kah-
desta identtisestä, taipuisasta aurinkopaneelista, joita mallinnetaan dynaamisina Euler–Bernoulli-
palkkeina. Aurinkopaneelit kiinnittyvät symmetrisesti keskuskappaleeseen, ja ne vaikuttavat toi-
siinsa reunakiinnitysten kautta. Satelliittia mallinnetaan numeerisesti hyödyntämällä yksittäiselle
palkille kehitettyä approksimaatiomallia molemmille aurinkopaneeleille ja käyttämällä Newtonin
laeista johdettua mallia keskuskappaleelle. Näistä kolmesta systeemistä muodostetaan reunakyt-
kentöjen avulla yksi systeemi, jota voidaan simuloida MATLAB-ohjelmistolla.

Avainsanat: Euler–Bernoulli-palkkiteoria, palkkiyhtälö, Legendren polynomit, spektraalimenetel-
mä, Galerkinin menetelmä, reunaohjaus, taipuisa satelliitti, systeemiteoria

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.
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1 INTRODUCTION

In this work, we develop a numerical method to simulate time-dependent beam structures.
When we are interested in studying shape and vibration, any solid object of continuous
material that is predominantly one-dimensional can be thought of as a beam. Examples
include structural beams used in construction, such as I-beams, logs and planks. Ele-
mentary physics generally models solid structures as rigid objects, meaning they remain
undeformed while subjected to force or torque. This assumption is adequate for strong,
rigid materials that are resistant to deformations. However, with large scale beam-like
structures, the assumption on rigidity is not reasonable anymore, as deformation and
bending become significant and cannot be ignored. Too much deformation or bending
might cause the beam to stay permanently deformed, losing its structural strength or
break altogether, which can be undesirable or dangerous. The study of mechanics of
materials addresses problems and analysis of non-rigid solid materials. A good compre-
hensive introduction to mechanics of materials is given in [7].

ξ

w(ξ, t)

t ∈ [0, T ]

Figure 1.1. A vibrating beam rigidly attached to a wall with exaggerated deflection.

The goal of this work is to develop a numerical method to simulate a satellite with flexible
solar panels, which we model as Euler–Bernoulli beams. The satellite consists of two
identical solar panels attached to a central body, which we model as a rigid particle with
negligible dimensions in comparison to the solar panels. We model the solar panels with
the time-dependent Euler–Bernoulli beam equation and the central body with a system
of two ordinary differential equations. We develop a system of linear ordinary differential
equations that approximate the dynamic beam equation. We include time-dependent
boundary control input to the approximate beam model, because the two flexible solar
panels are connected to the central body via the boundary. We model the satellite as
a boundary connected system. We are interested in the movement of the central body
caused by the solar panel vibrations and control input to the central body, and the time



2

evolution of the shape of the solar panels. The satellite model is shown in figure 1.2. The
mathematical foundations of the satellite model are covered in [3], [9] and [10].

θc(t)

wc(t)

Figure 1.2. The satellite model showing the interaction between the flexible solar panels
and the rigid central body through the boundary.

In particular, we are interested in theory developed for beams, particularly that developed
by Leonhard Euler (1707–1783) and Daniel Bernoulli (1700–1782), also known as the
Euler–Bernoulli beam theory. The theory is limited to beams of linearly elastic material
with lateral loads only and relatively small bending, and it models only lateral deflections
of a beam. For our purposes, this is sufficient, as we apply the theory to model vibrations
in the beam caused by elastic potential energy of the beam transforming into kinetic
energy and vice versa. Figure 1.1 shows a vibrating team with only lateral deflection.

In the second chapter, we introduce a few concepts that are important in the later work
as preliminary knowledge. Strongly continuous semigroups form the background theory
for abstract differential equations. For a linear system of first-order ordinary differen-
tial equations, the solution can be uniquely expressed, in a theoretical sense, with the
matrix exponential function and the initial condition. Further generalising this theory, it
can be used to analyse partial differential equations, which can be thought of as infinite-
dimensional differential equations. The book [12] is a good introduction to these topics.
To the interested reader, [5] offers a more comprehensive approach. We also introduce
the Legendre polynomials discovered by Adrien-Marie Legendre (1752–1833). These
polynomials are a class of orthogonal polynomials that can be used as a basis for suffi-
ciently smooth functions on [0, 1], and are an essential part of our numerical system.

In the following chapter, we discuss the basics of Euler–Bernoulli beam theory. For a
short introduction, we first consider static (time-independent) beams and how different
boundary conditions correspond to different beam mountings in real life. From there we
proceed to the dynamic beam equation, whose damped version is the core equation for
modelling beams and the flexible solar panels in the satellite model. We also present
an analytic solution to the equation with homogeneous boundary conditions for com-
pleteness. We transform the original fourth-order beam equation into a system of two
partial differential equations that are first-order in time, using new state variables. This
formulation allows us to apply the theory of port-Hamiltonian systems to analyse the new
system. We cover this topic only in a shallow manner, the book [12] offers an introduction
to port-Hamiltonian systems.
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The fourth chapter contains the main part of this work. Taking the transformed beam
equation as our starting point, we study so-called weak solutions to the system. This
approach allows us to approximate the system with a system of linear ordinary differen-
tial equations by approximating the unknown exact solution with a linear combination of
modal basis functions satisfying the required boundary conditions. We apply the weighted
residual method and the spectral Galerkin method in this process. These methods and
spectral methods more generally are covered, for example, in [17]. We manipulate the
weak formulation of the transformed beam system to incorporate boundary control input
into the system. A large part of the chapter is dedicated to deriving the matrix formula-
tions for the approximate system of ordinary differential equations describing the beam.
We also study how to construct modal basis functions using Legendre polynomials. Last,
having all the required tools, we simulate a beam numerically using MATLAB.

In the fifth chapter, we present a mathematical model for the flexible satellite, which con-
sists of two flexible solar panels and a rigid central body. The solar panels are modelled
as Euler–Bernoulli beams and the central body is modelled as a point mass. We derive
the required modal basis functions using Legendre polynomials to find the matrices for
the systems of ordinary differential equations describing the two beams. We then inter-
connect the two systems for the solar panels and the system describing the motion of the
central body to obtain a single system of ordinary differential equations. Similarly to the
previous chapter, we simulate the satellite system as the last part of the chapter. In the
last chapter, we summarise the simulation model and discuss ways to extend this model
to other problems, its weak points and limitations.

The simulation codes developed for MATLAB alongside this work are openly accessible in
the writer’s GitHub repository at https://github.com/Kristian-MJA/Satmodel.
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2 PRELIMINARIES

In this work, we assume that the reader is familiar with the core concepts of functional
analysis and operator theory. This includes terms such as Banach and Hilbert spaces,
Lp-spaces, normed spaces, general inner products, linear operators, bounded operators,
compactness, adjoint operators and so on. A good introduction to functional analysis is
the book [14].

2.1 Matrix Exponential Function

This section is a brief overview of the matrix exponential on Cn×n. The idea and proper-
ties of the matrix exponential will be generalised in the next section in the form of strongly
continuous semigroups.

Let A be a complex matrix of size n× n. The matrix exponential is usually defined as

eA :=
∞∑︂
n=0

An

n!
. (2.1)

More often, we are interested in the function resulting from replacing A by At:

eAt =

∞∑︂
n=0

Antn

n!
, t ∈ R. (2.2)

This is usually called the matrix exponential function of A, mapping each real number t to
a matrix eAt. Additionally, we define eO (O denotes the zero matrix of size n× n) to equal
the identity matrix I of the same size. This is analogous to the convention that e0 = 1 in
complex numbers. With this in mind, the matrix exponential function eAt can be shown to
have the following important properties:

(i) eA0 = eO = I

(ii) eA(s+t) = eAseAt for all s, t ∈ R

(iii) the function t ↦→ eAt is continuous

(iv) the derivative of eAt equals eAtA = AeAt.

The fourth property in particular is central when solving a system of linear first-order dif-
ferential equations. Indeed, we could alternatively define a mapping that satisfies the
properties (i)–(iv) and symbolically denote that by eAt, without giving an explicit formula-
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tion.

2.2 Strongly Continuous Semigroups

The solution to the initial value problem

d

dt
x(t) = Ax(t), x(0) = x0 ∈ Cn, (2.3)

where x : [0,∞) → Cn and A ∈ Cn×n, is given by x(t) = eAtx0. To analyse infinite-
dimensional differential equations of the same form later on, we generalise the idea of
the matrix exponential function with a concept possessing similar properties.

Definition 2.1 (Strongly continuous semigroup). LetX be a Hilbert space. We can define
a family of operators (T (t))t≥0 satisfying the following properties:

(i) For all t ≥ 0, T (t) is linear and bounded, i.e. T (t) ∈ L(X)

(ii) T (0) = I, where I ∈ L(X) is the identity operator

(iii) T (s+ t) = T (s)T (t) for all s, t ≥ 0

(iv) the function t ↦→ T (t) satisfies lim
t→0+

∥T (t)x− x∥X = 0 for all x ∈ X.

A family of operators satisfying (i)–(iv) form a strongly continuous semigroup or a C0-
semigroup. We call X the state space and its elements states. Theory on strongly
continuous semigroups is covered in, for example, [2, Chapter 5], [5, Chapter 1] and [13,
Chapter 1].

The properties (ii) and (iii) are directly analogous to the first two properties of the matrix
exponential function. The fourth property is called strong continuity, which is a weaker
form of continuity, as opposed to uniform continuity. Requiring the operators to be uni-
formly continuous would be too restrictive. The matrix exponential function is an example
of a strongly continuous semigroup, where T (t) = eAt for t ≥ 0 on the Banach space Cn.

2.3 Abstract Differential Equations

We are now interested in solving the abstract differential equation of the form

d

dt
x(t) = Ax(t), x(0) = x0 ∈ X. (2.4)

Here x generally belongs to an infinite-dimensional vector space such that t ↦→ x(t) ∈ X

for t ≥ 0 and A : X → X is an operator. The differential equation is not necessarily
solvable for an arbitrary operator A. In case of the matrix exponential function, the matrix
A ∈ Cn×n and the semigroup (eAt)t≥0 are linked via the relation

(︁
d
dte

At
)︁⃓⃓

t=0
= AeA0 = A.

In a more general case, we wish to find a similar link between an operator A and a



6

strongly continuous semigroup (T (t))t≥0. If the following limit exists

lim
t→0+

T (t)x− x

t
, (2.5)

then x is an element of the domain of A, i.e. x ∈ D(A). In this case, we define [12,
Definition 5.2.1]

Ax = lim
t→0+

T (t)x− x

t
. (2.6)

The operator A is called the infinitesimal generator of the strongly continuous semigroup
(T (t))t≥0.

The function t ↦→ T (t)x is differentiable for all x ∈ D(A), and

d

dt

(︁
T (t)x

)︁
= T (t)Ax = AT (t)x, t ≥ 0. (2.7)

Additionally, it can be shown that T (t)x ∈ D(A) and A is a closed linear operator [12,
Theorem 5.2.2]. We find that if x0 ∈ D(A), the function x : [0,∞) → X, x(t) = T (t)x0 is
a solution to (2.4). This is called a classical solution. The classical solution is unique for
each x0 ∈ D(A) [12, Lemma 5.3.2].

2.4 Contraction Semigroups

Often we only have an abstract differential equation of the form (2.4). In general, there is
no guarantee that A is a generator of a C0-semigroup (T (t))t≥0. There exist several gen-
eration theorems to tackle this problem, but here we only cover contraction semigroups
and the Lumer–Phillips Theorem.

Definition 2.2 (Contraction Semigroup). Let (T (t))t≥0 be a strongly continuous semi-
group on a Hilbert space X. If (T (t))t≥0 satisfies ∥T (t)∥X ≤ 1 for all t ≥ 0, we call it a
contraction semigroup.

The Hille–Yosida Theorem [12, Theorem 6.1.3] states necessary and sufficient condi-
tions for a closed, densely defined and linear operator to be the infinitesimal generator
of a contraction semigroup. However, this requires all the powers of the resolvent of the
operator to be known, which can be very difficult and impractical. The following approach
is one way to avoid this issue.

Definition 2.3. Let A : D(A) ⊂ X → X be a linear operator. If Re ⟨Ax, x⟩X ≤ 0 for all
x ∈ D(A), we say that A is dissipative.

Even if an operator is dissipative, it may not be closed or densely defined. With this notion,
we can state the Lumer–Phillips Theorem, which gives us a useful way to determine if an
operator generates a contraction semigroup.

Theorem 2.1 (Lumer–Phillips Theorem). Let A : D(A) ⊂ X → X be a linear operator,
where X is a Hilbert space. Then A is the infinitesimal generator of a contraction semi-
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group (T (t))t≥0 ⊂ L(X) if and only if A is disspative and the range of I−A equals X, i.e.
R(I −A) = X.

Proof. See for example [12, Theorem 6.1.7].

Additionally, the following theorem can be helpful.

Theorem 2.2. Let A is a linear, densely defined and closed operator on a Hilbert space
X. If and only if both A and A∗ are dissipative, then A is the infinitesimal generator of a
contraction semigroup (T (t))t≥0 ⊂ L(X).

Proof. See [12, Theorem 6.1.8].

In general, not every operator has an adjoint operator. However, because A is densely
defined, it has a well-defined adjoint operator.

2.5 Legendre Polynomials

The Legendre polynomials are an important case of mutually orthogonal Jacobi polyno-
mials with respect to the standard inner product in L2([0, 1];R). We will be using them
for approximating functions defined on [0, 1] and finding approximate solutions to partial
differential equations describing Euler–Bernoulli beams. This is possible, because we
can approximate any function that is continuous on [0, 1] with Legendre polynomials. We
cover this property in more detail later on.

There exist several equivalent definitions for the Legendre polynomials, most often de-
fined on the interval [−1, 1], sometimes called the standard Legendre polynomials. How-
ever, we will use the following definition that defines them on [0, 1] instead, called the
shifted Legendre polynomials. For n ∈ N, the n-th shifted Legendre polynomial is

Ln(ξ) =
1

n!

dn

dξn
(ξ2 − ξ)n, ξ ∈ [0, 1]. (2.8)

We shall derive a more useful, explicit formula.

Theorem 2.3 (Explicit Legendre Polynomial Formula). An explicit formula for the n-th
shifted Legendre polynomial is given by

Ln(ξ) =
n∑︂

k=0

(−1)n+k

(︃
n

k

)︃(︃
n+ k

k

)︃
ξk. (2.9)

Proof. Applying the binomial theorem to (ξ2 − ξ)n we obtain

(ξ2 − ξ)n = (−1)nξn(1− ξ)n = (−1)nξn
n∑︂

k=0

(︃
n

k

)︃
(−ξ)k =

n∑︂
k=0

(−1)n+k

(︃
n

k

)︃
ξn+k.
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Differentiating the last expression n times yields

n∑︂
k=0

(−1)n+k

(︃
n

k

)︃
(n+ k)(n+ k − 1) · · · (k + 2)(k + 1)ξk

=
n∑︂

k=0

(−1)n+k

(︃
n

k

)︃
(n+ k)(n+ k − 1) · · · (k + 2)(k + 1)k!

k!
ξk

=
n∑︂

k=0

(−1)n+k

(︃
n

k

)︃
(n+ k)!

k!
ξk.

Substituting this in the definition, we get

Ln(ξ) =
1

n!

n∑︂
k=0

(−1)n+k

(︃
n

k

)︃
(n+ k)!

k!
ξk

=
n∑︂

k=0

(−1)n+k

(︃
n

k

)︃
(n+ k)!

k!n!
ξk

=

n∑︂
k=0

(−1)n+k

(︃
n

k

)︃
(n+ k)!

k!
(︁
(n+ k)− k

)︁
!
ξk

=
n∑︂

k=0

(−1)n+k

(︃
n

k

)︃(︃
n+ k

k

)︃
ξk,

completing the proof.

The explicit formulation is particularly useful, as we immediately see that the coefficient
of ξn in the n-th Legendre polynomial is (−1)n+k

(︁
n
k

)︁(︁
n+k
k

)︁
. This makes computation of

Legendre polynomials simple using programming languages like MATLAB, where we often
represent polynomials as coefficient vectors for numerical computations.

The standard Legendre polynomials Pn defined on [−1, 1] can be defined as the coeffi-
cients of the power series [1, Theorem 7.2]

∞∑︂
n=0

Pn(ξ)s
n =

1√︁
1− 2ξs+ s2

, |s| < 1. (2.10)

We call the right hand side the generating function of Legendre polynomials. The shifted
and standard Legendre polynomials are linked via the relation Ln(ξ) = Pn(2ξ− 1), where
ξ ∈ [0, 1]. The version for standard Legendre polynomials of (2.8) and the generating
function form in (2.10) can be shown to be equivalent, see for example [4, Chapter 4] or
[11, Theorem 7.10].

Theorem 2.4 (Properties of Legendre Polynomials). For a shifted Legendre polynomial
Ln, the following properties hold:

(i) Ln is a polynomial of degree n
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(ii) Ln(1) = 1 and Ln(0) = (−1)n

(iii) dLn
dξ (1) = n(n+ 1) and dLn

dξ (0) = (−1)n−1n(n+ 1)

(iv) ⟨Lm, Ln⟩L2 =
∫︁ 1
0 Lm(ξ)Ln(ξ) dξ =

1
2n+1δmn.

Proof. The first property follows directly from the definition. For proving the other prop-
erties, we apply the relation Ln(ξ) = Pn(2ξ − 1). For the second property, we substitute
ξ = 1, which yields

∞∑︂
n=0

Ln(1)s
n =

1

1− s
, |s| < 1.

The right hand side is equal to the geometric series
∑︁∞

n=0 s
n. We have

∞∑︂
n=0

(︁
Ln(1)− 1

)︁
sn = 0, |s| < 1,

from which we obtain Ln(1) = 1. Similarly, substituting ξ = 0, we get

∞∑︂
n=0

Ln(0)s
n =

1

1 + s
, |s| < 1,

which is equal to the geometric series
∑︁∞

n=0(−s)n =
∑︁∞

n=0(−1)nsn. With similar rea-
soning, we obtain Ln(0) = (−1)n. For the third property, we begin with noticing that
dLn
dξ (ξ) = 2dPn

dξ (2ξ − 1). Differentiating both sides of (2.10) with respect to ξ, we get

∞∑︂
n=0

dLn

dξ
(ξ)sn =

2s(︁
1− (4ξ − 2)s+ s2

)︁3/2 , |s| < 1. (2.11)

After differentiating the geometric series
∑︁∞

n=0 s
n and

∑︁∞
n=0(−s)n twice, we obtain the

identities

∞∑︂
n=0

n(n+ 1)sn =
2s

(1− s)3
and

∞∑︂
n=0

(−1)n−1n(n+ 1)sn =
2s

(1 + s)3
.

Substituting ξ = 1 and ξ = 0 in (2.11), we see that

∞∑︂
n=0

dLn

dξ
(1)sn =

∞∑︂
n=0

n(n+ 1)sn and
∞∑︂
n=0

dLn

dξ
(0)sn =

∞∑︂
n=0

(−1)n−1n(n+ 1)sn,

from which we obtain dLn
dξ (1) = n(n + 1) and dLn

dξ (0) = (−1)n−1n(n + 1). For the fourth
property, we first take ∫︂ 1

−1
Pm(x)Pn(x) dx =

2

2n+ 1
δmn,

which is obtained by combining formulas (4.3.2) and (4.6.6) in [4]. Making the substitution
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x = 2ξ − 1, we get

2

∫︂ 1

0
Pm(2ξ − 1)Pn(2ξ − 1) dξ =

2

2n+ 1
δmn

⇔
∫︂ 1

0
Lm(ξ)Ln(ξ) dξ =

1

2n+ 1
δmn

⇔ ⟨Lm, Ln⟩L2 =
1

2n+ 1
δmn.

This completes the proof.

The last property means the Legendre polynomials are mutually orthogonal with respect
to the standard inner product in L2.

Example 2.1. Let us compute and graph the first six Legendre polynomials. We get

L0(ξ) =
0∑︂

k=0

(−1)k
(︃
0

k

)︃(︃
k

k

)︃
ξk = (−1)0

(︃
0

0

)︃(︃
0

0

)︃
ξ0 = 1

L1(ξ) =

1∑︂
k=0

(−1)1+k

(︃
1

k

)︃(︃
1 + k

k

)︃
ξk = (−1)1 · 1 · 1 · ξ0 + (−1)2 · 1 · 2 · ξ1 = 2ξ − 1

L2(ξ) =

2∑︂
k=0

(−1)2+k

(︃
2

k

)︃(︃
2 + k

k

)︃
ξk = 6ξ2 − 6ξ + 1

L3(ξ) =
3∑︂

k=0

(−1)3+k

(︃
3

k

)︃(︃
3 + k

k

)︃
ξk = 20ξ3 − 30ξ2 + 12ξ − 1

L4(ξ) =

4∑︂
k=0

(−1)4+k

(︃
4

k

)︃(︃
4 + k

k

)︃
ξk = 70ξ4 − 140ξ3 + 90ξ2 − 20ξ + 1

L5(ξ) =

5∑︂
k=0

(−1)5+k

(︃
5

k

)︃(︃
5 + k

k

)︃
ξk = 252ξ5 − 630ξ4 + 560ξ3 − 210ξ2 + 30ξ − 1.

We see that the coefficients, while integers, grow quickly in magnitude. The first six
Legendre polynomials are shown in figure 2.1.

For 0 ≤ k ≤ n, the binomial coefficient
(︁
n
k

)︁
attains its largest value at k = ⌊n2 ⌋ and

k = ⌈n2 ⌉ for a fixed n. Thus we can approximate the magnitude of the coefficients of the
n-th Legendre polynomial:(︃

n

k

)︃(︃
n+ k

k

)︃
≤
(︃
n

⌊n2 ⌋

)︃(︃
n+ k

⌊n+k
2 ⌋

)︃
≤
(︃
n

⌊n2 ⌋

)︃(︃
2n

⌊2n2 ⌋

)︃
≤
(︃
n
n
2

)︃(︃
2n

n

)︃
, (2.12)

where we allow any positive numbers in the binomial coefficient. Values for non-integer
inputs can be computed using the gamma function, for example. We have an asymptotic
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Figure 2.1. The first six Legendre polynomials.

approximation
(︁
2m
m

)︁
∼ 22m√

πm
for large m, so from (2.12) we get

(︃
n

k

)︃(︃
n+ k

k

)︃
≤
(︃
n
n
2

)︃(︃
2n

n

)︃
∼ 2n√︁

πn
2

22n√
πn

=
1

πn
23n+

1
2 (2.13)

for an approximate upper bound for the magnitude of the coefficients.

Lemma 2.5. For standard Legendre polynomials, we have the recurrence relation

dPn+1

dξ
(ξ)− dPn−1

dξ
(ξ) = (2n+ 1)Pn(ξ), n ≥ 1. (2.14)

Proof. See for example [11, Theorem 7.5].

Lemma 2.6. For n ≥ 1, we have the derivative sum formula

dLn

dξ
(ξ) = 2

n−1∑︂
k=0

k+n odd

(2k + 1)Lk(ξ), n ≥ 1. (2.15)

Proof. Applying the shift to Lemma 2.5, we obtain

dLk+1

dξ
(ξ)− dLk−1

dξ
(ξ) = 2(2k + 1)Ln(ξ), k ≥ 1.

First we assume that n is odd. Taking the sum over odd k + n from k = 0 to k = n − 1



12

yields

2

n−1∑︂
k=0

k+n odd

(2k + 1)Lk(ξ) =

n−1∑︂
k=0

k+n odd

(︃
dLk+1

dξ
(ξ)− dLk−1

dξ
(ξ)

)︃

=
dL1

dξ
(ξ)− dL−1

dξ
(ξ) +

dL3

dξ
(ξ)− dL1

dξ
(ξ) +

dL5

dξ
(ξ)− dL3

dξ
(ξ)

+ . . .+
dLn−2

dξ
(ξ)− dLn−4

dξ
(ξ) +

dLn

dξ
(ξ)− dLn−2

dξ
(ξ)

=
dLn

dξ
(ξ),

where we used the convention L−1(ξ) = 0. The case where n is even can be proven with
very similar steps.

We will derive two useful identities involving derivatives of Legendre polynomials.

Theorem 2.7. For shifted Legendre polynomials Lm and Ln, we have

⟨︃
dLm

dξ
,
dLn

dξ

⟩︃
L2

=

{︄
2(min(m,n))2 + 2min(m,n), if m+ n is even

0, else
(2.16)

⟨︃
Lm,

d2Ln

dξ2

⟩︃
L2

=

{︄
2(n−m)(m+ n+ 1), if n = m+ 2,m+ 4,m+ 6, . . .

0, else.
(2.17)

Proof. First we compute

⟨︃
dLm

dξ
,
dLn

dξ

⟩︃
L2

=

⟨︄
2
m−1∑︂
j=0

j+m odd

(2j + 1)Lj(ξ), 2
n−1∑︂
k=0

k+n odd

(2k + 1)Lk(ξ)

⟩︄
L2

= 4

m−1∑︂
j=0

j+m odd

n−1∑︂
k=0

k+n odd

(2j + 1)(2k + 1)⟨Lj , Lk⟩L2

= 4

m−1∑︂
j=0

j+m odd

n−1∑︂
k=0

k+n odd

(2j + 1)(2k + 1)
1

2k + 1
δjk

= 4

m−1∑︂
j=0

j+m odd

n−1∑︂
k=0

k+n odd

(2j + 1)δjk.

Because of the term δjk, the remaining sum will only contain terms with j = k. This also
means whichever of m and n is smaller determines the upper bound of the sum. With all
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this in mind, we can write

⟨︃
dLm

dξ
,
dLn

dξ

⟩︃
L2

= 4

min(m,n)−1∑︂
j=0

j+m odd
j+n odd

(2j + 1).

We immediately see that m and n must have the same parity for the expression to be
non-zero. We study the cases when m and n are even and odd separately. First we
assume that m and n are even. Furthermore, because the inner product is commutative,
we may assume that m ≤ n. We have

min(m,n)−1∑︂
j=0

j+m odd
j+n odd

(2j + 1) =
m−1∑︂
j=0
j odd

(2j + 1) =

m
2∑︂

l=1

(2(2l − 1) + 1) =

m
2∑︂

l=1

(4l − 1) =
m2

2
+
m

2
.

For odd m and n, we proceed similarly. Again, we may assume that m ≤ n. Thus

min(m,n)−1∑︂
j=0

j+m odd
j+n odd

(2j + 1) =
m−1∑︂
j=0

j even

(2j + 1) =

m−1
2∑︂

l=0

(2(2l) + 1) =

m−1
2∑︂

l=0

(4l + 1) =
m2

2
+
m

2
.

Conveniently, the result is the same in both cases. We can now combine these into a
single result:

⟨︃
dLm

dξ
,
dLn

dξ

⟩︃
L2

=

{︄
2(min(m,n))2 + 2min(m,n), if m+ n is even

0, else.

For the second identity, we compute⟨︃
Lm,

d2Ln

dξ2

⟩︃
L2

=

[︃
Lm(ξ)

dLn

dξ
(ξ)

]︃1
0

−
∫︂ 1

0

dLm

dξ
(ξ)

dLn

dξ
(ξ) dξ

= Lm(1)
dLn

dξ
(1)− Lm(0)

dLn

dξ
(0)−

⟨︃
dLm

dξ
,
dLn

dξ

⟩︃
L2

= 1 · n(n+ 1)− (−1)m(−1)n+1n(n+ 1)−
⟨︃
dLm

dξ
,
dLn

dξ

⟩︃
L2

=
(︁
1− (−1)m+n+1

)︁
n(n+ 1)−

⟨︃
dLm

dξ
,
dLn

dξ

⟩︃
L2

.

We see that if m and n are of different parity, thus m + n + 1 being even, the whole
expression equals zero. On the other hand, if m and n are of the same parity, m+ n+ 1

is odd and we have⟨︃
Lm,

d2Ln

dξ2

⟩︃
L2

= 2n2 + 2n− 2(min(m,n))2 − 2min(m,n).
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If min(m,n) = n, the expression equals zero. This leaves us with min(m,n) = m, in
which case we get

2n2 + 2n− 2(min(m,n))2 − 2min(m,n) = 2n2 + 2n− 2m2 − 2m = 2(n−m)(m+ n+ 1).

Again, we combine all these into a single result, namely

⟨︃
Lm,

d2Ln

dξ2

⟩︃
L2

=

{︄
2(n−m)(m+ n+ 1), if m < n and m+ n is even

0, else

=

{︄
2(n−m)(m+ n+ 1), if n = m+ 2,m+ 4,m+ 6, . . .

0, else.

This completes the proof.

In addition to being mutually orthogonal, Legendre polynomials are excellent for approx-
imation purposes. As polynomials with integer coefficients, they are easy to compute
numerically and to work with. Assume f : [0, 1] → R is a continuous function on the whole
interval [0, 1] and has a continuous derivative on [0, 1], i.e. f ∈ C1([0, 1];R). Then there
exists a Fourier–Legendre series expansion [11, Theorem 7.11] such that

f(ξ) =

∞∑︂
n=0

anLn(ξ), an ∈ R. (2.18)

The Fourier–Legendre series converges uniformly for ξ ∈ [0, 1]. We can find the coef-
ficients an with the following approach. Because the series is convergent, we take the
inner product with Lm of both sides of (2.18). We get

⟨f, Lm⟩L2 =

⟨︄ ∞∑︂
n=0

anLn, Lm

⟩︄
L2

=
∞∑︂
n=0

an⟨Ln, Lm⟩L2 =
∞∑︂
n=0

an
2n+ 1

δmn =
am

2m+ 1
, (2.19)

and the formula for the n-th coefficient becomes

an = (2n+ 1)⟨f, Ln⟩L2 . (2.20)

By truncating (2.18), we obtain a polynomial approximation of f on [0, 1]. Because
the series expansion converges uniformly, for any ϵ > 0 we can find N ∈ N such that
sup

⃓⃓⃓
f(ξ)−

∑︁N
n=0 anLn(ξ)

⃓⃓⃓
< ϵ, where ξ ∈ [0, 1].
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3 EULER–BERNOULLI BEAM THEORY

The goal of this chapter is to cover the basic ideas related to the Euler–Bernoulli beam
theory. Later in this work, we are exclusively interested in the dynamic beam equation,
describing the behaviour of a beam as a partial differential equation. For completeness,
we first study the static beam equation.

3.1 Static Beam Equation

Consider a structure that is much larger in one dimension than the other two, for example
a thin rod made of metal. We can model this as a line segment Ω = [L1, L2] ⊂ R. Usually
we have Ω = [0, 1] or Ω = [−1, 1].

ξ

w

Figure 3.1. Mathematical beam Ω in the ξw-plane.

With respect to the above figure, we are only interested in loads perpendicular to the
beam’s axis, i.e. loads in the w-direction.

Let us denote the deflection curve of a beam with w : Ω → R. In figure 3.1, Ω = [0, 1] and
the deflection is zero everywhere, i.e. w ≡ 0. The deflection curve determines the shape
of the beam. We are modelling a continuous structure, so we assume w to be at least
continuous. More precise requirements for w are studied later.

Assume w is continuously differentiable four times, i.e. w ∈ C4(Ω;R) and ξ ∈ Ω. The
general one-dimensional Euler–Bernoulli equation for a static beam is [7, pp. 480–484]

d2

dξ2

(︃
E(ξ)I(ξ)

d2w

dξ2
(ξ)

)︃
= q(ξ), (3.1)

where E is the elastic modulus of the beam, I is the second moment of area of the
beam’s cross section, and q denotes the net force acting on the beam. The product EI
is often called the flexural rigidity. In general, both parameters E and I vary by location.
Examples of this include a beam with varying thickness or a beam of inhomogeneous
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material. In case of a beam made of homogeneous material that is of uniform thickness,
E and I are constant and (3.1) simplifies to

EI
d4w

dξ4
(ξ) = q(ξ), (3.2)

which is solvable by standard methods for ordinary differential equations. The Euler–
Bernoulli beam model is limited to cases where the deflection and curvature of the beam
remain small enough relative to the length of the beam. We will not study inhomogeneous
beams in this work, but for the interested reader, they are covered in detail in [6, Chapter
7].

3.2 Boundary Conditions for Beams

In order to obtain a unique solution for (3.2), which is a fourth-order ordinary differential
equation, four boundary conditions are needed. The boundary conditions are determined
by how the beam is supported at the endpoints. Here we study three basic cases of dif-
ferent endpoint supports for beams. First, we define two concepts needed to understand
the boundary conditions.

Definition 3.1 (The Bending Moment and the Shear Force). Let w : Ω → R denote the
deflection of a beam and assume w ∈ C4(Ω;R). The bending moment of the beam is

M(ξ) = −E(ξ)I(ξ)
d2w

dξ2
(ξ), (3.3)

and the shear force is

Q(ξ) = − d

dξ

(︃
E(ξ)I(ξ)

d2w

dξ2
(ξ)

)︃
. (3.4)

If E and I are constant, the formulation of the shear force simplifies to

Q(ξ) = −EI d
3w

dξ3
(ξ). (3.5)

In case there is no support at an endpoint, the endpoint is called a free end. This is
because there is no external forces acting on the endpoint. This corresponds to both the
bending moment and the shear force being equal to zero, from which we obtain⎧⎪⎪⎨⎪⎪⎩

d2w

d2ξ
(l) = 0 (no bending moment)

d3w

d3ξ
(l) = 0, (no shear force)

(3.6)

where l is the endpoint in question. If the beam is pinned at an endpoint, it is called a
simply supported end. This type of support allows the beam to rotate freely but staying
fixed in place otherwise, which means the deflection must stay constant at the endpoint
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and the bending moment must equal zero. From this we obtain⎧⎪⎨⎪⎩
w(l) = c (fixed deflection)

d2w

d2ξ
(l) = 0, (no bending moment)

(3.7)

where c is a constant. If we have one simply supported end, often in applications we
fix the coordinate system so that c = 0. The third type of endpoint support we cover is
clamping, which fixes both the deflection and the slope of the beam at the endpoint ξ = l.
This yields the following boundary conditions:⎧⎪⎨⎪⎩

w(l) = c1 (fixed deflection)
dw

dξ
(l) = c2, (fixed slope)

(3.8)

where c1 and c2 are constants. In applications, we usually have c1 = c2 = 0, which
corresponds to a horizontally clamped beam.

3.3 Types of Beams and Examples

In this section, we study two standard examples of static beams; the simply supported
beam and the cantilevered beam through two introductory examples by solving (3.2) for
the deflection curve w = w(ξ).

Example 3.1 (A Simply Supported Beam). Let Ω = [0, 1] and EI = 100. We have a
beam which is simply supported at ξ = 0 and ξ = 1 with q ≡ −1 (opposite direction to the
w-axis). Our boundary conditions are those described in (3.7) for both ends with c = 0.
Integrating (3.2) four times gives

w(ξ) = − 1

100

(︃
1

24
ξ4 +

1

6
c3ξ

3 +
1

2
c2ξ

2 + c1ξ + c0

)︃
, (3.9)

where ci are constants determined by the boundary conditions. Applying the boundary
conditions w(0) = w(1) = d2w

dξ2
(0) = d2w

dξ2
(1) = 0, we get c0 = 0, c1 = 1/24, c2 = 0 and

c3 = −1/2. The deflection curve of our beam is

w(ξ) =
1

2400

(︁
−ξ4 + 2ξ3 − ξ

)︁
. (3.10)

The solution is a polynomial, so it has infinitely many continuous derivatives and thus
w ∈ C4([0, 1];R). The solution is shown in figure 3.2.

Example 3.2 (A Cantilevered Beam). Let Ω = [0, 1] and EI = 100. This time, we have a
cantilevered beam that is horizontally clamped at ξ = 0 and its free end is at ξ = 1. Let
our load distribution be q(ξ) = 4ξ(ξ − 1). Substituting these into (3.2) and integrating four
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Figure 3.2. The solution to example 3.1.

times we get

w(ξ) =
1

100

(︃
1

90
ξ6 − 1

30
ξ5 +

1

6
c3ξ

3 +
1

2
c2ξ

2 + c1ξ + c0

)︃
. (3.11)

The left end of the beam is clamped and the right end is free, thus our boundary condi-
tions are w(0) = dw

dξ (0) = 0 and d2w
dξ2

(1) = d3w
dξ3

(1) = 0, respectively. Applying the boundary
conditions we get c0 = c1 = 0, c2 = −1/3 and c3 = 2/3. Finally, our solution is

w(ξ) =
1

9000

(︁
ξ6 − 3ξ5 + 10ξ3 − 15ξ2

)︁
. (3.12)

Again, as a polynomial, the solution is in C4([0, 1];R). The solution is shown in figure 3.3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−8
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0

·10−4

ξ

w
(ξ
)

Figure 3.3. The solution to example 3.2.

Problems in statics involving beam structures can in general be much more complicated
than the two examples provided. For example, a beam could be supported at several
points or the net force could be a complicated piecewise function, possibly containing
discontinuities. Additionally, many real life problems involve point forces and torques
which do not behave as nicely as the simple loads in our examples. We will not go further
into studying static beams in this work.
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3.4 Dynamic Beam Equation

In this section, we cover the basics of time-dependent Euler–Bernoulli beams. From this
point on, we will use Ω = [0, 1] as our spatial domain. We may do this without loss of
generality, since any domain of the form Ω = [L1, L2] can be mapped one-to-one to [0, 1]

with the transform ξ ↦→ 1
L2−L1

(ξ − L1).

The general dynamic Euler–Bernoulli beam equation with viscous damping is

∂2

∂ξ2

(︃
E(ξ)I(ξ)

∂2w

∂ξ2
(ξ, t)

)︃
= −µ(ξ)∂

2w

∂t2
(ξ, t)− γ

∂w

∂t
(ξ, t) + q(ξ),

0 < ξ < 1, t > 0,

(3.13)

where µ represents mass per unit length and γ > 0 is the viscous damping coefficient.
The other parameters are the same as before. If we have a homogeneous beam and no
external forces acting on the beam, E, I and µ are constants, q ≡ 0 and the equation
becomes

∂2w

∂t2
(ξ, t) +

EI

ρa

∂4w

∂ξ4
(ξ, t) +

γ

ρa

∂w

∂t
(ξ, t) = 0, 0 < ξ < 1, t > 0, (3.14)

where a is the cross-sectional area of the beam and ρ is its mass density, thus µ = ρa. In
order for the partial differential equation to have a unique solution, it needs four boundary
conditions, two at ξ = 0 and two at ξ = 1, and two initial conditions at t = 0. This is
because the equation is fourth-order in ξ and second-order in t. As is the case with most
partial differential equations, there is no general analytic solution for any of the equations
describing a time-evolving Euler–Bernoulli beam. In the following chapter, we implement
a numerical method for solving (3.14) using the spectral Galerkin method with Legendre
polynomials.

Generally, in the introductory examples of partial differential equations, only boundary
conditions independent of time are considered. However, in this work we need time-
dependent boundary conditions, which we use as a way to have an input to the system.
Boundary control inputs are usually denoted by u = u(t), t > 0. For generality, we ad-
dress the four boundary conditions for (3.14) as functions of time. This includes static
boundary conditions as constant functions. We can express the general boundary condi-
tions as

∂mw

∂ξm
(0, t) = u1(t),

∂nw

∂ξn
(0, t) = u2(t),

∂pw

∂ξp
(1, t) = u3(t),

∂qw

∂ξq
(1, t) = u4(t), (3.15)

where m,n, p, q ∈ {0, 1, 2, 3} with m ̸= n and p ̸= q. Suppose the initial conditions for
(3.14) are

w(ξ, 0) = w0(ξ) and
∂w

∂t
(ξ, 0) = w1(ξ). (3.16)

These describe the deflection profile and the velocity of the beam at t = 0. However,
in order to have a ”well-behaving system”, we need to consider the properties of the
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boundary input functions. For k = 1, 2, 3, 4, we assume uk satisfies the following:

• uk is twice continuously differentiable on [0,∞), i.e. uk ∈ C2([0,∞);R)

• uk(0) is such that w0 and w1 satisfy (3.15) at t = 0.

The first requirement guarantees that our boundary control input behaves smoothly
enough without any abrupt changes. The second requirement guarantees that the bound-
ary values change continuously from the initial state.

3.5 Solution via Separation of Variables

We can solve (3.14) assuming a solution of the form w(ξ, t) = F (ξ)G(t), sometimes
called a separable solution. Furthermore, we assume that all the physical parameters
are constant and there are no external forces acting on the beam. Let F ∈ C4([0, 1];R)
and G ∈ C2([0,∞);R). Substituting w(ξ, t) = F (ξ)G(t) into (3.14) yields

F (ξ)
d2G

dt2
(t) +

EI

ρa

d4F

dξ4
(ξ)G(t) +

γ

ρa
F (ξ)

dG

dt
(t) = 0

⇔ EI

ρa

1

F (ξ)

d4F

dξ4
(ξ) = − 1

G(t)

(︄
d2G

dt2
(t) +

γ

ρa

dG

dt
(t)

)︄
. (3.17)

Because the left hand side of (3.17) depends only on ξ and the right hand side only on t,
they must equal the same constant λ ∈ R. We get two equations:⎧⎪⎪⎨⎪⎪⎩

λF (ξ) =
EI

ρa

d4

dξ4
F (ξ)

λG(t) = − d2

dt2
G(t)− γ

ρa

d

dt
G(t),

(3.18)

which are ordinary differential equations in ξ and t, respectively. The first equation has a
general solution

F (ξ) = C1 sin(κξ) + C2 cos(κξ) + C3 sinh(κξ) + C4 cosh(κξ), (3.19)

where κ = 4

√︂
ρaλ
EI . Constants Cj are determined by four boundary conditions. Likewise,

we can solve the second equation to get

G(t) = e−αt
(︂
D1e

−βt +D2e
βt
)︂
, (3.20)

where

α =
γ

2ρa
and β =

√︃(︂ γ

2ρa

)︂2
− λ =

√︁
α2 − λ. (3.21)

We see that α > 0, but generally β ∈ C. Constants D1 and D2 are determined by two
initial conditions. In order to have a classical solution, our initial conditions must be of the
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form ⎧⎪⎨⎪⎩
w0(ξ) = w(ξ, 0) = F (ξ)G(0) = (D1 +D2)F (ξ)

w1(ξ) =
∂w

∂t
(ξ, 0) = F (ξ)

dG

dt
(0) =

(︁
(−α− β)D1 + (−α+ β)D2

)︁
F (ξ),

(3.22)

where D1, D2 ∈ R In case where λ > α2, we obtain a simpler form without complex
numbers, using the formula eix = cosx+ i sinx:

G(t) = e−αt
(︂
E1 sin

(︁
β̃t
)︁
+ E2 cos

(︁
β̃t
)︁)︂
, (3.23)

where α is the same as before and β̃ =
√
λ− α2.

We still need to find out what λ is in the solutions. It turns out that the boundary conditions
for a beam determine a countable set {λn}∞n=0 ⊂ R for which the system (3.18) is solvable.
Additionally, we assumed our solutions to be real, so in order to (3.19) be real, we must
have λn ≥ 0. Because each value λn ∈ {λn}∞n=0 yields a solution to (3.18) and it is a
system of two linear ordinary differential equations, the full solution is

w(ξ, t) =
∞∑︂
n=0

αnFn(ξ)Gn(t), αn ∈ R, (3.24)

where Fn and Gn are as in (3.19) and (3.20) for each λn, respectively. We study specific
solutions to (3.18) in the following example.

Example 3.3 (Vibrating Modes of a Cantilevered Beam). Assume a horizontally can-
tilevered beam with the fixed end at ξ = 0 and the free end at ξ = 1. Our boundary
conditions are F (0) = dF

dξ (0) = 0 and d2F
dξ2

(1) = d3F
dξ3

(1) = 0. Applying these to (3.19), we
get ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F (0) = C2 + C4 = 0

dF

dξ
(0) = C1 + C3 = 0

d2F

dξ2
(1) = −C1 sinκ− C2 cosκ+ C3 sinhκ+ C4 coshκ = 0

d3F

dξ3
(1) = −C1 cosκ+ C2 sinκ+ C3 coshκ+ C4 sinhκ = 0.

(3.25)

Solving for C3 = −C1 and C4 = −C2 from the first two equations and substituting these
into the last two we obtain{︄

C1 sinκ+ C2 cosκ+ C1 sinhκ+ C2 coshκ = 0

C1 cosκ− C2 sinκ+ C1 coshκ+ C2 sinhκ = 0.
(3.26)

Furthermore, assuming C1, C2 ̸= 0, we get the relation

sinκ+ sinhκ

cosκ+ coshκ
=

cosκ+ coshκ

− sinκ+ sinhκ
, (3.27)
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which we can simplify using the identities cos2 x+ sin2 x = 1 and cosh2 x− sinh2 x = 1 to
get

cosκ coshκ+ 1 = 0 ⇔ cosκ+
1

coshκ
= 0, (3.28)

recalling that coshx ≥ 1 for all real numbers x. We define the function h : [0,∞) → R,
h(κ) = cosκ + 1/ coshκ to investigate the solutions to (3.28). Note that coshκ grows
exponentially, so 1/ coshκ → 0 very quickly as κ → ∞. This means that h(κ) ≈ cosκ for
large κ and consequently the roots of h are approximately those of the cosine function,
namely κn ≈ (n+ 1/2)π for n = 0, 1, 2, . . . as we want the roots to be non-negative.

We have C3 = −C1, C4 = −C2 and from the first equation of (3.26) we can solve for C2.
Denoting

Λn =
sinκn + sinhκn
cosκn + coshκn

, (3.29)

we obtain the modes of the cantilevered beam:

Fn(ξ) = Cn

(︁
sin(κnξ)− sinh(κnξ) + Λn(cosh(κnξ)− cos(κnξ))

)︁
, (3.30)

where κn are the positive solutions to cosκn coshκn + 1 = 0 and Cn is a constant. If we

denote λ = ω2 with ω > 0, we have κn =
4

√︂
ρaω2

n
EI , from which we get

ωn = κ2n

√︄
EI

ρa
∼ (n+ 1/2)2π2

√︄
EI

ρa
. (3.31)

The values ωn correspond to the angular frequencies of the beam modes, which we can
see in the forms (3.20) and (3.23). Differently supported beams can be studied in the
same vein, yielding similar formulations.

3.6 Energy Space Formulation

For constant physical parameters, we can transform (3.14) into a linear system of two first
order equations in time by introducing two new variables:

x1(ξ, t) := ρa
∂w

∂t
(ξ, t) and x2(ξ, t) :=

∂2w

∂ξ2
(ξ, t), (3.32)

which we call the energy variables. The term comes from the choice of our state variables,
which links the system naturally to its Hamiltonian, in our case the mechanical energy of
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the beam. The mechanical energy of a beam is equal to [3, Eq. 1, Eq. 2]

E(t) = Ek(t) + Ep(t)

=
1

2
ρa

∫︂ 1

0

(︃
∂w

∂t
(ξ, t)

)︃2

dξ +
1

2
EI

∫︂ 1

0

(︃
∂2w

∂ξ2
(ξ, t)

)︃2

dξ

=
1

2

∫︂ 1

0

1

ρa

(︁
x1(ξ, t)

)︁2
dξ +

1

2

∫︂ 1

0
EI
(︁
x2(ξ, t)

)︁2
dξ

=
1

2

1

ρa

⟨︁
x1(·, t), x1(·, t)

⟩︁
L2 +

1

2
EI
⟨︁
x2(·, t), x2(·, t)

⟩︁
L2

=
1

2

1

ρa
∥x1(·, t)∥2L2 +

1

2
EI ∥x2(·, t)∥2L2 . (3.33)

We transform (3.14) into a system of two partial differential equations that are of first order
in time. We get ⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂2w

∂t2
(ξ, t) = −EI

ρa

∂4w

∂ξ4
(ξ, t)− γ

ρa

∂w

∂t
(ξ, t)

∂3w

∂ξ2∂t
(ξ, t) =

∂3w

∂ξ2∂t
(ξ, t).

(3.34)

Noting that

∂w

∂t
(ξ, t) =

1

ρa
x1(ξ, t),

∂2w

∂t2
(ξ, t) =

1

ρa

∂x1
∂t

(ξ, t),
∂4w

∂ξ4
(ξ, t) =

∂2x2
∂ξ2

(ξ, t) and

∂3w

∂ξ2∂t
(ξ, t) =

∂x2
∂t

(ξ, t) =
1

ρa

∂2x1
∂ξ2

(ξ, t),

we get ⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂x1
∂t

(ξ, t) = − γ

ρa
x1(ξ, t)− EI

∂2x2
∂ξ2

(ξ, t)

∂x2
∂t

(ξ, t) =
1

ρa

∂2x1
∂ξ2

(ξ, t).

(3.35)

However, with the new variables, we also need to express the initial conditions in terms
of the new variables x1 and x2. For the original partial differential equation, the ini-
tial conditions are w(ξ, 0) = w0(ξ) and ∂w

∂t (ξ, 0) = w1(ξ). Additionally, we assume that
w0 ∈ C2([0, 1];R). We obtain⎧⎪⎪⎪⎨⎪⎪⎪⎩

x1(ξ, 0) = ρa
∂w

∂t
(ξ, 0) = ρaw1(ξ),

x2(ξ, 0) =
∂2w

∂ξ2
(ξ, 0) =

d2w0

dξ2
(ξ).

(3.36)
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We can represent (3.35) as an abstract differential equation, namely⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
d

dt
x(t) = Ax(t), t > 0,

x(0) =

⎡⎣ρaw1

d2w0
dξ2

⎤⎦ , (3.37)

where

A =

⎡⎣ − γ
ρa −EI ∂2

∂ξ2

1
ρa

∂2

∂ξ2
0

⎤⎦ and x(t) =

⎡⎣x1(t)
x2(t)

⎤⎦ . (3.38)

We dropped the spatial variable ξ from the formulation to emphasise that we are studying
an abstract differential equation in time. Time-dependent boundary conditions in (3.15)
can be formulated in terms of the energy variables in the following way. Let l ∈ {0, 1} and
u be a valid boundary input. Then we have the conversions

w(l, t) = u(t) ⇒ x1(l, t) = ρa
du

dt
(t) (3.39)

∂w

∂ξ
(l, t) = u(t) ⇒ ∂x1

∂ξ
(l, t) = ρa

du

dt
(t) (3.40)

∂2w

∂ξ2
(l, t) = u(t) ⇒ x2(l, t) = u(t) (3.41)

∂3w

∂ξ3
(l, t) = u(t) ⇒ ∂x2

∂ξ
(l, t) = u(t). (3.42)

We see that the four boundary conditions needed to solve (3.14), two for ξ = 0 and two for
ξ = 1, correspond to four boundary conditions for (3.35), two for ξ = 0 and two for ξ = 1.
Because u ∈ C2([0,∞);R), the ”converted” boundary inputs for the energy variables are
all (at least once) continuously differentiable. Later on in this work, we will apply boundary
inputs directly to the energy variables. We assume that all such boundary input functions
ũ are continuously differentiable, i.e. ũ ∈ C1([0,∞);R).

3.7 Generation of Contraction Semigroups

In this section, we study which linear combinations of homogeneous boundary conditions
for the energy variables x1, x2 in (3.35) determine a semigroup. More specifically, we
study when the operator A in (3.38) generates a contraction semigroup.

Several types of abstract differential equations can be formulated as port-Hamiltonian
systems, which are systems expressible in the form [2, pp. 3–4]

∂x

∂t
(ξ, t) =

N∑︂
k=0

Pk
∂k
(︁
Hx
)︁

∂ξk
(ξ, t), 0 < ξ < 1, t > 0, (3.43)
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where Pk ∈ Cd×d that satisfy the condition

P ∗
k = (−1)k−1Pk, k ≥ 1. (3.44)

We also assume that PN is invertible. Generally, H denotes the Hamiltonian density
function H : (0, 1) → Cd×d, which is a measurable function such that for almost every
ξ ∈ (0, 1) the matrix H(ξ) is self-adjoint and

m ∥z∥2Cd ≤ z∗H(ξ)z ≤M ∥z∥2Cd , z ∈ Cd (3.45)

for some 0 < m ≤M . If these hold, we say that H is uniformly positive.

Lemma 3.1. Let H ∈ Cd×d be a constant diagonal matrix with positive diagonal elements,
i.e. H(ξ) = diag(a1, a2, . . . , ad) with ai > 0. Then H is a measurable function on (0, 1),
H(ξ) is self-adjoint for ξ ∈ (0, 1) and m ∥z∥2Cd ≤ z∗H(ξ)z ≤ M ∥z∥2Cd holds for some
0 < m ≤M and all z ∈ Cd.

Proof. Let z = [ z1 z2 ··· zd ]T ∈ Cd and H(ξ) = diag(a1, a2, . . . , ad) ∈ Cd×d, ξ ∈ (0, 1).
Furthermore, let am = min{a1, a2, . . . , ad} and aM = max{a1, a2, . . . , ad}. We have

z∗H(ξ)z =
[︂
z̄1 z̄2 · · · z̄d

]︂
⎡⎢⎢⎢⎢⎢⎢⎣
a1

a2
. . .

ad

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
z1

z2
...

zd

⎤⎥⎥⎥⎥⎥⎥⎦
= a1z1z̄1 + a2z2z̄2 + . . .+ adzdz̄d

= a1 |z1|2 + a2 |z2|2 + . . .+ ad |zd|2 ,

which implies
am ∥z∥2Cd ≤ z∗H(ξ)z ≤ aM ∥z∥2Cd .

Because H(ξ) is a real diagonal matrix, it is self-adjoint. As a constant function, H is
measurable on (0, 1). This completes the proof.

We can reformulate (3.38) as

d

dt

⎡⎣x1(t)
x2(t)

⎤⎦ =

⎡⎣ 0 −EI ∂2

∂ξ2

1
ρa

∂2

∂ξ2
0

⎤⎦⎡⎣x1(t)
x2(t)

⎤⎦+

⎡⎣− γ
ρa 0

0 0

⎤⎦⎡⎣x1(t)
x2(t)

⎤⎦
=

⎡⎣0 −1

1 0

⎤⎦ ∂2

∂ξ2

⎡⎣ 1
ρa 0

0 EI

⎤⎦⎡⎣x1(t)
x2(t)

⎤⎦+

⎡⎣−γ 0

0 0

⎤⎦⎡⎣ 1
ρa 0

0 EI

⎤⎦⎡⎣x1(t)
x2(t)

⎤⎦ . (3.46)
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This is in the standard port-Hamiltionian form with N = 2 and

P2 =

⎡⎣0 −1

1 0

⎤⎦ , P1 =

⎡⎣0 0

0 0

⎤⎦ , P0 =

⎡⎣−γ 0

0 0

⎤⎦ , H =

⎡⎣ 1
ρa 0

0 EI

⎤⎦ ,
x(t) =

⎡⎣x1(t)
x2(t)

⎤⎦ =

⎡⎣ρa∂w
∂t (ξ, t)

∂2w
∂ξ2

(ξ, t)

⎤⎦ ,
because P2 = −P ∗

2 is invertible, P1 = P ∗
1 and H satisfies the requirements of a Hamil-

tonian density function, based on Lemma 3.1. We collect the boundary values of Hx1,
Hx2, ∂(Hx1)

∂ξ and ∂(Hx2)
∂ξ in a single vector, which we denote

Φ∂(Hx) :=

⎡⎢⎢⎢⎢⎢⎢⎣
(Hx)(1, t)
∂(Hx)
∂ξ (1, t)

(Hx)(0, t)
∂(Hx)
∂ξ (0, t)

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
ρax1(1, t)

EIx2(1, t)

1
ρa

∂x1
∂ξ (1, t)

EI ∂x2
∂ξ (1, t)

1
ρax1(0, t)

EIx2(0, t)

1
ρa

∂x1
∂ξ (0, t)

EI ∂x2
∂ξ (0, t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.47)

Generally, we can express boundary conditions to (3.37) as linear combinations of the
boundary values. In other words, we can express them as

W ′Φ∂(Hx) = 0, W ′ ∈ R4×8. (3.48)

Not all linear combinations are valid boundary conditions, however. In the following,
we study the requirements for valid boundary conditions that generate contraction semi-
groups.

We can now construct the boundary port variables f∂ (boundary flow) and e∂ (boundary
effort) as [2, p. 4] ⎡⎣f∂,Hx

e∂,Hx

⎤⎦ :=
1√
2

⎡⎣Q −Q

I I

⎤⎦Φ∂(Hx), (3.49)

where

Qij =

{︄
(−1)j−1Pi+j−1, i+ j ≤ N + 1

0, else.
(3.50)

We note that Q does not depend on P0. For our system we have N = 2, so we have
non-zero entries for i+ j ≤ 3 and we obtain Q11 = P1, Q12 = −P2, Q21 = P2 and Q22 = 0.
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Thus we get

Q =

⎡⎣P1 −P2

P2 0

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
1

−1

−1

1

⎤⎥⎥⎥⎥⎥⎥⎦ . (3.51)

We can now write

1√
2

⎡⎣Q −Q

I I

⎤⎦ =
1√
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1

−1 1

−1 1

1 −1

1 1

1 1

1 1

1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=: Rext. (3.52)

We immediately see that Rext is invertible. Finally, the boundary port variables become

⎡⎣f∂,Hx

e∂,Hx

⎤⎦ = RextΦ∂(Hx) =
1√
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

EI ∂x2
∂ξ (1, t)− EI ∂x2

∂ξ (0, t)

− 1
ρa

∂x1
∂ξ (1, t) +

1
ρa

∂x1
∂ξ (0, t)

−EIx2(1, t) + EIx2(0, t)

1
ρax1(1, t)−

1
ρax1(0, t)

1
ρax1(1, t) +

1
ρax1(0, t)

EIx2(1, t) + EIx2(0, t)

1
ρa

∂x1
∂ξ (1, t) +

1
ρa

∂x1
∂ξ (0, t)

EI ∂x2
∂ξ (1, t) + EI ∂x2

∂ξ (0, t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.53)

In order to consider generation of semigroups, we need to impose boundary conditions
for (3.38). This is equivalent to imposing boundary conditions for

d

dt
x(t) = P2

∂2

∂ξ2
(︁
Hx(t)

)︁
+ P1

∂

∂ξ

(︁
Hx(t)

)︁
+ P0

(︁
Hx(t)

)︁
=: A0x(t). (3.54)

We can describe suitable boundary conditions with a full-rank matrix W ∈ R4×8 such that

W

⎡⎣f∂,Hx

e∂,Hx

⎤⎦ = 0. (3.55)
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Using W , we define the restricted operator A as

A = A0|D(A) with D(A) =

⎧⎨⎩x ∈ D(A0)

⃓⃓⃓⃓
⃓⃓W

⎡⎣f∂,Hx

e∂,Hx

⎤⎦ = 0

⎫⎬⎭ . (3.56)

The following theorem states sufficient conditions for when A generates a contraction
semigroup.

Theorem 3.2. Assume W is a full-rank matrix describing boundary conditions in terms
of the boundary port variables in (3.55) and A is as in (3.56). If

WΣW ∗ ≥ 0 and Re P0 ≤ 0, (3.57)

where Σ =
[︁
0 I
I 0

]︁
, then A generates a contraction semigroup and has a compact resol-

vent.

Proof. A proof is given in [2, Theorem 2.3], which is partly based on [8].

Since P0 =
[︁−γ 0

0 0

]︁
with γ > 0, for our system, the latter condition is satisfied. Further-

more, we can express the boundary conditions in terms of Φ∂(Hx):

0 =W

⎡⎣f∂,Hx

e∂,Hx

⎤⎦ =WRextΦ∂(Hx) =W ′Φ∂(Hx), (3.58)

where W ′ = WRext. Because Rext is invertible, we can solve for W if we know W ′. Thus
it does not matter whether we express the boundary conditions in terms of the boundary
port variables or the boundary value vector Φ∂(Hx).



29

4 SPECTRAL GALERKIN METHOD FOR ONE
EULER–BERNOULLI BEAM

In this chapter, we develop a spectral Galerkin method for simulating a single Euler–
Bernoulli beam. In particular, we cover two cases of boundary controlled beams—a
simply supported beam with a single boundary control input at ξ = 0 and a cantilevered
beam with two boundary control inputs at ξ = 0. The latter case corresponds to the beam
model we will eventually use for approximating a flexible satellite in chapter 5.

The first section is a brief introduction to weighted residual methods and modal basis
functions, which form the core of spectral methods in general. The following three sec-
tions cover the derivation of the spectral Galerkin approximation for the two boundary
controlled beams. For the reader’s convenience, the use of Legendre polynomials as
modal basis functions is covered in a separate section. At the end of this chapter, we
represent worked simulations for the two cases of boundary controlled beams.

4.1 Weighted Residual Methods and Modal Basis Functions

This section serves as a brief introduction to weighted residual methods, which are a
class of approximate methods for discretising the spatial domain in linear ordinary and
partial differential equations. In particular, using a weighted residual method, a linear par-
tial differential equation can be approximated with a system of linear ordinary differential
equations depending only on time. We demonstrate the idea of weighted residual meth-
ods with the following example. Weighted residual methods are covered more generally
in [17, pp. 1–3].

Example 4.1. Consider a static beam of homogeneous material on [0, 1] that is hori-
zontally clamped at both ends, with load distribution q ∈ L2([0, 1];R). The governing
equations are

EI
d4w

dξ4
(ξ) = q(ξ), w(0) = w(1) =

dw

dξ
(0) =

dw

dξ
(1) = 0. (4.1)

We approximate the solution with wN (ξ) =
∑︁N

k=0 αkϕk(ξ), where αk ∈ R and ϕk ∈ VN ,
where VN is a suitable subspace of a vector space X. The functions ϕk are called modal
basis functions. Let ψm ∈ V ′

N ⊂ X be our test functions. We take VN and V ′
N to be finite

subspaces, in this case N + 1 -dimensional. We may express the governing ordinary



30

differential equation as ⟨︃
EI

d4w

dξ4
− q, ψ

⟩︃
X

= 0, (4.2)

where ⟨·, ·⟩X is an inner product defined on X. We assume this inner product is linear in
both arguments for real functions. In this equation, we substitute wN in place of w and
ψm ∈ V ′

N in place of ψ to obtain

EI
N∑︂
k=0

αk

⟨︃
d4ϕk
dξ4

, ψm

⟩︃
X

= ⟨q, ψm⟩X , m = 0, 1, . . . , N. (4.3)

This is a linear system which we can solve for the coefficients αk to obtain an approximate
solution wN . We require the modal basis functions to be such that they satisfy the original
ordinary differential equation and its boundary conditions. In other words, we require ϕk
to satisfy

ϕk ∈
{︃
f ∈ C4([0, 1];R)

⃓⃓⃓⃓
f(0) = f(1) =

df

dξ
(0) =

df

dξ
(1) = 0

}︃
(4.4)

for all k = 0, 1, . . . , N .

For linear partial differential equations in ξ and t, we assume the approximate solution to
be of the form wN (ξ, t) =

∑︁N
k=0 αk(t)ϕk(ξ). Then following a similar procedure using test

functions and a suitable inner product, we obtain a system of linear ordinary differential
equations in time. In this work, we are exclusively interested in the Galerkin method,
which takes the modal basis and test functions to be the same, i.e. ϕj = ψj for all
j = 0, 1, . . . , N . In particular, we will be using the Legendre polynomials as building
blocks for our basis functions, which means we can use the standard L2-inner product.

We see from (4.4) that any linear combination of the modal basis functions satisfies the
boundary conditions. This is a central property of modal basis functions in general. In
order to obtain a unique modal basis function representation, the modal basis functions
must be linearly independent. The general idea is that when more modal basis functions
are used for the approximation, the approximate solution to a differential equation be-
comes increasingly accurate. Naturally, this only works if a set of (infinitely many) modal
basis functions can be used to approximate the exact solution to an arbitrary precision.
For Legendre polynomials, this is true, as any function that is continuous on the whole
interval [0, 1] has a pointwise convergent Legendre series expansion, based on [11, The-
orem 7.11]. Because the Legendre polynomials are mutually orthogonal, they are also
linearly independent. A set of modal basis functions satisfying the requirements in exam-
ple 4.1 is given by

ϕk(ξ) = Lk(ξ)−
4k + 10

2k + 7
Lk+2(ξ) +

2k + 3

2k + 7
Lk+4(ξ), k ∈ N, ξ ∈ [0, 1], (4.5)

where Lj is the j-th shifted Legendre polynomial. The first six of these basis functions
are shown in figure 4.1.

Similarly, the modal basis function approach can be applied to problems with non-homo-
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Figure 4.1. The first six basis functions of the form Lk − 4k+10
2k+7 Lk+2 +

2k+3
2k+7Lk+4.

geneous boundary conditions. For example, suppose our problem is the same as in (4.1)
but we have dw

dξ (0) = b ̸= 0 instead of the homogeneous boundary condition. We use
the same set of modal basis functions as we did for homogeneous boundary conditions,
but add in a single, different basis function that satisfies the homogeneous boundary
conditions w(0) = w(1) = dw

dξ (1) = 0 and a non-zero boundary condition dw
dξ (0) = 1.

We denote the ”homogeneous” part of the modal basis function set by {ϕk}N−1
k=0 and the

different basis function by ϕN . A simple polynomial satisfying these boundary conditions
is ϕN (ξ) = ξ3 − 2ξ2 + ξ.

With this approach, the non-zero boundary value is represented in the approximation
wN (ξ) =

∑︁N
k=0 αkϕk(ξ) solely by the single basis function ϕN and its coefficient αN .

This has the advantage of allowing us to construct a modal basis function set first as-
suming homogeneous boundary conditions and then adding a specific basis function for
approximating each non-zero boundary value. This idea extends to approximating partial
differential equations with wN (ξ, t) =

∑︁N
k=0 αk(t)ϕk(ξ) instead.

4.2 Semidiscretisation of the Energy Space Formulation

In order to obtain a numerical method for approximating (3.35), we perform semidiscreti-
sation to the system to eliminate the spatial variable ξ and obtain a system of linear
first-order ordinary differential equations in time. Let ψ ∈ V1 and Ψ ∈ V2 be our test
functions, where V1, V2 are suitable vector spaces to be defined later. Taking L2-inner
products of both sides of the equations, first equation with ψ and the second with Ψ, we
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get ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⟨︃
∂x1
∂t

(·, t), ψ
⟩︃

L2

= − γ

ρa

⟨︁
x1(·, t), ψ

⟩︁
L2 − EI

⟨︃
∂2x2
∂ξ2

(·, t), ψ
⟩︃

L2⟨︃
∂x2
∂t

(·, t),Ψ
⟩︃

L2

=
1

ρa

⟨︃
∂2x1
∂ξ2

(·, t),Ψ
⟩︃

L2

,

(4.6)

where we have used the fact that the inner product in L2([0, 1];R) is linear in both argu-
ments. We apply the weighted residual method. Let {ϕk}Nk=0 and {Φk}Nk=0 be our sets of
modal basis functions for approximating x1 and x2 in the following way:

x1(ξ, t) ≈
N∑︂
k=0

αk(t)ϕk(ξ) and x2(ξ, t) ≈
N∑︂
k=0

βk(t)Φk(ξ), (4.7)

where αk : (0,∞) → R and βk : (0,∞) → R are the coefficient functions to be determined.
The reason we start the indexing at k = 0 lies in the definition of the Legendre polynomi-
als, as the indexing for them also starts at zero. This makes our notations involving the
modal basis function approximations more natural.

We proceed by applying the Galerkin method [17, pp. 6–7] to (4.6). This means we take
the test and modal basis functions to be the same, namely V1 = {ψk}Nk=0 = {ϕk}Nk=0 and
V2 = {Ψk}Nk=0 = {Φk}Nk=0. We get N + 1 equations of the form of (4.6), for each ψm,Ψm

with m ∈ 0, 1, . . . , N . Let us consider the left hand sides of the equations first. We get

⟨︃
∂x1
∂t

(·, t), ψm

⟩︃
L2

≈

⟨︄
∂

∂t

N∑︂
k=0

αk(t)ϕk(·), ψm

⟩︄
L2

=

N∑︂
k=0

⟨ϕk, ψm⟩L2

d

dt
αk(t), (4.8)

where ⟨ϕk, ψm⟩L2 =
∫︁ 1
0 ϕk(ξ)ψm(ξ) dξ. Similarly, we have

⟨︃
∂x2
∂t

(·, t),Ψm

⟩︃
L2

≈
N∑︂
k=0

⟨Φk,Ψm⟩L2

d

dt
βk(t). (4.9)

We can write these equations in matrix form in the following way. Assume (4.8) denotes
row index m of a matrix resulting from matrix–vector multiplication. We may write

N∑︂
k=0

⟨ϕk, ψm⟩L2

d

dt
αk(t) =

[︂
⟨ϕ0, ψm⟩L2 ⟨ϕ1, ψm⟩L2 · · · ⟨ϕN , ψm⟩L2

]︂
⎡⎢⎢⎢⎢⎢⎢⎣

d
dtα0(t)

d
dtα1(t)

...
d
dtαN (t)

⎤⎥⎥⎥⎥⎥⎥⎦ . (4.10)

The full matrix formulation consists of all the rows. Knowing that ϕj = ψj for all j, we have
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⎡⎢⎢⎢⎢⎢⎢⎣
⟨ϕ0, ϕ0⟩L2 ⟨ϕ1, ϕ0⟩L2 · · · ⟨ϕN , ϕ0⟩L2

⟨ϕ0, ϕ1⟩L2 ⟨ϕ1, ϕ1⟩L2 · · · ⟨ϕN , ϕ1⟩L2

...
...

. . .
...

⟨ϕ0, ϕN ⟩L2 ⟨ϕ1, ϕN ⟩L2 · · · ⟨ϕN , ϕN ⟩L2

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

d
dtα0(t)

d
dtα1(t)

...
d
dtαN (t)

⎤⎥⎥⎥⎥⎥⎥⎦ =:M1
d

dt
α(t), (4.11)

where M1 is often called the mass matrix. Note that as the inner product in L2([0, 1];R) is
symmetric, the matrix M1 is symmetric. This is a useful property of the Galerkin method.
In the same vein having Φj = Ψj for all j, we can transform (4.9) into a matrix–vector
product and obtain a similar matrix formulation, namely⎡⎢⎢⎢⎢⎢⎢⎣

⟨Φ0,Φ0⟩L2 ⟨Φ1,Φ0⟩L2 · · · ⟨ΦN ,Φ0⟩L2

⟨Φ0,Φ1⟩L2 ⟨Φ1,Φ1⟩L2 · · · ⟨ΦN ,Φ1⟩L2

...
...

. . .
...

⟨Φ0,ΦN ⟩L2 ⟨Φ1,ΦN ⟩L2 · · · ⟨ΦN ,ΦN ⟩L2

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

d
dtβ0(t)

d
dtβ1(t)

...
d
dtβN (t)

⎤⎥⎥⎥⎥⎥⎥⎦ =:M2
d

dt
β(t). (4.12)

With the same reasoning as before, we notice that M2 is also a symmetric matrix. Fur-
thermore, we can combine the two into a single block matrix form⎡⎣M1 0

0 M2

⎤⎦⎡⎣ d
dtα(t)

d
dtβ(t)

⎤⎦ =:M
d

dt
x̃(t). (4.13)

Because M1 and M2 are symmetric, the combined block matrix M is also symmetric.
Additionally, M is invertible if and only if M1 and M2 are invertible.

Handling the right hand sides of (4.6) is not quite as straightforward and depends on our
boundary conditions and choice of boundary input variables. We will do the necessary
computations in steps. Let us denote

rm1 (t) :=
⟨︁
x1(·, t), ψm

⟩︁
L2 (4.14)

rm2 (t) :=

⟨︃
∂2x2
∂ξ2

(·, t), ψm

⟩︃
L2

(4.15)

rm3 (t) :=

⟨︃
∂2x1
∂ξ2

(·, t),Ψm

⟩︃
L2

. (4.16)

In order to include boundary control input, we need to have the necessary boundary
terms first. We get the boundary terms of x1 and x2 by integrating rm2 and rm3 by parts.
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First we integrate rm2 by parts twice to obtain

rm2 (t) =

∫︂ 1

0

∂2x2
∂ξ2

(ξ, t)ψm(ξ) dξ

=

[︃
∂x2
∂ξ

(ξ, t)ψm(ξ)

]︃1
0

−
∫︂ 1

0

∂x2
∂ξ

(ξ, t)
dψm

dξ
(ξ) dξ

=

[︃
∂x2
∂ξ

(ξ, t)ψm(ξ)

]︃1
0

−

(︄[︃
x2(ξ, t)

dψm

dξ
(ξ)

]︃1
0

−
∫︂ 1

0
x2(ξ, t)

d2ψm

dξ2
(ξ) dξ

)︄

=

∫︂ 1

0
x2(ξ, t)

d2ψm

dξ2
(ξ) dξ +

[︃
∂x2
∂ξ

(ξ, t)ψm(ξ)

]︃1
0

−
[︃
x2(ξ, t)

dψm

dξ
(ξ)

]︃1
0

=

⟨︃
x2(·, t),

d2ψm

dξ2

⟩︃
L2

+
∂x2
∂ξ

(1, t)ψm(1)− ∂x2
∂ξ

(0, t)ψm(0)

− x2(1, t)
dψm

dξ
(1) + x2(0, t)

dψm

dξ
(0)

≈
N∑︂
k=0

⟨︃
Φk,

d2ψm

dξ2

⟩︃
L2

βk(t) +
∂x2
∂ξ

(1, t)ψm(1)− ∂x2
∂ξ

(0, t)ψm(0)

− x2(1, t)
dψm

dξ
(1) + x2(0, t)

dψm

dξ
(0).

Because the formulation of rm3 is similar to that of rm2 , we get

rm3 (t) ≈
N∑︂
k=0

⟨︃
ϕk,

d2Ψm

dξ2

⟩︃
L2

αk(t) +
∂x1
∂ξ

(1, t)Ψm(1)− ∂x1
∂ξ

(0, t)Ψm(0)

− x1(1, t)
dΨm

dξ
(1) + x1(0, t)

dΨm

dξ
(0).

Lastly, for rm1 we get simply

rm1 (t) ≈
N∑︂
k=0

⟨ϕk, ψm⟩L2αk(t). (4.17)

Because ϕj = ψj for all j ∈ {0, 1, . . . , N}, we can express this in vector form as

rm1 (t) ≈
[︂
⟨ϕ0, ϕm⟩L2 ⟨ϕ1, ϕm⟩L2 · · · ⟨ϕN , ϕm⟩L2

]︂
⎡⎢⎢⎢⎢⎢⎢⎣
α0(t)

α1(t)
...

αN (t)

⎤⎥⎥⎥⎥⎥⎥⎦ . (4.18)

Combining all of these into a single matrix–vector product for all m ∈ {0, 1, . . . , N}, we
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obtain the expression − γ
ρar

m
1 (t) ≈ K1α(t), where

K1 = − γ

ρa

⎡⎢⎢⎢⎢⎢⎢⎣
⟨ϕ0, ϕ0⟩L2 ⟨ϕ1, ϕ0⟩L2 · · · ⟨ϕN , ϕ0⟩L2

⟨ϕ0, ϕ1⟩L2 ⟨ϕ1, ϕ1⟩L2 · · · ⟨ϕN , ϕ1⟩L2

...
...

. . .
...

⟨ϕ0, ϕN ⟩L2 ⟨ϕ1, ϕN ⟩L2 · · · ⟨ϕN , ϕN ⟩L2

⎤⎥⎥⎥⎥⎥⎥⎦ and α(t) =

⎡⎢⎢⎢⎢⎢⎢⎣
α0(t)

α1(t)
...

αN (t)

⎤⎥⎥⎥⎥⎥⎥⎦ . (4.19)

We split further processing of rm2 and rm3 into two separate sections. The first one covers
a boundary controlled system based on a simply supported beam, and the second one
covers a boundary controlled system based on a cantilevered beam. We do this because
the matrix formulations obtained depend on the boundary conditions.

4.3 Simply Supported Beam with Boundary Control

The homogeneous boundary conditions for a simply supported dynamic beam are

w(0, t) = w(1, t) =
∂2w

∂ξ2
(0, t) =

∂2w

∂ξ2
(1, t) = 0. (4.20)

We wish to control the bending moment at ξ = 0 with a function u ∈ C([0, 1];R). Because
x2(0, t) represents the bending moment directly in terms of the energy variables, we get
the boundary conditions ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x1(0, t) = 0

x1(1, t) = 0

x2(0, t) = u(t)

x2(1, t) = 0.

(4.21)

Because we have homogeneous boundary conditions for the variable x1, the modal basis
functions ϕk used for approximating it take the same boundary values ϕk(0) = ϕk(1) = 0

for all k ∈ {0, 1, . . . , N}. Thus rm2 simplifies to

rm2 (t) ≈
N∑︂
k=0

⟨︃
Ψk,

d2ψm

dξ2

⟩︃
L2

βk(t) + u(t)
dψm

dξ
(0). (4.22)

For the variable x2, we have Φk(0) = Φk(1) = 0 for k ∈ {0, 1, . . . , N − 1}. For applying
boundary control, we use ΦN such that ΦN (0) ̸= 0 and ΦN (1) = 0. We have no need for
the boundary terms of the variable x1, so we may simply use (4.16) for rm3 . Substituting
in the approximation x1(ξ, t) ≈

∑︁N
k=0 αk(t)ϕk(ξ), we obtain

rm3 (t) ≈
N∑︂
k=0

⟨︃
d2ϕk
dξ2

,Ψm

⟩︃
L2

αk(t). (4.23)



36

Similarly to (4.19), we obtain the expression −EIrm2 (t) ≈ K2β(t) +B2u(t), where

K2 = −EI

⎡⎢⎢⎢⎢⎢⎢⎣

⟨︁
Φ0,

d2ϕ0

dξ2

⟩︁
L2

⟨︁
Φ1,

d2ϕ0

dξ2

⟩︁
L2 · · ·

⟨︁
ΦN ,

d2ϕ0

dξ2

⟩︁
L2⟨︁

Φ0,
d2ϕ1

dξ2

⟩︁
L2

⟨︁
Φ1,

d2ϕ1

dξ2

⟩︁
L2 · · ·

⟨︁
ΦN ,

d2ϕ1

dξ2

⟩︁
L2

...
...

. . .
...⟨︁

Φ0,
d2ϕN

dξ2

⟩︁
L2

⟨︁
Φ1,

d2ϕN

dξ2

⟩︁
L2 · · ·

⟨︁
ΦN ,

d2ϕN

dξ2

⟩︁
L2

⎤⎥⎥⎥⎥⎥⎥⎦ , (4.24)

β(t) =

⎡⎢⎢⎢⎢⎢⎢⎣
β0(t)

β1(t)
...

βN (t)

⎤⎥⎥⎥⎥⎥⎥⎦ and B1 = −EI

⎡⎢⎢⎢⎢⎢⎢⎣

dϕ0

dξ (0)

dϕ1

dξ (0)
...

dϕN
dξ (0)

⎤⎥⎥⎥⎥⎥⎥⎦ . (4.25)

In the same vein, we obtain the expression 1
ρar

m
3 (t) ≈ K3α(t), where

K3 =
1

ρa

⎡⎢⎢⎢⎢⎢⎢⎣

⟨︁d2ϕ0

dξ2
,Φ0

⟩︁
L2

⟨︁d2ϕ1

dξ2
,Φ0

⟩︁
L2 · · ·

⟨︁d2ϕN

dξ2
,Φ0

⟩︁
L2⟨︁d2ϕ0

dξ2
,Φ1

⟩︁
L2

⟨︁d2ϕ1

dξ2
,Φ1

⟩︁
L2 · · ·

⟨︁d2ϕN

dξ2
,Φ1

⟩︁
L2

...
...

. . .
...⟨︁d2ϕ0

dξ2
,ΦN

⟩︁
L2

⟨︁d2ϕ1

dξ2
,ΦN

⟩︁
L2 · · ·

⟨︁d2ϕN

dξ2
,ΦN

⟩︁
L2

⎤⎥⎥⎥⎥⎥⎥⎦ (4.26)

and α(t) is the same as in (4.19). Finally, we can express (4.6) as a linear system for a
boundary controlled simply supported beam as⎧⎪⎨⎪⎩

M
d

dt
x̃(t) = Kx̃(t) +Bu(t)

x̃(0) = x̃0 ∈ R2N+2,

(4.27)

where M and x̃ are as in (4.13) and

K =

⎡⎣K1 K2

0 K3

⎤⎦ and B =

⎡⎣B1

0

⎤⎦ ∈ R2N+2. (4.28)

We obtain the initial condition x̃0 as follows. Suppose w0 and w1 denote the initial deflec-
tion profile and velocity of the beam. Then using (3.36), we obtain the approximations

x1(ξ, 0) = ρaw1(ξ) ≈
N∑︂
k=0

αk(0)ϕk(ξ) (4.29)

x2(ξ, 0) =
d2w0

dξ2
(ξ) ≈

N∑︂
k=0

βk(0)Φk(ξ). (4.30)

The initial state of our system is described by the values of αk(0) and βk(0). In other
words, we obtain the initial state by finding modal basis function approximations for ρaw1
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and d2w0
dξ2

. Thus the initial condition is equal to

x̃0 =
[︂
α(0) β(0)

]︂T
=
[︂
α0(0) α1(0) · · · αN (0) β0(0) β1(0) · · · βN (0)

]︂T
. (4.31)

4.4 Cantilevered Beam with Boundary Control

The homogeneous boundary conditions for a cantilevered beam that is horizontally
clamped at ξ = 0 are

w(0, t) =
∂w

∂ξ
(0, t) =

∂2w

∂ξ2
(1, t) =

∂3w

∂ξ3
(1, t) = 0. (4.32)

In this case, we wish to control the time derivatives of the deflection and slope with func-
tions u1, u2 ∈ C1([0, 1];R). We get the boundary conditions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(0, t) = u1(t)

∂x1
∂ξ

(0, t) = u2(t)

x2(1, t) = 0

∂x2
∂ξ

(1, t) = 0.

(4.33)

Because we have homogeneous boundary conditions for the variable x2, the modal basis
functions Φk used for approximating it take the same boundary values Φk(1) =

dΦk
dξ (1) = 0

for all k ∈ {0, 1, . . . , N}. Thus rm3 simplifies to

rm3 (t) ≈
N∑︂
k=0

⟨︃
ϕk,

d2Ψm

dξ2

⟩︃
L2

+ u1(t)
dΨm

dξ
(0)− u2(t)Ψm(0). (4.34)

For the variable x1, we have ϕk(0) = dϕk
dξ (0) = 0 for k ∈ {0, 1, . . . , N − 2}. For applying

boundary control, we use ϕN−1 and ϕN such that ϕN−1(0) ̸= 0, dϕN−1

dξ (0) = 0, ϕN (0) = 0

and dϕN
dξ (0) ̸= 0. We have no need for the boundary terms of the variable x2, so we may

simply use (4.15) for rm2 . Substituting in the approximation x2(ξ, t) ≈
∑︁N

k=0 βk(t)Φk(ξ),
we obtain

rm2 (t) ≈
N∑︂
k=0

⟨︃
d2Φk

dξ2
, ψm

⟩︃
L2

βk(t). (4.35)
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Similarly to (4.19), we obtain the expression −EIrm2 (t) ≈ K2β(t), where

K2 = −EI

⎡⎢⎢⎢⎢⎢⎢⎣

⟨︁
Φ0,

d2ϕ0

dξ2

⟩︁
L2

⟨︁
Φ1,

d2ϕ0

dξ2

⟩︁
L2 · · ·

⟨︁
ΦN ,

d2ϕ0

dξ2

⟩︁
L2⟨︁

Φ0,
d2ϕ1

dξ2

⟩︁
L2

⟨︁
Φ1,

d2ϕ1

dξ2

⟩︁
L2 · · ·

⟨︁
ΦN ,

d2ϕ1

dξ2

⟩︁
L2

...
...

. . .
...⟨︁

Φ0,
d2ϕN

dξ2

⟩︁
L2

⟨︁
Φ1,

d2ϕN

dξ2

⟩︁
L2 · · ·

⟨︁
ΦN ,

d2ϕN

dξ2

⟩︁
L2

⎤⎥⎥⎥⎥⎥⎥⎦ , (4.36)

β(t) =

⎡⎢⎢⎢⎢⎢⎢⎣
β0(t)

β1(t)
...

βN (t)

⎤⎥⎥⎥⎥⎥⎥⎦ . (4.37)

In the same vein, we obtain the expression 1
ρar

m
3 (t) ≈ K3α(t) +B2u(t), where

K3 =
1

ρa

⎡⎢⎢⎢⎢⎢⎢⎣

⟨︁d2ϕ0

dξ2
,Φ0

⟩︁
L2

⟨︁d2ϕ1

dξ2
,Φ0

⟩︁
L2 · · ·

⟨︁d2ϕN

dξ2
,Φ0

⟩︁
L2⟨︁d2ϕ0

dξ2
,Φ1

⟩︁
L2

⟨︁d2ϕ1

dξ2
,Φ1

⟩︁
L2 · · ·

⟨︁d2ϕN

dξ2
,Φ1

⟩︁
L2

...
...

. . .
...⟨︁d2ϕ0

dξ2
,ΦN

⟩︁
L2

⟨︁d2ϕ1

dξ2
,ΦN

⟩︁
L2 · · ·

⟨︁d2ϕN

dξ2
,ΦN

⟩︁
L2

⎤⎥⎥⎥⎥⎥⎥⎦ , (4.38)

B2 =
1

ρa

⎡⎢⎢⎢⎢⎢⎢⎣

dΦ0
dξ (0) −Φ0(0)

dΦ1
dξ (0) −Φ1(0)

...
...

dΦN
dξ (0) −ΦN (0)

⎤⎥⎥⎥⎥⎥⎥⎦ and u(t) =

⎡⎣u1(t)
u2(t)

⎤⎦ . (4.39)

Additionally, α(t) is the same as in (4.19). Finally, we can express (4.6) as a linear system
for a boundary controlled cantilevered beam as⎧⎪⎨⎪⎩

M
d

dt
x̃(t) = Kx̃(t) +Bu(t)

x̃(0) = x̃0 ∈ R2N+2,

(4.40)

where M and x̃ are as in (4.13) and

K =

⎡⎣K1 K2

0 K3

⎤⎦ and B =

⎡⎣ 0

B2

⎤⎦ ∈ R(2N+2)×2. (4.41)

We obtain the initial condition x̃0 from the initial deflection profile w0 and the initial velocity
w1 the same way as in the previous section.
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4.5 Modal Basis Functions Utilising Legendre Polynomials

The beam equation has four boundary conditions, so we study modal basis functions of
the form

ϕn(ξ) = cn
(︁
Ln(ξ) + g1(n)Ln+1(ξ) + g2(n)Ln+2(ξ) + g3(n)Ln+3(ξ) + g4(n)Ln+4(ξ)

)︁
= cn

(︃
Ln(ξ) +

4∑︂
k=1

gk(n)Ln+k(ξ)

)︃
, (4.42)

where cn ̸= 0 is a scaling coefficient depending on n. This general formulation is sup-
ported by Jie Shen’s articles considering spectral Galerkin approximations for Legendre
[15] and Chebyshev polynomials [16]. First we study how to obtain a modal basis func-
tion approximation for a continuous function f by applying the Fourier–Legendre series
expansion.

We obtain a polynomial approximation of degree N for function f ∈ C0([0, 1];R) by trun-
cating the Fourier–Legendre series (2.18), namely

f(ξ) ≈ fN (ξ) :=
N∑︂

n=0

anLn(ξ), an = (2n+ 1)⟨f, Ln⟩L2 . (4.43)

However, we are more interested in obtaining a polynomial approximation in terms of
basis functions described in (4.42). We start by writing

f̂M (ξ) :=
M∑︂
n=0

bnϕn(ξ)

=
M∑︂
n=0

bncnLn(ξ) +
M∑︂
n=0

bncng1(n)Ln+1(ξ) +
M∑︂
n=0

bncng2(n)Ln+2(ξ)

+
M∑︂
n=0

bncng3(n)Ln+3(ξ) +
M∑︂
n=0

bncng4(n)Ln+4(ξ),

where bn are the unknown coefficients. Expanding the sum we get

f̂M (ξ) = b0c0L0(ξ) + b1c1L1(ξ) + b2c2L2(ξ) + . . .+ bMcMLM (ξ)

+ b0c0g1(0)L1(ξ) + b1c1g1(1)L2(ξ) + b2c2g1(2)L3(ξ) + . . .+ bMcMg1(M)LM+1(ξ)

+ b0c0g2(0)L2(ξ) + b1c1g2(1)L3(ξ) + b2c2g2(2)L4(ξ) + . . .+ bMcMg2(M)LM+2(ξ)

+ b0c0g3(0)L3(ξ) + b1c1g3(1)L4(ξ) + b2c2g3(2)L5(ξ) + . . .+ bMcMg3(M)LM+3(ξ)

+ b0c0g4(0)L4(ξ) + b1c1g4(1)L5(ξ) + b2c2g4(2)L6(ξ) + . . .+ bMcMg4(M)LM+4(ξ).

Looking at the expanded sum above, we see that we can write f̂M (ξ) =
∑︁M+4

n=0 anLn(ξ),
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where

an =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b0c0, n = 0

b0c0g1(0) + b1c1, n = 1

b0c0g2(0) + b1c1g1(1) + b2c2, n = 2

b0c0g3(0) + b1c1g2(1) + b2c2g1(2) + b3c3, n = 3

bn−4cn−4g4(n− 4) + bn−3cn−3g3(n− 3) + bn−2cn−2g2(n− 2)

+ bn−1cn−1g1(n− 1) + bncn,
4 ≤ n ≤M

bM−3cM−3g4(M − 3) + bM−2cM−2g3(M − 2)

+ bM−1cM−1g2(M − 1) + bMcMg1(M),
n =M + 1

bM−2cM−2g4(M − 2) + bM−1cM−1g3(M − 1) + bMcMg2(M), n =M + 2

bM−1cM−1g4(M − 1) + bMcMg3(M), n =M + 3

bMcMg4(M), n =M + 4.

Assuming we know the coefficients an, we get a linear system from the first M + 1 equa-
tions, which is enough to solve for each bn. We get the system

Hb = a, (4.44)

where a = [ a0 a1 ··· aM ]T, b = [ b0 b1 ··· bM ]T and H = (hij) ∈ R(M+1)×(M+1) is a lower
triangular matrix with

hij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cj−1, i = j

cj−1g1(j − 1), i = j + 1

cj−1g2(j − 1), i = j + 2

cj−1g3(j − 1), i = j + 3

cj−1g4(j − 1), i = j + 4

0, else.

(4.45)

Because H is a triangular matrix with non-zero diagonal entries (cn ̸= 0), it is invertible
and thus (4.44) is solvable with b = H−1a.

Let us denote ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
xN1 (ξ, t) :=

N∑︂
n=0

αn(t)ϕn(ξ)

xN2 (ξ, t) :=
N∑︂

n=0

βn(t)Φn(ξ)

(4.46)

and

xN (ξ, t) :=

⎡⎣xN1 (ξ, t)

xN2 (ξ, t)

⎤⎦ . (4.47)

Assume our boundary conditions for the homogeneous part of our modal basis function
set are expressed in the form W ′Φ∂(Hx) = 0, where W ′ ∈ R4×8 satisfies the conditions
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described in section 3.7. We address the boundary control part later. Substituting the
approximation xN in place of x, we obtain

W ′Φ∂

(︁
HxN

)︁
= 0. (4.48)

Computing HxN , we get

(︁
HxN

)︁
(ξ, t) =

⎡⎣ 1
ρa 0

0 EI

⎤⎦⎡⎣xN1 (ξ, t)

xN2 (ξ, t)

⎤⎦ =

⎡⎣ 1
ρax

N
1 (ξ, t)

EIxN2 (ξ, t)

⎤⎦ =

⎡⎢⎣ 1
ρa

∑︁N
n=0 αn(t)ϕn(ξ)

EI
∑︁N

n=0 βn(t)Φn(ξ)

⎤⎥⎦ . (4.49)

Similarly, we get

∂

∂ξ

(︁
HxN

)︁
(ξ, t) =

⎡⎢⎣ 1
ρa

∑︁N
n=0 αn(t)

dϕn

dξ (ξ)

EI
∑︁N

n=0 βn(t)
dΦn
dξ (ξ)

⎤⎥⎦ . (4.50)

Expanding (4.48), we obtain

W ′

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
ρa

∑︁N
n=0 αn(t)ϕn(1)

EI
∑︁N

n=0 βn(t)Φn(1)

1
ρa

∑︁N
n=0 αn(t)

dϕn

dξ (1)

EI
∑︁N

n=0 βn(t)
dΦn
dξ (1)

1
ρa

∑︁N
n=0 αn(t)ϕn(0)

EI
∑︁N

n=0 βn(t)Φn(0)

1
ρa

∑︁N
n=0 αn(t)

dϕn

dξ (0)

EI
∑︁N

n=0 βn(t)
dΦn
dξ (0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

N∑︂
n=0

W ′

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
ρaαn(t)ϕn(1)

EIβn(t)Φn(1)

1
ρaαn(t)

dϕn

dξ (1)

EIβn(t)
dΦn
dξ (1)

1
ρaαn(t)ϕn(0)

EIβn(t)Φn(0)

1
ρaαn(t)

dϕn

dξ (0)

EIβn(t)
dΦn
dξ (0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎦ . (4.51)

Because the boundary conditions need to apply at every time instant t ∈ [0,∞), the
equation is independent of αn and βn. Furthermore, as the modal basis functions are
linearly independent, the equation only holds if each term of the matrix sum equals zero.
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This yields the condition

W ′

⎡⎢⎢⎢⎢⎢⎢⎣
H

H

H

H

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕn(1)

Φn(1)

dϕn

dξ (1)

dΦn
dξ (1)

ϕn(0)

Φn(0)

dϕn

dξ (0)

dΦn
dξ (0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎦ for n = 0, 1, . . . , N, (4.52)

where we extracted H = diag
(︁

1
ρa , EI

)︁
out from each pair of terms for convenience. De-

noting ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ϕn(ξ) = c1n

(︃
Ln(ξ) +

4∑︂
k=1

g1k(k)Ln+k(ξ)

)︃
,

Φn(ξ) = c2n

(︃
Ln(ξ) +

4∑︂
k=1

g2k(k)Ln+k(ξ)

)︃
,

(4.53)

we are able to expand the left hand side of (4.52). We get

W ′

⎡⎢⎢⎢⎢⎢⎢⎣
HCn

HCn

HCn

HCn

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ln(1) +
∑︁4

k=1 g
1
k(n)Ln+k(1)

Ln(1) +
∑︁4

k=1 g
2
k(n)Ln+k(1)

dLn
dξ (1) +

∑︁4
k=1 g

1
k(n)

dLn+k

dξ (1)

dLn
dξ (1) +

∑︁4
k=1 g

2
k(k)

dLn+k

dξ (1)

Ln(0) +
∑︁4

k=1 g
1
k(n)Ln+k(0)

Ln(0) +
∑︁4

k=1 g
2
k(n)Ln+k(0)

dLn
dξ (0) +

∑︁4
k=1 g

1
k(n)

dLn+k

dξ (0)

dLn
dξ (0) +

∑︁4
k=1 g

2
k(n)

dLn+k

dξ (0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎦ , (4.54)

where Cn = diag
(︁
c1n, c

2
n

)︁
, for all indices n. In order to obtain a matrix–vector equation, we
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denote

Λn(ξ) :=
[︂
Ln(ξ) Ln+1(ξ) Ln+2(ξ) Ln+3(ξ) Ln+4(ξ)

]︂
, (4.55)

Λ′
n(ξ) :=

[︂
dLn
dξ (ξ) dLn+1

dξ (ξ) dLn+2

dξ (ξ) dLn+3

dξ (ξ) dLn+4

dξ (ξ)
]︂
, (4.56)

g(n) :=

⎡⎣g1(n)
g2(n)

⎤⎦ , (4.57)

where g1(n) = [ 1 g11(n) g12(n) g13(n) g14(n) ]
T and g2(n) = [ 1 g21(n) g22(n) g23(n) g24(n) ]

T. Finally, we
get the equation

W ′

⎡⎢⎢⎢⎢⎢⎢⎣
HCn

HCn

HCn

HCn

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Λn(1) 0

0 Λn(1)

Λ′
n(1) 0

0 Λ′
n(1)

Λn(0) 0

0 Λn(0)

Λ′
n(0) 0

0 Λ′
n(0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎣g1(n)
g2(n)

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎦ , (4.58)

which we aim to solve for g1(n) and g2(n) for each index n. The resulting system contains
8 unknown coefficients and 4 equations, making it an underdetermined system. Gener-
ally, we prefer solutions that yield polynomials of the least possible degree for the modal
basis functions, for simpler numerical computations. Because we know the values of the
Legendre polynomials and their derivatives at ξ = 0 and ξ = 1 (properties (ii) and (iii)),
we get the following identities:

Λn(1) =
[︂
1 1 1 1 1

]︂
,

Λ′
n(1) =

[︂
n2 + n n2 + 3n+ 2 n2 + 5n+ 6 n2 + 7n+ 12 n2 + 9n+ 20

]︂
,

Λn(0) = (−1)n
[︂
1 −1 1 −1 1

]︂
,

Λ′
n(0) = (−1)n

[︂
−n2 − n n2 + 3n+ 2 −n2 − 5n− 6 n2 + 7n+ 12 −n2 − 9n− 20

]︂
.

We yet have to address modal basis functions for applying boundary control input in our
approximated system. We will do this for the boundary control inputs presented for the
boundary controlled simply supported and cantilevered beams in the next section. Other
kinds of boundary control inputs are not discussed in this work.

For modal basis functions for boundary control input, we choose to look for functions of
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the form
ϕ(ξ) = c0L0(ξ) + c1L1(ξ) + c2L2(ξ), (4.59)

which is a second-degree polynomial. For convenience, we want these basis functions
to satisfy

∫︁ 1
0 ϕ(ξ) dξ = 0. For the boundary controlled simply supported beam, we control

the value x2(0, t), other boundary conditions being homogeneous. Thus we look for a
modal basis function of the form (4.59) satisfying ΦN (0) = 1 and ΦN (1) = 0. Applying
the properties of Legendre polynomials and solving for the coefficients c0, c1 and c2, we
obtain

ΦN (ξ) = 0L0(ξ)−
1

2
L1(ξ) +

1

2
L2(ξ) = 3ξ2 − 4ξ + 1. (4.60)

For the boundary controlled cantilevered beam, on the other hand, we control the values
x1(0, t) and ∂x1

∂ξ (0, t). We look for two modal basis functions of the form (4.59) that satisfy
the conditions ϕN−1(0) = 1, dϕN−1

dξ (0) = 0, ϕN (0) = 0 and dϕN
dξ (0) = 1. Again solving for

the coefficients c0, c1 and c2 for both cases, we obtain⎧⎪⎪⎨⎪⎪⎩
ϕN−1(ξ) = 0L0(ξ)−

3

2
L1(ξ)−

1

2
L2(ξ) = −3ξ2 + 1,

ϕN (ξ) = 0L0(ξ)−
1

4
L1(ξ)−

1

4
L2(ξ) = −3

2
ξ2 + ξ.

(4.61)

4.6 Simulation Example for a Single Beam

We simulate a cantilevered beam horizontally clamped at ξ = 0. Our physical parameters
are E = 1, I = 1, ρ = 10, a = 1 and the viscous damping constant is γ = 2. We use
15 basis functions, thus we have n = 0, 1, . . . , 14 for the basis functions ϕn and Φn. We
simulate the beam for 20 seconds. Our initial deflection profile is

w0(ξ) =
1

10

(︁
ξ4 − 4ξ3 + 6ξ2

)︁
, (4.62)

which satisfies the boundary conditions for a horizontally cantilevered beam. From this
we obtain

d2w0

dξ2
(ξ) =

1

10

(︁
12ξ2 − 24ξ + 12

)︁
, (4.63)

which is our initial condition x2(ξ, 0), see (3.36). We assume our beam is at rest initially,
so x1(ξ, 0) ≡ 0. We solve for the corresponding basis function coefficients αk and βk for
the spectral approximations x1(ξ, t) ≈

∑︁N
k=0 αk(t)ϕk(ξ) and x2(ξ, t) ≈

∑︁N
k=0 βk(t)Φk(ξ)

at t = 0.

We can solve for the deflection profile using numerical integration, as

x1(ξ, t) = ρa
∂w

∂t
(ξ, t) ⇔ ∂w

∂t
(ξ, t) =

1

ρa
x1(ξ, t) ≈

1

ρa

N∑︂
k=0

ϕk(ξ)αk(t),
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from which we obtain

w(ξ, T ) ≈ w(ξ, 0) +
1

ρa

N∑︂
k=0

ϕk(ξ)

∫︂ T

0
αk(t) dt, (4.64)

where T ∈ [0, 20]. Because the simulation only returns the values of αk(t) at discrete
time points, we approximate the integral by the trapezoidal rule for each computed time
step T . We simulate the beam both with zero boundary input and boundary input of
ρa ∂w

∂ξ∂t(0, t) =
∂x1
∂t (0, t) = − sin(2πt). The beam without boundary control input is shown

in figure 4.2, and with boundary control input in figure 4.3.

Figure 4.2. A cantilevered beam without boundary control input.

We see that without boundary control input, the vibration of the beam is dominated by the
lowest frequency components. On the other hand, the periodic boundary control input
adds higher frequency oscillation to the beam that is of relatively small amplitude.
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Figure 4.3. A cantilevered beam with boundary control input ρa∂x1
∂t (0, t) = − sin(2πt).
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5 SATELLITE MODEL APPROXIMATION

In this chapter, we present a mathematical model for a satellite with two flexible solar
panels and a rigid central body between them. The model we consider has been studied
in, for example, [9] and [10]. We also express this interconnected system as a linear sys-
tem of ordinary differential equations and how to simulate it, using the spectral Galerkin
approach utilising the Legendre polynomials.

5.1 Satellite Model Setup

The three-component model we will use consists of a rigid central body and two flexible
solar panels attached to it, opposite of each other. We model the central body as a
dimensionless particle with mass m and moment of inertia Im. The two solar panels are
modelled as homogeneous, one-dimensional Euler–Bernoulli beams, being identical to
each other. Their physical parameters are elastic modulus E, second moment of area I,
cross-sectional area a, mass density ρ and viscous damping coefficient γ.

−1 10

wl(ξ, t) wr(ξ, t)wc(t), θc(t)

Figure 5.1. A satellite with two flexible solar panels and a rigid central body.

Let wl(ξ, t) and wr(ξ, t) denote the displacements of the left and right solar panels, re-
spectively. Furthermore, let wc(t) and θc(t) denote the linear and angular displacements
of the rigid central body. We can write the equations for the flexible solar panels as [9,
Section 2]⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂2wl

∂t2
(ξ, t) +

EI

ρa

∂4wl

∂ξ4
(ξ, t) +

γ

ρa

∂wl

∂t
(ξ, t) = 0, −1 < ξ < 0, t > 0,

∂2wr

∂t2
(ξ, t) +

EI

ρa

∂4wr

∂ξ4
(ξ, t) +

γ

ρa

∂wr

∂t
(ξ, t) = 0, 0 < ξ < 1, t > 0.

(5.1)

For the rigid central body, we have applied Newton’s second law of motion to obtain [3,
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p. 179]⎧⎪⎪⎪⎨⎪⎪⎪⎩
m
d2wc

dt2
(t) = EI

∂3wl

∂ξ3
(0, t)− EI

∂3wr

∂ξ3
(0, t) + u1(t), t > 0, (translation)

Im
d2θc
dt2

(t) = −EI ∂
2wl

∂ξ2
(0, t) + EI

∂2wr

∂ξ2
(0, t) + u2(t), t > 0, (rotation)

(5.2)

where u1 and u2 are the external inputs for the satellite system. Here we assume that
there are no other forces or torques acting on the system. With this in mind, the only
forces acting on the central body are the shear forces applied by the solar panels at
ξ = 0. Similarly, the only torques affecting the central body come from the bending
moments caused by the solar panels at ξ = 0. Moreover, our boundary conditions are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2wl

∂ξ2
(−1, t) =

∂3wl

∂ξ3
(−1, t) = 0,

∂2wr

∂ξ2
(1, t) =

∂3wr

∂ξ3
(1, t) = 0,

dwc

dt
(t) =

∂wl

∂t
(0, t) =

∂wr

∂t
(0, t),

dθc
dt

(t) =
∂2wl

∂ξ∂t
(0, t) =

∂2wr

∂ξ∂t
(0, t).

(5.3)

The first two lines of boundary conditions describe the outer endpoints of the solar panels,
which are modelled as free ends. The latter two boundary conditions link the velocity and
angular velocity of the central body to the rate of change of the deflection and slope of
the solar panels at ξ = 0.

We will not expand our analysis of the system further in this form. Instead, we express the
two beam equations using the energy space variables and the spectral Galerkin approach
to obtain two systems of ordinary differential equations in time. The equations of motion
for the rigid central body already form a system of ordinary differential equations, so we
can use mdwc

dt and Imdθc
dt as state variables.

5.2 Finding Required Basis Functions

Using the energy variables for both of the solar panels, we denote

xl(ξ, t) =

⎡⎣x1l (ξ, t)
x2l (ξ, t)

⎤⎦ =

⎡⎣ρa∂wl
∂t (ξ, t)

∂2wl
∂ξ2

(ξ, t)

⎤⎦ , −1 < ξ < 0, t > 0 (5.4)

xr(ξ, t) =

⎡⎣x1r(ξ, t)
x2r(ξ, t)

⎤⎦ =

⎡⎣ρa∂wr
∂t (ξ, t)

∂2wr
∂ξ2

(ξ, t)

⎤⎦ , 0 < ξ < 1, t > 0. (5.5)
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The approximate spectral Galerkin forms of these are

xNl (ξ, t) =

⎡⎣xNl1(ξ, t)
xNl2(ξ, t)

⎤⎦ =

⎡⎣∑︁N
n=0 α

l
n(t)ϕ

l
n(ξ)∑︁N

n=0 β
l
n(t)Φ

l
n(ξ)

⎤⎦ , −1 < ξ < 0, t > 0 (5.6)

xNr (ξ, t) =

⎡⎣xNr1(ξ, t)
xNr2(ξ, t)

⎤⎦ =

⎡⎣∑︁N
n=0 α

r
n(t)ϕ

r
n(ξ)∑︁N

n=0 β
r
n(t)Φ

r
n(ξ)

⎤⎦ , 0 < ξ < 1, t > 0. (5.7)

Additionally, we denote

x̃l(t) :=
[︂
αl
0(t) αl

1(t) . . . αl
N (t) βl0(t) βl1(t) . . . βlN (t)

]︂T
, (5.8)

x̃r(t) :=
[︂
αr
0(t) αr

1(t) . . . αr
N (t) βr0(t) βr1(t) . . . βrN (t)

]︂T
, (5.9)

xc(t) :=

⎡⎣mdwc
dt (t)

Im
dθc
dt (t)

⎤⎦ , (5.10)

which will be our state variables representing the solar panels and the central body in our
approximated satellite system. We interconnect the three parts by defining inputs and
outputs for them. For the left solar panel, we have [9, Section 2.1]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1l (t) =
∂wl

∂t
(0, t),

u2l (t) =
∂2wl

∂ξ∂t
(0, t),

y1l (t) = −EI ∂
3wl

∂ξ3
(0, t),

y2l (t) = EI
∂2wl

∂ξ2
(0, t).

(5.11)

Because y1l (t) ≈ −EI
∑︁N

n=0
dΦl

n
dξ (0)βln(t) and y2l (t) ≈ EI

∑︁N
n=0Φ

l
n(0)β

l
n(t), we may ex-

press these in matrix–vector form as

ul(t) =

⎡⎣u1l (t)
u2l (t)

⎤⎦ , (5.12)

yl(t) =

⎡⎣y1l (t)
y2l (t)

⎤⎦ ≈ Clx̃l(t), (5.13)

where

Cl = EI

⎡⎣0 0 · · · 0 −dΦl
0

dξ (0) −dΦl
1

dξ (0) · · · −dΦl
N

dξ (0)

0 0 · · · 0 Φl
0(0) Φl

1(0) · · · Φl
N (0)

⎤⎦ ∈ R2×(2N+2). (5.14)
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Similarly for the right solar panel, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1r(t) =
∂wr

∂t
(0, t),

u2r(t) =
∂2wr

∂ξ∂t
(0, t),

y1r (t) = EI
∂3wr

∂ξ3
(0, t),

y2r (t) = −EI ∂
2wr

∂ξ2
(0, t),

(5.15)

which we can express as

ur(t) =

⎡⎣u1r(t)
u2r(t)

⎤⎦ , (5.16)

yr(t) =

⎡⎣y1r (t)
y2r (t)

⎤⎦ ≈ Crx̃r(t), (5.17)

where

Cr = EI

⎡⎣0 0 · · · 0
dΦr

0
dξ (0)

dΦr
1

dξ (0) · · · dΦr
N

dξ (0)

0 0 · · · 0 −Φr
0(0) −Φr

1(0) · · · −Φr
N (0)

⎤⎦ ∈ R2×(2N+2). (5.18)

For the rigid central body, we have [9, Section 2.3]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1f (t) = EI
∂3wl

∂ξ3
(0, t)− EI

∂3wr

∂ξ3
(0, t),

u2f (t) = −EI ∂
2wl

∂ξ2
(0, t) + EI

∂2wr

∂ξ2
(0, t),

y1f (t) =
dwc

dt
(t),

y2f (t) =
dθc
dt

(t).

(5.19)

In the same vein, we can express these inputs and outputs as

uf (t) =

⎡⎣u1f (t)
u2f (t)

⎤⎦ , (5.20)

yf (t) =

⎡⎣y1f (t)
y2f (t)

⎤⎦ = Ccxc(t), (5.21)
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where

Cc =

⎡⎣ 1
m 0

0 1
Im

⎤⎦ ∈ R2×2. (5.22)

For the interconnections between the solar panels and the central body, for the homoge-
neous parts of the basis functions, we need the energy variables to satisfy⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

ρa
x1l (0, t) = 0,

1

ρa

∂x1l
∂ξ

(0, t) = 0,

x2l (−1, t) = 0,

∂x2l
∂ξ

(−1, t) = 0,

(5.23)

for the left solar panel, and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

ρa
x1r(0, t) = 0,

1

ρa

∂x1r
∂ξ

(0, t) = 0,

x2r(1, t) = 0,

∂x2r
∂ξ

(1, t) = 0,

(5.24)

for the right solar panel. As covered in section 4.4, in terms of the spectral Galerkin modal
basis functions, we need them to satisfy⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕln(0) = 0, n = 0, 1, . . . , N − 2

dϕln
dξ

(0) = 0, n = 0, 1, . . . , N − 2

Φl
n(−1) = 0, n = 0, 1, . . . , N

dΦl
n

dξ
(−1) = 0, n = 0, 1, . . . , N

(5.25)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕrn(0) = 0, n = 0, 1, . . . , N − 2

dϕrn
dξ

(0) = 0, n = 0, 1, . . . , N − 2

Φr
n(1) = 0, n = 0, 1, . . . , N

dΦr
n

dξ
(1) = 0, n = 0, 1, . . . , N.

(5.26)
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These make up the homogeneous part of the modal basis function sets. In order to apply
boundary control for the interconnections, we require⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕlN−1(0) = 1,

dϕlN−1

dξ
(0) = 0,

ϕlN (0) = 0,

dϕlN
dξ

(0) = 1,

(5.27)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕrN−1(0) = 1,

dϕrN−1

dξ
(0) = 0,

ϕrN (0) = 0,

dϕrN
dξ

(0) = 1.

(5.28)

We have developed our theory on Legendre polynomials and approximations with the
domain Ω = [0, 1] in mind, but for ϕln and Φl

n, we need basis functions defined on [−1, 0]

instead. This is not a problem, as the boundary conditions we have for the basis functions
for the left and right solar panels are symmetric about ξ = 0. This means, for example,
that when we find basis functions Φr

n(ξ) satisfying Φr
n(1) =

dΦr
n

dξ (1) = 0 on [0, 1], functions
Φr
n(−ξ) satisfy Φr

n(−1) = dΦr
n

dξ (−1) = 0 on [−1, 0]. Thus if we know Φr
n, we can use Φl

n

defined as Φl
n(ξ) = Φr

n(−ξ) on [−1, 0] for the left solar panel. Similarly, first solving for ϕrn,
we can use ϕln defined as ϕln(ξ) = ϕrn(−ξ) on [−1, 0] for the left solar panel.

For the right solar panel, our boundary conditions in (5.26) are equivalent to

W ′
r

⎡⎢⎢⎢⎢⎢⎢⎣
H

H

H

H

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕrn(1)

Φr
n(1)

dϕr
n

dξ (1)

dΦr
n

dξ (1)

ϕrn(0)

Φr
n(0)

dϕr
n

dξ (0)

dΦr
n

dξ (0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎦ (5.29)
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with

W ′
r =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦ . (5.30)

Denoting ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕrn(ξ) = Ln(ξ) +

4∑︂
k=1

g1,rk (n)Ln+k(ξ),

Φr
n(ξ) = Ln(ξ) +

4∑︂
k=1

g2,rk (n)Ln+k(ξ),

g1r (n) =
[︂
1 g1,r1 (n) g1,r2 (n) g1,r3 (n) g1,r4 (n)

]︂T
,

g2r (n) =
[︂
1 g2,r1 (n) g2,r2 (n) g2,r3 (n) g2,r4 (n)

]︂T
,

(5.31)

we are ready to solve (4.58) (with Cn = I2×2). We can eliminate the physical parameters
ρa and EI from the system by multiplying (4.58) by diag

(︁
1
EI ,

1
EI , ρa, ρa

)︁
from the left. Our

system becomes

W ′
r

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Λn(1) 0

0 Λn(1)

Λ′
n(1) 0

0 Λ′
n(1)

Λn(0) 0

0 Λn(0)

Λ′
n(0) 0

0 Λ′
n(0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎣g1(n)
g2(n)

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎦ , (5.32)

where Λn and Λ′
n are described in (4.55) and (4.56). One solution to this system is

g1,r1 (n) =
2n+ 3

n+ 2
, g1,r2 (n) =

n+ 1

n+ 2
, g1,r3 (n) = 0, g1,r4 (n) = 0,

g2,r1 (n) = −2n+ 3

n+ 2
, g2,r2 (n) =

n+ 1

n+ 2
, g2,r3 (n) = 0, g2,r4 (n) = 0,

which lacks the higher degree terms Ln+3 and Ln+4 as desired. For ϕrN−1 and ϕrN , we
look for linear combinations of L0, L1 and L2 that satisfy (5.28). For example, we can use⎧⎪⎪⎨⎪⎪⎩

ϕrN−1(ξ) = −3

2
L1(ξ)−

1

2
L2(ξ) = −3ξ2 + 1,

ϕrN (ξ) = −1

4
L1(ξ)−

1

4
L2(ξ) = −3

2
ξ2 + ξ,

(5.33)

which satisfy (5.28) and
∫︁ 1
0 ϕ

r
N−1(ξ) dξ =

∫︁ 1
0 ϕ

r
N (ξ) dξ = 0. For the right solar panel, we
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have the basis functions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕrn(ξ) = Ln(ξ) +
2n+ 3

n+ 2
Ln+1(ξ) +

n+ 1

n+ 2
Ln+2(ξ), n = 0, 1, . . . , N − 2,

ϕrN−1(ξ) = −3ξ2 + 1,

ϕrN (ξ) = −3

2
ξ2 + ξ,

Φr
n(ξ) = Ln(ξ)−

2n+ 3

n+ 2
Ln+1(ξ) +

n+ 1

n+ 2
Ln+2(ξ), n = 0, 1, . . . , N,

for ξ ∈ [0, 1]. One can verify that these satisfy the required boundary conditions. Because
of the symmetry of the boundary conditions discussed earlier, for the left solar panel, we
get the basis functions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕln(ξ) = Ln(−ξ) +
2n+ 3

n+ 2
Ln+1(−ξ) +

n+ 1

n+ 2
Ln+2(−ξ), n = 0, 1, . . . , N − 2,

ϕlN−1(ξ) = −3ξ2 + 1,

ϕlN (ξ) =
3

2
ξ2 + ξ,

Φl
n(ξ) = Ln(−ξ)−

2n+ 3

n+ 2
Ln+1(−ξ) +

n+ 1

n+ 2
Ln+2(−ξ), n = 0, 1, . . . , N,

for ξ ∈ [−1, 0], which again one can verify to satisfy the required boundary conditions.

5.3 Satellite Model as a Linear Matrix System

Having found the necessary spectral Galerkin modal basis functions, we can construct
the matrix model of the satellite. Because the model components internally control the
values of x1l (0, t),

∂x1
l

∂ξ (0, t), x
1
r(0, t) and ∂x1

r
∂ξ (0, t) and we have no boundary control input

involving x2l and x2r , we use formulations described in section 4.4 for both the left and
right solar panels. For the left solar panel, we replace ξ = 0 with ξ = −1 and ξ = 1 with
ξ = 0 in the formulations. Additionally, for the left solar panel, we use the L2-inner product
computed over the interval [−1, 0] instead.

We can write equation (4.40) with the outputs for the solar panels as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Ml

d

dt
x̃l(t) = Klx̃l(t) +Blul(t), t > 0,

x̃l(0) = x̃l0 ∈ R2N+2,

yl(t) = Clx̃l(t),

(5.34)
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and ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Mr

d

dt
x̃r(t) = Krx̃r(t) +Brur(t), t > 0,

x̃r(0) = x̃r0 ∈ R2N+2,

yr(t) = Crx̃r(t),

(5.35)

where Ml and Mr are as in (4.13),

Kl =

⎡⎣K l
1 K l

2

0 K l
3

⎤⎦ , Bl =

⎡⎣ 0

Bl
2

⎤⎦ =
1

ρa

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
...

...

0 0

−dΦl
0

dξ (0) Φl
0(0)

...
...

−dΦl
N

dξ (0) Φl
N (0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, ul(t) =

⎡⎣u1l (t)
u2l (t)

⎤⎦ ,

Kr =

⎡⎣Kr
1 Kr

2

0 Kr
3

⎤⎦ , Br =

⎡⎣ 0

Br
2

⎤⎦ =
1

ρa

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
...

...

0 0

dΦr
0

dξ (0) −Φr
0(0)

...
...

dΦr
N

dξ (0) −Φr
N (0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, ur(t) =

⎡⎣u1r(t)
u2r(t)

⎤⎦ .

Computing the mass and stiffness matrices involves computing the L2-inner products be-
tween the basis functions and their second derivatives. While these can be computed
analytically using property (iv) of Legendre polynomials, Theorem 2.7 and using the sub-
stitution ξ′ = −ξ for the left solar panel, we will not do that due to the complexity of the
formulas involved. In practice, one can apply these formulas in a computer algorithm or
compute the inner products using numerical integration. For the rigid central body, we
can write ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d

dt
xc(t) = uf (t) + u(t), t > 0,

xc(0) = xc0 ∈ R2,

yf (t) = Ccxc(t),

(5.36)

where u(t) = [ u1(t) u2(t) ]T is the external output to the system. Finally, we can intercon-
nect the three systems. First, we collect the connections between our internal component
inputs and outputs⎧⎪⎪⎨⎪⎪⎩

ul(t) = yf (t) = Ccxc(t),

ur(t) = yf (t) = Ccxc(t),

uf (t) = −
(︁
yl(t) + yr(t)

)︁
= −

(︁
Clx̃l(t) + Crx̃r(t)

)︁
.

(5.37)
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Applying these connections, we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ml
d

dt
x̃l(t) = Klx̃l(t) +BlCcxc(t)

Mr
d

dt
x̃r(t) = Krx̃r(t) +BrCcxc(t)

d

dt
xc(t) = −

(︁
Clx̃l(t) + Crx̃r(t)

)︁
+ u(t),

y(t) = xc(t).

(5.38)

We can write the complete system with output as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Ms

d

dt
xs(t) = Ksxs(t) +Bsus(t), t > 0,

xs(0) = xs0,

y(t) = Csxs(t),

(5.39)

where

Ms =

⎡⎢⎢⎢⎣
Ml 0 0

0 Mr 0

0 0 I

⎤⎥⎥⎥⎦ , Ks =

⎡⎢⎢⎢⎣
Kl 0 BlCc

0 Kr BrCc

−Cl −Cr 0

⎤⎥⎥⎥⎦ , Bs =

⎡⎢⎢⎢⎣
0 0 0

0 0 0

0 0 I

⎤⎥⎥⎥⎦ ,

xs(t) =

⎡⎢⎢⎢⎣
x̃l(t)

x̃r(t)

xc(t)

⎤⎥⎥⎥⎦ , xs0 =

⎡⎢⎢⎢⎣
x̃l0

x̃r0

xc0

⎤⎥⎥⎥⎦ , us(t) =

⎡⎢⎢⎢⎣
0

0

u(t)

⎤⎥⎥⎥⎦ ,
and Cs is a linear operator depending on what we want as the output. We can write (5.39)
in standard linear control system form as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d

dt
xs(t) = Ãsxs(t) + B̃sus(t), t > 0,

xs(0) = xs0,

y(t) = Csxs(t),

(5.40)

where Ãs = M−1
s Ks and B̃s = M−1

s Bs. We can do this because Ms is invertible, being
a block diagonal matrix whose diagonal entries are invertible. Most numerical solvers
for systems of ordinary differential equations, such as those in MATLAB, accept a mass
matrix as an argument. Using formulation (5.39), we do not have to compute M−1

s Ks

and M−1
s Bs, which are prone to numerical errors. The latter formulation can be useful for

analysing the system, such as studying the eigenvalues of Ã or implementing a controller
for the system. We do not cover these in this work.
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5.4 Simulation Example for a Flexible Satellite

We simulate a flexible satellite with physical parameters E = 1, I = 1, ρ = 2, a = 1

and γ = 2 for the identical, flexible solar panels. For the rigid central body, our physical
parameters are m = 1 and Im = 1. Similarly to the cantilevered beam simulation in the
previous chapter, we use 15 basis functions ϕln, Φl

n, ϕrn and Φr
n for simulating both solar

panels. We simulate the satellite for 20 seconds.

For the rigid central body, our initial conditions are dwc
dt (0) = 0 and dθc

dt (0) = −1. The solar
panels are initially at rest with symmetric deflection profiles of⎧⎪⎪⎨⎪⎪⎩

wl(ξ, 0) =
1

10

(︁
ξ4 + 4ξ2 + 6ξ2

)︁
, −1 < ξ < 0,

wr(ξ, 0) =
1

10

(︁
ξ4 − 4ξ2 + 6ξ2

)︁
, 0 < ξ < 1.

(5.41)

These translate to the following initial conditions in terms of the energy variables:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xl1(ξ, 0) = ρa
∂wl

∂t
(ξ, 0) ≡ 0, −1 < ξ < 0,

xl2(ξ, 0) =
∂2wl

∂ξ2
(ξ, 0) =

1

10

(︁
12ξ2 + 24ξ + 12

)︁
, −1 < ξ < 0,

xr1(ξ, 0) = ρa
∂wr

∂t
(ξ, 0) ≡ 0, 0 < ξ < 1,

xr2(ξ, 0) =
∂2wr

∂ξ2
(ξ, 0) =

1

10

(︁
12ξ2 − 24ξ + 12

)︁
, 0 < ξ < 1.

(5.42)

For the simulation, we again solve for the basis function coefficients for the spectral ap-
proximations in (5.6) and (5.7) at t = 0 to obtain the initial condition in terms of these
coefficients. We simulate the satellite both with zero inputs to the central body and with
inputs u1(t) = − cos(2πt) and u2(t) = 1

4 sin(πt). The linear and angular velocities of the
central body are shown in figures 5.2 and 5.3, respectively. Likewise, the deflection profile
of the two flexible solar panels are shown in figures 5.4 and 5.5, respectively.

We see that without control input, the rigid central body reaches a stable state, as dwc
dt

and dθc
dt are approaching zero towards the end of our 20-second simulation. On the

other hand, with the periodic control inputs, dwc
dt and dθc

dt approach periodic oscillation
of constant amplitude and frequency, centered at zero. These frequencies match the
frequencies of our input functions.

Similarly to the rigid central body, with no control input, the flexible solar panels reach a
stable state towards the end of our simulation. The solar panels rotate counterclockwise
due to the initial angular velocity of the central body being negative. With the periodic
control input applied, the solar panels approach a similar orientation, but with periodic
oscillation of constant amplitude and frequency.
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Figure 5.2. The rigid central body satellite without control inputs.
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Figure 5.3. The rigid central body with control input functions u1(t) = − cos(2πt) and
u2(t) =

1
4 sin(πt).

5.5 Matlab Codes for the Satellite Approximation

All the codes used for simulating a single beam and the satellite approximation are avail-
able online in the writer’s GitHub repository. Documentation is not provided, but the files
are commented in such a way that they should be easy to understand after reading this
work. The files are openly accessible at https://github.com/Kristian-MJA/Satmodel.
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Figure 5.4. The two flexible solar panels with no control inputs.

Figure 5.5. The two flexible solar panels with control input functions u1(t) = − cos(2πt)
and u2(t) = 1

4 sin(πt).
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6 CONCLUSIONS

In this work, we developed a numerical approximation method for simulating dynamic
Euler–Bernoulli beams. We also used the model to simulate a flexible satellite, which is
made of two flexible solar panels and a rigid central body. The solar panels are modelled
as Euler–Bernoulli beams and the central body is modelled as a system of two ordinary
differential equations. Using the developed models, we simulated both a single beam and
a flexible satellite using MATLAB.

From the beginning, the approximate beam model was developed with the possibility of
applying boundary control input. Even if one does not need time-dependent boundary
conditions, the model is still applicable, as this corresponds to constant boundary in-
put. The starting point for the model was to transform the original fourth order partial
differential equation describing an Euler–Bernoulli beam into a system of two new partial
differential equations, which are both first order in time, by introducing two new variables.
This allowed us to apply the theory developed for linear control theory, which consid-
ers first-order abstract differential equations. With these tools, we were able to study
the existence of solutions to the beam equation equipped with homogeneous boundary
conditions.

The largest part of this work was dedicated to developing the approximate model for a
single Euler–Bernoulli beam. We achieved this by applying weighted residual methods
and considering weak solutions to the new system of two partial differential equations.
We chose to apply the spectral Galerkin method for approximating the new variables
with finite linear combinations of so-called modal basis functions constructed from Leg-
endre polynomials. Proceeding from there, we performed semidiscretisation on the weak
formulation of the new system, in order to obtain linear system of ordinary differential
equations, which can be solved with various solvers developed for ordinary differential
equations. We also developed a method for determining the required modal basis func-
tions, which depend on the boundary conditions of the beam equation.

The main goal of this work was to apply the developed approximate beam model for a
flexible satellite model. As the three components of the satellite model are connected to
each other via boundary, inclusion of boundary control inputs was essential. We com-
bined the three systems of ordinary differential equations describing the flexible satellite
into a single, larger system which can then be solved numerically. We included control
inputs to the system via the central body. We were interested in solving for the linear and
angular velocities of the central body of the satellite body and the deflection profile of the
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solar panels. Future extensions to our satellite model would be implementing a controller
to move and rotate the satellite to a specific orientation and to stabilise the vibrations of
the solar panels. For example, we might require a satellite to have the same side facing
towards Earth at all times while orbiting around the planet.

In general, the approximate beam model could be extended to structures consisting of
several Euler–Bernoulli beams that are connected to each other via the boundary. A
simple example would be havingN beams connected in series. Another application could
be modelling the wind turbine in a wind power plant, which has usually three identical
blades connected to the centre. The turbine blades are long and massive enough to
vibrate during the rotation of the turbine. Being able to simulate the vibrations caused
by the turbine blades could be helpful in designing of new wind power plants. However,
as our beam model is limited to homogeneous beams, the turbine blades need to be
sufficiently homogeneous along their length. Unlike with a satellite in space, we would, in
addition, need to take air resistance into account.

Indeed, the most clear shortcoming of our approximate beam model is that it is limited
to homogeneous beams. Several real life beams are inhomogeneous, so extending our
model to allow for inhomogeneous beams would be a definite improvement. However,
this would require deriving many of our formulations differently, as the physical para-
meters depend on location instead of being constant. This makes the beam equation
more difficult to analyse and manipulate, and we might need to use different state vari-
ables when deriving the approximate system. This would likely make the final model very
different and possibly harder to solve.
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