
i 
 
 

 
 

Aleksi Suonsivu 

      RGBD SLAM BASED 3D OBJECT 
RECONSTRUCTION AND TRACKING 

    Using Google ARCore 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Bachelor’s thesis 
Faculty of Information Technology and Communication Sciences 

July 2020 
  



  ii 

 

TIIVISTELMÄ 

Aleksi Suonsivu: RGBD SLAM based 3D object reconstruction and tracking 
Kandidaatintyö 
Tampereen yliopisto 
Signaalinkäsittely 
Kesäkuu 2020 
 

 
Lisätyn todellisuuden sekä virtuaalitodellisuuden suosion merkittävä kasvu tekniikan ja 

viihteen aloilla on luonut uusia haasteita sekä mahdollisuuksia. Googlen ARCoren ja Applen 
ARKitin kaltaiset kehitysalustat ovat mahdollistaneet lisätyn sekä virtuaalisen todellisuuden 
sovellusten kehityksen suuren kasvun. Erityisesti lisätyn todellisuuden sovelluksissa 
merkittäväksi osa-alueeksi on muodostunut kolmiulotteinen rekonstruktio ja ympäristön 
havainnointi. Tämän työn tavoite on tutkia ARCoren ominaisuuksia sekä analysoida onko sen 
avulla mahdollista toteuttaa kolmiulotteinen rekonstruktio kappaleesta tai tilasta käyttäen 
tavallista älypuhelimen kameraa.  

Työ jakautuu viiteen kappaleeseen ja työn alkupäässä käydään läpi lyhyesti syitä tälle 
tutkimukselle ja aiheeseen liittyviä aikaisempia töitä sekä menetelmiä. Toinen kappale käsittelee 
ARCoren ominaisuuksia ja toimintaperiaatteita. Kolmannessa kappaleessa käsitellään 
konenäön ja erityisesti lisätyn todellisuuden aloille merkittäviä menetelmiä, joihin ARCoren 
toiminta perustuu. Kappaleessa kerrotaan, miten kolmiulotteinen rakenne saadaan selville 
skenaariosta liikkeen, syvyyssensorin tai usean kameran avulla. Menetelmistä kerrotaan 
lyhyesti niiden toimintaperiaatteet sekä käyttötarkoitukset. 

Työn loppupäässä esitellään kaksi erillistä sovellusta, jotka hyödyntävät ARCorea 
kolmiulotteista rekonstruktiota tehdessä ja näiden sovellusten tuottamat tulokset. 
Testausvaiheessa näitä kahta sovellusta testataan älypuhelimella ja lopussa vertaillaan näitä 
saatuja tuloksia keskenään, sekä pohditaan mahdollisia ARCoren tulevia käyttötarkoituksia 
sekä ominaisuuksia. Kolmiulotteinen rekonstruktio on siis mahdollista toteuttaa ARCoren 
keräämän datan avulla, mutta ARCore itsessään ei suoraan tue rekonstruktiota, vaan sen 
lisäksi tarvitaan erillisiä sovelluksia itse rekonstruktion suorittamiseen.  

 
Avainsanat: lisätty todellisuus, 3D, rekonstruktio, ARCore, virtuaalitodellisuus 



  iii 

 

ABSTRACT 

The significant growth in the popularity of augmented reality and virtual reality in the 
fields of technology and entertainment has created new challenges and opportunities. 
Development platforms like Google’s ARCore and Apple’s ARKit have enabled increased 
growth in augmented as well as virtual reality application development. Especially in augmented 
reality applications, three-dimensional reconstruction and environmental observation have 
become an important area. The aim of this work is to study the features of ARCore and to 
analyze whether it is possible to carry out a three-dimensional reconstruction of an object or 
scene using a standard smartphone camera. 

The work is divided into five sections, and at the beginning of the work, the reasons for 
this research and previous work and methods related to this topic are briefly reviewed. The 
second section discusses the features and operating principles of ARCore. The third section 
discusses the important methods for machine vision and especially augmented reality, on which 
ARCore operates. The section explains how to find out the three-dimensional structure of a 
scenario using motion, a depth sensor, or multiple cameras. The methods are briefly described 
in terms of their operating principles and uses. 

At the end of the work, two separate applications that utilize ARCore in three-
dimensional reconstruction and the results produced by these applications are presented. In the 
testing phase, the two applications will be tested on a smartphone, and at the end, these results 
will be compared with each other, as well as possible future uses and features of ARCore will 
be considered. Thus, it is possible to implement a three-dimensional reconstruction with the 
help of data collected by ARCore, but ARCore itself does not directly support the reconstruction. 
Separate applications are needed to perform the texture meshing and visualization.  
 
Keywords: augmented reality, ARCore, image processing, android, 3D reconstruction 

 



  iv 

 

ALKUSANAT 

 

This thesis was written as a part of Bachelor of Science program in spring 2020.  

Special thanks to my supervisor Joni Kämäräinen for his patience and guidance. And 

also thanks to my close ones for their support. 

Tampere 22.7.2020. 

 

Aleksi Suonsivu  

 



  v 

 

CONTENTS 

List of Symbols and Abbreviations 
 

1. INTRODUCTION .................................................................................................. 1 

1.1 Motivation ............................................................................................ 1 

1.2 Related Work ....................................................................................... 2 

2. GOOGLE ARCORE .............................................................................................. 3 

2.1 Overview of ARCore ............................................................................ 3 

2.2 Fundamental features of ARCore ......................................................... 3 

3. FUNDAMENTAL CONCEPTS .............................................................................. 6 

3.1 Structure from Motion ........................................................................... 6 

3.1.1 Single-view geometry .................................................................... 6 
3.1.2 Multi-view geometry ...................................................................... 8 
3.1.3 Pipeline of Structure from Motion .................................................. 9 

3.2 Visual Odometry ................................................................................ 10 

3.2.1 Visual-Inertial Odometry .............................................................. 11 
IMPLEMENTATION AND TESTING ....................................................................... 13 

3.3 Application 1 ...................................................................................... 13 

3.4 Application 2 ...................................................................................... 13 

3.5 Results ............................................................................................... 15 

5. CONCLUSIONS ................................................................................................. 18 

SOURCES ............................................................................................................. 19 

 

 



  vi 

 

LIST OF SYMBOLS AND ABBREVIATIONS 

3D three-dimensional 
AR augmented reality 
VR virtual reality 
SLAM simultaneous localization and mapping 
POSE  position and rotation  
COM concurrent odometry and mapping  
SDK software development kit 
API application programming interface 
RGBD red-green-blue-depth  
SFM structure from motion 
VO visual odometry 
VIO  visual inertial odometry  
SIFT scale-invariant feature transform 
IMU inertial measurement unit 



1 
 

1. INTRODUCTION 

In recent years, Augmented Reality (AR) has grown in popularity due to the rising 

availability of high-end smartphones and overall improvement of computing power. 

AR applications are slowly becoming a part of our everyday life, and computer cre-

ated worlds are no longer utopic concepts of the future. In this thesis we will study 

possible ways to create a 3D reconstruction on a standard smartphone.  

Structure of this study is as follows. Chapter 2 focuses on Google’s ARCore and its 

features. In chapter 3 we take look at fundamental theory behind problems like mo-

tion tracking and reconstruction. Chapter 4 presents two applications that use 

ARCore to solve this problem and the testing setup. In chapter 5 we go through the 

conclusions and possible future applications of ARCore.  

1.1 Motivation 

With augmented and virtual reality (VR) gaining more popularity every day, the field 

of computer science has really started to focus on these two things. It has been re-

alized that AR applications can have many profitable uses for entertainment, engi-

neering and healthcare. One reason for the rising amount of new AR applications 

might be publishing of Google’s ARCore and Apple’s ARKit. With these two frame-

works, the development of AR applications has become easier and more efficient for 

the developers. In Figure 1 is shown so called virtuality continuum which describes 

the fusion of AR and VR to our daily environment [1]. 

First smartphone AR application implementations date back to 2004 [2]. Especially 

in the field of entertainment and video games, AR has improved its status quite a lot.  

Briefly, mobile AR applications are capable of two things, tracking the rotation and 

location of the device in real-time and have a basic understanding of its surrounding 

scene. This makes collisions and interactions between virtual objects and the scene 

possible.  



2 
 

 

Figure 1. Virtuality Continuum. [1] 

1.2  Related Work  

The field of study of 3D reconstruction relies heavily on methods like Simultaneous 

Localization and mapping (SLAM) and image-based modeling. In 2007 Klein and 

Murray proposed a method of estimating camera pose (position and rotation) in un-

known scene [3]. Their proposed method consists of two parallel tasks using dual-

core computers. Problem is split for one thread to handle the tracking of the handheld 

device’s motion and second thread to produce a 3D map of the feature points, ob-

served in video frames. Later in 2013 Bylow et al. published their paper where they 

proposed a method based on Signed Distance Functions where they utilized depth 

maps gained from the scene using RGBD sensor. In Figure 2 is described the out-

come of this particular method. [4] 

 

Figure 2. 3D reconstruction using Signed Distance Functions. [4] 



3 
 

2. GOOGLE ARCORE 

This chapter focuses on Google’s platform ARCore and its features and how those 

could be used to perform a 3D reconstruction with a smartphone. 

2.1 Overview of ARCore 

ARCore is a platform published by Google in March 2018, which is used for building 

AR applications. ARCore offers APIs for different operating systems and develop-

ment platforms. ARCore supports both Android and iOS operating systems. ARCore 

supports all Apple’s devices that support Apple’s own ARKit and have iOS version 

11.0 or higher [5].  

ARCore is a great platform for app and mobile-game development, since it has a 

large community with lots of tutorials and sample projects to get started with. ARCore 

is currently mostly used for interaction between real-world and virtual objects, which 

can be used in AR applications.  

Currently ARCore only supports plane detections and feature point tracking, there-

fore it does not support 3D reconstruction directly. To understand how we can 

achieve our goal of performing the reconstruction on our smartphone, we need to 

familiarize ourselves with studies of 3D reconstructions field.  

To solve this reconstruction problem, we can use ARCore’s ability to detect and track 

feature points and planes. Using our smartphone’s camera’s visual data and data 

from our device’s IMU unit, we can store and track point clouds. These point clouds 

can later be plotted into 3D representation. Later, texture meshing can be done with 

some external software, because ARCore itself does not support that.  

2.2  Fundamental features of ARCore 

ARCore’s three fundamental abilities are motion tracking, environmental understand-

ing and light estimation. The working principle of ARCore uses a method called con-

current odometry and mapping (COM) for locating the position of the device, relative 

to the world around it. COM is used to detect and track distinct feature points, which 

are then used to calculate the motion of the device. The visual information obtained 

with COM is then combined with inertial measurement data. This data is collected 

with device’s inertial measurement unit (IMU). The combined visual and inertial data 

is then used to estimate the position and orientation of the device relative to the world, 



4 
 

and it is called Visual-Inertial Odometry. Figure 3 shows the pipeline of Visual-Inertial 

Odometry. [8] 

 

 

Figure 3. The process that computes IMU data and images for motion tracking is 
called Visual-Inertial Odometry. [6] 

 

For environmental understanding ARCore looks for clusters of feature points that 

appear on flat horizontal and vertical surfaces. These surfaces are then stored as 

planes for the user to use in their app. ARCore uses the feature points of these sur-

faces for plane detection, so the surfaces need to have some sort of texture, so 

ARCore can detect points when moving. For example, completely white floor does 

not give ARCore enough information about the scene. [6] 

ARCore uses light estimation for creating more realistic AR objects, by adjusting the 

virtual elements lighting to the perceived lighting of the surrounding world. By filtering 

the intensity of a subset of pixel data for each frame, we can calculate the light esti-

mation. After computing the estimation, the returned values are used to adjust the 

rendering style of placed virtual objects or planes. [6] To create these virtual objects, 

ARCore provides a method to create these objects called anchors. Anchors position 

are tracked, and they are used as key-points for placing stationary objects [7]. An-

chors can be placed on detected planes, for example a wall. Anchors track the move-

ment of the device and its pose and use that data to calculate anchor’s relative pose 

to the camera.  

As we can see, ARCore is capable of handling many important tasks for creating an 

AR application and it provides great platform for app development. Figure 4 shows 

the fundamental pipeline of mobile devices processing. [6] 



5 
 

 

Figure 4. Mobile processing pipeline. [6] 

 

The usage of ARCore is free and Google offers a large documentation for ARCore, 

and it is available online. [8] Google offers own documentations and software devel-

opment kits (SDK) for Android, iOS, Unity and Unreal.  



6 
 

3. FUNDAMENTAL CONCEPTS 

This chapter focuses on the fundamental concepts behind ARCore’s features. We 

go through Structure from Motion and its theory and then we go through Visual 

Odometry and Visual-Inertial Odometry.  

3.1 Structure from Motion 

In the field of computer vision Structure from Motion (SfM) has been one of the most 

studied areas of research for the last 30 years. The quantity of studies has improved 

SfM methods, and SfM applications have reached commercial application level. SfM 

problems can be split into two scenarios: single-view and stereo-view geometries. 

3.1.1 Single-view geometry 
 

Single-view geometry needs to utilize mathematical applications to obtain projected 

3D coordinates of the image into 2D camera frame. [9] 

 

Figure 5. Geometry between camera centre and the image plane. [9] 

The relationships of images and 3D structure of points can be calculated using three 

simple transformations of the projected image. First the ground coordinates need to 

be converted to camera coordinates as follow: 

 

[

𝑋𝐶

𝑌𝐶

𝑍𝐶

1

] = [
𝑅 𝑇
0 1

] [

𝑋
𝑌
𝑍
1

] (1) 

 

Where coordinates with index C represent camera coordinates, R being the rotation 

and T translation matrix to the origin of real-world coordinate system. [9] 



7 
 

After that the coordinates need to be transformed from 2D form to 3D form using 

following formula with pinhole camera assumption that the focal length  𝑓 = 1. 

[
𝑥
𝑦
1
] = [

1 0 0 0
0 1 0 0
0 0 1 0

] [

𝑋𝐶

𝑌𝐶

𝑍𝐶

1

] (2) 

 

Third transformation is to transform camera plane coordinates to images coordinate 

system where K is camera’s calibration matrix as follows:  

𝐾 = [

𝑎𝑢 𝑠 𝑢0

0 𝑎𝑣 𝑣0

0 0 1
] (3) 

 

Where 𝑎𝑢 and 𝑎𝑣 are scale factors and s and scaling factor of sloping. According to 

Robertson and Cipolla [12], if 𝒖𝑖 = [𝑢𝑖 𝑣𝑖]𝑇 is the measured image position of 3D 

point [𝑋𝑖 𝑌𝑖 𝑍𝑖]
𝑇, the projection matrix P can be expressed as: 

𝑢𝑖 = 
𝑝11𝑋𝑖 + 𝑝12𝑌𝑖 + 𝑝13𝑍𝑖 + 𝑝14

𝑝31𝑋𝑖 + 𝑝32𝑌𝑖 + 𝑝33𝑍𝑖 + 𝑝34
 (4) 

 

𝑣𝑖 = 
𝑝21𝑋𝑖 + 𝑝22𝑌𝑖 + 𝑝23𝑍𝑖 + 𝑝24

𝑝31𝑋𝑖 + 𝑝32𝑌𝑖 + 𝑝33𝑍𝑖 + 𝑝34
 (5) 

 

The parameters 𝑝11, 𝑝12…𝑝34, in equations (4) and (5) are the unknowns in the pro-

jection matrix. These parameters need to be solved to obtain camera’s pose 𝒖𝑖 and 

structure [𝑋𝑖 𝑌𝑖 𝑍𝑖]
𝑇. [12] 

(

 
 

𝑋1 𝑌1 𝑍1 1 0 0 0 0 −𝑢1𝑋1 −𝑢1𝑌1 −𝑢1𝑍1 −𝑢1

0 0 0 0 𝑋1 𝑌1 𝑍1 1 −𝑣1𝑋1 −𝑣1𝑌1 −𝑣1𝑍1 −𝑣1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑋𝑛 𝑌𝑛 𝑍𝑛 1 0 0 0 0 −𝑢𝑛𝑋𝑛 −𝑢𝑛𝑌𝑛 −𝑢𝑛𝑍𝑛 −𝑢𝑛

0 0 0 0 𝑋𝑛 𝑌𝑛 𝑍𝑛 1 −𝑣𝑛𝑋𝑛 −𝑣𝑛𝑌𝑛 −𝑣𝑛𝑍𝑛 −𝑣𝑛)

 
 

[
 
 
 
 
 
 
 
 
 
 
 
𝑝11

𝑝12

𝑝13

𝑝14

𝑝21

𝑝22

𝑝23

𝑝24

𝑝31

𝑝32

𝑝33

𝑝34]
 
 
 
 
 
 
 
 
 
 
 

= 𝟎. (6) 

 



8 
 

To obtain cameras pose and scenes structure from image data, we need at least six 

points from two overlapping pictures [9]. This formula represents the pinhole camera 

scenario with single-view geometry. The other form of SfM’s geometry is multi-view, 

also known as stereo-view geometry. 

3.1.2 Multi-view geometry  
 

Multi-view geometry, also known as stereo-view geometry or Epipolar Geometry con-

sists of scene with two or more cameras. Epipolar Geometry defines the projectory 

geometry between cameras and it is independent of the scene structure, as it de-

pends on cameras pose and internal parameters. [10]  

 

Figure 6. Epipolar geometry of a scene. [10] 

Figure 6 displays the epipolar geometry of a scene, where P is a corresponding point, 

and 𝐶𝑂𝑃1 and 𝐶𝑂𝑃2 are the centers of projections in each camera. P, 𝐶𝑂𝑃1 and 𝐶𝑂𝑃2 

form a plane called epipolar plane. An epipolar line connects both 𝐶𝑂𝑃1 and 𝐶𝑂𝑃2, 

and points 𝑒1 and 𝑒2 which are located at the intersection of epipolar line and the 

image plane, are called epipoles. Relationship between points 𝑝1 and 𝑝2 can be 

solved by formula, where F is the Fundamental Matrix, which represents the alge-

braic relation of epipolar geometry [9]:  

𝑝1
𝑡 ∗ 𝐹 ∗ 𝑝2 = 0 (7) 



9 
 

Hartley et. al. proposed that with eight corresponding points from multi-view scene, 

it is possible to solve matrix F, and then solve the intrinsic and extrinsic parameters 

of the scene and the reconstruction can be done. Reconstruction algorithm can be 

simplified into three steps [10]: 

1. Compute the fundamental matrix F, with point correspondences found from the 

images. 

2. Compute cameras intrinsic matrices, with the fundamental matrix. 

3. For each correspondence, compute the 3D coordinates of the point projected to 

the two points.  

  

3.1.3 Pipeline of Structure from Motion 
 

According to Rossi et. al [11], SfM reconstruction’s pipeline can be divided into 5 

steps. The SfM’s pipeline is summarized in the figure 5. 

1. Feature extraction 

The feature keypoints of the scene are extracted using feature detection algorithm, 

for example: SIFT (Scale-Invariant Feature Transform). SIFT is the most common 

feature detection algorithm as it can detect features even if the images scale, con-

trast, rotation or translation change. Other common methods are SURF, ORB and 

KAZE. 

2. Feature matching 

This step utilizes two algorithms, one to keep track of the extracted keypoints and 

one to match these features across the frames.  

3. Bundle adjustment  

Bundle adjustment methods are used to estimate the pose and structure, when cre-

ating the projective two-view geometry.  

4. Generating the point-cloud 

This step consists of producing the point-cloud from our extracted 3D points. Dense 

point-cloud can be achieved by obtaining sparse cloud and then refining cameras 

pose and repeating the process to get denser point-cloud. 

 



10 
 

5. Visualization  

Last step is to visualize the point-cloud. This can be done in different ways, easiest 

being just plotting the 3D points according to their coordinates. More accurate visu-

alizations can be achieved with using meshing, where an algorithm is used to create 

a surface between on our 3D point-cloud.  

 Figure 7. SfM pipeline. [9] 

3.2 Visual Odometry 

Visual Odometry (VO) means estimating the pose of the device using only data 

gained from images collected by monocular or stereo camera system. Existing VO 

methods can be separated into three classes: feature-based methods, direct meth-

ods and hybrid methods.  

Direct methods work by estimating camera’s motion by minimizing the photometric 

error over all pixels. Most VO methods are feature-based and work by detecting key-

points and matching them between frames. [12] Hybrid methods combine elements 

of these two prior methods, and its feature-correspondence is an implicit result of 

direct motion estimation [13]. 



11 
 

Below is presented a simplified pseudo-algorithm for most existing approaches to 

visual odometry [14].  

1. Acquire image data from camera sensor. 

2. Image correction: applying image processing to reduce lens distortion etc.  

3. Feature detection: define the points of interest and match them across frames 

and construct optical flow field. 

4. Check flow field vector for error and remove outliers. 

5. Estimate the camera motion from the optical flow. 

3.2.1 Visual-Inertial Odometry  
 

Method where the visual data gained from device’s camera and the inertial data col-

lected by device’s IMU are combined, is called Visual-Inertial Odometry (VIO). IMU 

is the most commonly used measurement unit in mobile devices used to track the 

movement of the device. Most IMU’s consist of accelerometers, gyroscopes.  

Gyroscope measures device’s rotational velocity and accelerometer measures the 

acceleration of the device relative to the state of free-fall. This means that device that 

is in free-fall has relative acceleration of 0 𝑚/𝑠2 and when still, the acceleration is 

9.81 𝑚/𝑠2 upwards. Accelerometers measure the acceleration on only one axis, 

therefore for maximum information multiple units are needed [15]. Both accelerome-

ter and gyroscope are sensitive to noise, bias and other factors that affect the accu-

racy of each unit.  

For combining the visual data and the inertial data, following parameters need to be 

known, in order to precisely use the IMU’s data [15]: 

• Camera’s calibration and distortion parameters. 

• The position offset of IMU and camera.  

• The delay between IMU and camera.  

• The camera’s capturing rate.  

• Random bias factors.  

 

 



12 
 

VIO is the method that most of the modern AR applications including ARCore rely on, 

since the IMUs’ prices have fallen, and the quality has improved at the same time. VIO 

enables us to obtain most accurate information about device’s pose relative to the scene, 

since the visual and inertial data are combined.  

 



13 
 

IMPLEMENTATION AND TESTING 

This chapter focuses on implementing and testing the above-mentioned methods 

and theory. For testing the 3D reconstruction on a smartphone, we are using Android 

Operating System device, Huawei P30 Pro smartphone and two different public ap-

plications. Goal in this chapter is to perform a 3D reconstruction and analyze its per-

formance and possible usage. 

3.3 Application 1 

First application demonstrates how the 3D-pointcloud can be obtained from the 

scene in real-time using ARCore’s functions. The application utilizes code from Si-

lidragos [16] and it is ran in Android Studio. The application has separate stand-by 

and scanning modes, and when the scanning mode is turned on, our device seeks 

for feature points and stores them as temporary point cluster. It also tracks the pose 

of our device to create a large point cloud from the obtained clusters. Once the scan-

ning is finished the point cloud is stored to JSON-file (Java Script object notation) in 

the form of 

𝐾𝑒𝑦𝑝𝑜𝑖𝑛𝑡 = {[𝑋, 𝑌, 𝑍], {[𝑅, 𝐺, 𝐵]} 

where the X, Y and Z are the coordinates of the point’s position and the R, G and B 

are the components of color in form of RGB (Red, Green, Blue). 

The phone’s pose is tracked with ARCore’s class Pose, which is used to describe 

the transformation from object’s local coordinate space to the world coordinate 

space. The Pose class offers built in methods to extract information about the pose, 

like rotation and translation. 

3.4 Application 2 

Second application that we use to test ARCore’s features is a 3D Scanner published 

by L. Vonásek [17]. Scanner is used to scan an object or scene with a mobile device, 

to create an 3D model of it. Scanning happens in real-time and the app meshes a 

texture on top of already scanned areas. Texture rendering is done using OpenGL 

renderer. After the scanning is done, the data is processed, and the final 3D model 



14 
 

is produced. In figure 3. is shown the pipeline of Vonásek’s implementation. [15] 

 

Figure 8. The pipeline of Vonásek’s 3D Scanner for ARCore. [18] 

User has 4 options for capturing resolution: 2 cm, 4 cm, 8 cm and Face scan. 2 cm 

is meant for interior scanning, 4 cm for exterior and 8 cm for fast scanning. User can 

also select if the depth sensor is used for the scanning. This 3D scanner uses either 

the depth sensor of the device or passive depth sensing to obtain the structure of the 

scene. Passive depth sensing calculates the depth component using visual-inertial 

odometry and it is used if the device does not have a separate depth sensor. For 

tracking camera’s pose the scanner uses ARCore’s built in Pose-method. In figure x 

is shown a picture of the 3D model that the app creates from a room.  

This application can be used to model everything from indoors scene to single ob-

jects and the results are shown in the next chapter.  

 

 

 

 

 

 

 

 

 

 

 



15 
 

3.5 Results 

Silidragos’ low-resolution scanner can be used to store feature points from certain 

scene, and it gives as a coarse representation of the scene. This model does not 

give you any small details, but rather just the overall structure. It could not provide a 

representation of a single object, since its resolution is too small.  In Figure 9 is shown 

the data collected by the application, plotted in Matlab.  

For more specific representations the data could be plotted using software like Unity. 

Choosing different methods for plotting can change the quality of the model.  

 

Figure 9. Coarse representation of a scene with Low-Resolution scanner. [16] 

Vonásek’s 3D scanner’s performance and usability were acceptable, as the process 

happened in real-time and final rendering was fast. The quality of the model when 

using the most accurate resolution, was usable for models of a larger scene or a 

room. As we can see from Figure 10, the model is quite accurate overall, but it has 

few flaws in there too.  



16 
 

 

Figure 10. 3D model of a small apartment using Vonásek’s 3D scanner using 2 cm 
resolution.  

Basic idea of the scene can be obtained from the model, but smaller details appear 

blurry and distorted. When creating a model of a single object, the resolution matters 

more, 2 cm having the best quality and 8 cm worst. The higher the resolution was, 

more sensitive it was for slight movement creating artifacts and distortion as can be 

seen from Figure 11. Over all this applications accuracy is satisfactory, but for certain 

tasks, models would need some post processing.  

 

Figure 11. 3D model of an acoustic guitar using Vonásek’s 3D scanner using 2 cm, 
4 cm and 8 cm resolution.  

 



17 
 

These results give us a basic idea of what ARCore is capable of. It provides us easy 

and efficient methods to obtain information of the given scene. The built-in libraries 

make it easy for developers to develop their own AR applications. However, ARCore 

might not be the best choice for creating an 3D scanner for reconstruction, because 

it mainly focuses on the interactions between virtual game objects and planes of the 

scene. ARCore performs the plane and feature point detections well, but the resolu-

tion for feature point detection could be better.  

The benefits of ARCore are its usability and community, as they provide lots of infor-

mation for developers and users. This makes it easy for anyone to start experiencing 

with ARCore development.   

 



18 
 

5. CONCLUSIONS  

In this study we went through ARCore’s fundamental concepts and the theory behind 

them. Structure from Motion is used to obtain the structure of the scene using only vis-

ual data obtained from the device’s camera and solving the structure by calculating the 

correspondences between frames. Visual-Inertial Odometry is a method where the vis-

ual data and the inertial data are combined to solve the structure of the 3D scene.  

We tested ARCore’s features with two applications that use ARCore to perform a 3D 

reconstruction. First one was a simple point-cloud scanner, that can be used to obtain 

a coarse estimation of the scene’s structure. Second application was used to create a 

3D model.  

ARCore does help a lot with creating the 3D reconstruction with its ability to detect fea-

ture points efficiently and track the pose of our device, but currently it can not perform 

the reconstruction alone. With ARCore’s built-in features we can obtain the point-cloud 

and 3D structure of our object or scene, but the texturing needs to be done on a third-

party application like OpenGL renderer.  

In conclusion, ARCore might not be the best tool for reconstruction problems, because 

it focuses mostly on virtual objects and interacting with them. However, it offers great 

tools for obtaining information from the scene, but for handling the data, you need to 

program yourself or use third party applications to visualize this data. 3D reconstruction 

might become a built-in feature of ARCore later in the future, since it is a very desired 

feature among the ARCore community.  

 



19 
 

SOURCES 

 

[1] Milgram, Paul & Takemura, Haruo & Utsumi, Akira & Kishino, Fumio. (1994). 
Augmented reality: A class of displays on the reality-virtuality continuum. Tele-
manipulator and Telepresence Technologies. 2351. 10.1117/12.197321. 

[2] Victor Adrian Prisacariu, Olaf Kahler, David W. Murray, and Ian D. Reid. 
Realtime 3d tracking and reconstruction on mobile phones. IEEE Transactions 
on Visualization and Computer Graphics, 21:557–570, 2015 

[3] G. Klein and D. Murray, "Parallel Tracking and Mapping for Small AR Work-
spaces," 2007 6th IEEE and ACM International Symposium on Mixed and Aug-
mented Reality, Nara, 2007, pp. 225-234. 

[4] Bylow, Erik & Sturm, Jürgen & Kerl, Christian & Kahl, Fredrik & Cremers, Dan-
iel. (2013). Real-Time Camera Tracking and 3D Reconstruction Using Signed 
Distance Functions. 10.15607/RSS.2013.IX.035. 

[5] Google – ARCore Overview: https://developers.google.com/ar/discover 

[6] M. Martinez, Smartphone 3D Reconstruction for Physical Interactions in Aug-
mented Reality, Dissertation, University of Dublin, Trinity College 

[7] Googe – ARCore Concepts: https://developers.google.com/ar/discover/concepts 

[8] Google – ARCore Documentation: https://developers.google.com/ar/reference 

[9] Laksono, Dany. (2016). CloudSfM: 3D Reconstruction using Structure from Mo-
tion Web Service. 10.13140/RG.2.2.34441.29289. 

[10] Hartley, R., Zisserman, A., 2003. Multiple view geometry in computer vision. 
Cambridge university press, Cambridge, UK 

[11] Rossi, A.J., Rhody, H., Salvaggio, C., Walvoord, D.J., 2012. Abstracted work-
flow framework with a structure from motion application, in: Image Processing 
Workshop (WNYIPW), 2012 Western New York. IEEE, pp. 9–12. 

[12] Robertson, D.P., Cipolla, R., 2008. Structure from motion, in: Practical Image 
Processing and Computer Vision. Wiley, Blackwell 

[13] Feature-based visual odometry prior for real-time semi-dense stereo SLAM, N. 
Krombach, D. Droeschel, S. Houben, S. Behnke 

[14] Cheng, Yang & Maimone, Mark & Matthies, Larry. (2006). Visual odometry on 
the Mars Exploration Rovers - A tool to ensure accurate driving and science im-
aging. Robotics & Automation Magazine, IEEE. 13. 54 - 62. 
10.1109/MRA.2006.1638016. 

[15] Shelley, M.A., Monocular Visual Inertial Odometry on a Mobile Device 

[16] Silidragos: https://github.com/silidragos/colorfulcoding-projects/tree/master/1-
ARCore%20Scanner 



20 
 

[17] L. Vonásek, https://play.google.com/store/apps/details?id=com.lvonasek.ar-
core3dscanner&hl=fi 

[18] L. Vonásek, https://github.com/lvonasek/tango/wiki/3D-Scanner-for-ARcore 


